kern_resource.c revision 96886
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
39 * $FreeBSD: head/sys/kern/kern_resource.c 96886 2002-05-19 00:14:50Z jhb $
40 */
41
42#include "opt_compat.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysproto.h>
47#include <sys/file.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/sx.h>
55#include <sys/time.h>
56
57#include <vm/vm.h>
58#include <vm/vm_param.h>
59#include <vm/pmap.h>
60#include <vm/vm_map.h>
61
62static int donice(struct thread *td, struct proc *chgp, int n);
63
64static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
65#define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
66static struct mtx uihashtbl_mtx;
67static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
68static u_long uihash;		/* size of hash table - 1 */
69
70static struct uidinfo	*uilookup(uid_t uid);
71
72/*
73 * Resource controls and accounting.
74 */
75
76#ifndef _SYS_SYSPROTO_H_
77struct getpriority_args {
78	int	which;
79	int	who;
80};
81#endif
82/*
83 * MPSAFE
84 */
85int
86getpriority(td, uap)
87	struct thread *td;
88	register struct getpriority_args *uap;
89{
90	register struct proc *p;
91	register int low = PRIO_MAX + 1;
92	int error = 0;
93
94	mtx_lock(&Giant);
95
96	switch (uap->which) {
97	case PRIO_PROCESS:
98		if (uap->who == 0)
99			low = td->td_ksegrp->kg_nice;
100		else {
101			p = pfind(uap->who);
102			if (p == NULL)
103				break;
104			if (p_cansee(td, p) == 0)
105				low = p->p_ksegrp.kg_nice /* XXXKSE */ ;
106			PROC_UNLOCK(p);
107		}
108		break;
109
110	case PRIO_PGRP: {
111		register struct pgrp *pg;
112
113		sx_slock(&proctree_lock);
114		if (uap->who == 0) {
115			pg = td->td_proc->p_pgrp;
116			PGRP_LOCK(pg);
117		} else {
118			pg = pgfind(uap->who);
119			if (pg == NULL) {
120				sx_sunlock(&proctree_lock);
121				break;
122			}
123		}
124		sx_sunlock(&proctree_lock);
125		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
126			PROC_LOCK(p);
127			if (!p_cansee(td, p) && p->p_ksegrp.kg_nice /* XXXKSE */  < low)
128				low = p->p_ksegrp.kg_nice /* XXXKSE */ ;
129			PROC_UNLOCK(p);
130		}
131		PGRP_UNLOCK(pg);
132		break;
133	}
134
135	case PRIO_USER:
136		if (uap->who == 0)
137			uap->who = td->td_ucred->cr_uid;
138		sx_slock(&allproc_lock);
139		LIST_FOREACH(p, &allproc, p_list) {
140			PROC_LOCK(p);
141			if (!p_cansee(td, p) &&
142			    p->p_ucred->cr_uid == uap->who &&
143			    p->p_ksegrp.kg_nice /* XXXKSE */  < low)
144				low = p->p_ksegrp.kg_nice /* XXXKSE */ ;
145			PROC_UNLOCK(p);
146		}
147		sx_sunlock(&allproc_lock);
148		break;
149
150	default:
151		error = EINVAL;
152		break;
153	}
154	if (low == PRIO_MAX + 1 && error == 0)
155		error = ESRCH;
156	td->td_retval[0] = low;
157	mtx_unlock(&Giant);
158	return (error);
159}
160
161#ifndef _SYS_SYSPROTO_H_
162struct setpriority_args {
163	int	which;
164	int	who;
165	int	prio;
166};
167#endif
168/*
169 * MPSAFE
170 */
171/* ARGSUSED */
172int
173setpriority(td, uap)
174	struct thread *td;
175	register struct setpriority_args *uap;
176{
177	struct proc *curp = td->td_proc;
178	register struct proc *p;
179	int found = 0, error = 0;
180
181	mtx_lock(&Giant);
182
183	switch (uap->which) {
184	case PRIO_PROCESS:
185		if (uap->who == 0) {
186			PROC_LOCK(curp);
187			error = donice(td, curp, uap->prio);
188			PROC_UNLOCK(curp);
189		} else {
190			p = pfind(uap->who);
191			if (p == 0)
192				break;
193			if (p_cansee(td, p) == 0)
194				error = donice(td, p, uap->prio);
195			PROC_UNLOCK(p);
196		}
197		found++;
198		break;
199
200	case PRIO_PGRP: {
201		register struct pgrp *pg;
202
203		sx_slock(&proctree_lock);
204		if (uap->who == 0) {
205			pg = curp->p_pgrp;
206			PGRP_LOCK(pg);
207		} else {
208			pg = pgfind(uap->who);
209			if (pg == NULL) {
210				sx_sunlock(&proctree_lock);
211				break;
212			}
213		}
214		sx_sunlock(&proctree_lock);
215		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
216			PROC_LOCK(p);
217			if (!p_cansee(td, p)) {
218				error = donice(td, p, uap->prio);
219				found++;
220			}
221			PROC_UNLOCK(p);
222		}
223		PGRP_UNLOCK(pg);
224		break;
225	}
226
227	case PRIO_USER:
228		if (uap->who == 0)
229			uap->who = td->td_ucred->cr_uid;
230		sx_slock(&allproc_lock);
231		FOREACH_PROC_IN_SYSTEM(p) {
232			PROC_LOCK(p);
233			if (p->p_ucred->cr_uid == uap->who &&
234			    !p_cansee(td, p)) {
235				error = donice(td, p, uap->prio);
236				found++;
237			}
238			PROC_UNLOCK(p);
239		}
240		sx_sunlock(&allproc_lock);
241		break;
242
243	default:
244		error = EINVAL;
245		break;
246	}
247	if (found == 0 && error == 0)
248		error = ESRCH;
249	mtx_unlock(&Giant);
250	return (error);
251}
252
253static int
254donice(td, chgp, n)
255	struct thread *td;
256	register struct proc *chgp;
257	register int n;
258{
259	int	error;
260
261	PROC_LOCK_ASSERT(chgp, MA_OWNED);
262	if ((error = p_cansched(td, chgp)))
263		return (error);
264	if (n > PRIO_MAX)
265		n = PRIO_MAX;
266	if (n < PRIO_MIN)
267		n = PRIO_MIN;
268	if (n < chgp->p_ksegrp.kg_nice /* XXXKSE */  && suser(td))
269		return (EACCES);
270	chgp->p_ksegrp.kg_nice /* XXXKSE */  = n;
271	(void)resetpriority(&chgp->p_ksegrp); /* XXXKSE */
272	return (0);
273}
274
275/* rtprio system call */
276#ifndef _SYS_SYSPROTO_H_
277struct rtprio_args {
278	int		function;
279	pid_t		pid;
280	struct rtprio	*rtp;
281};
282#endif
283
284/*
285 * Set realtime priority
286 */
287
288/*
289 * MPSAFE
290 */
291/* ARGSUSED */
292int
293rtprio(td, uap)
294	struct thread *td;
295	register struct rtprio_args *uap;
296{
297	struct proc *curp = td->td_proc;
298	register struct proc *p;
299	struct rtprio rtp;
300	int error, cierror = 0;
301
302	/* Perform copyin before acquiring locks if needed. */
303	if (uap->function == RTP_SET)
304		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
305
306	if (uap->pid == 0) {
307		p = curp;
308		PROC_LOCK(p);
309	} else {
310		p = pfind(uap->pid);
311		if (p == NULL)
312			return (ESRCH);
313	}
314
315	switch (uap->function) {
316	case RTP_LOOKUP:
317		if ((error = p_cansee(td, p)))
318			break;
319		mtx_lock_spin(&sched_lock);
320		pri_to_rtp(&p->p_ksegrp /* XXXKSE */ , &rtp);
321		mtx_unlock_spin(&sched_lock);
322		PROC_UNLOCK(p);
323		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
324	case RTP_SET:
325		if ((error = p_cansched(td, p)) || (error = cierror))
326			break;
327		/* disallow setting rtprio in most cases if not superuser */
328		if (suser(td) != 0) {
329			/* can't set someone else's */
330			if (uap->pid) {
331				error = EPERM;
332				break;
333			}
334			/* can't set realtime priority */
335/*
336 * Realtime priority has to be restricted for reasons which should be
337 * obvious. However, for idle priority, there is a potential for
338 * system deadlock if an idleprio process gains a lock on a resource
339 * that other processes need (and the idleprio process can't run
340 * due to a CPU-bound normal process). Fix me! XXX
341 */
342#if 0
343 			if (RTP_PRIO_IS_REALTIME(rtp.type))
344#endif
345			if (rtp.type != RTP_PRIO_NORMAL) {
346				error = EPERM;
347				break;
348			}
349		}
350		mtx_lock_spin(&sched_lock);
351		error = rtp_to_pri(&rtp, &p->p_ksegrp);
352		mtx_unlock_spin(&sched_lock);
353		break;
354	default:
355		error = EINVAL;
356		break;
357	}
358	PROC_UNLOCK(p);
359	return (error);
360}
361
362int
363rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
364{
365
366	if (rtp->prio > RTP_PRIO_MAX)
367		return (EINVAL);
368	switch (RTP_PRIO_BASE(rtp->type)) {
369	case RTP_PRIO_REALTIME:
370		kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
371		break;
372	case RTP_PRIO_NORMAL:
373		kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
374		break;
375	case RTP_PRIO_IDLE:
376		kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
377		break;
378	default:
379		return (EINVAL);
380	}
381	kg->kg_pri_class = rtp->type;
382	if (curthread->td_ksegrp == kg) {
383		curthread->td_base_pri = kg->kg_user_pri;
384		curthread->td_priority = kg->kg_user_pri; /* XXX dubious */
385	}
386	return (0);
387}
388
389void
390pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
391{
392
393	switch (PRI_BASE(kg->kg_pri_class)) {
394	case PRI_REALTIME:
395		rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
396		break;
397	case PRI_TIMESHARE:
398		rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
399		break;
400	case PRI_IDLE:
401		rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
402		break;
403	default:
404		break;
405	}
406	rtp->type = kg->kg_pri_class;
407}
408
409#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
410#ifndef _SYS_SYSPROTO_H_
411struct osetrlimit_args {
412	u_int	which;
413	struct	orlimit *rlp;
414};
415#endif
416/*
417 * MPSAFE
418 */
419/* ARGSUSED */
420int
421osetrlimit(td, uap)
422	struct thread *td;
423	register struct osetrlimit_args *uap;
424{
425	struct orlimit olim;
426	struct rlimit lim;
427	int error;
428
429	if ((error =
430	    copyin((caddr_t)uap->rlp, (caddr_t)&olim, sizeof(struct orlimit))))
431		return (error);
432	lim.rlim_cur = olim.rlim_cur;
433	lim.rlim_max = olim.rlim_max;
434	mtx_lock(&Giant);
435	error = dosetrlimit(td, uap->which, &lim);
436	mtx_unlock(&Giant);
437	return (error);
438}
439
440#ifndef _SYS_SYSPROTO_H_
441struct ogetrlimit_args {
442	u_int	which;
443	struct	orlimit *rlp;
444};
445#endif
446/*
447 * MPSAFE
448 */
449/* ARGSUSED */
450int
451ogetrlimit(td, uap)
452	struct thread *td;
453	register struct ogetrlimit_args *uap;
454{
455	struct proc *p = td->td_proc;
456	struct orlimit olim;
457	int error;
458
459	if (uap->which >= RLIM_NLIMITS)
460		return (EINVAL);
461	mtx_lock(&Giant);
462	olim.rlim_cur = p->p_rlimit[uap->which].rlim_cur;
463	if (olim.rlim_cur == -1)
464		olim.rlim_cur = 0x7fffffff;
465	olim.rlim_max = p->p_rlimit[uap->which].rlim_max;
466	if (olim.rlim_max == -1)
467		olim.rlim_max = 0x7fffffff;
468	error = copyout((caddr_t)&olim, (caddr_t)uap->rlp, sizeof(olim));
469	mtx_unlock(&Giant);
470	return (error);
471}
472#endif /* COMPAT_43 || COMPAT_SUNOS */
473
474#ifndef _SYS_SYSPROTO_H_
475struct __setrlimit_args {
476	u_int	which;
477	struct	rlimit *rlp;
478};
479#endif
480/*
481 * MPSAFE
482 */
483/* ARGSUSED */
484int
485setrlimit(td, uap)
486	struct thread *td;
487	register struct __setrlimit_args *uap;
488{
489	struct rlimit alim;
490	int error;
491
492	if ((error =
493	    copyin((caddr_t)uap->rlp, (caddr_t)&alim, sizeof (struct rlimit))))
494		return (error);
495	mtx_lock(&Giant);
496	error = dosetrlimit(td, uap->which, &alim);
497	mtx_unlock(&Giant);
498	return (error);
499}
500
501int
502dosetrlimit(td, which, limp)
503	struct thread *td;
504	u_int which;
505	struct rlimit *limp;
506{
507	struct proc *p = td->td_proc;
508	register struct rlimit *alimp;
509	int error;
510
511	GIANT_REQUIRED;
512
513	if (which >= RLIM_NLIMITS)
514		return (EINVAL);
515	alimp = &p->p_rlimit[which];
516
517	/*
518	 * Preserve historical bugs by treating negative limits as unsigned.
519	 */
520	if (limp->rlim_cur < 0)
521		limp->rlim_cur = RLIM_INFINITY;
522	if (limp->rlim_max < 0)
523		limp->rlim_max = RLIM_INFINITY;
524
525	if (limp->rlim_cur > alimp->rlim_max ||
526	    limp->rlim_max > alimp->rlim_max)
527		if ((error = suser_cred(td->td_ucred, PRISON_ROOT)))
528			return (error);
529	if (limp->rlim_cur > limp->rlim_max)
530		limp->rlim_cur = limp->rlim_max;
531	if (p->p_limit->p_refcnt > 1 &&
532	    (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
533		p->p_limit->p_refcnt--;
534		p->p_limit = limcopy(p->p_limit);
535		alimp = &p->p_rlimit[which];
536	}
537
538	switch (which) {
539
540	case RLIMIT_CPU:
541		if (limp->rlim_cur > RLIM_INFINITY / (rlim_t)1000000)
542			p->p_limit->p_cpulimit = RLIM_INFINITY;
543		else
544			p->p_limit->p_cpulimit =
545			    (rlim_t)1000000 * limp->rlim_cur;
546		break;
547	case RLIMIT_DATA:
548		if (limp->rlim_cur > maxdsiz)
549			limp->rlim_cur = maxdsiz;
550		if (limp->rlim_max > maxdsiz)
551			limp->rlim_max = maxdsiz;
552		break;
553
554	case RLIMIT_STACK:
555		if (limp->rlim_cur > maxssiz)
556			limp->rlim_cur = maxssiz;
557		if (limp->rlim_max > maxssiz)
558			limp->rlim_max = maxssiz;
559		/*
560		 * Stack is allocated to the max at exec time with only
561		 * "rlim_cur" bytes accessible.  If stack limit is going
562		 * up make more accessible, if going down make inaccessible.
563		 */
564		if (limp->rlim_cur != alimp->rlim_cur) {
565			vm_offset_t addr;
566			vm_size_t size;
567			vm_prot_t prot;
568
569			if (limp->rlim_cur > alimp->rlim_cur) {
570				prot = VM_PROT_ALL;
571				size = limp->rlim_cur - alimp->rlim_cur;
572				addr = USRSTACK - limp->rlim_cur;
573			} else {
574				prot = VM_PROT_NONE;
575				size = alimp->rlim_cur - limp->rlim_cur;
576				addr = USRSTACK - alimp->rlim_cur;
577			}
578			addr = trunc_page(addr);
579			size = round_page(size);
580			(void) vm_map_protect(&p->p_vmspace->vm_map,
581					      addr, addr+size, prot, FALSE);
582		}
583		break;
584
585	case RLIMIT_NOFILE:
586		if (limp->rlim_cur > maxfilesperproc)
587			limp->rlim_cur = maxfilesperproc;
588		if (limp->rlim_max > maxfilesperproc)
589			limp->rlim_max = maxfilesperproc;
590		break;
591
592	case RLIMIT_NPROC:
593		if (limp->rlim_cur > maxprocperuid)
594			limp->rlim_cur = maxprocperuid;
595		if (limp->rlim_max > maxprocperuid)
596			limp->rlim_max = maxprocperuid;
597		if (limp->rlim_cur < 1)
598			limp->rlim_cur = 1;
599		if (limp->rlim_max < 1)
600			limp->rlim_max = 1;
601		break;
602	}
603	*alimp = *limp;
604	return (0);
605}
606
607#ifndef _SYS_SYSPROTO_H_
608struct __getrlimit_args {
609	u_int	which;
610	struct	rlimit *rlp;
611};
612#endif
613/*
614 * MPSAFE
615 */
616/* ARGSUSED */
617int
618getrlimit(td, uap)
619	struct thread *td;
620	register struct __getrlimit_args *uap;
621{
622	int error;
623	struct proc *p = td->td_proc;
624
625	if (uap->which >= RLIM_NLIMITS)
626		return (EINVAL);
627	mtx_lock(&Giant);
628	error = copyout((caddr_t)&p->p_rlimit[uap->which], (caddr_t)uap->rlp,
629		    sizeof (struct rlimit));
630	mtx_unlock(&Giant);
631	return(error);
632}
633
634/*
635 * Transform the running time and tick information in proc p into user,
636 * system, and interrupt time usage.
637 */
638void
639calcru(p, up, sp, ip)
640	struct proc *p;
641	struct timeval *up;
642	struct timeval *sp;
643	struct timeval *ip;
644{
645	/* {user, system, interrupt, total} {ticks, usec}; previous tu: */
646	u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
647	u_int64_t uut = 0, sut = 0, iut = 0;
648	int s;
649	struct timeval tv;
650	struct bintime bt;
651	struct kse *ke;
652	struct ksegrp *kg;
653
654	mtx_assert(&sched_lock, MA_OWNED);
655	/* XXX: why spl-protect ?  worst case is an off-by-one report */
656
657	FOREACH_KSEGRP_IN_PROC(p, kg) {
658		/* we could accumulate per ksegrp and per process here*/
659		FOREACH_KSE_IN_GROUP(kg, ke) {
660			s = splstatclock();
661			ut = ke->ke_uticks;
662			st = ke->ke_sticks;
663			it = ke->ke_iticks;
664			splx(s);
665
666			tt = ut + st + it;
667			if (tt == 0) {
668				st = 1;
669				tt = 1;
670			}
671
672			if (ke == curthread->td_kse) {
673		/*
674		 * Adjust for the current time slice.  This is actually fairly
675		 * important since the error here is on the order of a time
676		 * quantum, which is much greater than the sampling error.
677		 * XXXKSE use a different test due to threads on other
678		 * processors also being 'current'.
679		 */
680
681				binuptime(&bt);
682				bintime_sub(&bt, PCPU_PTR(switchtime));
683				bintime_add(&bt, &p->p_runtime);
684			} else {
685				bt = p->p_runtime;
686			}
687			bintime2timeval(&bt, &tv);
688			tu = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
689			ptu = ke->ke_uu + ke->ke_su + ke->ke_iu;
690			if (tu < ptu || (int64_t)tu < 0) {
691				/* XXX no %qd in kernel.  Truncate. */
692				printf("calcru: negative time of %ld usec for pid %d (%s)\n",
693		       		(long)tu, p->p_pid, p->p_comm);
694				tu = ptu;
695			}
696
697			/* Subdivide tu. */
698			uu = (tu * ut) / tt;
699			su = (tu * st) / tt;
700			iu = tu - uu - su;
701
702			/* Enforce monotonicity. */
703			if (uu < ke->ke_uu || su < ke->ke_su || iu < ke->ke_iu) {
704				if (uu < ke->ke_uu)
705					uu = ke->ke_uu;
706				else if (uu + ke->ke_su + ke->ke_iu > tu)
707					uu = tu - ke->ke_su - ke->ke_iu;
708				if (st == 0)
709					su = ke->ke_su;
710				else {
711					su = ((tu - uu) * st) / (st + it);
712					if (su < ke->ke_su)
713						su = ke->ke_su;
714					else if (uu + su + ke->ke_iu > tu)
715						su = tu - uu - ke->ke_iu;
716				}
717				KASSERT(uu + su + ke->ke_iu <= tu,
718		    		("calcru: monotonisation botch 1"));
719				iu = tu - uu - su;
720				KASSERT(iu >= ke->ke_iu,
721		    		("calcru: monotonisation botch 2"));
722			}
723			ke->ke_uu = uu;
724			ke->ke_su = su;
725			ke->ke_iu = iu;
726			uut += uu;
727			sut += su;
728			iut += iu;
729
730		} /* end kse loop */
731	} /* end kseg loop */
732	up->tv_sec = uut / 1000000;
733	up->tv_usec = uut % 1000000;
734	sp->tv_sec = sut / 1000000;
735	sp->tv_usec = sut % 1000000;
736	if (ip != NULL) {
737		ip->tv_sec = iut / 1000000;
738		ip->tv_usec = iut % 1000000;
739	}
740}
741
742#ifndef _SYS_SYSPROTO_H_
743struct getrusage_args {
744	int	who;
745	struct	rusage *rusage;
746};
747#endif
748/*
749 * MPSAFE
750 */
751/* ARGSUSED */
752int
753getrusage(td, uap)
754	register struct thread *td;
755	register struct getrusage_args *uap;
756{
757	struct proc *p = td->td_proc;
758	register struct rusage *rup;
759	int error = 0;
760
761	mtx_lock(&Giant);
762
763	switch (uap->who) {
764	case RUSAGE_SELF:
765		rup = &p->p_stats->p_ru;
766		mtx_lock_spin(&sched_lock);
767		calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
768		mtx_unlock_spin(&sched_lock);
769		break;
770
771	case RUSAGE_CHILDREN:
772		rup = &p->p_stats->p_cru;
773		break;
774
775	default:
776		rup = NULL;
777		error = EINVAL;
778		break;
779	}
780	mtx_unlock(&Giant);
781	if (error == 0) {
782		error = copyout((caddr_t)rup, (caddr_t)uap->rusage,
783		    sizeof (struct rusage));
784	}
785	return(error);
786}
787
788void
789ruadd(ru, ru2)
790	register struct rusage *ru, *ru2;
791{
792	register long *ip, *ip2;
793	register int i;
794
795	timevaladd(&ru->ru_utime, &ru2->ru_utime);
796	timevaladd(&ru->ru_stime, &ru2->ru_stime);
797	if (ru->ru_maxrss < ru2->ru_maxrss)
798		ru->ru_maxrss = ru2->ru_maxrss;
799	ip = &ru->ru_first; ip2 = &ru2->ru_first;
800	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
801		*ip++ += *ip2++;
802}
803
804/*
805 * Make a copy of the plimit structure.
806 * We share these structures copy-on-write after fork,
807 * and copy when a limit is changed.
808 */
809struct plimit *
810limcopy(lim)
811	struct plimit *lim;
812{
813	register struct plimit *copy;
814
815	MALLOC(copy, struct plimit *, sizeof(struct plimit),
816	    M_SUBPROC, M_WAITOK);
817	bcopy(lim->pl_rlimit, copy->pl_rlimit, sizeof(struct plimit));
818	copy->p_lflags = 0;
819	copy->p_refcnt = 1;
820	return (copy);
821}
822
823/*
824 * Find the uidinfo structure for a uid.  This structure is used to
825 * track the total resource consumption (process count, socket buffer
826 * size, etc.) for the uid and impose limits.
827 */
828void
829uihashinit()
830{
831
832	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
833	mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
834}
835
836/*
837 * lookup a uidinfo struct for the parameter uid.
838 * uihashtbl_mtx must be locked.
839 */
840static struct uidinfo *
841uilookup(uid)
842	uid_t uid;
843{
844	struct	uihashhead *uipp;
845	struct	uidinfo *uip;
846
847	mtx_assert(&uihashtbl_mtx, MA_OWNED);
848	uipp = UIHASH(uid);
849	LIST_FOREACH(uip, uipp, ui_hash)
850		if (uip->ui_uid == uid)
851			break;
852
853	return (uip);
854}
855
856/*
857 * Find or allocate a struct uidinfo for a particular uid.
858 * Increase refcount on uidinfo struct returned.
859 * uifree() should be called on a struct uidinfo when released.
860 */
861struct uidinfo *
862uifind(uid)
863	uid_t uid;
864{
865	struct	uidinfo *uip;
866
867	mtx_lock(&uihashtbl_mtx);
868	uip = uilookup(uid);
869	if (uip == NULL) {
870		struct  uidinfo *old_uip;
871
872		mtx_unlock(&uihashtbl_mtx);
873		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
874		mtx_lock(&uihashtbl_mtx);
875		/*
876		 * There's a chance someone created our uidinfo while we
877		 * were in malloc and not holding the lock, so we have to
878		 * make sure we don't insert a duplicate uidinfo
879		 */
880		if ((old_uip = uilookup(uid)) != NULL) {
881			/* someone else beat us to it */
882			free(uip, M_UIDINFO);
883			uip = old_uip;
884		} else {
885			uip->ui_mtxp = mtx_pool_alloc();
886			uip->ui_uid = uid;
887			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
888		}
889	}
890	uihold(uip);
891	mtx_unlock(&uihashtbl_mtx);
892	return (uip);
893}
894
895/*
896 * Place another refcount on a uidinfo struct.
897 */
898void
899uihold(uip)
900	struct uidinfo *uip;
901{
902
903	UIDINFO_LOCK(uip);
904	uip->ui_ref++;
905	UIDINFO_UNLOCK(uip);
906}
907
908/*-
909 * Since uidinfo structs have a long lifetime, we use an
910 * opportunistic refcounting scheme to avoid locking the lookup hash
911 * for each release.
912 *
913 * If the refcount hits 0, we need to free the structure,
914 * which means we need to lock the hash.
915 * Optimal case:
916 *   After locking the struct and lowering the refcount, if we find
917 *   that we don't need to free, simply unlock and return.
918 * Suboptimal case:
919 *   If refcount lowering results in need to free, bump the count
920 *   back up, loose the lock and aquire the locks in the proper
921 *   order to try again.
922 */
923void
924uifree(uip)
925	struct uidinfo *uip;
926{
927
928	/* Prepare for optimal case. */
929	UIDINFO_LOCK(uip);
930
931	if (--uip->ui_ref != 0) {
932		UIDINFO_UNLOCK(uip);
933		return;
934	}
935
936	/* Prepare for suboptimal case. */
937	uip->ui_ref++;
938	UIDINFO_UNLOCK(uip);
939	mtx_lock(&uihashtbl_mtx);
940	UIDINFO_LOCK(uip);
941
942	/*
943	 * We must subtract one from the count again because we backed out
944	 * our initial subtraction before dropping the lock.
945	 * Since another thread may have added a reference after we dropped the
946	 * initial lock we have to test for zero again.
947	 */
948	if (--uip->ui_ref == 0) {
949		LIST_REMOVE(uip, ui_hash);
950		mtx_unlock(&uihashtbl_mtx);
951		if (uip->ui_sbsize != 0)
952			/* XXX no %qd in kernel.  Truncate. */
953			printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
954			    uip->ui_uid, (long)uip->ui_sbsize);
955		if (uip->ui_proccnt != 0)
956			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
957			    uip->ui_uid, uip->ui_proccnt);
958		UIDINFO_UNLOCK(uip);
959		FREE(uip, M_UIDINFO);
960		return;
961	}
962
963	mtx_unlock(&uihashtbl_mtx);
964	UIDINFO_UNLOCK(uip);
965}
966
967/*
968 * Change the count associated with number of processes
969 * a given user is using.  When 'max' is 0, don't enforce a limit
970 */
971int
972chgproccnt(uip, diff, max)
973	struct	uidinfo	*uip;
974	int	diff;
975	int	max;
976{
977
978	UIDINFO_LOCK(uip);
979	/* don't allow them to exceed max, but allow subtraction */
980	if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
981		UIDINFO_UNLOCK(uip);
982		return (0);
983	}
984	uip->ui_proccnt += diff;
985	if (uip->ui_proccnt < 0)
986		printf("negative proccnt for uid = %d\n", uip->ui_uid);
987	UIDINFO_UNLOCK(uip);
988	return (1);
989}
990
991/*
992 * Change the total socket buffer size a user has used.
993 */
994int
995chgsbsize(uip, hiwat, to, max)
996	struct	uidinfo	*uip;
997	u_long *hiwat;
998	u_long	to;
999	rlim_t	max;
1000{
1001	rlim_t new;
1002	int s;
1003
1004	s = splnet();
1005	UIDINFO_LOCK(uip);
1006	new = uip->ui_sbsize + to - *hiwat;
1007	/* don't allow them to exceed max, but allow subtraction */
1008	if (to > *hiwat && new > max) {
1009		splx(s);
1010		UIDINFO_UNLOCK(uip);
1011		return (0);
1012	}
1013	uip->ui_sbsize = new;
1014	*hiwat = to;
1015	if (uip->ui_sbsize < 0)
1016		printf("negative sbsize for uid = %d\n", uip->ui_uid);
1017	splx(s);
1018	UIDINFO_UNLOCK(uip);
1019	return (1);
1020}
1021