kern_resource.c revision 85844
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
39 * $FreeBSD: head/sys/kern/kern_resource.c 85844 2001-11-01 20:56:57Z rwatson $
40 */
41
42#include "opt_compat.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysproto.h>
47#include <sys/file.h>
48#include <sys/kernel.h>
49#include <sys/lock.h>
50#include <sys/malloc.h>
51#include <sys/mutex.h>
52#include <sys/proc.h>
53#include <sys/resourcevar.h>
54#include <sys/sx.h>
55#include <sys/time.h>
56
57#include <vm/vm.h>
58#include <vm/vm_param.h>
59#include <vm/pmap.h>
60#include <vm/vm_map.h>
61
62static int donice __P((struct proc *curp, struct proc *chgp, int n));
63
64static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
65#define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
66static struct mtx uihashtbl_mtx;
67static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
68static u_long uihash;		/* size of hash table - 1 */
69
70static struct uidinfo	*uilookup __P((uid_t uid));
71
72/*
73 * Resource controls and accounting.
74 */
75
76#ifndef _SYS_SYSPROTO_H_
77struct getpriority_args {
78	int	which;
79	int	who;
80};
81#endif
82/*
83 * MPSAFE
84 */
85int
86getpriority(td, uap)
87	struct thread *td;
88	register struct getpriority_args *uap;
89{
90	struct proc *curp = td->td_proc;
91	register struct proc *p;
92	register int low = PRIO_MAX + 1;
93	int error = 0;
94
95	mtx_lock(&Giant);
96
97	switch (uap->which) {
98	case PRIO_PROCESS:
99		if (uap->who == 0)
100			low = td->td_ksegrp->kg_nice;
101		else {
102			p = pfind(uap->who);
103			if (p == NULL)
104				break;
105			if (p_cansee(curp, p) == 0)
106				low = p->p_ksegrp.kg_nice /* XXXKSE */ ;
107			PROC_UNLOCK(p);
108		}
109		break;
110
111	case PRIO_PGRP: {
112		register struct pgrp *pg;
113
114		if (uap->who == 0)
115			pg = curp->p_pgrp;
116		else if ((pg = pgfind(uap->who)) == NULL)
117			break;
118		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
119			if (!p_cansee(curp, p) && p->p_ksegrp.kg_nice /* XXXKSE */  < low)
120				low = p->p_ksegrp.kg_nice /* XXXKSE */ ;
121		}
122		break;
123	}
124
125	case PRIO_USER:
126		if (uap->who == 0)
127			uap->who = curp->p_ucred->cr_uid;
128		sx_slock(&allproc_lock);
129		LIST_FOREACH(p, &allproc, p_list)
130			if (!p_cansee(curp, p) &&
131			    p->p_ucred->cr_uid == uap->who &&
132			    p->p_ksegrp.kg_nice /* XXXKSE */  < low)
133				low = p->p_ksegrp.kg_nice /* XXXKSE */ ;
134		sx_sunlock(&allproc_lock);
135		break;
136
137	default:
138		error = EINVAL;
139		break;
140	}
141	if (low == PRIO_MAX + 1 && error == 0)
142		error = ESRCH;
143	td->td_retval[0] = low;
144	mtx_unlock(&Giant);
145	return (error);
146}
147
148#ifndef _SYS_SYSPROTO_H_
149struct setpriority_args {
150	int	which;
151	int	who;
152	int	prio;
153};
154#endif
155/*
156 * MPSAFE
157 */
158/* ARGSUSED */
159int
160setpriority(td, uap)
161	struct thread *td;
162	register struct setpriority_args *uap;
163{
164	struct proc *curp = td->td_proc;
165	register struct proc *p;
166	int found = 0, error = 0;
167
168	mtx_lock(&Giant);
169
170	switch (uap->which) {
171	case PRIO_PROCESS:
172		if (uap->who == 0)
173			error = donice(curp, curp, uap->prio);
174		else {
175			p = pfind(uap->who);
176			if (p == 0)
177				break;
178			if (p_cansee(curp, p) == 0)
179				error = donice(curp, p, uap->prio);
180			PROC_UNLOCK(p);
181		}
182		found++;
183		break;
184
185	case PRIO_PGRP: {
186		register struct pgrp *pg;
187
188		if (uap->who == 0)
189			pg = curp->p_pgrp;
190		else if ((pg = pgfind(uap->who)) == NULL)
191			break;
192		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
193			if (!p_cansee(curp, p)) {
194				error = donice(curp, p, uap->prio);
195				found++;
196			}
197		}
198		break;
199	}
200
201	case PRIO_USER:
202		if (uap->who == 0)
203			uap->who = curp->p_ucred->cr_uid;
204		sx_slock(&allproc_lock);
205		FOREACH_PROC_IN_SYSTEM(p) {
206			if (p->p_ucred->cr_uid == uap->who &&
207			    !p_cansee(curp, p)) {
208				error = donice(curp, p, uap->prio);
209				found++;
210			}
211		}
212		sx_sunlock(&allproc_lock);
213		break;
214
215	default:
216		error = EINVAL;
217		break;
218	}
219	if (found == 0 && error == 0)
220		error = ESRCH;
221	mtx_unlock(&Giant);
222	return (error);
223}
224
225static int
226donice(curp, chgp, n)
227	register struct proc *curp, *chgp;
228	register int n;
229{
230	int	error;
231
232	if ((error = p_cansched(curp, chgp)))
233		return (error);
234	if (n > PRIO_MAX)
235		n = PRIO_MAX;
236	if (n < PRIO_MIN)
237		n = PRIO_MIN;
238	if (n < chgp->p_ksegrp.kg_nice /* XXXKSE */  &&
239	    suser_xxx(curp->p_ucred, NULL, 0))
240		return (EACCES);
241	chgp->p_ksegrp.kg_nice /* XXXKSE */  = n;
242	(void)resetpriority(&chgp->p_ksegrp); /* XXXKSE */
243	return (0);
244}
245
246/* rtprio system call */
247#ifndef _SYS_SYSPROTO_H_
248struct rtprio_args {
249	int		function;
250	pid_t		pid;
251	struct rtprio	*rtp;
252};
253#endif
254
255/*
256 * Set realtime priority
257 */
258
259/*
260 * MPSAFE
261 */
262/* ARGSUSED */
263int
264rtprio(td, uap)
265	struct thread *td;
266	register struct rtprio_args *uap;
267{
268	struct proc *curp = td->td_proc;
269	register struct proc *p;
270	struct rtprio rtp;
271	int error;
272
273	mtx_lock(&Giant);
274
275	if (uap->pid == 0) {
276		p = curp;
277		PROC_LOCK(p);
278	} else {
279		p = pfind(uap->pid);
280	}
281
282	if (p == NULL) {
283		error = ESRCH;
284		goto done2;
285	}
286
287	switch (uap->function) {
288	case RTP_LOOKUP:
289		if ((error = p_cansee(curp, p)))
290			break;
291		mtx_lock_spin(&sched_lock);
292		pri_to_rtp(&p->p_ksegrp.kg_pri /* XXXKSE */ , &rtp);
293		mtx_unlock_spin(&sched_lock);
294		error = copyout(&rtp, uap->rtp, sizeof(struct rtprio));
295		break;
296	case RTP_SET:
297		if ((error = p_cansched(curp, p)) ||
298		    (error = copyin(uap->rtp, &rtp, sizeof(struct rtprio))))
299			break;
300		/* disallow setting rtprio in most cases if not superuser */
301		if (suser_xxx(curp->p_ucred, NULL, 0) != 0) {
302			/* can't set someone else's */
303			if (uap->pid) {
304				error = EPERM;
305				break;
306			}
307			/* can't set realtime priority */
308/*
309 * Realtime priority has to be restricted for reasons which should be
310 * obvious. However, for idle priority, there is a potential for
311 * system deadlock if an idleprio process gains a lock on a resource
312 * that other processes need (and the idleprio process can't run
313 * due to a CPU-bound normal process). Fix me! XXX
314 */
315#if 0
316 			if (RTP_PRIO_IS_REALTIME(rtp.type))
317#endif
318			if (rtp.type != RTP_PRIO_NORMAL) {
319				error = EPERM;
320				break;
321			}
322		}
323		mtx_lock_spin(&sched_lock);
324		error = rtp_to_pri(&rtp, &p->p_ksegrp.kg_pri);
325		mtx_unlock_spin(&sched_lock);
326		break;
327	default:
328		error = EINVAL;
329		break;
330	}
331	PROC_UNLOCK(p);
332done2:
333	mtx_unlock(&Giant);
334	return (error);
335}
336
337int
338rtp_to_pri(struct rtprio *rtp, struct priority *pri)
339{
340
341	if (rtp->prio > RTP_PRIO_MAX)
342		return (EINVAL);
343	switch (RTP_PRIO_BASE(rtp->type)) {
344	case RTP_PRIO_REALTIME:
345		pri->pri_level = PRI_MIN_REALTIME + rtp->prio;
346		break;
347	case RTP_PRIO_NORMAL:
348		pri->pri_level = PRI_MIN_TIMESHARE + rtp->prio;
349		break;
350	case RTP_PRIO_IDLE:
351		pri->pri_level = PRI_MIN_IDLE + rtp->prio;
352		break;
353	default:
354		return (EINVAL);
355	}
356	pri->pri_class = rtp->type;
357	pri->pri_native = pri->pri_level;
358	pri->pri_user = pri->pri_level;
359	return (0);
360}
361
362void
363pri_to_rtp(struct priority *pri, struct rtprio *rtp)
364{
365
366	switch (PRI_BASE(pri->pri_class)) {
367	case PRI_REALTIME:
368		rtp->prio = pri->pri_level - PRI_MIN_REALTIME;
369		break;
370	case PRI_TIMESHARE:
371		rtp->prio = pri->pri_level - PRI_MIN_TIMESHARE;
372		break;
373	case PRI_IDLE:
374		rtp->prio = pri->pri_level - PRI_MIN_IDLE;
375		break;
376	default:
377		break;
378	}
379	rtp->type = pri->pri_class;
380}
381
382#if defined(COMPAT_43) || defined(COMPAT_SUNOS)
383#ifndef _SYS_SYSPROTO_H_
384struct osetrlimit_args {
385	u_int	which;
386	struct	orlimit *rlp;
387};
388#endif
389/*
390 * MPSAFE
391 */
392/* ARGSUSED */
393int
394osetrlimit(td, uap)
395	struct thread *td;
396	register struct osetrlimit_args *uap;
397{
398	struct orlimit olim;
399	struct rlimit lim;
400	int error;
401
402	if ((error =
403	    copyin((caddr_t)uap->rlp, (caddr_t)&olim, sizeof(struct orlimit))))
404		return (error);
405	lim.rlim_cur = olim.rlim_cur;
406	lim.rlim_max = olim.rlim_max;
407	mtx_lock(&Giant);
408	error = dosetrlimit(td, uap->which, &lim);
409	mtx_unlock(&Giant);
410	return (error);
411}
412
413#ifndef _SYS_SYSPROTO_H_
414struct ogetrlimit_args {
415	u_int	which;
416	struct	orlimit *rlp;
417};
418#endif
419/*
420 * MPSAFE
421 */
422/* ARGSUSED */
423int
424ogetrlimit(td, uap)
425	struct thread *td;
426	register struct ogetrlimit_args *uap;
427{
428	struct proc *p = td->td_proc;
429	struct orlimit olim;
430	int error;
431
432	if (uap->which >= RLIM_NLIMITS)
433		return (EINVAL);
434	mtx_lock(&Giant);
435	olim.rlim_cur = p->p_rlimit[uap->which].rlim_cur;
436	if (olim.rlim_cur == -1)
437		olim.rlim_cur = 0x7fffffff;
438	olim.rlim_max = p->p_rlimit[uap->which].rlim_max;
439	if (olim.rlim_max == -1)
440		olim.rlim_max = 0x7fffffff;
441	error = copyout((caddr_t)&olim, (caddr_t)uap->rlp, sizeof(olim));
442	mtx_unlock(&Giant);
443	return (error);
444}
445#endif /* COMPAT_43 || COMPAT_SUNOS */
446
447#ifndef _SYS_SYSPROTO_H_
448struct __setrlimit_args {
449	u_int	which;
450	struct	rlimit *rlp;
451};
452#endif
453/*
454 * MPSAFE
455 */
456/* ARGSUSED */
457int
458setrlimit(td, uap)
459	struct thread *td;
460	register struct __setrlimit_args *uap;
461{
462	struct rlimit alim;
463	int error;
464
465	if ((error =
466	    copyin((caddr_t)uap->rlp, (caddr_t)&alim, sizeof (struct rlimit))))
467		return (error);
468	mtx_lock(&Giant);
469	error = dosetrlimit(td, uap->which, &alim);
470	mtx_unlock(&Giant);
471	return (error);
472}
473
474int
475dosetrlimit(td, which, limp)
476	struct thread *td;
477	u_int which;
478	struct rlimit *limp;
479{
480	struct proc *p = td->td_proc;
481	register struct rlimit *alimp;
482	int error;
483
484	GIANT_REQUIRED;
485
486	if (which >= RLIM_NLIMITS)
487		return (EINVAL);
488	alimp = &p->p_rlimit[which];
489
490	/*
491	 * Preserve historical bugs by treating negative limits as unsigned.
492	 */
493	if (limp->rlim_cur < 0)
494		limp->rlim_cur = RLIM_INFINITY;
495	if (limp->rlim_max < 0)
496		limp->rlim_max = RLIM_INFINITY;
497
498	if (limp->rlim_cur > alimp->rlim_max ||
499	    limp->rlim_max > alimp->rlim_max)
500		if ((error = suser_xxx(0, p, PRISON_ROOT)))
501			return (error);
502	if (limp->rlim_cur > limp->rlim_max)
503		limp->rlim_cur = limp->rlim_max;
504	if (p->p_limit->p_refcnt > 1 &&
505	    (p->p_limit->p_lflags & PL_SHAREMOD) == 0) {
506		p->p_limit->p_refcnt--;
507		p->p_limit = limcopy(p->p_limit);
508		alimp = &p->p_rlimit[which];
509	}
510
511	switch (which) {
512
513	case RLIMIT_CPU:
514		if (limp->rlim_cur > RLIM_INFINITY / (rlim_t)1000000)
515			p->p_limit->p_cpulimit = RLIM_INFINITY;
516		else
517			p->p_limit->p_cpulimit =
518			    (rlim_t)1000000 * limp->rlim_cur;
519		break;
520	case RLIMIT_DATA:
521		if (limp->rlim_cur > maxdsiz)
522			limp->rlim_cur = maxdsiz;
523		if (limp->rlim_max > maxdsiz)
524			limp->rlim_max = maxdsiz;
525		break;
526
527	case RLIMIT_STACK:
528		if (limp->rlim_cur > maxssiz)
529			limp->rlim_cur = maxssiz;
530		if (limp->rlim_max > maxssiz)
531			limp->rlim_max = maxssiz;
532		/*
533		 * Stack is allocated to the max at exec time with only
534		 * "rlim_cur" bytes accessible.  If stack limit is going
535		 * up make more accessible, if going down make inaccessible.
536		 */
537		if (limp->rlim_cur != alimp->rlim_cur) {
538			vm_offset_t addr;
539			vm_size_t size;
540			vm_prot_t prot;
541
542			if (limp->rlim_cur > alimp->rlim_cur) {
543				prot = VM_PROT_ALL;
544				size = limp->rlim_cur - alimp->rlim_cur;
545				addr = USRSTACK - limp->rlim_cur;
546			} else {
547				prot = VM_PROT_NONE;
548				size = alimp->rlim_cur - limp->rlim_cur;
549				addr = USRSTACK - alimp->rlim_cur;
550			}
551			addr = trunc_page(addr);
552			size = round_page(size);
553			(void) vm_map_protect(&p->p_vmspace->vm_map,
554					      addr, addr+size, prot, FALSE);
555		}
556		break;
557
558	case RLIMIT_NOFILE:
559		if (limp->rlim_cur > maxfilesperproc)
560			limp->rlim_cur = maxfilesperproc;
561		if (limp->rlim_max > maxfilesperproc)
562			limp->rlim_max = maxfilesperproc;
563		break;
564
565	case RLIMIT_NPROC:
566		if (limp->rlim_cur > maxprocperuid)
567			limp->rlim_cur = maxprocperuid;
568		if (limp->rlim_max > maxprocperuid)
569			limp->rlim_max = maxprocperuid;
570		if (limp->rlim_cur < 1)
571			limp->rlim_cur = 1;
572		if (limp->rlim_max < 1)
573			limp->rlim_max = 1;
574		break;
575	}
576	*alimp = *limp;
577	return (0);
578}
579
580#ifndef _SYS_SYSPROTO_H_
581struct __getrlimit_args {
582	u_int	which;
583	struct	rlimit *rlp;
584};
585#endif
586/*
587 * MPSAFE
588 */
589/* ARGSUSED */
590int
591getrlimit(td, uap)
592	struct thread *td;
593	register struct __getrlimit_args *uap;
594{
595	int error;
596	struct proc *p = td->td_proc;
597
598	if (uap->which >= RLIM_NLIMITS)
599		return (EINVAL);
600	mtx_lock(&Giant);
601	error = copyout((caddr_t)&p->p_rlimit[uap->which], (caddr_t)uap->rlp,
602		    sizeof (struct rlimit));
603	mtx_unlock(&Giant);
604	return(error);
605}
606
607/*
608 * Transform the running time and tick information in proc p into user,
609 * system, and interrupt time usage.
610 */
611void
612calcru(p, up, sp, ip)
613	struct proc *p;
614	struct timeval *up;
615	struct timeval *sp;
616	struct timeval *ip;
617{
618	/* {user, system, interrupt, total} {ticks, usec}; previous tu: */
619	u_int64_t ut, uu, st, su, it, iu, tt, tu, ptu;
620	u_int64_t uut = 0, sut = 0, iut = 0;
621	int s;
622	struct timeval tv;
623	struct kse *ke;
624	struct ksegrp *kg;
625
626	mtx_assert(&sched_lock, MA_OWNED);
627	/* XXX: why spl-protect ?  worst case is an off-by-one report */
628
629	FOREACH_KSEGRP_IN_PROC(p, kg) {
630		/* we could accumulate per ksegrp and per process here*/
631		FOREACH_KSE_IN_GROUP(kg, ke) {
632			s = splstatclock();
633			ut = ke->ke_uticks;
634			st = ke->ke_sticks;
635			it = ke->ke_iticks;
636			splx(s);
637
638			tt = ut + st + it;
639			if (tt == 0) {
640				st = 1;
641				tt = 1;
642			}
643
644			tu = p->p_runtime;
645			if (ke == curthread->td_kse) {
646		/*
647		 * Adjust for the current time slice.  This is actually fairly
648		 * important since the error here is on the order of a time
649		 * quantum, which is much greater than the sampling error.
650		 * XXXKSE use a different test due to threads on other
651		 * processors also being 'current'.
652		 */
653				microuptime(&tv);
654				if (timevalcmp(&tv, PCPU_PTR(switchtime), <))
655					printf("microuptime() went backwards (%lld.%06ld -> %lld.%06ld)\n",
656			    		    (quad_t)PCPU_GET(switchtime.tv_sec),
657					    PCPU_GET(switchtime.tv_usec),
658			    			(quad_t)tv.tv_sec, tv.tv_usec);
659				else
660					tu += (tv.tv_usec
661						- PCPU_GET(switchtime.tv_usec))
662						+ (tv.tv_sec
663						  - PCPU_GET(switchtime.tv_sec))
664					      * (int64_t)1000000;
665			}
666			ptu = ke->ke_uu + ke->ke_su + ke->ke_iu;
667			if (tu < ptu || (int64_t)tu < 0) {
668				/* XXX no %qd in kernel.  Truncate. */
669				printf("calcru: negative time of %ld usec for pid %d (%s)\n",
670		       		(long)tu, p->p_pid, p->p_comm);
671				tu = ptu;
672			}
673
674			/* Subdivide tu. */
675			uu = (tu * ut) / tt;
676			su = (tu * st) / tt;
677			iu = tu - uu - su;
678
679			/* Enforce monotonicity. */
680			if (uu < ke->ke_uu || su < ke->ke_su || iu < ke->ke_iu) {
681				if (uu < ke->ke_uu)
682					uu = ke->ke_uu;
683				else if (uu + ke->ke_su + ke->ke_iu > tu)
684					uu = tu - ke->ke_su - ke->ke_iu;
685				if (st == 0)
686					su = ke->ke_su;
687				else {
688					su = ((tu - uu) * st) / (st + it);
689					if (su < ke->ke_su)
690						su = ke->ke_su;
691					else if (uu + su + ke->ke_iu > tu)
692						su = tu - uu - ke->ke_iu;
693				}
694				KASSERT(uu + su + ke->ke_iu <= tu,
695		    		("calcru: monotonisation botch 1"));
696				iu = tu - uu - su;
697				KASSERT(iu >= ke->ke_iu,
698		    		("calcru: monotonisation botch 2"));
699			}
700			ke->ke_uu = uu;
701			ke->ke_su = su;
702			ke->ke_iu = iu;
703			uut += uu;
704			sut += su;
705			iut += iu;
706
707		} /* end kse loop */
708	} /* end kseg loop */
709	up->tv_sec = uut / 1000000;
710	up->tv_usec = uut % 1000000;
711	sp->tv_sec = sut / 1000000;
712	sp->tv_usec = sut % 1000000;
713	if (ip != NULL) {
714		ip->tv_sec = iut / 1000000;
715		ip->tv_usec = iut % 1000000;
716	}
717}
718
719#ifndef _SYS_SYSPROTO_H_
720struct getrusage_args {
721	int	who;
722	struct	rusage *rusage;
723};
724#endif
725/*
726 * MPSAFE
727 */
728/* ARGSUSED */
729int
730getrusage(td, uap)
731	register struct thread *td;
732	register struct getrusage_args *uap;
733{
734	struct proc *p = td->td_proc;
735	register struct rusage *rup;
736	int error = 0;
737
738	mtx_lock(&Giant);
739
740	switch (uap->who) {
741	case RUSAGE_SELF:
742		rup = &p->p_stats->p_ru;
743		mtx_lock_spin(&sched_lock);
744		calcru(p, &rup->ru_utime, &rup->ru_stime, NULL);
745		mtx_unlock_spin(&sched_lock);
746		break;
747
748	case RUSAGE_CHILDREN:
749		rup = &p->p_stats->p_cru;
750		break;
751
752	default:
753		rup = NULL;
754		error = EINVAL;
755		break;
756	}
757	mtx_unlock(&Giant);
758	if (error == 0) {
759		error = copyout((caddr_t)rup, (caddr_t)uap->rusage,
760		    sizeof (struct rusage));
761	}
762	return(error);
763}
764
765void
766ruadd(ru, ru2)
767	register struct rusage *ru, *ru2;
768{
769	register long *ip, *ip2;
770	register int i;
771
772	timevaladd(&ru->ru_utime, &ru2->ru_utime);
773	timevaladd(&ru->ru_stime, &ru2->ru_stime);
774	if (ru->ru_maxrss < ru2->ru_maxrss)
775		ru->ru_maxrss = ru2->ru_maxrss;
776	ip = &ru->ru_first; ip2 = &ru2->ru_first;
777	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
778		*ip++ += *ip2++;
779}
780
781/*
782 * Make a copy of the plimit structure.
783 * We share these structures copy-on-write after fork,
784 * and copy when a limit is changed.
785 */
786struct plimit *
787limcopy(lim)
788	struct plimit *lim;
789{
790	register struct plimit *copy;
791
792	MALLOC(copy, struct plimit *, sizeof(struct plimit),
793	    M_SUBPROC, M_WAITOK);
794	bcopy(lim->pl_rlimit, copy->pl_rlimit, sizeof(struct plimit));
795	copy->p_lflags = 0;
796	copy->p_refcnt = 1;
797	return (copy);
798}
799
800/*
801 * Find the uidinfo structure for a uid.  This structure is used to
802 * track the total resource consumption (process count, socket buffer
803 * size, etc.) for the uid and impose limits.
804 */
805void
806uihashinit()
807{
808
809	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
810	mtx_init(&uihashtbl_mtx, "uidinfo hash", MTX_DEF);
811}
812
813/*
814 * lookup a uidinfo struct for the parameter uid.
815 * uihashtbl_mtx must be locked.
816 */
817static struct uidinfo *
818uilookup(uid)
819	uid_t uid;
820{
821	struct	uihashhead *uipp;
822	struct	uidinfo *uip;
823
824	mtx_assert(&uihashtbl_mtx, MA_OWNED);
825	uipp = UIHASH(uid);
826	LIST_FOREACH(uip, uipp, ui_hash)
827		if (uip->ui_uid == uid)
828			break;
829
830	return (uip);
831}
832
833/*
834 * Find or allocate a struct uidinfo for a particular uid.
835 * Increase refcount on uidinfo struct returned.
836 * uifree() should be called on a struct uidinfo when released.
837 */
838struct uidinfo *
839uifind(uid)
840	uid_t uid;
841{
842	struct	uidinfo *uip;
843
844	mtx_lock(&uihashtbl_mtx);
845	uip = uilookup(uid);
846	if (uip == NULL) {
847		struct  uidinfo *old_uip;
848
849		mtx_unlock(&uihashtbl_mtx);
850		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
851		mtx_lock(&uihashtbl_mtx);
852		/*
853		 * There's a chance someone created our uidinfo while we
854		 * were in malloc and not holding the lock, so we have to
855		 * make sure we don't insert a duplicate uidinfo
856		 */
857		if ((old_uip = uilookup(uid)) != NULL) {
858			/* someone else beat us to it */
859			free(uip, M_UIDINFO);
860			uip = old_uip;
861		} else {
862			mtx_init(&uip->ui_mtx, "uidinfo struct", MTX_DEF);
863			uip->ui_uid = uid;
864			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
865		}
866	}
867	uihold(uip);
868	mtx_unlock(&uihashtbl_mtx);
869	return (uip);
870}
871
872/*
873 * Place another refcount on a uidinfo struct.
874 */
875void
876uihold(uip)
877	struct uidinfo *uip;
878{
879
880	mtx_lock(&uip->ui_mtx);
881	uip->ui_ref++;
882	mtx_unlock(&uip->ui_mtx);
883}
884
885/*-
886 * Since uidinfo structs have a long lifetime, we use an
887 * opportunistic refcounting scheme to avoid locking the lookup hash
888 * for each release.
889 *
890 * If the refcount hits 0, we need to free the structure,
891 * which means we need to lock the hash.
892 * Optimal case:
893 *   After locking the struct and lowering the refcount, if we find
894 *   that we don't need to free, simply unlock and return.
895 * Suboptimal case:
896 *   If refcount lowering results in need to free, bump the count
897 *   back up, loose the lock and aquire the locks in the proper
898 *   order to try again.
899 */
900void
901uifree(uip)
902	struct uidinfo *uip;
903{
904
905	/* Prepare for optimal case. */
906	mtx_lock(&uip->ui_mtx);
907
908	if (--uip->ui_ref != 0) {
909		mtx_unlock(&uip->ui_mtx);
910		return;
911	}
912
913	/* Prepare for suboptimal case. */
914	uip->ui_ref++;
915	mtx_unlock(&uip->ui_mtx);
916	mtx_lock(&uihashtbl_mtx);
917	mtx_lock(&uip->ui_mtx);
918
919	/*
920	 * We must subtract one from the count again because we backed out
921	 * our initial subtraction before dropping the lock.
922	 * Since another thread may have added a reference after we dropped the
923	 * initial lock we have to test for zero again.
924	 */
925	if (--uip->ui_ref == 0) {
926		LIST_REMOVE(uip, ui_hash);
927		mtx_unlock(&uihashtbl_mtx);
928		if (uip->ui_sbsize != 0)
929			/* XXX no %qd in kernel.  Truncate. */
930			printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
931			    uip->ui_uid, (long)uip->ui_sbsize);
932		if (uip->ui_proccnt != 0)
933			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
934			    uip->ui_uid, uip->ui_proccnt);
935		mtx_destroy(&uip->ui_mtx);
936		FREE(uip, M_UIDINFO);
937		return;
938	}
939
940	mtx_unlock(&uihashtbl_mtx);
941	mtx_unlock(&uip->ui_mtx);
942}
943
944/*
945 * Change the count associated with number of processes
946 * a given user is using.  When 'max' is 0, don't enforce a limit
947 */
948int
949chgproccnt(uip, diff, max)
950	struct	uidinfo	*uip;
951	int	diff;
952	int	max;
953{
954
955	mtx_lock(&uip->ui_mtx);
956	/* don't allow them to exceed max, but allow subtraction */
957	if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
958		mtx_unlock(&uip->ui_mtx);
959		return (0);
960	}
961	uip->ui_proccnt += diff;
962	if (uip->ui_proccnt < 0)
963		printf("negative proccnt for uid = %d\n", uip->ui_uid);
964	mtx_unlock(&uip->ui_mtx);
965	return (1);
966}
967
968/*
969 * Change the total socket buffer size a user has used.
970 */
971int
972chgsbsize(uip, hiwat, to, max)
973	struct	uidinfo	*uip;
974	u_long *hiwat;
975	u_long	to;
976	rlim_t	max;
977{
978	rlim_t new;
979	int s;
980
981	s = splnet();
982	mtx_lock(&uip->ui_mtx);
983	new = uip->ui_sbsize + to - *hiwat;
984	/* don't allow them to exceed max, but allow subtraction */
985	if (to > *hiwat && new > max) {
986		splx(s);
987		mtx_unlock(&uip->ui_mtx);
988		return (0);
989	}
990	uip->ui_sbsize = new;
991	*hiwat = to;
992	if (uip->ui_sbsize < 0)
993		printf("negative sbsize for uid = %d\n", uip->ui_uid);
994	splx(s);
995	mtx_unlock(&uip->ui_mtx);
996	return (1);
997}
998