kern_resource.c revision 220390
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_resource.c 220390 2011-04-06 17:47:22Z jhb $");
39
40#include "opt_compat.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysproto.h>
45#include <sys/file.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mutex.h>
50#include <sys/priv.h>
51#include <sys/proc.h>
52#include <sys/refcount.h>
53#include <sys/racct.h>
54#include <sys/resourcevar.h>
55#include <sys/rwlock.h>
56#include <sys/sched.h>
57#include <sys/sx.h>
58#include <sys/syscallsubr.h>
59#include <sys/sysent.h>
60#include <sys/time.h>
61#include <sys/umtx.h>
62
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/pmap.h>
66#include <vm/vm_map.h>
67
68
69static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
70static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
71#define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
72static struct rwlock uihashtbl_lock;
73static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
74static u_long uihash;		/* size of hash table - 1 */
75
76static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
77		    struct timeval *up, struct timeval *sp);
78static int	donice(struct thread *td, struct proc *chgp, int n);
79static struct uidinfo *uilookup(uid_t uid);
80static void	ruxagg_locked(struct rusage_ext *rux, struct thread *td);
81
82/*
83 * Resource controls and accounting.
84 */
85#ifndef _SYS_SYSPROTO_H_
86struct getpriority_args {
87	int	which;
88	int	who;
89};
90#endif
91int
92getpriority(td, uap)
93	struct thread *td;
94	register struct getpriority_args *uap;
95{
96	struct proc *p;
97	struct pgrp *pg;
98	int error, low;
99
100	error = 0;
101	low = PRIO_MAX + 1;
102	switch (uap->which) {
103
104	case PRIO_PROCESS:
105		if (uap->who == 0)
106			low = td->td_proc->p_nice;
107		else {
108			p = pfind(uap->who);
109			if (p == NULL)
110				break;
111			if (p_cansee(td, p) == 0)
112				low = p->p_nice;
113			PROC_UNLOCK(p);
114		}
115		break;
116
117	case PRIO_PGRP:
118		sx_slock(&proctree_lock);
119		if (uap->who == 0) {
120			pg = td->td_proc->p_pgrp;
121			PGRP_LOCK(pg);
122		} else {
123			pg = pgfind(uap->who);
124			if (pg == NULL) {
125				sx_sunlock(&proctree_lock);
126				break;
127			}
128		}
129		sx_sunlock(&proctree_lock);
130		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
131			PROC_LOCK(p);
132			if (p->p_state == PRS_NORMAL &&
133			    p_cansee(td, p) == 0) {
134				if (p->p_nice < low)
135					low = p->p_nice;
136			}
137			PROC_UNLOCK(p);
138		}
139		PGRP_UNLOCK(pg);
140		break;
141
142	case PRIO_USER:
143		if (uap->who == 0)
144			uap->who = td->td_ucred->cr_uid;
145		sx_slock(&allproc_lock);
146		FOREACH_PROC_IN_SYSTEM(p) {
147			PROC_LOCK(p);
148			if (p->p_state == PRS_NORMAL &&
149			    p_cansee(td, p) == 0 &&
150			    p->p_ucred->cr_uid == uap->who) {
151				if (p->p_nice < low)
152					low = p->p_nice;
153			}
154			PROC_UNLOCK(p);
155		}
156		sx_sunlock(&allproc_lock);
157		break;
158
159	default:
160		error = EINVAL;
161		break;
162	}
163	if (low == PRIO_MAX + 1 && error == 0)
164		error = ESRCH;
165	td->td_retval[0] = low;
166	return (error);
167}
168
169#ifndef _SYS_SYSPROTO_H_
170struct setpriority_args {
171	int	which;
172	int	who;
173	int	prio;
174};
175#endif
176int
177setpriority(td, uap)
178	struct thread *td;
179	struct setpriority_args *uap;
180{
181	struct proc *curp, *p;
182	struct pgrp *pg;
183	int found = 0, error = 0;
184
185	curp = td->td_proc;
186	switch (uap->which) {
187	case PRIO_PROCESS:
188		if (uap->who == 0) {
189			PROC_LOCK(curp);
190			error = donice(td, curp, uap->prio);
191			PROC_UNLOCK(curp);
192		} else {
193			p = pfind(uap->who);
194			if (p == NULL)
195				break;
196			error = p_cansee(td, p);
197			if (error == 0)
198				error = donice(td, p, uap->prio);
199			PROC_UNLOCK(p);
200		}
201		found++;
202		break;
203
204	case PRIO_PGRP:
205		sx_slock(&proctree_lock);
206		if (uap->who == 0) {
207			pg = curp->p_pgrp;
208			PGRP_LOCK(pg);
209		} else {
210			pg = pgfind(uap->who);
211			if (pg == NULL) {
212				sx_sunlock(&proctree_lock);
213				break;
214			}
215		}
216		sx_sunlock(&proctree_lock);
217		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
218			PROC_LOCK(p);
219			if (p->p_state == PRS_NORMAL &&
220			    p_cansee(td, p) == 0) {
221				error = donice(td, p, uap->prio);
222				found++;
223			}
224			PROC_UNLOCK(p);
225		}
226		PGRP_UNLOCK(pg);
227		break;
228
229	case PRIO_USER:
230		if (uap->who == 0)
231			uap->who = td->td_ucred->cr_uid;
232		sx_slock(&allproc_lock);
233		FOREACH_PROC_IN_SYSTEM(p) {
234			PROC_LOCK(p);
235			if (p->p_state == PRS_NORMAL &&
236			    p->p_ucred->cr_uid == uap->who &&
237			    p_cansee(td, p) == 0) {
238				error = donice(td, p, uap->prio);
239				found++;
240			}
241			PROC_UNLOCK(p);
242		}
243		sx_sunlock(&allproc_lock);
244		break;
245
246	default:
247		error = EINVAL;
248		break;
249	}
250	if (found == 0 && error == 0)
251		error = ESRCH;
252	return (error);
253}
254
255/*
256 * Set "nice" for a (whole) process.
257 */
258static int
259donice(struct thread *td, struct proc *p, int n)
260{
261	int error;
262
263	PROC_LOCK_ASSERT(p, MA_OWNED);
264	if ((error = p_cansched(td, p)))
265		return (error);
266	if (n > PRIO_MAX)
267		n = PRIO_MAX;
268	if (n < PRIO_MIN)
269		n = PRIO_MIN;
270	if (n < p->p_nice && priv_check(td, PRIV_SCHED_SETPRIORITY) != 0)
271		return (EACCES);
272	sched_nice(p, n);
273	return (0);
274}
275
276/*
277 * Set realtime priority for LWP.
278 */
279#ifndef _SYS_SYSPROTO_H_
280struct rtprio_thread_args {
281	int		function;
282	lwpid_t		lwpid;
283	struct rtprio	*rtp;
284};
285#endif
286int
287rtprio_thread(struct thread *td, struct rtprio_thread_args *uap)
288{
289	struct proc *p;
290	struct rtprio rtp;
291	struct thread *td1;
292	int cierror, error;
293
294	/* Perform copyin before acquiring locks if needed. */
295	if (uap->function == RTP_SET)
296		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
297	else
298		cierror = 0;
299
300	if (uap->lwpid == 0 || uap->lwpid == td->td_tid) {
301		p = td->td_proc;
302		td1 = td;
303		PROC_LOCK(p);
304	} else {
305		/* Only look up thread in current process */
306		td1 = tdfind(uap->lwpid, curproc->p_pid);
307		if (td1 == NULL)
308			return (ESRCH);
309		p = td1->td_proc;
310	}
311
312	switch (uap->function) {
313	case RTP_LOOKUP:
314		if ((error = p_cansee(td, p)))
315			break;
316		pri_to_rtp(td1, &rtp);
317		PROC_UNLOCK(p);
318		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
319	case RTP_SET:
320		if ((error = p_cansched(td, p)) || (error = cierror))
321			break;
322
323		/* Disallow setting rtprio in most cases if not superuser. */
324/*
325 * Realtime priority has to be restricted for reasons which should be
326 * obvious.  However, for idle priority, there is a potential for
327 * system deadlock if an idleprio process gains a lock on a resource
328 * that other processes need (and the idleprio process can't run
329 * due to a CPU-bound normal process).  Fix me!  XXX
330 */
331#if 0
332		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
333#else
334		if (rtp.type != RTP_PRIO_NORMAL) {
335#endif
336			error = priv_check(td, PRIV_SCHED_RTPRIO);
337			if (error)
338				break;
339		}
340		error = rtp_to_pri(&rtp, td1);
341		break;
342	default:
343		error = EINVAL;
344		break;
345	}
346	PROC_UNLOCK(p);
347	return (error);
348}
349
350/*
351 * Set realtime priority.
352 */
353#ifndef _SYS_SYSPROTO_H_
354struct rtprio_args {
355	int		function;
356	pid_t		pid;
357	struct rtprio	*rtp;
358};
359#endif
360int
361rtprio(td, uap)
362	struct thread *td;		/* curthread */
363	register struct rtprio_args *uap;
364{
365	struct proc *p;
366	struct thread *tdp;
367	struct rtprio rtp;
368	int cierror, error;
369
370	/* Perform copyin before acquiring locks if needed. */
371	if (uap->function == RTP_SET)
372		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
373	else
374		cierror = 0;
375
376	if (uap->pid == 0) {
377		p = td->td_proc;
378		PROC_LOCK(p);
379	} else {
380		p = pfind(uap->pid);
381		if (p == NULL)
382			return (ESRCH);
383	}
384
385	switch (uap->function) {
386	case RTP_LOOKUP:
387		if ((error = p_cansee(td, p)))
388			break;
389		/*
390		 * Return OUR priority if no pid specified,
391		 * or if one is, report the highest priority
392		 * in the process.  There isn't much more you can do as
393		 * there is only room to return a single priority.
394		 * Note: specifying our own pid is not the same
395		 * as leaving it zero.
396		 */
397		if (uap->pid == 0) {
398			pri_to_rtp(td, &rtp);
399		} else {
400			struct rtprio rtp2;
401
402			rtp.type = RTP_PRIO_IDLE;
403			rtp.prio = RTP_PRIO_MAX;
404			FOREACH_THREAD_IN_PROC(p, tdp) {
405				pri_to_rtp(tdp, &rtp2);
406				if (rtp2.type <  rtp.type ||
407				    (rtp2.type == rtp.type &&
408				    rtp2.prio < rtp.prio)) {
409					rtp.type = rtp2.type;
410					rtp.prio = rtp2.prio;
411				}
412			}
413		}
414		PROC_UNLOCK(p);
415		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
416	case RTP_SET:
417		if ((error = p_cansched(td, p)) || (error = cierror))
418			break;
419
420		/* Disallow setting rtprio in most cases if not superuser. */
421/*
422 * Realtime priority has to be restricted for reasons which should be
423 * obvious.  However, for idle priority, there is a potential for
424 * system deadlock if an idleprio process gains a lock on a resource
425 * that other processes need (and the idleprio process can't run
426 * due to a CPU-bound normal process).  Fix me!  XXX
427 */
428#if 0
429		if (RTP_PRIO_IS_REALTIME(rtp.type)) {
430#else
431		if (rtp.type != RTP_PRIO_NORMAL) {
432#endif
433			error = priv_check(td, PRIV_SCHED_RTPRIO);
434			if (error)
435				break;
436		}
437
438		/*
439		 * If we are setting our own priority, set just our
440		 * thread but if we are doing another process,
441		 * do all the threads on that process. If we
442		 * specify our own pid we do the latter.
443		 */
444		if (uap->pid == 0) {
445			error = rtp_to_pri(&rtp, td);
446		} else {
447			FOREACH_THREAD_IN_PROC(p, td) {
448				if ((error = rtp_to_pri(&rtp, td)) != 0)
449					break;
450			}
451		}
452		break;
453	default:
454		error = EINVAL;
455		break;
456	}
457	PROC_UNLOCK(p);
458	return (error);
459}
460
461int
462rtp_to_pri(struct rtprio *rtp, struct thread *td)
463{
464	u_char	newpri;
465	u_char	oldpri;
466
467	switch (RTP_PRIO_BASE(rtp->type)) {
468	case RTP_PRIO_REALTIME:
469		if (rtp->prio > RTP_PRIO_MAX)
470			return (EINVAL);
471		newpri = PRI_MIN_REALTIME + rtp->prio;
472		break;
473	case RTP_PRIO_NORMAL:
474		if (rtp->prio > (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE))
475			return (EINVAL);
476		newpri = PRI_MIN_TIMESHARE + rtp->prio;
477		break;
478	case RTP_PRIO_IDLE:
479		if (rtp->prio > RTP_PRIO_MAX)
480			return (EINVAL);
481		newpri = PRI_MIN_IDLE + rtp->prio;
482		break;
483	default:
484		return (EINVAL);
485	}
486
487	thread_lock(td);
488	sched_class(td, rtp->type);	/* XXX fix */
489	oldpri = td->td_user_pri;
490	sched_user_prio(td, newpri);
491	if (curthread == td)
492		sched_prio(curthread, td->td_user_pri); /* XXX dubious */
493	if (TD_ON_UPILOCK(td) && oldpri != newpri) {
494		critical_enter();
495		thread_unlock(td);
496		umtx_pi_adjust(td, oldpri);
497		critical_exit();
498	} else
499		thread_unlock(td);
500	return (0);
501}
502
503void
504pri_to_rtp(struct thread *td, struct rtprio *rtp)
505{
506
507	thread_lock(td);
508	switch (PRI_BASE(td->td_pri_class)) {
509	case PRI_REALTIME:
510		rtp->prio = td->td_base_user_pri - PRI_MIN_REALTIME;
511		break;
512	case PRI_TIMESHARE:
513		rtp->prio = td->td_base_user_pri - PRI_MIN_TIMESHARE;
514		break;
515	case PRI_IDLE:
516		rtp->prio = td->td_base_user_pri - PRI_MIN_IDLE;
517		break;
518	default:
519		break;
520	}
521	rtp->type = td->td_pri_class;
522	thread_unlock(td);
523}
524
525#if defined(COMPAT_43)
526#ifndef _SYS_SYSPROTO_H_
527struct osetrlimit_args {
528	u_int	which;
529	struct	orlimit *rlp;
530};
531#endif
532int
533osetrlimit(td, uap)
534	struct thread *td;
535	register struct osetrlimit_args *uap;
536{
537	struct orlimit olim;
538	struct rlimit lim;
539	int error;
540
541	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
542		return (error);
543	lim.rlim_cur = olim.rlim_cur;
544	lim.rlim_max = olim.rlim_max;
545	error = kern_setrlimit(td, uap->which, &lim);
546	return (error);
547}
548
549#ifndef _SYS_SYSPROTO_H_
550struct ogetrlimit_args {
551	u_int	which;
552	struct	orlimit *rlp;
553};
554#endif
555int
556ogetrlimit(td, uap)
557	struct thread *td;
558	register struct ogetrlimit_args *uap;
559{
560	struct orlimit olim;
561	struct rlimit rl;
562	struct proc *p;
563	int error;
564
565	if (uap->which >= RLIM_NLIMITS)
566		return (EINVAL);
567	p = td->td_proc;
568	PROC_LOCK(p);
569	lim_rlimit(p, uap->which, &rl);
570	PROC_UNLOCK(p);
571
572	/*
573	 * XXX would be more correct to convert only RLIM_INFINITY to the
574	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
575	 * values.  Most 64->32 and 32->16 conversions, including not
576	 * unimportant ones of uids are even more broken than what we
577	 * do here (they blindly truncate).  We don't do this correctly
578	 * here since we have little experience with EOVERFLOW yet.
579	 * Elsewhere, getuid() can't fail...
580	 */
581	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
582	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
583	error = copyout(&olim, uap->rlp, sizeof(olim));
584	return (error);
585}
586#endif /* COMPAT_43 */
587
588#ifndef _SYS_SYSPROTO_H_
589struct __setrlimit_args {
590	u_int	which;
591	struct	rlimit *rlp;
592};
593#endif
594int
595setrlimit(td, uap)
596	struct thread *td;
597	register struct __setrlimit_args *uap;
598{
599	struct rlimit alim;
600	int error;
601
602	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
603		return (error);
604	error = kern_setrlimit(td, uap->which, &alim);
605	return (error);
606}
607
608static void
609lim_cb(void *arg)
610{
611	struct rlimit rlim;
612	struct thread *td;
613	struct proc *p;
614
615	p = arg;
616	PROC_LOCK_ASSERT(p, MA_OWNED);
617	/*
618	 * Check if the process exceeds its cpu resource allocation.  If
619	 * it reaches the max, arrange to kill the process in ast().
620	 */
621	if (p->p_cpulimit == RLIM_INFINITY)
622		return;
623	PROC_SLOCK(p);
624	FOREACH_THREAD_IN_PROC(p, td) {
625		ruxagg(p, td);
626	}
627	PROC_SUNLOCK(p);
628	if (p->p_rux.rux_runtime > p->p_cpulimit * cpu_tickrate()) {
629		lim_rlimit(p, RLIMIT_CPU, &rlim);
630		if (p->p_rux.rux_runtime >= rlim.rlim_max * cpu_tickrate()) {
631			killproc(p, "exceeded maximum CPU limit");
632		} else {
633			if (p->p_cpulimit < rlim.rlim_max)
634				p->p_cpulimit += 5;
635			psignal(p, SIGXCPU);
636		}
637	}
638	if ((p->p_flag & P_WEXIT) == 0)
639		callout_reset(&p->p_limco, hz, lim_cb, p);
640}
641
642int
643kern_setrlimit(td, which, limp)
644	struct thread *td;
645	u_int which;
646	struct rlimit *limp;
647{
648	struct plimit *newlim, *oldlim;
649	struct proc *p;
650	register struct rlimit *alimp;
651	struct rlimit oldssiz;
652	int error;
653
654	if (which >= RLIM_NLIMITS)
655		return (EINVAL);
656
657	/*
658	 * Preserve historical bugs by treating negative limits as unsigned.
659	 */
660	if (limp->rlim_cur < 0)
661		limp->rlim_cur = RLIM_INFINITY;
662	if (limp->rlim_max < 0)
663		limp->rlim_max = RLIM_INFINITY;
664
665	oldssiz.rlim_cur = 0;
666	p = td->td_proc;
667	newlim = lim_alloc();
668	PROC_LOCK(p);
669	oldlim = p->p_limit;
670	alimp = &oldlim->pl_rlimit[which];
671	if (limp->rlim_cur > alimp->rlim_max ||
672	    limp->rlim_max > alimp->rlim_max)
673		if ((error = priv_check(td, PRIV_PROC_SETRLIMIT))) {
674			PROC_UNLOCK(p);
675			lim_free(newlim);
676			return (error);
677		}
678	if (limp->rlim_cur > limp->rlim_max)
679		limp->rlim_cur = limp->rlim_max;
680	lim_copy(newlim, oldlim);
681	alimp = &newlim->pl_rlimit[which];
682
683	switch (which) {
684
685	case RLIMIT_CPU:
686		if (limp->rlim_cur != RLIM_INFINITY &&
687		    p->p_cpulimit == RLIM_INFINITY)
688			callout_reset(&p->p_limco, hz, lim_cb, p);
689		p->p_cpulimit = limp->rlim_cur;
690		break;
691	case RLIMIT_DATA:
692		if (limp->rlim_cur > maxdsiz)
693			limp->rlim_cur = maxdsiz;
694		if (limp->rlim_max > maxdsiz)
695			limp->rlim_max = maxdsiz;
696		break;
697
698	case RLIMIT_STACK:
699		if (limp->rlim_cur > maxssiz)
700			limp->rlim_cur = maxssiz;
701		if (limp->rlim_max > maxssiz)
702			limp->rlim_max = maxssiz;
703		oldssiz = *alimp;
704		if (p->p_sysent->sv_fixlimit != NULL)
705			p->p_sysent->sv_fixlimit(&oldssiz,
706			    RLIMIT_STACK);
707		break;
708
709	case RLIMIT_NOFILE:
710		if (limp->rlim_cur > maxfilesperproc)
711			limp->rlim_cur = maxfilesperproc;
712		if (limp->rlim_max > maxfilesperproc)
713			limp->rlim_max = maxfilesperproc;
714		break;
715
716	case RLIMIT_NPROC:
717		if (limp->rlim_cur > maxprocperuid)
718			limp->rlim_cur = maxprocperuid;
719		if (limp->rlim_max > maxprocperuid)
720			limp->rlim_max = maxprocperuid;
721		if (limp->rlim_cur < 1)
722			limp->rlim_cur = 1;
723		if (limp->rlim_max < 1)
724			limp->rlim_max = 1;
725		break;
726	}
727	if (p->p_sysent->sv_fixlimit != NULL)
728		p->p_sysent->sv_fixlimit(limp, which);
729	*alimp = *limp;
730	p->p_limit = newlim;
731	PROC_UNLOCK(p);
732	lim_free(oldlim);
733
734	if (which == RLIMIT_STACK) {
735		/*
736		 * Stack is allocated to the max at exec time with only
737		 * "rlim_cur" bytes accessible.  If stack limit is going
738		 * up make more accessible, if going down make inaccessible.
739		 */
740		if (limp->rlim_cur != oldssiz.rlim_cur) {
741			vm_offset_t addr;
742			vm_size_t size;
743			vm_prot_t prot;
744
745			if (limp->rlim_cur > oldssiz.rlim_cur) {
746				prot = p->p_sysent->sv_stackprot;
747				size = limp->rlim_cur - oldssiz.rlim_cur;
748				addr = p->p_sysent->sv_usrstack -
749				    limp->rlim_cur;
750			} else {
751				prot = VM_PROT_NONE;
752				size = oldssiz.rlim_cur - limp->rlim_cur;
753				addr = p->p_sysent->sv_usrstack -
754				    oldssiz.rlim_cur;
755			}
756			addr = trunc_page(addr);
757			size = round_page(size);
758			(void)vm_map_protect(&p->p_vmspace->vm_map,
759			    addr, addr + size, prot, FALSE);
760		}
761	}
762
763	return (0);
764}
765
766#ifndef _SYS_SYSPROTO_H_
767struct __getrlimit_args {
768	u_int	which;
769	struct	rlimit *rlp;
770};
771#endif
772/* ARGSUSED */
773int
774getrlimit(td, uap)
775	struct thread *td;
776	register struct __getrlimit_args *uap;
777{
778	struct rlimit rlim;
779	struct proc *p;
780	int error;
781
782	if (uap->which >= RLIM_NLIMITS)
783		return (EINVAL);
784	p = td->td_proc;
785	PROC_LOCK(p);
786	lim_rlimit(p, uap->which, &rlim);
787	PROC_UNLOCK(p);
788	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
789	return (error);
790}
791
792/*
793 * Transform the running time and tick information for children of proc p
794 * into user and system time usage.
795 */
796void
797calccru(p, up, sp)
798	struct proc *p;
799	struct timeval *up;
800	struct timeval *sp;
801{
802
803	PROC_LOCK_ASSERT(p, MA_OWNED);
804	calcru1(p, &p->p_crux, up, sp);
805}
806
807/*
808 * Transform the running time and tick information in proc p into user
809 * and system time usage.  If appropriate, include the current time slice
810 * on this CPU.
811 */
812void
813calcru(struct proc *p, struct timeval *up, struct timeval *sp)
814{
815	struct thread *td;
816	uint64_t u;
817
818	PROC_LOCK_ASSERT(p, MA_OWNED);
819	PROC_SLOCK_ASSERT(p, MA_OWNED);
820	/*
821	 * If we are getting stats for the current process, then add in the
822	 * stats that this thread has accumulated in its current time slice.
823	 * We reset the thread and CPU state as if we had performed a context
824	 * switch right here.
825	 */
826	td = curthread;
827	if (td->td_proc == p) {
828		u = cpu_ticks();
829		p->p_rux.rux_runtime += u - PCPU_GET(switchtime);
830		PCPU_SET(switchtime, u);
831	}
832	/* Make sure the per-thread stats are current. */
833	FOREACH_THREAD_IN_PROC(p, td) {
834		if (td->td_incruntime == 0)
835			continue;
836		ruxagg(p, td);
837	}
838	calcru1(p, &p->p_rux, up, sp);
839}
840
841static void
842calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
843    struct timeval *sp)
844{
845	/* {user, system, interrupt, total} {ticks, usec}: */
846	uint64_t ut, uu, st, su, it, tt, tu;
847
848	ut = ruxp->rux_uticks;
849	st = ruxp->rux_sticks;
850	it = ruxp->rux_iticks;
851	tt = ut + st + it;
852	if (tt == 0) {
853		/* Avoid divide by zero */
854		st = 1;
855		tt = 1;
856	}
857	tu = cputick2usec(ruxp->rux_runtime);
858	if ((int64_t)tu < 0) {
859		/* XXX: this should be an assert /phk */
860		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
861		    (intmax_t)tu, p->p_pid, p->p_comm);
862		tu = ruxp->rux_tu;
863	}
864
865	if (tu >= ruxp->rux_tu) {
866		/*
867		 * The normal case, time increased.
868		 * Enforce monotonicity of bucketed numbers.
869		 */
870		uu = (tu * ut) / tt;
871		if (uu < ruxp->rux_uu)
872			uu = ruxp->rux_uu;
873		su = (tu * st) / tt;
874		if (su < ruxp->rux_su)
875			su = ruxp->rux_su;
876	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
877		/*
878		 * When we calibrate the cputicker, it is not uncommon to
879		 * see the presumably fixed frequency increase slightly over
880		 * time as a result of thermal stabilization and NTP
881		 * discipline (of the reference clock).  We therefore ignore
882		 * a bit of backwards slop because we  expect to catch up
883		 * shortly.  We use a 3 microsecond limit to catch low
884		 * counts and a 1% limit for high counts.
885		 */
886		uu = ruxp->rux_uu;
887		su = ruxp->rux_su;
888		tu = ruxp->rux_tu;
889	} else { /* tu < ruxp->rux_tu */
890		/*
891		 * What happened here was likely that a laptop, which ran at
892		 * a reduced clock frequency at boot, kicked into high gear.
893		 * The wisdom of spamming this message in that case is
894		 * dubious, but it might also be indicative of something
895		 * serious, so lets keep it and hope laptops can be made
896		 * more truthful about their CPU speed via ACPI.
897		 */
898		printf("calcru: runtime went backwards from %ju usec "
899		    "to %ju usec for pid %d (%s)\n",
900		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
901		    p->p_pid, p->p_comm);
902		uu = (tu * ut) / tt;
903		su = (tu * st) / tt;
904	}
905
906	ruxp->rux_uu = uu;
907	ruxp->rux_su = su;
908	ruxp->rux_tu = tu;
909
910	up->tv_sec = uu / 1000000;
911	up->tv_usec = uu % 1000000;
912	sp->tv_sec = su / 1000000;
913	sp->tv_usec = su % 1000000;
914}
915
916#ifndef _SYS_SYSPROTO_H_
917struct getrusage_args {
918	int	who;
919	struct	rusage *rusage;
920};
921#endif
922int
923getrusage(td, uap)
924	register struct thread *td;
925	register struct getrusage_args *uap;
926{
927	struct rusage ru;
928	int error;
929
930	error = kern_getrusage(td, uap->who, &ru);
931	if (error == 0)
932		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
933	return (error);
934}
935
936int
937kern_getrusage(struct thread *td, int who, struct rusage *rup)
938{
939	struct proc *p;
940	int error;
941
942	error = 0;
943	p = td->td_proc;
944	PROC_LOCK(p);
945	switch (who) {
946	case RUSAGE_SELF:
947		rufetchcalc(p, rup, &rup->ru_utime,
948		    &rup->ru_stime);
949		break;
950
951	case RUSAGE_CHILDREN:
952		*rup = p->p_stats->p_cru;
953		calccru(p, &rup->ru_utime, &rup->ru_stime);
954		break;
955
956	case RUSAGE_THREAD:
957		PROC_SLOCK(p);
958		ruxagg(p, td);
959		PROC_SUNLOCK(p);
960		thread_lock(td);
961		*rup = td->td_ru;
962		calcru1(p, &td->td_rux, &rup->ru_utime, &rup->ru_stime);
963		thread_unlock(td);
964		break;
965
966	default:
967		error = EINVAL;
968	}
969	PROC_UNLOCK(p);
970	return (error);
971}
972
973void
974rucollect(struct rusage *ru, struct rusage *ru2)
975{
976	long *ip, *ip2;
977	int i;
978
979	if (ru->ru_maxrss < ru2->ru_maxrss)
980		ru->ru_maxrss = ru2->ru_maxrss;
981	ip = &ru->ru_first;
982	ip2 = &ru2->ru_first;
983	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
984		*ip++ += *ip2++;
985}
986
987void
988ruadd(struct rusage *ru, struct rusage_ext *rux, struct rusage *ru2,
989    struct rusage_ext *rux2)
990{
991
992	rux->rux_runtime += rux2->rux_runtime;
993	rux->rux_uticks += rux2->rux_uticks;
994	rux->rux_sticks += rux2->rux_sticks;
995	rux->rux_iticks += rux2->rux_iticks;
996	rux->rux_uu += rux2->rux_uu;
997	rux->rux_su += rux2->rux_su;
998	rux->rux_tu += rux2->rux_tu;
999	rucollect(ru, ru2);
1000}
1001
1002/*
1003 * Aggregate tick counts into the proc's rusage_ext.
1004 */
1005static void
1006ruxagg_locked(struct rusage_ext *rux, struct thread *td)
1007{
1008
1009	THREAD_LOCK_ASSERT(td, MA_OWNED);
1010	PROC_SLOCK_ASSERT(td->td_proc, MA_OWNED);
1011	rux->rux_runtime += td->td_incruntime;
1012	rux->rux_uticks += td->td_uticks;
1013	rux->rux_sticks += td->td_sticks;
1014	rux->rux_iticks += td->td_iticks;
1015}
1016
1017void
1018ruxagg(struct proc *p, struct thread *td)
1019{
1020
1021	thread_lock(td);
1022	ruxagg_locked(&p->p_rux, td);
1023	ruxagg_locked(&td->td_rux, td);
1024	td->td_incruntime = 0;
1025	td->td_uticks = 0;
1026	td->td_iticks = 0;
1027	td->td_sticks = 0;
1028	thread_unlock(td);
1029}
1030
1031/*
1032 * Update the rusage_ext structure and fetch a valid aggregate rusage
1033 * for proc p if storage for one is supplied.
1034 */
1035void
1036rufetch(struct proc *p, struct rusage *ru)
1037{
1038	struct thread *td;
1039
1040	PROC_SLOCK_ASSERT(p, MA_OWNED);
1041
1042	*ru = p->p_ru;
1043	if (p->p_numthreads > 0)  {
1044		FOREACH_THREAD_IN_PROC(p, td) {
1045			ruxagg(p, td);
1046			rucollect(ru, &td->td_ru);
1047		}
1048	}
1049}
1050
1051/*
1052 * Atomically perform a rufetch and a calcru together.
1053 * Consumers, can safely assume the calcru is executed only once
1054 * rufetch is completed.
1055 */
1056void
1057rufetchcalc(struct proc *p, struct rusage *ru, struct timeval *up,
1058    struct timeval *sp)
1059{
1060
1061	PROC_SLOCK(p);
1062	rufetch(p, ru);
1063	calcru(p, up, sp);
1064	PROC_SUNLOCK(p);
1065}
1066
1067/*
1068 * Allocate a new resource limits structure and initialize its
1069 * reference count and mutex pointer.
1070 */
1071struct plimit *
1072lim_alloc()
1073{
1074	struct plimit *limp;
1075
1076	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
1077	refcount_init(&limp->pl_refcnt, 1);
1078	return (limp);
1079}
1080
1081struct plimit *
1082lim_hold(limp)
1083	struct plimit *limp;
1084{
1085
1086	refcount_acquire(&limp->pl_refcnt);
1087	return (limp);
1088}
1089
1090void
1091lim_fork(struct proc *p1, struct proc *p2)
1092{
1093	p2->p_limit = lim_hold(p1->p_limit);
1094	callout_init_mtx(&p2->p_limco, &p2->p_mtx, 0);
1095	if (p1->p_cpulimit != RLIM_INFINITY)
1096		callout_reset(&p2->p_limco, hz, lim_cb, p2);
1097}
1098
1099void
1100lim_free(limp)
1101	struct plimit *limp;
1102{
1103
1104	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
1105	if (refcount_release(&limp->pl_refcnt))
1106		free((void *)limp, M_PLIMIT);
1107}
1108
1109/*
1110 * Make a copy of the plimit structure.
1111 * We share these structures copy-on-write after fork.
1112 */
1113void
1114lim_copy(dst, src)
1115	struct plimit *dst, *src;
1116{
1117
1118	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
1119	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
1120}
1121
1122/*
1123 * Return the hard limit for a particular system resource.  The
1124 * which parameter specifies the index into the rlimit array.
1125 */
1126rlim_t
1127lim_max(struct proc *p, int which)
1128{
1129	struct rlimit rl;
1130
1131	lim_rlimit(p, which, &rl);
1132	return (rl.rlim_max);
1133}
1134
1135/*
1136 * Return the current (soft) limit for a particular system resource.
1137 * The which parameter which specifies the index into the rlimit array
1138 */
1139rlim_t
1140lim_cur(struct proc *p, int which)
1141{
1142	struct rlimit rl;
1143
1144	lim_rlimit(p, which, &rl);
1145	return (rl.rlim_cur);
1146}
1147
1148/*
1149 * Return a copy of the entire rlimit structure for the system limit
1150 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
1151 */
1152void
1153lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
1154{
1155
1156	PROC_LOCK_ASSERT(p, MA_OWNED);
1157	KASSERT(which >= 0 && which < RLIM_NLIMITS,
1158	    ("request for invalid resource limit"));
1159	*rlp = p->p_limit->pl_rlimit[which];
1160	if (p->p_sysent->sv_fixlimit != NULL)
1161		p->p_sysent->sv_fixlimit(rlp, which);
1162}
1163
1164void
1165uihashinit()
1166{
1167
1168	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1169	rw_init(&uihashtbl_lock, "uidinfo hash");
1170}
1171
1172/*
1173 * Look up a uidinfo struct for the parameter uid.
1174 * uihashtbl_lock must be locked.
1175 */
1176static struct uidinfo *
1177uilookup(uid)
1178	uid_t uid;
1179{
1180	struct uihashhead *uipp;
1181	struct uidinfo *uip;
1182
1183	rw_assert(&uihashtbl_lock, RA_LOCKED);
1184	uipp = UIHASH(uid);
1185	LIST_FOREACH(uip, uipp, ui_hash)
1186		if (uip->ui_uid == uid)
1187			break;
1188
1189	return (uip);
1190}
1191
1192/*
1193 * Find or allocate a struct uidinfo for a particular uid.
1194 * Increase refcount on uidinfo struct returned.
1195 * uifree() should be called on a struct uidinfo when released.
1196 */
1197struct uidinfo *
1198uifind(uid)
1199	uid_t uid;
1200{
1201	struct uidinfo *old_uip, *uip;
1202
1203	rw_rlock(&uihashtbl_lock);
1204	uip = uilookup(uid);
1205	if (uip == NULL) {
1206		rw_runlock(&uihashtbl_lock);
1207		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1208		racct_create(&uip->ui_racct);
1209		rw_wlock(&uihashtbl_lock);
1210		/*
1211		 * There's a chance someone created our uidinfo while we
1212		 * were in malloc and not holding the lock, so we have to
1213		 * make sure we don't insert a duplicate uidinfo.
1214		 */
1215		if ((old_uip = uilookup(uid)) != NULL) {
1216			/* Someone else beat us to it. */
1217			racct_destroy(&uip->ui_racct);
1218			free(uip, M_UIDINFO);
1219			uip = old_uip;
1220		} else {
1221			refcount_init(&uip->ui_ref, 0);
1222			uip->ui_uid = uid;
1223			mtx_init(&uip->ui_vmsize_mtx, "ui_vmsize", NULL,
1224			    MTX_DEF);
1225			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1226		}
1227	}
1228	uihold(uip);
1229	rw_unlock(&uihashtbl_lock);
1230	return (uip);
1231}
1232
1233/*
1234 * Place another refcount on a uidinfo struct.
1235 */
1236void
1237uihold(uip)
1238	struct uidinfo *uip;
1239{
1240
1241	refcount_acquire(&uip->ui_ref);
1242}
1243
1244/*-
1245 * Since uidinfo structs have a long lifetime, we use an
1246 * opportunistic refcounting scheme to avoid locking the lookup hash
1247 * for each release.
1248 *
1249 * If the refcount hits 0, we need to free the structure,
1250 * which means we need to lock the hash.
1251 * Optimal case:
1252 *   After locking the struct and lowering the refcount, if we find
1253 *   that we don't need to free, simply unlock and return.
1254 * Suboptimal case:
1255 *   If refcount lowering results in need to free, bump the count
1256 *   back up, lose the lock and acquire the locks in the proper
1257 *   order to try again.
1258 */
1259void
1260uifree(uip)
1261	struct uidinfo *uip;
1262{
1263	int old;
1264
1265	/* Prepare for optimal case. */
1266	old = uip->ui_ref;
1267	if (old > 1 && atomic_cmpset_int(&uip->ui_ref, old, old - 1))
1268		return;
1269
1270	/* Prepare for suboptimal case. */
1271	rw_wlock(&uihashtbl_lock);
1272	if (refcount_release(&uip->ui_ref)) {
1273		racct_destroy(&uip->ui_racct);
1274		LIST_REMOVE(uip, ui_hash);
1275		rw_wunlock(&uihashtbl_lock);
1276		if (uip->ui_sbsize != 0)
1277			printf("freeing uidinfo: uid = %d, sbsize = %ld\n",
1278			    uip->ui_uid, uip->ui_sbsize);
1279		if (uip->ui_proccnt != 0)
1280			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1281			    uip->ui_uid, uip->ui_proccnt);
1282		if (uip->ui_vmsize != 0)
1283			printf("freeing uidinfo: uid = %d, swapuse = %lld\n",
1284			    uip->ui_uid, (unsigned long long)uip->ui_vmsize);
1285		mtx_destroy(&uip->ui_vmsize_mtx);
1286		free(uip, M_UIDINFO);
1287		return;
1288	}
1289	/*
1290	 * Someone added a reference between atomic_cmpset_int() and
1291	 * rw_wlock(&uihashtbl_lock).
1292	 */
1293	rw_wunlock(&uihashtbl_lock);
1294}
1295
1296void
1297ui_racct_foreach(void (*callback)(struct racct *racct,
1298    void *arg2, void *arg3), void *arg2, void *arg3)
1299{
1300	struct uidinfo *uip;
1301	struct uihashhead *uih;
1302
1303	rw_rlock(&uihashtbl_lock);
1304	for (uih = &uihashtbl[uihash]; uih >= uihashtbl; uih--) {
1305		LIST_FOREACH(uip, uih, ui_hash) {
1306			(callback)(uip->ui_racct, arg2, arg3);
1307		}
1308	}
1309	rw_runlock(&uihashtbl_lock);
1310}
1311
1312/*
1313 * Change the count associated with number of processes
1314 * a given user is using.  When 'max' is 0, don't enforce a limit
1315 */
1316int
1317chgproccnt(uip, diff, max)
1318	struct	uidinfo	*uip;
1319	int	diff;
1320	rlim_t	max;
1321{
1322
1323	/* Don't allow them to exceed max, but allow subtraction. */
1324	if (diff > 0 && max != 0) {
1325		if (atomic_fetchadd_long(&uip->ui_proccnt, (long)diff) + diff > max) {
1326			atomic_subtract_long(&uip->ui_proccnt, (long)diff);
1327			return (0);
1328		}
1329	} else {
1330		atomic_add_long(&uip->ui_proccnt, (long)diff);
1331		if (uip->ui_proccnt < 0)
1332			printf("negative proccnt for uid = %d\n", uip->ui_uid);
1333	}
1334	return (1);
1335}
1336
1337/*
1338 * Change the total socket buffer size a user has used.
1339 */
1340int
1341chgsbsize(uip, hiwat, to, max)
1342	struct	uidinfo	*uip;
1343	u_int  *hiwat;
1344	u_int	to;
1345	rlim_t	max;
1346{
1347	int diff;
1348
1349	diff = to - *hiwat;
1350	if (diff > 0) {
1351		if (atomic_fetchadd_long(&uip->ui_sbsize, (long)diff) + diff > max) {
1352			atomic_subtract_long(&uip->ui_sbsize, (long)diff);
1353			return (0);
1354		}
1355	} else {
1356		atomic_add_long(&uip->ui_sbsize, (long)diff);
1357		if (uip->ui_sbsize < 0)
1358			printf("negative sbsize for uid = %d\n", uip->ui_uid);
1359	}
1360	*hiwat = to;
1361	return (1);
1362}
1363
1364/*
1365 * Change the count associated with number of pseudo-terminals
1366 * a given user is using.  When 'max' is 0, don't enforce a limit
1367 */
1368int
1369chgptscnt(uip, diff, max)
1370	struct	uidinfo	*uip;
1371	int	diff;
1372	rlim_t	max;
1373{
1374
1375	/* Don't allow them to exceed max, but allow subtraction. */
1376	if (diff > 0 && max != 0) {
1377		if (atomic_fetchadd_long(&uip->ui_ptscnt, (long)diff) + diff > max) {
1378			atomic_subtract_long(&uip->ui_ptscnt, (long)diff);
1379			return (0);
1380		}
1381	} else {
1382		atomic_add_long(&uip->ui_ptscnt, (long)diff);
1383		if (uip->ui_ptscnt < 0)
1384			printf("negative ptscnt for uid = %d\n", uip->ui_uid);
1385	}
1386	return (1);
1387}
1388