kern_switch.c revision 103832
1/*
2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: head/sys/kern/kern_switch.c 103832 2002-09-23 05:27:30Z julian $
27 */
28
29/***
30
31Here is the logic..
32
33If there are N processors, then there are at most N KSEs (kernel
34schedulable entities) working to process threads that belong to a
35KSEGOUP (kg). If there are X of these KSEs actually running at the
36moment in question, then there are at most M (N-X) of these KSEs on
37the run queue, as running KSEs are not on the queue.
38
39Runnable threads are queued off the KSEGROUP in priority order.
40If there are M or more threads runnable, the top M threads
41(by priority) are 'preassigned' to the M KSEs not running. The KSEs take
42their priority from those threads and are put on the run queue.
43
44The last thread that had a priority high enough to have a KSE associated
45with it, AND IS ON THE RUN QUEUE is pointed to by
46kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
47assigned as all the available KSEs are activly running, or because there
48are no threads queued, that pointer is NULL.
49
50When a KSE is removed from the run queue to become runnable, we know
51it was associated with the highest priority thread in the queue (at the head
52of the queue). If it is also the last assigned we know M was 1 and must
53now be 0. Since the thread is no longer queued that pointer must be
54removed from it. Since we know there were no more KSEs available,
55(M was 1 and is now 0) and since we are not FREEING our KSE
56but using it, we know there are STILL no more KSEs available, we can prove
57that the next thread in the ksegrp list will not have a KSE to assign to
58it, so we can show that the pointer must be made 'invalid' (NULL).
59
60The pointer exists so that when a new thread is made runnable, it can
61have its priority compared with the last assigned thread to see if
62it should 'steal' its KSE or not.. i.e. is it 'earlier'
63on the list than that thread or later.. If it's earlier, then the KSE is
64removed from the last assigned (which is now not assigned a KSE)
65and reassigned to the new thread, which is placed earlier in the list.
66The pointer is then backed up to the previous thread (which may or may not
67be the new thread).
68
69When a thread sleeps or is removed, the KSE becomes available and if there
70are queued threads that are not assigned KSEs, the highest priority one of
71them is assigned the KSE, which is then placed back on the run queue at
72the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
73to point to it.
74
75The following diagram shows 2 KSEs and 3 threads from a single process.
76
77 RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
78              \    \____
79               \        \
80    KSEGROUP---thread--thread--thread    (queued in priority order)
81        \                 /
82         \_______________/
83          (last_assigned)
84
85The result of this scheme is that the M available KSEs are always
86queued at the priorities they have inherrited from the M highest priority
87threads for that KSEGROUP. If this situation changes, the KSEs are
88reassigned to keep this true.
89
90*/
91
92#include <sys/param.h>
93#include <sys/systm.h>
94#include <sys/kernel.h>
95#include <sys/ktr.h>
96#include <sys/lock.h>
97#include <sys/mutex.h>
98#include <sys/proc.h>
99#include <sys/queue.h>
100#include <machine/critical.h>
101
102CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
103
104/*
105 * Global run queue.
106 */
107static struct runq runq;
108SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)
109
110static void runq_readjust(struct runq *rq, struct kse *ke);
111/************************************************************************
112 * Functions that manipulate runnability from a thread perspective.	*
113 ************************************************************************/
114
115/*
116 * Select the KSE that will be run next.  From that find the thread, and x
117 * remove it from the KSEGRP's run queue.  If there is thread clustering,
118 * this will be what does it.
119 */
120struct thread *
121choosethread(void)
122{
123	struct kse *ke;
124	struct thread *td;
125	struct ksegrp *kg;
126
127retry:
128	if ((ke = runq_choose(&runq))) {
129		td = ke->ke_thread;
130		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
131		kg = ke->ke_ksegrp;
132		if (td->td_flags & TDF_UNBOUND) {
133			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
134			if (kg->kg_last_assigned == td) {
135				if (TAILQ_PREV(td, threadqueue, td_runq)
136				    != NULL)
137					printf("Yo MAMA!\n");
138				kg->kg_last_assigned = TAILQ_PREV(td,
139				    threadqueue, td_runq);
140			}
141			/*
142			 *  If we have started running an upcall,
143			 * Then TDF_UNBOUND WAS set because the thread was
144			 * created without a KSE. Now that we have one,
145			 * and it is our time to run, we make sure
146			 * that BOUND semantics apply for the rest of
147			 * the journey to userland, and into the UTS.
148			 */
149#ifdef	NOTYET
150			if (td->td_flags & TDF_UPCALLING)
151				tdf->td_flags &= ~TDF_UNBOUND;
152#endif
153		}
154		kg->kg_runnable--;
155		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
156		    td, td->td_priority);
157	} else {
158		/* Simulate runq_choose() having returned the idle thread */
159		td = PCPU_GET(idlethread);
160		ke = td->td_kse;
161		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
162	}
163	ke->ke_flags |= KEF_DIDRUN;
164	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
165	    (td->td_flags & TDF_INPANIC) == 0))
166		goto retry;
167	TD_SET_RUNNING(td);
168	return (td);
169}
170
171/*
172 * Given a KSE (now surplus), either assign a new runable thread to it
173 * (and put it in the run queue) or put it in the ksegrp's idle KSE list.
174 * Assumes the kse is not linked to any threads any more. (has been cleaned).
175 */
176void
177kse_reassign(struct kse *ke)
178{
179	struct ksegrp *kg;
180	struct thread *td;
181
182	mtx_assert(&sched_lock, MA_OWNED);
183	kg = ke->ke_ksegrp;
184
185	/*
186	 * Find the first unassigned thread
187	 * If there is a 'last assigned' then see what's next.
188	 * otherwise look at what is first.
189	 */
190	if ((td = kg->kg_last_assigned)) {
191		td = TAILQ_NEXT(td, td_runq);
192	} else {
193		td = TAILQ_FIRST(&kg->kg_runq);
194	}
195
196	/*
197	 * If we found one assign it the kse, otherwise idle the kse.
198	 */
199	if (td) {
200		kg->kg_last_assigned = td;
201		td->td_kse = ke;
202		ke->ke_thread = td;
203		runq_add(&runq, ke);
204		CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td);
205	} else {
206		ke->ke_state = KES_IDLE;
207		ke->ke_thread = NULL;
208		TAILQ_INSERT_HEAD(&kg->kg_iq, ke, ke_kgrlist);
209		kg->kg_idle_kses++;
210		CTR1(KTR_RUNQ, "kse_reassign: ke%p idled", ke);
211	}
212}
213
214int
215kserunnable(void)
216{
217	return runq_check(&runq);
218}
219
220/*
221 * Remove a thread from its KSEGRP's run queue.
222 * This in turn may remove it from a KSE if it was already assigned
223 * to one, possibly causing a new thread to be assigned to the KSE
224 * and the KSE getting a new priority (unless it's a BOUND thread/KSE pair).
225 */
226void
227remrunqueue(struct thread *td)
228{
229	struct thread *td2, *td3;
230	struct ksegrp *kg;
231	struct kse *ke;
232
233	mtx_assert(&sched_lock, MA_OWNED);
234	KASSERT ((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
235	kg = td->td_ksegrp;
236	ke = td->td_kse;
237	/*
238	 * If it's a bound thread/KSE pair, take the shortcut. All non-KSE
239	 * threads are BOUND.
240	 */
241	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
242	kg->kg_runnable--;
243	TD_SET_CAN_RUN(td);
244	if ((td->td_flags & TDF_UNBOUND) == 0)  {
245		/* Bring its kse with it, leave the thread attached */
246		runq_remove(&runq, ke);
247		ke->ke_state = KES_THREAD;
248		return;
249	}
250	if (ke) {
251		/*
252		 * This thread has been assigned to a KSE.
253		 * We need to dissociate it and try assign the
254		 * KSE to the next available thread. Then, we should
255		 * see if we need to move the KSE in the run queues.
256		 */
257		td2 = kg->kg_last_assigned;
258		KASSERT((td2 != NULL), ("last assigned has wrong value "));
259		td->td_kse = NULL;
260		if ((td3 = TAILQ_NEXT(td2, td_runq))) {
261			KASSERT(td3 != td, ("td3 somehow matched td"));
262			/*
263			 * Give the next unassigned thread to the KSE
264			 * so the number of runnable KSEs remains
265			 * constant.
266			 */
267			td3->td_kse = ke;
268			ke->ke_thread = td3;
269			kg->kg_last_assigned = td3;
270			runq_readjust(&runq, ke);
271		} else {
272			/*
273			 * There is no unassigned thread.
274			 * If we were the last assigned one,
275			 * adjust the last assigned pointer back
276			 * one, which may result in NULL.
277			 */
278			if (td == td2) {
279				kg->kg_last_assigned =
280				    TAILQ_PREV(td, threadqueue, td_runq);
281			}
282			runq_remove(&runq, ke);
283			KASSERT((ke->ke_state != KES_IDLE),
284			    ("kse already idle"));
285			ke->ke_state = KES_IDLE;
286			ke->ke_thread = NULL;
287			TAILQ_INSERT_HEAD(&kg->kg_iq, ke, ke_kgrlist);
288			kg->kg_idle_kses++;
289		}
290	}
291	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
292}
293
294void
295setrunqueue(struct thread *td)
296{
297	struct kse *ke;
298	struct ksegrp *kg;
299	struct thread *td2;
300	struct thread *tda;
301
302	CTR1(KTR_RUNQ, "setrunqueue: td%p", td);
303	mtx_assert(&sched_lock, MA_OWNED);
304	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
305	    ("setrunqueue: bad thread state"));
306	TD_SET_RUNQ(td);
307	kg = td->td_ksegrp;
308	kg->kg_runnable++;
309	if ((td->td_flags & TDF_UNBOUND) == 0) {
310		KASSERT((td->td_kse != NULL),
311		    ("queueing BAD thread to run queue"));
312		/*
313		 * Common path optimisation: Only one of everything
314		 * and the KSE is always already attached.
315		 * Totally ignore the ksegrp run queue.
316		 */
317		runq_add(&runq, td->td_kse);
318		return;
319	}
320	/*
321	 * Ok, so we are threading with this thread.
322	 * We don't have a KSE, see if we can get one..
323	 */
324	tda = kg->kg_last_assigned;
325	if ((ke = td->td_kse) == NULL) {
326		/*
327		 * We will need a KSE, see if there is one..
328		 * First look for a free one, before getting desperate.
329		 * If we can't get one, our priority is not high enough..
330		 * that's ok..
331		 */
332		if (kg->kg_idle_kses) {
333			/*
334			 * There is a free one so it's ours for the asking..
335			 */
336			ke = TAILQ_FIRST(&kg->kg_iq);
337			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
338			ke->ke_state = KES_THREAD;
339			kg->kg_idle_kses--;
340		} else if (tda && (tda->td_priority > td->td_priority)) {
341			/*
342			 * None free, but there is one we can commandeer.
343			 */
344			ke = tda->td_kse;
345			tda->td_kse = NULL;
346			ke->ke_thread = NULL;
347			tda = kg->kg_last_assigned =
348		    	    TAILQ_PREV(tda, threadqueue, td_runq);
349			runq_remove(&runq, ke);
350		}
351	} else {
352		/*
353		 * Temporarily disassociate so it looks like the other cases.
354		 */
355		ke->ke_thread = NULL;
356		td->td_kse = NULL;
357	}
358
359	/*
360	 * Add the thread to the ksegrp's run queue at
361	 * the appropriate place.
362	 */
363	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
364		if (td2->td_priority > td->td_priority) {
365			TAILQ_INSERT_BEFORE(td2, td, td_runq);
366			break;
367		}
368	}
369	if (td2 == NULL) {
370		/* We ran off the end of the TAILQ or it was empty. */
371		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
372	}
373
374	/*
375	 * If we have a ke to use, then put it on the run queue and
376	 * If needed, readjust the last_assigned pointer.
377	 */
378	if (ke) {
379		if (tda == NULL) {
380			/*
381			 * No pre-existing last assigned so whoever is first
382			 * gets the KSE we brought in.. (maybe us)
383			 */
384			td2 = TAILQ_FIRST(&kg->kg_runq);
385			KASSERT((td2->td_kse == NULL),
386			    ("unexpected ke present"));
387			td2->td_kse = ke;
388			ke->ke_thread = td2;
389			kg->kg_last_assigned = td2;
390		} else if (tda->td_priority > td->td_priority) {
391			/*
392			 * It's ours, grab it, but last_assigned is past us
393			 * so don't change it.
394			 */
395			td->td_kse = ke;
396			ke->ke_thread = td;
397		} else {
398			/*
399			 * We are past last_assigned, so
400			 * put the new kse on whatever is next,
401			 * which may or may not be us.
402			 */
403			td2 = TAILQ_NEXT(tda, td_runq);
404			kg->kg_last_assigned = td2;
405			td2->td_kse = ke;
406			ke->ke_thread = td2;
407		}
408		runq_add(&runq, ke);
409	}
410}
411
412/************************************************************************
413 * Critical section marker functions					*
414 ************************************************************************/
415/* Critical sections that prevent preemption. */
416void
417critical_enter(void)
418{
419	struct thread *td;
420
421	td = curthread;
422	if (td->td_critnest == 0)
423		cpu_critical_enter();
424	td->td_critnest++;
425}
426
427void
428critical_exit(void)
429{
430	struct thread *td;
431
432	td = curthread;
433	if (td->td_critnest == 1) {
434		td->td_critnest = 0;
435		cpu_critical_exit();
436	} else {
437		td->td_critnest--;
438	}
439}
440
441
442/************************************************************************
443 * SYSTEM RUN QUEUE manipulations and tests				*
444 ************************************************************************/
445/*
446 * Initialize a run structure.
447 */
448void
449runq_init(struct runq *rq)
450{
451	int i;
452
453	bzero(rq, sizeof *rq);
454	for (i = 0; i < RQ_NQS; i++)
455		TAILQ_INIT(&rq->rq_queues[i]);
456}
457
458/*
459 * Clear the status bit of the queue corresponding to priority level pri,
460 * indicating that it is empty.
461 */
462static __inline void
463runq_clrbit(struct runq *rq, int pri)
464{
465	struct rqbits *rqb;
466
467	rqb = &rq->rq_status;
468	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
469	    rqb->rqb_bits[RQB_WORD(pri)],
470	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
471	    RQB_BIT(pri), RQB_WORD(pri));
472	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
473}
474
475/*
476 * Find the index of the first non-empty run queue.  This is done by
477 * scanning the status bits, a set bit indicates a non-empty queue.
478 */
479static __inline int
480runq_findbit(struct runq *rq)
481{
482	struct rqbits *rqb;
483	int pri;
484	int i;
485
486	rqb = &rq->rq_status;
487	for (i = 0; i < RQB_LEN; i++)
488		if (rqb->rqb_bits[i]) {
489			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
490			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
491			    rqb->rqb_bits[i], i, pri);
492			return (pri);
493		}
494
495	return (-1);
496}
497
498/*
499 * Set the status bit of the queue corresponding to priority level pri,
500 * indicating that it is non-empty.
501 */
502static __inline void
503runq_setbit(struct runq *rq, int pri)
504{
505	struct rqbits *rqb;
506
507	rqb = &rq->rq_status;
508	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
509	    rqb->rqb_bits[RQB_WORD(pri)],
510	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
511	    RQB_BIT(pri), RQB_WORD(pri));
512	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
513}
514
515/*
516 * Add the KSE to the queue specified by its priority, and set the
517 * corresponding status bit.
518 */
519void
520runq_add(struct runq *rq, struct kse *ke)
521{
522	struct rqhead *rqh;
523	int pri;
524
525	mtx_assert(&sched_lock, MA_OWNED);
526	KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
527	KASSERT((ke->ke_thread->td_kse != NULL),
528	    ("runq_add: No KSE on thread"));
529	KASSERT(ke->ke_state != KES_ONRUNQ,
530	    ("runq_add: kse %p (%s) already in run queue", ke,
531	    ke->ke_proc->p_comm));
532	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
533		("runq_add: process swapped out"));
534	pri = ke->ke_thread->td_priority / RQ_PPQ;
535	ke->ke_rqindex = pri;
536	runq_setbit(rq, pri);
537	rqh = &rq->rq_queues[pri];
538	CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p",
539	    ke->ke_proc, ke->ke_thread->td_priority, pri, rqh);
540	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
541	ke->ke_ksegrp->kg_runq_kses++;
542	ke->ke_state = KES_ONRUNQ;
543}
544
545/*
546 * Return true if there are runnable processes of any priority on the run
547 * queue, false otherwise.  Has no side effects, does not modify the run
548 * queue structure.
549 */
550int
551runq_check(struct runq *rq)
552{
553	struct rqbits *rqb;
554	int i;
555
556	rqb = &rq->rq_status;
557	for (i = 0; i < RQB_LEN; i++)
558		if (rqb->rqb_bits[i]) {
559			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
560			    rqb->rqb_bits[i], i);
561			return (1);
562		}
563	CTR0(KTR_RUNQ, "runq_check: empty");
564
565	return (0);
566}
567
568/*
569 * Find and remove the highest priority process from the run queue.
570 * If there are no runnable processes, the per-cpu idle process is
571 * returned.  Will not return NULL under any circumstances.
572 */
573struct kse *
574runq_choose(struct runq *rq)
575{
576	struct rqhead *rqh;
577	struct kse *ke;
578	int pri;
579
580	mtx_assert(&sched_lock, MA_OWNED);
581	while ((pri = runq_findbit(rq)) != -1) {
582		rqh = &rq->rq_queues[pri];
583		ke = TAILQ_FIRST(rqh);
584		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
585		CTR3(KTR_RUNQ,
586		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
587		TAILQ_REMOVE(rqh, ke, ke_procq);
588		ke->ke_ksegrp->kg_runq_kses--;
589		if (TAILQ_EMPTY(rqh)) {
590			CTR0(KTR_RUNQ, "runq_choose: empty");
591			runq_clrbit(rq, pri);
592		}
593
594		ke->ke_state = KES_THREAD;
595		KASSERT((ke->ke_thread != NULL),
596		    ("runq_choose: No thread on KSE"));
597		KASSERT((ke->ke_thread->td_kse != NULL),
598		    ("runq_choose: No KSE on thread"));
599		KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
600			("runq_choose: process swapped out"));
601		return (ke);
602	}
603	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
604
605	return (NULL);
606}
607
608/*
609 * Remove the KSE from the queue specified by its priority, and clear the
610 * corresponding status bit if the queue becomes empty.
611 * Caller must set ke->ke_state afterwards.
612 */
613void
614runq_remove(struct runq *rq, struct kse *ke)
615{
616	struct rqhead *rqh;
617	int pri;
618
619	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
620	mtx_assert(&sched_lock, MA_OWNED);
621	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
622		("runq_remove: process swapped out"));
623	pri = ke->ke_rqindex;
624	rqh = &rq->rq_queues[pri];
625	CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p",
626	    ke, ke->ke_thread->td_priority, pri, rqh);
627	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
628	TAILQ_REMOVE(rqh, ke, ke_procq);
629	if (TAILQ_EMPTY(rqh)) {
630		CTR0(KTR_RUNQ, "runq_remove: empty");
631		runq_clrbit(rq, pri);
632	}
633	ke->ke_state = KES_THREAD;
634	ke->ke_ksegrp->kg_runq_kses--;
635}
636
637static void
638runq_readjust(struct runq *rq, struct kse *ke)
639{
640
641	if (ke->ke_rqindex != (ke->ke_thread->td_priority / RQ_PPQ)) {
642		runq_remove(rq, ke);
643		runq_add(rq, ke);
644	}
645}
646
647#if 0
648void
649thread_sanity_check(struct thread *td)
650{
651	struct proc *p;
652	struct ksegrp *kg;
653	struct kse *ke;
654	struct thread *td2;
655	unsigned int prevpri;
656	int	saw_lastassigned;
657	int unassigned;
658	int assigned;
659
660	p = td->td_proc;
661	kg = td->td_ksegrp;
662	ke = td->td_kse;
663
664
665	if (ke) {
666		if (p != ke->ke_proc) {
667			panic("wrong proc");
668		}
669		if (ke->ke_thread != td) {
670			panic("wrong thread");
671		}
672	}
673
674	if ((p->p_flag & P_KSES) == 0) {
675		if (ke == NULL) {
676			panic("non KSE thread lost kse");
677		}
678	} else {
679		prevpri = 0;
680		saw_lastassigned = 0;
681		unassigned = 0;
682		assigned = 0;
683		TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
684			if (td2->td_priority < prevpri) {
685				panic("thread runqueue unosorted");
686			}
687			prevpri = td2->td_priority;
688			if (td2->td_kse) {
689				assigned++;
690				if (unassigned) {
691					panic("unassigned before assigned");
692				}
693 				if  (kg->kg_last_assigned == NULL) {
694					panic("lastassigned corrupt");
695				}
696				if (saw_lastassigned) {
697					panic("last assigned not last");
698				}
699				if (td2->td_kse->ke_thread != td2) {
700					panic("mismatched kse/thread");
701				}
702			} else {
703				unassigned++;
704			}
705			if (td2 == kg->kg_last_assigned) {
706				saw_lastassigned = 1;
707				if (td2->td_kse == NULL) {
708					panic("last assigned not assigned");
709				}
710			}
711		}
712		if (kg->kg_last_assigned && (saw_lastassigned == 0)) {
713			panic("where on earth does lastassigned point?");
714		}
715		FOREACH_THREAD_IN_GROUP(kg, td2) {
716			if (((td2->td_flags & TDF_UNBOUND) == 0) &&
717			    (TD_ON_RUNQ(td2))) {
718				assigned++;
719				if (td2->td_kse == NULL) {
720					panic ("BOUND thread with no KSE");
721				}
722			}
723		}
724#if 0
725		if ((unassigned + assigned) != kg->kg_runnable) {
726			panic("wrong number in runnable");
727		}
728#endif
729	}
730}
731#endif
732
733