kern_switch.c revision 135181
1/*
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27/***
28Here is the logic..
29
30If there are N processors, then there are at most N KSEs (kernel
31schedulable entities) working to process threads that belong to a
32KSEGROUP (kg). If there are X of these KSEs actually running at the
33moment in question, then there are at most M (N-X) of these KSEs on
34the run queue, as running KSEs are not on the queue.
35
36Runnable threads are queued off the KSEGROUP in priority order.
37If there are M or more threads runnable, the top M threads
38(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39their priority from those threads and are put on the run queue.
40
41The last thread that had a priority high enough to have a KSE associated
42with it, AND IS ON THE RUN QUEUE is pointed to by
43kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44assigned as all the available KSEs are activly running, or because there
45are no threads queued, that pointer is NULL.
46
47When a KSE is removed from the run queue to become runnable, we know
48it was associated with the highest priority thread in the queue (at the head
49of the queue). If it is also the last assigned we know M was 1 and must
50now be 0. Since the thread is no longer queued that pointer must be
51removed from it. Since we know there were no more KSEs available,
52(M was 1 and is now 0) and since we are not FREEING our KSE
53but using it, we know there are STILL no more KSEs available, we can prove
54that the next thread in the ksegrp list will not have a KSE to assign to
55it, so we can show that the pointer must be made 'invalid' (NULL).
56
57The pointer exists so that when a new thread is made runnable, it can
58have its priority compared with the last assigned thread to see if
59it should 'steal' its KSE or not.. i.e. is it 'earlier'
60on the list than that thread or later.. If it's earlier, then the KSE is
61removed from the last assigned (which is now not assigned a KSE)
62and reassigned to the new thread, which is placed earlier in the list.
63The pointer is then backed up to the previous thread (which may or may not
64be the new thread).
65
66When a thread sleeps or is removed, the KSE becomes available and if there
67are queued threads that are not assigned KSEs, the highest priority one of
68them is assigned the KSE, which is then placed back on the run queue at
69the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70to point to it.
71
72The following diagram shows 2 KSEs and 3 threads from a single process.
73
74 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75              \    \____
76               \        \
77    KSEGROUP---thread--thread--thread    (queued in priority order)
78        \                 /
79         \_______________/
80          (last_assigned)
81
82The result of this scheme is that the M available KSEs are always
83queued at the priorities they have inherrited from the M highest priority
84threads for that KSEGROUP. If this situation changes, the KSEs are
85reassigned to keep this true.
86***/
87
88#include <sys/cdefs.h>
89__FBSDID("$FreeBSD: head/sys/kern/kern_switch.c 135181 2004-09-13 23:02:52Z julian $");
90
91#include "opt_sched.h"
92
93#ifndef KERN_SWITCH_INCLUDE
94#include <sys/param.h>
95#include <sys/systm.h>
96#include <sys/kdb.h>
97#include <sys/kernel.h>
98#include <sys/ktr.h>
99#include <sys/lock.h>
100#include <sys/mutex.h>
101#include <sys/proc.h>
102#include <sys/queue.h>
103#include <sys/sched.h>
104#else  /* KERN_SWITCH_INCLUDE */
105#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106#include <sys/smp.h>
107#endif
108#include <machine/critical.h>
109#if defined(SMP) && defined(SCHED_4BSD)
110#include <sys/sysctl.h>
111#endif
112
113#ifdef FULL_PREEMPTION
114#ifndef PREEMPTION
115#error "The FULL_PREEMPTION option requires the PREEMPTION option"
116#endif
117#endif
118
119CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
120
121#define td_kse td_sched
122
123/************************************************************************
124 * Functions that manipulate runnability from a thread perspective.	*
125 ************************************************************************/
126/*
127 * Select the KSE that will be run next.  From that find the thread, and
128 * remove it from the KSEGRP's run queue.  If there is thread clustering,
129 * this will be what does it.
130 */
131struct thread *
132choosethread(void)
133{
134	struct kse *ke;
135	struct thread *td;
136	struct ksegrp *kg;
137
138#if defined(SMP) && (defined(__i386__) || defined(__amd64__))
139	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
140		/* Shutting down, run idlethread on AP's */
141		td = PCPU_GET(idlethread);
142		ke = td->td_kse;
143		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
144		ke->ke_flags |= KEF_DIDRUN;
145		TD_SET_RUNNING(td);
146		return (td);
147	}
148#endif
149
150retry:
151	ke = sched_choose();
152	if (ke) {
153		td = ke->ke_thread;
154		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
155		kg = ke->ke_ksegrp;
156		if (td->td_proc->p_flag & P_HADTHREADS) {
157			if (kg->kg_last_assigned == td) {
158				kg->kg_last_assigned = TAILQ_PREV(td,
159				    threadqueue, td_runq);
160			}
161			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
162			kg->kg_runnable--;
163		}
164		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
165		    td, td->td_priority);
166	} else {
167		/* Simulate runq_choose() having returned the idle thread */
168		td = PCPU_GET(idlethread);
169		ke = td->td_kse;
170		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
171	}
172	ke->ke_flags |= KEF_DIDRUN;
173
174	/*
175	 * If we are in panic, only allow system threads,
176	 * plus the one we are running in, to be run.
177	 */
178	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
179	    (td->td_flags & TDF_INPANIC) == 0)) {
180		/* note that it is no longer on the run queue */
181		TD_SET_CAN_RUN(td);
182		goto retry;
183	}
184
185	TD_SET_RUNNING(td);
186	return (td);
187}
188
189/*
190 * Given a surplus system slot, try assign a new runnable thread to it.
191 * Called from:
192 *  sched_thread_exit()  (local)
193 *  sched_switch()  (local)
194 *  sched_thread_exit()  (local)
195 *  remrunqueue()  (local)
196 */
197static void
198slot_fill(struct ksegrp *kg)
199{
200	struct thread *td;
201
202	mtx_assert(&sched_lock, MA_OWNED);
203	while (kg->kg_avail_opennings > 0) {
204		/*
205		 * Find the first unassigned thread
206		 */
207		if ((td = kg->kg_last_assigned) != NULL)
208			td = TAILQ_NEXT(td, td_runq);
209		else
210			td = TAILQ_FIRST(&kg->kg_runq);
211
212		/*
213		 * If we found one, send it to the system scheduler.
214		 */
215		if (td) {
216			kg->kg_last_assigned = td;
217			kg->kg_avail_opennings--;
218			sched_add(td, SRQ_BORING);
219			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
220		} else {
221			/* no threads to use up the slots. quit now */
222			break;
223		}
224	}
225}
226
227#ifdef SCHED_4BSD
228/*
229 * Remove a thread from its KSEGRP's run queue.
230 * This in turn may remove it from a KSE if it was already assigned
231 * to one, possibly causing a new thread to be assigned to the KSE
232 * and the KSE getting a new priority.
233 */
234static void
235remrunqueue(struct thread *td)
236{
237	struct thread *td2, *td3;
238	struct ksegrp *kg;
239	struct kse *ke;
240
241	mtx_assert(&sched_lock, MA_OWNED);
242	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
243	kg = td->td_ksegrp;
244	ke = td->td_kse;
245	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
246	TD_SET_CAN_RUN(td);
247	/*
248	 * If it is not a threaded process, take the shortcut.
249	 */
250	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
251		/* remve from sys run queue and free up a slot */
252		sched_rem(td);
253		kg->kg_avail_opennings++;
254		ke->ke_state = KES_THREAD;
255		return;
256	}
257   	td3 = TAILQ_PREV(td, threadqueue, td_runq);
258	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
259	kg->kg_runnable--;
260	if (ke->ke_state == KES_ONRUNQ) {
261		/*
262		 * This thread has been assigned to the system run queue.
263		 * We need to dissociate it and try assign the
264		 * KSE to the next available thread. Then, we should
265		 * see if we need to move the KSE in the run queues.
266		 */
267		sched_rem(td);
268		kg->kg_avail_opennings++;
269		ke->ke_state = KES_THREAD;
270		td2 = kg->kg_last_assigned;
271		KASSERT((td2 != NULL), ("last assigned has wrong value"));
272		if (td2 == td)
273			kg->kg_last_assigned = td3;
274		/* slot_fill(kg); */ /* will replace it with another */
275	}
276}
277#endif
278
279/*
280 * Change the priority of a thread that is on the run queue.
281 */
282void
283adjustrunqueue( struct thread *td, int newpri)
284{
285	struct ksegrp *kg;
286	struct kse *ke;
287
288	mtx_assert(&sched_lock, MA_OWNED);
289	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
290
291	ke = td->td_kse;
292	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
293	/*
294	 * If it is not a threaded process, take the shortcut.
295	 */
296	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
297		/* We only care about the kse in the run queue. */
298		td->td_priority = newpri;
299		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
300			sched_rem(td);
301			sched_add(td, SRQ_BORING);
302		}
303		return;
304	}
305
306	/* It is a threaded process */
307	kg = td->td_ksegrp;
308	TD_SET_CAN_RUN(td);
309	if (ke->ke_state == KES_ONRUNQ) {
310		if (kg->kg_last_assigned == td) {
311			kg->kg_last_assigned =
312			    TAILQ_PREV(td, threadqueue, td_runq);
313		}
314		sched_rem(td);
315		kg->kg_avail_opennings++;
316	}
317	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
318	kg->kg_runnable--;
319	td->td_priority = newpri;
320	setrunqueue(td, SRQ_BORING);
321}
322int limitcount;
323void
324setrunqueue(struct thread *td, int flags)
325{
326	struct ksegrp *kg;
327	struct thread *td2;
328	struct thread *tda;
329	int count;
330
331	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
332	    td, td->td_ksegrp, td->td_proc->p_pid);
333	mtx_assert(&sched_lock, MA_OWNED);
334	KASSERT((td->td_inhibitors == 0),
335			("setrunqueue: trying to run inhibitted thread"));
336	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
337	    ("setrunqueue: bad thread state"));
338	TD_SET_RUNQ(td);
339	kg = td->td_ksegrp;
340	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
341		/*
342		 * Common path optimisation: Only one of everything
343		 * and the KSE is always already attached.
344		 * Totally ignore the ksegrp run queue.
345		 */
346		if (kg->kg_avail_opennings != 1) {
347			if (limitcount < 1) {
348				limitcount++;
349				printf("pid %d: corrected slot count (%d->1)\n",
350				    td->td_proc->p_pid, kg->kg_avail_opennings);
351
352			}
353			kg->kg_avail_opennings = 1;
354		}
355		kg->kg_avail_opennings--;
356		sched_add(td, flags);
357		return;
358	}
359
360	tda = kg->kg_last_assigned;
361	if ((kg->kg_avail_opennings <= 0) &&
362	(tda && (tda->td_priority > td->td_priority))) {
363		/*
364		 * None free, but there is one we can commandeer.
365		 */
366		CTR2(KTR_RUNQ,
367		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
368		sched_rem(tda);
369		tda = kg->kg_last_assigned =
370		    TAILQ_PREV(tda, threadqueue, td_runq);
371		kg->kg_avail_opennings++;
372	}
373
374	/*
375	 * Add the thread to the ksegrp's run queue at
376	 * the appropriate place.
377	 */
378	count = 0;
379	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
380		if (td2->td_priority > td->td_priority) {
381			kg->kg_runnable++;
382			TAILQ_INSERT_BEFORE(td2, td, td_runq);
383			break;
384		}
385		/* XXX Debugging hack */
386		if (++count > 10000) {
387			printf("setrunqueue(): corrupt kq_runq, td= %p\n", td);
388			panic("deadlock in setrunqueue");
389		}
390	}
391	if (td2 == NULL) {
392		/* We ran off the end of the TAILQ or it was empty. */
393		kg->kg_runnable++;
394		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
395	}
396
397	/*
398	 * If we have a slot to use, then put the thread on the system
399	 * run queue and if needed, readjust the last_assigned pointer.
400	 */
401	if (kg->kg_avail_opennings > 0) {
402		if (tda == NULL) {
403			/*
404			 * No pre-existing last assigned so whoever is first
405			 * gets the KSE we brought in.. (maybe us)
406			 */
407			td2 = TAILQ_FIRST(&kg->kg_runq);
408			kg->kg_last_assigned = td2;
409		} else if (tda->td_priority > td->td_priority) {
410			td2 = td;
411		} else {
412			/*
413			 * We are past last_assigned, so
414			 * gave the next slot to whatever is next,
415			 * which may or may not be us.
416			 */
417			td2 = TAILQ_NEXT(tda, td_runq);
418			kg->kg_last_assigned = td2;
419		}
420		kg->kg_avail_opennings--;
421		sched_add(td2, flags);
422	} else {
423		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
424			td, td->td_ksegrp, td->td_proc->p_pid);
425	}
426}
427
428/*
429 * Kernel thread preemption implementation.  Critical sections mark
430 * regions of code in which preemptions are not allowed.
431 */
432void
433critical_enter(void)
434{
435	struct thread *td;
436
437	td = curthread;
438	if (td->td_critnest == 0)
439		cpu_critical_enter(td);
440	td->td_critnest++;
441}
442
443void
444critical_exit(void)
445{
446	struct thread *td;
447
448	td = curthread;
449	KASSERT(td->td_critnest != 0,
450	    ("critical_exit: td_critnest == 0"));
451	if (td->td_critnest == 1) {
452#ifdef PREEMPTION
453		mtx_assert(&sched_lock, MA_NOTOWNED);
454		if (td->td_pflags & TDP_OWEPREEMPT) {
455			mtx_lock_spin(&sched_lock);
456			mi_switch(SW_INVOL, NULL);
457			mtx_unlock_spin(&sched_lock);
458		}
459#endif
460		td->td_critnest = 0;
461		cpu_critical_exit(td);
462	} else {
463		td->td_critnest--;
464	}
465}
466
467/*
468 * This function is called when a thread is about to be put on run queue
469 * because it has been made runnable or its priority has been adjusted.  It
470 * determines if the new thread should be immediately preempted to.  If so,
471 * it switches to it and eventually returns true.  If not, it returns false
472 * so that the caller may place the thread on an appropriate run queue.
473 */
474int
475maybe_preempt(struct thread *td)
476{
477#ifdef PREEMPTION
478	struct thread *ctd;
479	int cpri, pri;
480#endif
481
482	mtx_assert(&sched_lock, MA_OWNED);
483#ifdef PREEMPTION
484	/*
485	 * The new thread should not preempt the current thread if any of the
486	 * following conditions are true:
487	 *
488	 *  - The current thread has a higher (numerically lower) or
489	 *    equivalent priority.  Note that this prevents curthread from
490	 *    trying to preempt to itself.
491	 *  - It is too early in the boot for context switches (cold is set).
492	 *  - The current thread has an inhibitor set or is in the process of
493	 *    exiting.  In this case, the current thread is about to switch
494	 *    out anyways, so there's no point in preempting.  If we did,
495	 *    the current thread would not be properly resumed as well, so
496	 *    just avoid that whole landmine.
497	 *  - If the new thread's priority is not a realtime priority and
498	 *    the current thread's priority is not an idle priority and
499	 *    FULL_PREEMPTION is disabled.
500	 *
501	 * If all of these conditions are false, but the current thread is in
502	 * a nested critical section, then we have to defer the preemption
503	 * until we exit the critical section.  Otherwise, switch immediately
504	 * to the new thread.
505	 */
506	ctd = curthread;
507	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
508	  ("thread has no (or wrong) sched-private part."));
509	KASSERT((td->td_inhibitors == 0),
510			("maybe_preempt: trying to run inhibitted thread"));
511	pri = td->td_priority;
512	cpri = ctd->td_priority;
513	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
514	    td->td_kse->ke_state != KES_THREAD)
515		return (0);
516#ifndef FULL_PREEMPTION
517	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
518	    !(cpri >= PRI_MIN_IDLE))
519		return (0);
520#endif
521	if (ctd->td_critnest > 1) {
522		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
523		    ctd->td_critnest);
524		ctd->td_pflags |= TDP_OWEPREEMPT;
525		return (0);
526	}
527
528	/*
529	 * Our thread state says that we are already on a run queue, so
530	 * update our state as if we had been dequeued by choosethread().
531	 */
532	MPASS(TD_ON_RUNQ(td));
533	TD_SET_RUNNING(td);
534	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
535	    td->td_proc->p_pid, td->td_proc->p_comm);
536	mi_switch(SW_INVOL, td);
537	return (1);
538#else
539	return (0);
540#endif
541}
542
543#if 0
544#ifndef PREEMPTION
545/* XXX: There should be a non-static version of this. */
546static void
547printf_caddr_t(void *data)
548{
549	printf("%s", (char *)data);
550}
551static char preempt_warning[] =
552    "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
553SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
554    preempt_warning)
555#endif
556#endif
557
558/************************************************************************
559 * SYSTEM RUN QUEUE manipulations and tests				*
560 ************************************************************************/
561/*
562 * Initialize a run structure.
563 */
564void
565runq_init(struct runq *rq)
566{
567	int i;
568
569	bzero(rq, sizeof *rq);
570	for (i = 0; i < RQ_NQS; i++)
571		TAILQ_INIT(&rq->rq_queues[i]);
572}
573
574/*
575 * Clear the status bit of the queue corresponding to priority level pri,
576 * indicating that it is empty.
577 */
578static __inline void
579runq_clrbit(struct runq *rq, int pri)
580{
581	struct rqbits *rqb;
582
583	rqb = &rq->rq_status;
584	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
585	    rqb->rqb_bits[RQB_WORD(pri)],
586	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
587	    RQB_BIT(pri), RQB_WORD(pri));
588	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
589}
590
591/*
592 * Find the index of the first non-empty run queue.  This is done by
593 * scanning the status bits, a set bit indicates a non-empty queue.
594 */
595static __inline int
596runq_findbit(struct runq *rq)
597{
598	struct rqbits *rqb;
599	int pri;
600	int i;
601
602	rqb = &rq->rq_status;
603	for (i = 0; i < RQB_LEN; i++)
604		if (rqb->rqb_bits[i]) {
605			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
606			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
607			    rqb->rqb_bits[i], i, pri);
608			return (pri);
609		}
610
611	return (-1);
612}
613
614/*
615 * Set the status bit of the queue corresponding to priority level pri,
616 * indicating that it is non-empty.
617 */
618static __inline void
619runq_setbit(struct runq *rq, int pri)
620{
621	struct rqbits *rqb;
622
623	rqb = &rq->rq_status;
624	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
625	    rqb->rqb_bits[RQB_WORD(pri)],
626	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
627	    RQB_BIT(pri), RQB_WORD(pri));
628	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
629}
630
631/*
632 * Add the KSE to the queue specified by its priority, and set the
633 * corresponding status bit.
634 */
635void
636runq_add(struct runq *rq, struct kse *ke)
637{
638	struct rqhead *rqh;
639	int pri;
640
641	pri = ke->ke_thread->td_priority / RQ_PPQ;
642	ke->ke_rqindex = pri;
643	runq_setbit(rq, pri);
644	rqh = &rq->rq_queues[pri];
645	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
646	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
647	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
648}
649
650/*
651 * Return true if there are runnable processes of any priority on the run
652 * queue, false otherwise.  Has no side effects, does not modify the run
653 * queue structure.
654 */
655int
656runq_check(struct runq *rq)
657{
658	struct rqbits *rqb;
659	int i;
660
661	rqb = &rq->rq_status;
662	for (i = 0; i < RQB_LEN; i++)
663		if (rqb->rqb_bits[i]) {
664			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
665			    rqb->rqb_bits[i], i);
666			return (1);
667		}
668	CTR0(KTR_RUNQ, "runq_check: empty");
669
670	return (0);
671}
672
673#if defined(SMP) && defined(SCHED_4BSD)
674int runq_fuzz = 1;
675SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
676#endif
677
678/*
679 * Find the highest priority process on the run queue.
680 */
681struct kse *
682runq_choose(struct runq *rq)
683{
684	struct rqhead *rqh;
685	struct kse *ke;
686	int pri;
687
688	mtx_assert(&sched_lock, MA_OWNED);
689	while ((pri = runq_findbit(rq)) != -1) {
690		rqh = &rq->rq_queues[pri];
691#if defined(SMP) && defined(SCHED_4BSD)
692		/* fuzz == 1 is normal.. 0 or less are ignored */
693		if (runq_fuzz > 1) {
694			/*
695			 * In the first couple of entries, check if
696			 * there is one for our CPU as a preference.
697			 */
698			int count = runq_fuzz;
699			int cpu = PCPU_GET(cpuid);
700			struct kse *ke2;
701			ke2 = ke = TAILQ_FIRST(rqh);
702
703			while (count-- && ke2) {
704				if (ke->ke_thread->td_lastcpu == cpu) {
705					ke = ke2;
706					break;
707				}
708				ke2 = TAILQ_NEXT(ke2, ke_procq);
709			}
710		} else
711#endif
712			ke = TAILQ_FIRST(rqh);
713		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
714		CTR3(KTR_RUNQ,
715		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
716		return (ke);
717	}
718	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
719
720	return (NULL);
721}
722
723/*
724 * Remove the KSE from the queue specified by its priority, and clear the
725 * corresponding status bit if the queue becomes empty.
726 * Caller must set ke->ke_state afterwards.
727 */
728void
729runq_remove(struct runq *rq, struct kse *ke)
730{
731	struct rqhead *rqh;
732	int pri;
733
734	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
735		("runq_remove: process swapped out"));
736	pri = ke->ke_rqindex;
737	rqh = &rq->rq_queues[pri];
738	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
739	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
740	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
741	TAILQ_REMOVE(rqh, ke, ke_procq);
742	if (TAILQ_EMPTY(rqh)) {
743		CTR0(KTR_RUNQ, "runq_remove: empty");
744		runq_clrbit(rq, pri);
745	}
746}
747
748/****** functions that are temporarily here ***********/
749#include <vm/uma.h>
750#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
751extern struct mtx kse_zombie_lock;
752
753/*
754 *  Allocate scheduler specific per-process resources.
755 * The thread and ksegrp have already been linked in.
756 * In this case just set the default concurrency value.
757 *
758 * Called from:
759 *  proc_init() (UMA init method)
760 */
761void
762sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
763{
764
765	/* This can go in sched_fork */
766	sched_init_concurrency(kg);
767}
768
769/*
770 * Called by the uma process fini routine..
771 * undo anything we may have done in the uma_init method.
772 * Panic if it's not all 1:1:1:1
773 * Called from:
774 *  proc_fini() (UMA method)
775 */
776void
777sched_destroyproc(struct proc *p)
778{
779
780	/* this function slated for destruction */
781	KASSERT((p->p_numthreads == 1), ("Cached proc with > 1 thread "));
782	KASSERT((p->p_numksegrps == 1), ("Cached proc with > 1 ksegrp "));
783}
784
785#define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
786/*
787 * thread is being either created or recycled.
788 * Fix up the per-scheduler resources associated with it.
789 * Called from:
790 *  sched_fork_thread()
791 *  thread_dtor()  (*may go away)
792 *  thread_init()  (*may go away)
793 */
794void
795sched_newthread(struct thread *td)
796{
797	struct td_sched *ke;
798
799	ke = (struct td_sched *) (td + 1);
800	bzero(ke, sizeof(*ke));
801	td->td_sched     = ke;
802	ke->ke_thread	= td;
803	ke->ke_oncpu	= NOCPU;
804	ke->ke_state	= KES_THREAD;
805}
806
807/*
808 * Set up an initial concurrency of 1
809 * and set the given thread (if given) to be using that
810 * concurrency slot.
811 * May be used "offline"..before the ksegrp is attached to the world
812 * and thus wouldn't need schedlock in that case.
813 * Called from:
814 *  thr_create()
815 *  proc_init() (UMA) via sched_newproc()
816 */
817void
818sched_init_concurrency(struct ksegrp *kg)
819{
820
821	kg->kg_concurrency = 1;
822	kg->kg_avail_opennings = 1;
823}
824
825/*
826 * Change the concurrency of an existing ksegrp to N
827 * Called from:
828 *  kse_create()
829 *  kse_exit()
830 *  thread_exit()
831 *  thread_single()
832 */
833void
834sched_set_concurrency(struct ksegrp *kg, int concurrency)
835{
836
837	/* Handle the case for a declining concurrency */
838	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
839	kg->kg_concurrency = concurrency;
840}
841
842/*
843 * Called from thread_exit() for all exiting thread
844 *
845 * Not to be confused with sched_exit_thread()
846 * that is only called from thread_exit() for threads exiting
847 * without the rest of the process exiting because it is also called from
848 * sched_exit() and we wouldn't want to call it twice.
849 * XXX This can probably be fixed.
850 */
851void
852sched_thread_exit(struct thread *td)
853{
854
855	td->td_ksegrp->kg_avail_opennings++;
856	slot_fill(td->td_ksegrp);
857}
858
859#endif /* KERN_SWITCH_INCLUDE */
860