kern_resource.c revision 156570
1/*-
2 * Copyright (c) 1982, 1986, 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *	@(#)kern_resource.c	8.5 (Berkeley) 1/21/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/kern/kern_resource.c 156570 2006-03-11 10:48:19Z phk $");
39
40#include "opt_compat.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/sysproto.h>
45#include <sys/file.h>
46#include <sys/kernel.h>
47#include <sys/lock.h>
48#include <sys/malloc.h>
49#include <sys/mutex.h>
50#include <sys/proc.h>
51#include <sys/refcount.h>
52#include <sys/resourcevar.h>
53#include <sys/sched.h>
54#include <sys/sx.h>
55#include <sys/syscallsubr.h>
56#include <sys/sysent.h>
57#include <sys/time.h>
58
59#include <vm/vm.h>
60#include <vm/vm_param.h>
61#include <vm/pmap.h>
62#include <vm/vm_map.h>
63
64
65static MALLOC_DEFINE(M_PLIMIT, "plimit", "plimit structures");
66static MALLOC_DEFINE(M_UIDINFO, "uidinfo", "uidinfo structures");
67#define	UIHASH(uid)	(&uihashtbl[(uid) & uihash])
68static struct mtx uihashtbl_mtx;
69static LIST_HEAD(uihashhead, uidinfo) *uihashtbl;
70static u_long uihash;		/* size of hash table - 1 */
71
72static void	calcru1(struct proc *p, struct rusage_ext *ruxp,
73		    struct timeval *up, struct timeval *sp);
74static int	donice(struct thread *td, struct proc *chgp, int n);
75static struct uidinfo *uilookup(uid_t uid);
76
77/*
78 * Resource controls and accounting.
79 */
80
81#ifndef _SYS_SYSPROTO_H_
82struct getpriority_args {
83	int	which;
84	int	who;
85};
86#endif
87/*
88 * MPSAFE
89 */
90int
91getpriority(td, uap)
92	struct thread *td;
93	register struct getpriority_args *uap;
94{
95	struct proc *p;
96	struct pgrp *pg;
97	int error, low;
98
99	error = 0;
100	low = PRIO_MAX + 1;
101	switch (uap->which) {
102
103	case PRIO_PROCESS:
104		if (uap->who == 0)
105			low = td->td_proc->p_nice;
106		else {
107			p = pfind(uap->who);
108			if (p == NULL)
109				break;
110			if (p_cansee(td, p) == 0)
111				low = p->p_nice;
112			PROC_UNLOCK(p);
113		}
114		break;
115
116	case PRIO_PGRP:
117		sx_slock(&proctree_lock);
118		if (uap->who == 0) {
119			pg = td->td_proc->p_pgrp;
120			PGRP_LOCK(pg);
121		} else {
122			pg = pgfind(uap->who);
123			if (pg == NULL) {
124				sx_sunlock(&proctree_lock);
125				break;
126			}
127		}
128		sx_sunlock(&proctree_lock);
129		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
130			PROC_LOCK(p);
131			if (!p_cansee(td, p)) {
132				if (p->p_nice < low)
133					low = p->p_nice;
134			}
135			PROC_UNLOCK(p);
136		}
137		PGRP_UNLOCK(pg);
138		break;
139
140	case PRIO_USER:
141		if (uap->who == 0)
142			uap->who = td->td_ucred->cr_uid;
143		sx_slock(&allproc_lock);
144		LIST_FOREACH(p, &allproc, p_list) {
145			PROC_LOCK(p);
146			if (!p_cansee(td, p) &&
147			    p->p_ucred->cr_uid == uap->who) {
148				if (p->p_nice < low)
149					low = p->p_nice;
150			}
151			PROC_UNLOCK(p);
152		}
153		sx_sunlock(&allproc_lock);
154		break;
155
156	default:
157		error = EINVAL;
158		break;
159	}
160	if (low == PRIO_MAX + 1 && error == 0)
161		error = ESRCH;
162	td->td_retval[0] = low;
163	return (error);
164}
165
166#ifndef _SYS_SYSPROTO_H_
167struct setpriority_args {
168	int	which;
169	int	who;
170	int	prio;
171};
172#endif
173/*
174 * MPSAFE
175 */
176int
177setpriority(td, uap)
178	struct thread *td;
179	struct setpriority_args *uap;
180{
181	struct proc *curp, *p;
182	struct pgrp *pg;
183	int found = 0, error = 0;
184
185	curp = td->td_proc;
186	switch (uap->which) {
187	case PRIO_PROCESS:
188		if (uap->who == 0) {
189			PROC_LOCK(curp);
190			error = donice(td, curp, uap->prio);
191			PROC_UNLOCK(curp);
192		} else {
193			p = pfind(uap->who);
194			if (p == 0)
195				break;
196			if (p_cansee(td, p) == 0)
197				error = donice(td, p, uap->prio);
198			PROC_UNLOCK(p);
199		}
200		found++;
201		break;
202
203	case PRIO_PGRP:
204		sx_slock(&proctree_lock);
205		if (uap->who == 0) {
206			pg = curp->p_pgrp;
207			PGRP_LOCK(pg);
208		} else {
209			pg = pgfind(uap->who);
210			if (pg == NULL) {
211				sx_sunlock(&proctree_lock);
212				break;
213			}
214		}
215		sx_sunlock(&proctree_lock);
216		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
217			PROC_LOCK(p);
218			if (!p_cansee(td, p)) {
219				error = donice(td, p, uap->prio);
220				found++;
221			}
222			PROC_UNLOCK(p);
223		}
224		PGRP_UNLOCK(pg);
225		break;
226
227	case PRIO_USER:
228		if (uap->who == 0)
229			uap->who = td->td_ucred->cr_uid;
230		sx_slock(&allproc_lock);
231		FOREACH_PROC_IN_SYSTEM(p) {
232			PROC_LOCK(p);
233			if (p->p_ucred->cr_uid == uap->who &&
234			    !p_cansee(td, p)) {
235				error = donice(td, p, uap->prio);
236				found++;
237			}
238			PROC_UNLOCK(p);
239		}
240		sx_sunlock(&allproc_lock);
241		break;
242
243	default:
244		error = EINVAL;
245		break;
246	}
247	if (found == 0 && error == 0)
248		error = ESRCH;
249	return (error);
250}
251
252/*
253 * Set "nice" for a (whole) process.
254 */
255static int
256donice(struct thread *td, struct proc *p, int n)
257{
258	int error;
259
260	PROC_LOCK_ASSERT(p, MA_OWNED);
261	if ((error = p_cansched(td, p)))
262		return (error);
263	if (n > PRIO_MAX)
264		n = PRIO_MAX;
265	if (n < PRIO_MIN)
266		n = PRIO_MIN;
267 	if (n < p->p_nice && suser(td) != 0)
268		return (EACCES);
269	mtx_lock_spin(&sched_lock);
270	sched_nice(p, n);
271	mtx_unlock_spin(&sched_lock);
272	return (0);
273}
274
275/*
276 * Set realtime priority.
277 *
278 * MPSAFE
279 */
280#ifndef _SYS_SYSPROTO_H_
281struct rtprio_args {
282	int		function;
283	pid_t		pid;
284	struct rtprio	*rtp;
285};
286#endif
287
288int
289rtprio(td, uap)
290	struct thread *td;		/* curthread */
291	register struct rtprio_args *uap;
292{
293	struct proc *curp;
294	struct proc *p;
295	struct ksegrp *kg;
296	struct rtprio rtp;
297	int cierror, error;
298
299	/* Perform copyin before acquiring locks if needed. */
300	if (uap->function == RTP_SET)
301		cierror = copyin(uap->rtp, &rtp, sizeof(struct rtprio));
302	else
303		cierror = 0;
304
305	curp = td->td_proc;
306	if (uap->pid == 0) {
307		p = curp;
308		PROC_LOCK(p);
309	} else {
310		p = pfind(uap->pid);
311		if (p == NULL)
312			return (ESRCH);
313	}
314
315	switch (uap->function) {
316	case RTP_LOOKUP:
317		if ((error = p_cansee(td, p)))
318			break;
319		mtx_lock_spin(&sched_lock);
320		/*
321		 * Return OUR priority if no pid specified,
322		 * or if one is, report the highest priority
323		 * in the process.  There isn't much more you can do as
324		 * there is only room to return a single priority.
325		 * XXXKSE: maybe need a new interface to report
326		 * priorities of multiple system scope threads.
327		 * Note: specifying our own pid is not the same
328		 * as leaving it zero.
329		 */
330		if (uap->pid == 0) {
331			pri_to_rtp(td->td_ksegrp, &rtp);
332		} else {
333			struct rtprio rtp2;
334
335			rtp.type = RTP_PRIO_IDLE;
336			rtp.prio = RTP_PRIO_MAX;
337			FOREACH_KSEGRP_IN_PROC(p, kg) {
338				pri_to_rtp(kg, &rtp2);
339				if (rtp2.type <  rtp.type ||
340				    (rtp2.type == rtp.type &&
341				    rtp2.prio < rtp.prio)) {
342					rtp.type = rtp2.type;
343					rtp.prio = rtp2.prio;
344				}
345			}
346		}
347		mtx_unlock_spin(&sched_lock);
348		PROC_UNLOCK(p);
349		return (copyout(&rtp, uap->rtp, sizeof(struct rtprio)));
350	case RTP_SET:
351		if ((error = p_cansched(td, p)) || (error = cierror))
352			break;
353
354		/* Disallow setting rtprio in most cases if not superuser. */
355		if (suser(td) != 0) {
356			/* can't set someone else's */
357			if (uap->pid) {
358				error = EPERM;
359				break;
360			}
361			/* can't set realtime priority */
362/*
363 * Realtime priority has to be restricted for reasons which should be
364 * obvious.  However, for idle priority, there is a potential for
365 * system deadlock if an idleprio process gains a lock on a resource
366 * that other processes need (and the idleprio process can't run
367 * due to a CPU-bound normal process).  Fix me!  XXX
368 */
369#if 0
370 			if (RTP_PRIO_IS_REALTIME(rtp.type)) {
371#else
372			if (rtp.type != RTP_PRIO_NORMAL) {
373#endif
374				error = EPERM;
375				break;
376			}
377		}
378
379		/*
380		 * If we are setting our own priority, set just our
381		 * KSEGRP but if we are doing another process,
382		 * do all the groups on that process. If we
383		 * specify our own pid we do the latter.
384		 */
385		mtx_lock_spin(&sched_lock);
386		if (uap->pid == 0) {
387			error = rtp_to_pri(&rtp, td->td_ksegrp);
388		} else {
389			FOREACH_KSEGRP_IN_PROC(p, kg) {
390				if ((error = rtp_to_pri(&rtp, kg)) != 0) {
391					break;
392				}
393			}
394		}
395		mtx_unlock_spin(&sched_lock);
396		break;
397	default:
398		error = EINVAL;
399		break;
400	}
401	PROC_UNLOCK(p);
402	return (error);
403}
404
405int
406rtp_to_pri(struct rtprio *rtp, struct ksegrp *kg)
407{
408
409	mtx_assert(&sched_lock, MA_OWNED);
410	if (rtp->prio > RTP_PRIO_MAX)
411		return (EINVAL);
412	switch (RTP_PRIO_BASE(rtp->type)) {
413	case RTP_PRIO_REALTIME:
414		kg->kg_user_pri = PRI_MIN_REALTIME + rtp->prio;
415		break;
416	case RTP_PRIO_NORMAL:
417		kg->kg_user_pri = PRI_MIN_TIMESHARE + rtp->prio;
418		break;
419	case RTP_PRIO_IDLE:
420		kg->kg_user_pri = PRI_MIN_IDLE + rtp->prio;
421		break;
422	default:
423		return (EINVAL);
424	}
425	sched_class(kg, rtp->type);
426	if (curthread->td_ksegrp == kg) {
427		sched_prio(curthread, kg->kg_user_pri); /* XXX dubious */
428	}
429	return (0);
430}
431
432void
433pri_to_rtp(struct ksegrp *kg, struct rtprio *rtp)
434{
435
436	mtx_assert(&sched_lock, MA_OWNED);
437	switch (PRI_BASE(kg->kg_pri_class)) {
438	case PRI_REALTIME:
439		rtp->prio = kg->kg_user_pri - PRI_MIN_REALTIME;
440		break;
441	case PRI_TIMESHARE:
442		rtp->prio = kg->kg_user_pri - PRI_MIN_TIMESHARE;
443		break;
444	case PRI_IDLE:
445		rtp->prio = kg->kg_user_pri - PRI_MIN_IDLE;
446		break;
447	default:
448		break;
449	}
450	rtp->type = kg->kg_pri_class;
451}
452
453#if defined(COMPAT_43)
454#ifndef _SYS_SYSPROTO_H_
455struct osetrlimit_args {
456	u_int	which;
457	struct	orlimit *rlp;
458};
459#endif
460/*
461 * MPSAFE
462 */
463int
464osetrlimit(td, uap)
465	struct thread *td;
466	register struct osetrlimit_args *uap;
467{
468	struct orlimit olim;
469	struct rlimit lim;
470	int error;
471
472	if ((error = copyin(uap->rlp, &olim, sizeof(struct orlimit))))
473		return (error);
474	lim.rlim_cur = olim.rlim_cur;
475	lim.rlim_max = olim.rlim_max;
476	error = kern_setrlimit(td, uap->which, &lim);
477	return (error);
478}
479
480#ifndef _SYS_SYSPROTO_H_
481struct ogetrlimit_args {
482	u_int	which;
483	struct	orlimit *rlp;
484};
485#endif
486/*
487 * MPSAFE
488 */
489int
490ogetrlimit(td, uap)
491	struct thread *td;
492	register struct ogetrlimit_args *uap;
493{
494	struct orlimit olim;
495	struct rlimit rl;
496	struct proc *p;
497	int error;
498
499	if (uap->which >= RLIM_NLIMITS)
500		return (EINVAL);
501	p = td->td_proc;
502	PROC_LOCK(p);
503	lim_rlimit(p, uap->which, &rl);
504	PROC_UNLOCK(p);
505
506	/*
507	 * XXX would be more correct to convert only RLIM_INFINITY to the
508	 * old RLIM_INFINITY and fail with EOVERFLOW for other larger
509	 * values.  Most 64->32 and 32->16 conversions, including not
510	 * unimportant ones of uids are even more broken than what we
511	 * do here (they blindly truncate).  We don't do this correctly
512	 * here since we have little experience with EOVERFLOW yet.
513	 * Elsewhere, getuid() can't fail...
514	 */
515	olim.rlim_cur = rl.rlim_cur > 0x7fffffff ? 0x7fffffff : rl.rlim_cur;
516	olim.rlim_max = rl.rlim_max > 0x7fffffff ? 0x7fffffff : rl.rlim_max;
517	error = copyout(&olim, uap->rlp, sizeof(olim));
518	return (error);
519}
520#endif /* COMPAT_43 */
521
522#ifndef _SYS_SYSPROTO_H_
523struct __setrlimit_args {
524	u_int	which;
525	struct	rlimit *rlp;
526};
527#endif
528/*
529 * MPSAFE
530 */
531int
532setrlimit(td, uap)
533	struct thread *td;
534	register struct __setrlimit_args *uap;
535{
536	struct rlimit alim;
537	int error;
538
539	if ((error = copyin(uap->rlp, &alim, sizeof(struct rlimit))))
540		return (error);
541	error = kern_setrlimit(td, uap->which, &alim);
542	return (error);
543}
544
545int
546kern_setrlimit(td, which, limp)
547	struct thread *td;
548	u_int which;
549	struct rlimit *limp;
550{
551	struct plimit *newlim, *oldlim;
552	struct proc *p;
553	register struct rlimit *alimp;
554	rlim_t oldssiz;
555	int error;
556
557	if (which >= RLIM_NLIMITS)
558		return (EINVAL);
559
560	/*
561	 * Preserve historical bugs by treating negative limits as unsigned.
562	 */
563	if (limp->rlim_cur < 0)
564		limp->rlim_cur = RLIM_INFINITY;
565	if (limp->rlim_max < 0)
566		limp->rlim_max = RLIM_INFINITY;
567
568	oldssiz = 0;
569	p = td->td_proc;
570	newlim = lim_alloc();
571	PROC_LOCK(p);
572	oldlim = p->p_limit;
573	alimp = &oldlim->pl_rlimit[which];
574	if (limp->rlim_cur > alimp->rlim_max ||
575	    limp->rlim_max > alimp->rlim_max)
576		if ((error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL))) {
577			PROC_UNLOCK(p);
578			lim_free(newlim);
579			return (error);
580		}
581	if (limp->rlim_cur > limp->rlim_max)
582		limp->rlim_cur = limp->rlim_max;
583	lim_copy(newlim, oldlim);
584	alimp = &newlim->pl_rlimit[which];
585
586	switch (which) {
587
588	case RLIMIT_CPU:
589		mtx_lock_spin(&sched_lock);
590		p->p_cpulimit = limp->rlim_cur;
591		mtx_unlock_spin(&sched_lock);
592		break;
593	case RLIMIT_DATA:
594		if (limp->rlim_cur > maxdsiz)
595			limp->rlim_cur = maxdsiz;
596		if (limp->rlim_max > maxdsiz)
597			limp->rlim_max = maxdsiz;
598		break;
599
600	case RLIMIT_STACK:
601		if (limp->rlim_cur > maxssiz)
602			limp->rlim_cur = maxssiz;
603		if (limp->rlim_max > maxssiz)
604			limp->rlim_max = maxssiz;
605		oldssiz = alimp->rlim_cur;
606		break;
607
608	case RLIMIT_NOFILE:
609		if (limp->rlim_cur > maxfilesperproc)
610			limp->rlim_cur = maxfilesperproc;
611		if (limp->rlim_max > maxfilesperproc)
612			limp->rlim_max = maxfilesperproc;
613		break;
614
615	case RLIMIT_NPROC:
616		if (limp->rlim_cur > maxprocperuid)
617			limp->rlim_cur = maxprocperuid;
618		if (limp->rlim_max > maxprocperuid)
619			limp->rlim_max = maxprocperuid;
620		if (limp->rlim_cur < 1)
621			limp->rlim_cur = 1;
622		if (limp->rlim_max < 1)
623			limp->rlim_max = 1;
624		break;
625	}
626	*alimp = *limp;
627	p->p_limit = newlim;
628	PROC_UNLOCK(p);
629	lim_free(oldlim);
630
631	if (which == RLIMIT_STACK) {
632		/*
633		 * Stack is allocated to the max at exec time with only
634		 * "rlim_cur" bytes accessible.  If stack limit is going
635		 * up make more accessible, if going down make inaccessible.
636		 */
637		if (limp->rlim_cur != oldssiz) {
638			vm_offset_t addr;
639			vm_size_t size;
640			vm_prot_t prot;
641
642			if (limp->rlim_cur > oldssiz) {
643				prot = p->p_sysent->sv_stackprot;
644				size = limp->rlim_cur - oldssiz;
645				addr = p->p_sysent->sv_usrstack -
646				    limp->rlim_cur;
647			} else {
648				prot = VM_PROT_NONE;
649				size = oldssiz - limp->rlim_cur;
650				addr = p->p_sysent->sv_usrstack - oldssiz;
651			}
652			addr = trunc_page(addr);
653			size = round_page(size);
654			(void)vm_map_protect(&p->p_vmspace->vm_map,
655			    addr, addr + size, prot, FALSE);
656		}
657	}
658
659	/*
660	 * The data size limit may need to be changed to a value
661	 * that makes sense for the 32 bit binary.
662	 */
663	if (p->p_sysent->sv_fixlimits != NULL)
664		p->p_sysent->sv_fixlimits(p);
665	return (0);
666}
667
668#ifndef _SYS_SYSPROTO_H_
669struct __getrlimit_args {
670	u_int	which;
671	struct	rlimit *rlp;
672};
673#endif
674/*
675 * MPSAFE
676 */
677/* ARGSUSED */
678int
679getrlimit(td, uap)
680	struct thread *td;
681	register struct __getrlimit_args *uap;
682{
683	struct rlimit rlim;
684	struct proc *p;
685	int error;
686
687	if (uap->which >= RLIM_NLIMITS)
688		return (EINVAL);
689	p = td->td_proc;
690	PROC_LOCK(p);
691	lim_rlimit(p, uap->which, &rlim);
692	PROC_UNLOCK(p);
693	error = copyout(&rlim, uap->rlp, sizeof(struct rlimit));
694	return (error);
695}
696
697/*
698 * Transform the running time and tick information for children of proc p
699 * into user and system time usage.
700 */
701void
702calccru(p, up, sp)
703	struct proc *p;
704	struct timeval *up;
705	struct timeval *sp;
706{
707
708	PROC_LOCK_ASSERT(p, MA_OWNED);
709	calcru1(p, &p->p_crux, up, sp);
710}
711
712/*
713 * Transform the running time and tick information in proc p into user
714 * and system time usage.  If appropriate, include the current time slice
715 * on this CPU.
716 */
717void
718calcru(struct proc *p, struct timeval *up, struct timeval *sp)
719{
720	struct rusage_ext rux;
721	struct thread *td;
722	uint64_t u;
723
724	PROC_LOCK_ASSERT(p, MA_OWNED);
725	mtx_assert(&sched_lock, MA_NOTOWNED);
726	mtx_lock_spin(&sched_lock);
727
728	/*
729	 * If we are getting stats for the current process, then add in the
730	 * stats that this thread has accumulated in its current time slice.
731	 * We reset the thread and CPU state as if we had performed a context
732	 * switch right here.
733	 */
734	if (curthread->td_proc == p) {
735		td = curthread;
736		u = cpu_ticks();
737		p->p_rux.rux_runtime += u - PCPU_GET(switchtime);
738		PCPU_SET(switchtime, u);
739		p->p_rux.rux_uticks += td->td_uticks;
740		td->td_uticks = 0;
741		p->p_rux.rux_iticks += td->td_iticks;
742		td->td_iticks = 0;
743		p->p_rux.rux_sticks += td->td_sticks;
744		td->td_sticks = 0;
745	}
746	/* Work on a copy of p_rux so we can let go of sched_lock */
747	rux = p->p_rux;
748	mtx_unlock_spin(&sched_lock);
749	calcru1(p, &rux, up, sp);
750	/* Update the result from the p_rux copy */
751	p->p_rux.rux_uu = rux.rux_uu;
752	p->p_rux.rux_su = rux.rux_su;
753	p->p_rux.rux_tu = rux.rux_tu;
754}
755
756static void
757calcru1(struct proc *p, struct rusage_ext *ruxp, struct timeval *up,
758    struct timeval *sp)
759{
760	/* {user, system, interrupt, total} {ticks, usec}: */
761	u_int64_t ut, uu, st, su, it, tt, tu;
762
763	ut = ruxp->rux_uticks;
764	st = ruxp->rux_sticks;
765	it = ruxp->rux_iticks;
766	tt = ut + st + it;
767	if (tt == 0) {
768		/* Avoid divide by zero */
769		st = 1;
770		tt = 1;
771	}
772	tu = cputick2usec(ruxp->rux_runtime);
773	if ((int64_t)tu < 0) {
774		/* XXX: this should be an assert /phk */
775		printf("calcru: negative runtime of %jd usec for pid %d (%s)\n",
776		    (intmax_t)tu, p->p_pid, p->p_comm);
777		tu = ruxp->rux_tu;
778	}
779
780	if (tu >= ruxp->rux_tu) {
781		/*
782		 * The normal case, time increased.
783		 * Enforce monotonicity of bucketed numbers.
784		 */
785		uu = (tu * ut) / tt;
786		if (uu < ruxp->rux_uu)
787			uu = ruxp->rux_uu;
788		su = (tu * st) / tt;
789		if (su < ruxp->rux_su)
790			su = ruxp->rux_su;
791	} else if (tu + 3 > ruxp->rux_tu || 101 * tu > 100 * ruxp->rux_tu) {
792		/*
793		 * When we calibrate the cputicker, it is not uncommon to
794		 * see the presumably fixed frequency increase slightly over
795		 * time as a result of thermal stabilization and NTP
796		 * discipline (of the reference clock).  We therefore ignore
797		 * a bit of backwards slop because we  expect to catch up
798 		 * shortly.  We use a 3 microsecond limit to catch low
799		 * counts and a 1% limit for high counts.
800		 */
801		uu = ruxp->rux_uu;
802		su = ruxp->rux_su;
803		tu = ruxp->rux_tu;
804	} else { /* tu < ruxp->rux_tu */
805		/*
806		 * What happene here was likely that a laptop, which ran at
807		 * a reduced clock frequency at boot, kicked into high gear.
808		 * The wisdom of spamming this message in that case is
809		 * dubious, but it might also be indicative of something
810		 * serious, so lets keep it and hope laptops can be made
811		 * more truthful about their CPU speed via ACPI.
812		 */
813		printf("calcru: runtime went backwards from %ju usec "
814		    "to %ju usec for pid %d (%s)\n",
815		    (uintmax_t)ruxp->rux_tu, (uintmax_t)tu,
816		    p->p_pid, p->p_comm);
817		uu = (tu * ut) / tt;
818		su = (tu * st) / tt;
819	}
820
821	ruxp->rux_uu = uu;
822	ruxp->rux_su = su;
823	ruxp->rux_tu = tu;
824
825	up->tv_sec = uu / 1000000;
826	up->tv_usec = uu % 1000000;
827	sp->tv_sec = su / 1000000;
828	sp->tv_usec = su % 1000000;
829}
830
831#ifndef _SYS_SYSPROTO_H_
832struct getrusage_args {
833	int	who;
834	struct	rusage *rusage;
835};
836#endif
837/*
838 * MPSAFE
839 */
840int
841getrusage(td, uap)
842	register struct thread *td;
843	register struct getrusage_args *uap;
844{
845	struct rusage ru;
846	int error;
847
848	error = kern_getrusage(td, uap->who, &ru);
849	if (error == 0)
850		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
851	return (error);
852}
853
854int
855kern_getrusage(td, who, rup)
856	struct thread *td;
857	int who;
858	struct rusage *rup;
859{
860	struct proc *p;
861
862	p = td->td_proc;
863	PROC_LOCK(p);
864	switch (who) {
865
866	case RUSAGE_SELF:
867		*rup = p->p_stats->p_ru;
868		calcru(p, &rup->ru_utime, &rup->ru_stime);
869		break;
870
871	case RUSAGE_CHILDREN:
872		*rup = p->p_stats->p_cru;
873		calccru(p, &rup->ru_utime, &rup->ru_stime);
874		break;
875
876	default:
877		PROC_UNLOCK(p);
878		return (EINVAL);
879	}
880	PROC_UNLOCK(p);
881	return (0);
882}
883
884void
885ruadd(ru, rux, ru2, rux2)
886	struct rusage *ru;
887	struct rusage_ext *rux;
888	struct rusage *ru2;
889	struct rusage_ext *rux2;
890{
891	register long *ip, *ip2;
892	register int i;
893
894	rux->rux_runtime += rux2->rux_runtime;
895	rux->rux_uticks += rux2->rux_uticks;
896	rux->rux_sticks += rux2->rux_sticks;
897	rux->rux_iticks += rux2->rux_iticks;
898	rux->rux_uu += rux2->rux_uu;
899	rux->rux_su += rux2->rux_su;
900	rux->rux_tu += rux2->rux_tu;
901	if (ru->ru_maxrss < ru2->ru_maxrss)
902		ru->ru_maxrss = ru2->ru_maxrss;
903	ip = &ru->ru_first;
904	ip2 = &ru2->ru_first;
905	for (i = &ru->ru_last - &ru->ru_first; i >= 0; i--)
906		*ip++ += *ip2++;
907}
908
909/*
910 * Allocate a new resource limits structure and initialize its
911 * reference count and mutex pointer.
912 */
913struct plimit *
914lim_alloc()
915{
916	struct plimit *limp;
917
918	limp = malloc(sizeof(struct plimit), M_PLIMIT, M_WAITOK);
919	refcount_init(&limp->pl_refcnt, 1);
920	return (limp);
921}
922
923struct plimit *
924lim_hold(limp)
925	struct plimit *limp;
926{
927
928	refcount_acquire(&limp->pl_refcnt);
929	return (limp);
930}
931
932void
933lim_free(limp)
934	struct plimit *limp;
935{
936
937	KASSERT(limp->pl_refcnt > 0, ("plimit refcnt underflow"));
938	if (refcount_release(&limp->pl_refcnt))
939		free((void *)limp, M_PLIMIT);
940}
941
942/*
943 * Make a copy of the plimit structure.
944 * We share these structures copy-on-write after fork.
945 */
946void
947lim_copy(dst, src)
948	struct plimit *dst, *src;
949{
950
951	KASSERT(dst->pl_refcnt == 1, ("lim_copy to shared limit"));
952	bcopy(src->pl_rlimit, dst->pl_rlimit, sizeof(src->pl_rlimit));
953}
954
955/*
956 * Return the hard limit for a particular system resource.  The
957 * which parameter specifies the index into the rlimit array.
958 */
959rlim_t
960lim_max(struct proc *p, int which)
961{
962	struct rlimit rl;
963
964	lim_rlimit(p, which, &rl);
965	return (rl.rlim_max);
966}
967
968/*
969 * Return the current (soft) limit for a particular system resource.
970 * The which parameter which specifies the index into the rlimit array
971 */
972rlim_t
973lim_cur(struct proc *p, int which)
974{
975	struct rlimit rl;
976
977	lim_rlimit(p, which, &rl);
978	return (rl.rlim_cur);
979}
980
981/*
982 * Return a copy of the entire rlimit structure for the system limit
983 * specified by 'which' in the rlimit structure pointed to by 'rlp'.
984 */
985void
986lim_rlimit(struct proc *p, int which, struct rlimit *rlp)
987{
988
989	PROC_LOCK_ASSERT(p, MA_OWNED);
990	KASSERT(which >= 0 && which < RLIM_NLIMITS,
991	    ("request for invalid resource limit"));
992	*rlp = p->p_limit->pl_rlimit[which];
993}
994
995/*
996 * Find the uidinfo structure for a uid.  This structure is used to
997 * track the total resource consumption (process count, socket buffer
998 * size, etc.) for the uid and impose limits.
999 */
1000void
1001uihashinit()
1002{
1003
1004	uihashtbl = hashinit(maxproc / 16, M_UIDINFO, &uihash);
1005	mtx_init(&uihashtbl_mtx, "uidinfo hash", NULL, MTX_DEF);
1006}
1007
1008/*
1009 * Look up a uidinfo struct for the parameter uid.
1010 * uihashtbl_mtx must be locked.
1011 */
1012static struct uidinfo *
1013uilookup(uid)
1014	uid_t uid;
1015{
1016	struct uihashhead *uipp;
1017	struct uidinfo *uip;
1018
1019	mtx_assert(&uihashtbl_mtx, MA_OWNED);
1020	uipp = UIHASH(uid);
1021	LIST_FOREACH(uip, uipp, ui_hash)
1022		if (uip->ui_uid == uid)
1023			break;
1024
1025	return (uip);
1026}
1027
1028/*
1029 * Find or allocate a struct uidinfo for a particular uid.
1030 * Increase refcount on uidinfo struct returned.
1031 * uifree() should be called on a struct uidinfo when released.
1032 */
1033struct uidinfo *
1034uifind(uid)
1035	uid_t uid;
1036{
1037	struct uidinfo *old_uip, *uip;
1038
1039	mtx_lock(&uihashtbl_mtx);
1040	uip = uilookup(uid);
1041	if (uip == NULL) {
1042		mtx_unlock(&uihashtbl_mtx);
1043		uip = malloc(sizeof(*uip), M_UIDINFO, M_WAITOK | M_ZERO);
1044		mtx_lock(&uihashtbl_mtx);
1045		/*
1046		 * There's a chance someone created our uidinfo while we
1047		 * were in malloc and not holding the lock, so we have to
1048		 * make sure we don't insert a duplicate uidinfo.
1049		 */
1050		if ((old_uip = uilookup(uid)) != NULL) {
1051			/* Someone else beat us to it. */
1052			free(uip, M_UIDINFO);
1053			uip = old_uip;
1054		} else {
1055			uip->ui_mtxp = mtx_pool_alloc(mtxpool_sleep);
1056			uip->ui_uid = uid;
1057			LIST_INSERT_HEAD(UIHASH(uid), uip, ui_hash);
1058		}
1059	}
1060	uihold(uip);
1061	mtx_unlock(&uihashtbl_mtx);
1062	return (uip);
1063}
1064
1065/*
1066 * Place another refcount on a uidinfo struct.
1067 */
1068void
1069uihold(uip)
1070	struct uidinfo *uip;
1071{
1072
1073	UIDINFO_LOCK(uip);
1074	uip->ui_ref++;
1075	UIDINFO_UNLOCK(uip);
1076}
1077
1078/*-
1079 * Since uidinfo structs have a long lifetime, we use an
1080 * opportunistic refcounting scheme to avoid locking the lookup hash
1081 * for each release.
1082 *
1083 * If the refcount hits 0, we need to free the structure,
1084 * which means we need to lock the hash.
1085 * Optimal case:
1086 *   After locking the struct and lowering the refcount, if we find
1087 *   that we don't need to free, simply unlock and return.
1088 * Suboptimal case:
1089 *   If refcount lowering results in need to free, bump the count
1090 *   back up, loose the lock and aquire the locks in the proper
1091 *   order to try again.
1092 */
1093void
1094uifree(uip)
1095	struct uidinfo *uip;
1096{
1097
1098	/* Prepare for optimal case. */
1099	UIDINFO_LOCK(uip);
1100
1101	if (--uip->ui_ref != 0) {
1102		UIDINFO_UNLOCK(uip);
1103		return;
1104	}
1105
1106	/* Prepare for suboptimal case. */
1107	uip->ui_ref++;
1108	UIDINFO_UNLOCK(uip);
1109	mtx_lock(&uihashtbl_mtx);
1110	UIDINFO_LOCK(uip);
1111
1112	/*
1113	 * We must subtract one from the count again because we backed out
1114	 * our initial subtraction before dropping the lock.
1115	 * Since another thread may have added a reference after we dropped the
1116	 * initial lock we have to test for zero again.
1117	 */
1118	if (--uip->ui_ref == 0) {
1119		LIST_REMOVE(uip, ui_hash);
1120		mtx_unlock(&uihashtbl_mtx);
1121		if (uip->ui_sbsize != 0)
1122			printf("freeing uidinfo: uid = %d, sbsize = %jd\n",
1123			    uip->ui_uid, (intmax_t)uip->ui_sbsize);
1124		if (uip->ui_proccnt != 0)
1125			printf("freeing uidinfo: uid = %d, proccnt = %ld\n",
1126			    uip->ui_uid, uip->ui_proccnt);
1127		UIDINFO_UNLOCK(uip);
1128		FREE(uip, M_UIDINFO);
1129		return;
1130	}
1131
1132	mtx_unlock(&uihashtbl_mtx);
1133	UIDINFO_UNLOCK(uip);
1134}
1135
1136/*
1137 * Change the count associated with number of processes
1138 * a given user is using.  When 'max' is 0, don't enforce a limit
1139 */
1140int
1141chgproccnt(uip, diff, max)
1142	struct	uidinfo	*uip;
1143	int	diff;
1144	int	max;
1145{
1146
1147	UIDINFO_LOCK(uip);
1148	/* Don't allow them to exceed max, but allow subtraction. */
1149	if (diff > 0 && uip->ui_proccnt + diff > max && max != 0) {
1150		UIDINFO_UNLOCK(uip);
1151		return (0);
1152	}
1153	uip->ui_proccnt += diff;
1154	if (uip->ui_proccnt < 0)
1155		printf("negative proccnt for uid = %d\n", uip->ui_uid);
1156	UIDINFO_UNLOCK(uip);
1157	return (1);
1158}
1159
1160/*
1161 * Change the total socket buffer size a user has used.
1162 */
1163int
1164chgsbsize(uip, hiwat, to, max)
1165	struct	uidinfo	*uip;
1166	u_int  *hiwat;
1167	u_int	to;
1168	rlim_t	max;
1169{
1170	rlim_t new;
1171
1172	UIDINFO_LOCK(uip);
1173	new = uip->ui_sbsize + to - *hiwat;
1174	/* Don't allow them to exceed max, but allow subtraction. */
1175	if (to > *hiwat && new > max) {
1176		UIDINFO_UNLOCK(uip);
1177		return (0);
1178	}
1179	uip->ui_sbsize = new;
1180	UIDINFO_UNLOCK(uip);
1181	*hiwat = to;
1182	if (new < 0)
1183		printf("negative sbsize for uid = %d\n", uip->ui_uid);
1184	return (1);
1185}
1186