kern_racct.c revision 242139
1/*-
2 * Copyright (c) 2010 The FreeBSD Foundation
3 * All rights reserved.
4 *
5 * This software was developed by Edward Tomasz Napierala under sponsorship
6 * from the FreeBSD Foundation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD: head/sys/kern/kern_racct.c 242139 2012-10-26 16:01:08Z trasz $
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/kern/kern_racct.c 242139 2012-10-26 16:01:08Z trasz $");
34
35#include "opt_kdtrace.h"
36#include "opt_sched.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/eventhandler.h>
41#include <sys/jail.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/loginclass.h>
46#include <sys/malloc.h>
47#include <sys/mutex.h>
48#include <sys/proc.h>
49#include <sys/racct.h>
50#include <sys/resourcevar.h>
51#include <sys/sbuf.h>
52#include <sys/sched.h>
53#include <sys/sdt.h>
54#include <sys/smp.h>
55#include <sys/sx.h>
56#include <sys/sysctl.h>
57#include <sys/sysent.h>
58#include <sys/sysproto.h>
59#include <sys/umtx.h>
60#include <machine/smp.h>
61
62#ifdef RCTL
63#include <sys/rctl.h>
64#endif
65
66#ifdef RACCT
67
68FEATURE(racct, "Resource Accounting");
69
70/*
71 * Do not block processes that have their %cpu usage <= pcpu_threshold.
72 */
73static int pcpu_threshold = 1;
74
75SYSCTL_NODE(_kern, OID_AUTO, racct, CTLFLAG_RW, 0, "Resource Accounting");
76SYSCTL_UINT(_kern_racct, OID_AUTO, pcpu_threshold, CTLFLAG_RW, &pcpu_threshold,
77    0, "Processes with higher %cpu usage than this value can be throttled.");
78
79/*
80 * How many seconds it takes to use the scheduler %cpu calculations.  When a
81 * process starts, we compute its %cpu usage by dividing its runtime by the
82 * process wall clock time.  After RACCT_PCPU_SECS pass, we use the value
83 * provided by the scheduler.
84 */
85#define RACCT_PCPU_SECS		3
86
87static struct mtx racct_lock;
88MTX_SYSINIT(racct_lock, &racct_lock, "racct lock", MTX_DEF);
89
90static uma_zone_t racct_zone;
91
92static void racct_sub_racct(struct racct *dest, const struct racct *src);
93static void racct_sub_cred_locked(struct ucred *cred, int resource,
94		uint64_t amount);
95static void racct_add_cred_locked(struct ucred *cred, int resource,
96		uint64_t amount);
97
98SDT_PROVIDER_DEFINE(racct);
99SDT_PROBE_DEFINE3(racct, kernel, rusage, add, add, "struct proc *", "int",
100    "uint64_t");
101SDT_PROBE_DEFINE3(racct, kernel, rusage, add_failure, add-failure,
102    "struct proc *", "int", "uint64_t");
103SDT_PROBE_DEFINE3(racct, kernel, rusage, add_cred, add-cred, "struct ucred *",
104    "int", "uint64_t");
105SDT_PROBE_DEFINE3(racct, kernel, rusage, add_force, add-force, "struct proc *",
106    "int", "uint64_t");
107SDT_PROBE_DEFINE3(racct, kernel, rusage, set, set, "struct proc *", "int",
108    "uint64_t");
109SDT_PROBE_DEFINE3(racct, kernel, rusage, set_failure, set-failure,
110    "struct proc *", "int", "uint64_t");
111SDT_PROBE_DEFINE3(racct, kernel, rusage, sub, sub, "struct proc *", "int",
112    "uint64_t");
113SDT_PROBE_DEFINE3(racct, kernel, rusage, sub_cred, sub-cred, "struct ucred *",
114    "int", "uint64_t");
115SDT_PROBE_DEFINE1(racct, kernel, racct, create, create, "struct racct *");
116SDT_PROBE_DEFINE1(racct, kernel, racct, destroy, destroy, "struct racct *");
117SDT_PROBE_DEFINE2(racct, kernel, racct, join, join, "struct racct *",
118    "struct racct *");
119SDT_PROBE_DEFINE2(racct, kernel, racct, join_failure, join-failure,
120    "struct racct *", "struct racct *");
121SDT_PROBE_DEFINE2(racct, kernel, racct, leave, leave, "struct racct *",
122    "struct racct *");
123
124int racct_types[] = {
125	[RACCT_CPU] =
126		RACCT_IN_MILLIONS,
127	[RACCT_DATA] =
128		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
129	[RACCT_STACK] =
130		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
131	[RACCT_CORE] =
132		RACCT_DENIABLE,
133	[RACCT_RSS] =
134		RACCT_RECLAIMABLE,
135	[RACCT_MEMLOCK] =
136		RACCT_RECLAIMABLE | RACCT_DENIABLE,
137	[RACCT_NPROC] =
138		RACCT_RECLAIMABLE | RACCT_DENIABLE,
139	[RACCT_NOFILE] =
140		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
141	[RACCT_VMEM] =
142		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
143	[RACCT_NPTS] =
144		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
145	[RACCT_SWAP] =
146		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
147	[RACCT_NTHR] =
148		RACCT_RECLAIMABLE | RACCT_DENIABLE,
149	[RACCT_MSGQQUEUED] =
150		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
151	[RACCT_MSGQSIZE] =
152		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
153	[RACCT_NMSGQ] =
154		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
155	[RACCT_NSEM] =
156		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
157	[RACCT_NSEMOP] =
158		RACCT_RECLAIMABLE | RACCT_INHERITABLE | RACCT_DENIABLE,
159	[RACCT_NSHM] =
160		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
161	[RACCT_SHMSIZE] =
162		RACCT_RECLAIMABLE | RACCT_DENIABLE | RACCT_SLOPPY,
163	[RACCT_WALLCLOCK] =
164		RACCT_IN_MILLIONS,
165	[RACCT_PCTCPU] =
166		RACCT_DECAYING | RACCT_DENIABLE | RACCT_IN_MILLIONS };
167
168static const fixpt_t RACCT_DECAY_FACTOR = 0.3 * FSCALE;
169
170#ifdef SCHED_4BSD
171/*
172 * Contains intermediate values for %cpu calculations to avoid using floating
173 * point in the kernel.
174 * ccpu_exp[k] = FSCALE * (ccpu/FSCALE)^k = FSCALE * exp(-k/20)
175 * It is needed only for the 4BSD scheduler, because in ULE, the ccpu equals to
176 * zero so the calculations are more straightforward.
177 */
178fixpt_t ccpu_exp[] = {
179	[0] = FSCALE * 1,
180	[1] = FSCALE * 0.95122942450071400909,
181	[2] = FSCALE * 0.90483741803595957316,
182	[3] = FSCALE * 0.86070797642505780722,
183	[4] = FSCALE * 0.81873075307798185866,
184	[5] = FSCALE * 0.77880078307140486824,
185	[6] = FSCALE * 0.74081822068171786606,
186	[7] = FSCALE * 0.70468808971871343435,
187	[8] = FSCALE * 0.67032004603563930074,
188	[9] = FSCALE * 0.63762815162177329314,
189	[10] = FSCALE * 0.60653065971263342360,
190	[11] = FSCALE * 0.57694981038048669531,
191	[12] = FSCALE * 0.54881163609402643262,
192	[13] = FSCALE * 0.52204577676101604789,
193	[14] = FSCALE * 0.49658530379140951470,
194	[15] = FSCALE * 0.47236655274101470713,
195	[16] = FSCALE * 0.44932896411722159143,
196	[17] = FSCALE * 0.42741493194872666992,
197	[18] = FSCALE * 0.40656965974059911188,
198	[19] = FSCALE * 0.38674102345450120691,
199	[20] = FSCALE * 0.36787944117144232159,
200	[21] = FSCALE * 0.34993774911115535467,
201	[22] = FSCALE * 0.33287108369807955328,
202	[23] = FSCALE * 0.31663676937905321821,
203	[24] = FSCALE * 0.30119421191220209664,
204	[25] = FSCALE * 0.28650479686019010032,
205	[26] = FSCALE * 0.27253179303401260312,
206	[27] = FSCALE * 0.25924026064589150757,
207	[28] = FSCALE * 0.24659696394160647693,
208	[29] = FSCALE * 0.23457028809379765313,
209	[30] = FSCALE * 0.22313016014842982893,
210	[31] = FSCALE * 0.21224797382674305771,
211	[32] = FSCALE * 0.20189651799465540848,
212	[33] = FSCALE * 0.19204990862075411423,
213	[34] = FSCALE * 0.18268352405273465022,
214	[35] = FSCALE * 0.17377394345044512668,
215	[36] = FSCALE * 0.16529888822158653829,
216	[37] = FSCALE * 0.15723716631362761621,
217	[38] = FSCALE * 0.14956861922263505264,
218	[39] = FSCALE * 0.14227407158651357185,
219	[40] = FSCALE * 0.13533528323661269189,
220	[41] = FSCALE * 0.12873490358780421886,
221	[42] = FSCALE * 0.12245642825298191021,
222	[43] = FSCALE * 0.11648415777349695786,
223	[44] = FSCALE * 0.11080315836233388333,
224	[45] = FSCALE * 0.10539922456186433678,
225	[46] = FSCALE * 0.10025884372280373372,
226	[47] = FSCALE * 0.09536916221554961888,
227	[48] = FSCALE * 0.09071795328941250337,
228	[49] = FSCALE * 0.08629358649937051097,
229	[50] = FSCALE * 0.08208499862389879516,
230	[51] = FSCALE * 0.07808166600115315231,
231	[52] = FSCALE * 0.07427357821433388042,
232	[53] = FSCALE * 0.07065121306042958674,
233	[54] = FSCALE * 0.06720551273974976512,
234	[55] = FSCALE * 0.06392786120670757270,
235	[56] = FSCALE * 0.06081006262521796499,
236	[57] = FSCALE * 0.05784432087483846296,
237	[58] = FSCALE * 0.05502322005640722902,
238	[59] = FSCALE * 0.05233970594843239308,
239	[60] = FSCALE * 0.04978706836786394297,
240	[61] = FSCALE * 0.04735892439114092119,
241	[62] = FSCALE * 0.04504920239355780606,
242	[63] = FSCALE * 0.04285212686704017991,
243	[64] = FSCALE * 0.04076220397836621516,
244	[65] = FSCALE * 0.03877420783172200988,
245	[66] = FSCALE * 0.03688316740124000544,
246	[67] = FSCALE * 0.03508435410084502588,
247	[68] = FSCALE * 0.03337326996032607948,
248	[69] = FSCALE * 0.03174563637806794323,
249	[70] = FSCALE * 0.03019738342231850073,
250	[71] = FSCALE * 0.02872463965423942912,
251	[72] = FSCALE * 0.02732372244729256080,
252	[73] = FSCALE * 0.02599112877875534358,
253	[74] = FSCALE * 0.02472352647033939120,
254	[75] = FSCALE * 0.02351774585600910823,
255	[76] = FSCALE * 0.02237077185616559577,
256	[77] = FSCALE * 0.02127973643837716938,
257	[78] = FSCALE * 0.02024191144580438847,
258	[79] = FSCALE * 0.01925470177538692429,
259	[80] = FSCALE * 0.01831563888873418029,
260	[81] = FSCALE * 0.01742237463949351138,
261	[82] = FSCALE * 0.01657267540176124754,
262	[83] = FSCALE * 0.01576441648485449082,
263	[84] = FSCALE * 0.01499557682047770621,
264	[85] = FSCALE * 0.01426423390899925527,
265	[86] = FSCALE * 0.01356855901220093175,
266	[87] = FSCALE * 0.01290681258047986886,
267	[88] = FSCALE * 0.01227733990306844117,
268	[89] = FSCALE * 0.01167856697039544521,
269	[90] = FSCALE * 0.01110899653824230649,
270	[91] = FSCALE * 0.01056720438385265337,
271	[92] = FSCALE * 0.01005183574463358164,
272	[93] = FSCALE * 0.00956160193054350793,
273	[94] = FSCALE * 0.00909527710169581709,
274	[95] = FSCALE * 0.00865169520312063417,
275	[96] = FSCALE * 0.00822974704902002884,
276	[97] = FSCALE * 0.00782837754922577143,
277	[98] = FSCALE * 0.00744658307092434051,
278	[99] = FSCALE * 0.00708340892905212004,
279	[100] = FSCALE * 0.00673794699908546709,
280	[101] = FSCALE * 0.00640933344625638184,
281	[102] = FSCALE * 0.00609674656551563610,
282	[103] = FSCALE * 0.00579940472684214321,
283	[104] = FSCALE * 0.00551656442076077241,
284	[105] = FSCALE * 0.00524751839918138427,
285	[106] = FSCALE * 0.00499159390691021621,
286	[107] = FSCALE * 0.00474815099941147558,
287	[108] = FSCALE * 0.00451658094261266798,
288	[109] = FSCALE * 0.00429630469075234057,
289	[110] = FSCALE * 0.00408677143846406699,
290};
291#endif
292
293#define	CCPU_EXP_MAX	110
294
295/*
296 * This function is analogical to the getpcpu() function in the ps(1) command.
297 * They should both calculate in the same way so that the racct %cpu
298 * calculations are consistent with the values showed by the ps(1) tool.
299 * The calculations are more complex in the 4BSD scheduler because of the value
300 * of the ccpu variable.  In ULE it is defined to be zero which saves us some
301 * work.
302 */
303static uint64_t
304racct_getpcpu(struct proc *p, u_int pcpu)
305{
306	u_int swtime;
307#ifdef SCHED_4BSD
308	fixpt_t pctcpu, pctcpu_next;
309#endif
310#ifdef SMP
311	struct pcpu *pc;
312	int found;
313#endif
314	fixpt_t p_pctcpu;
315	struct thread *td;
316
317	/*
318	 * If the process is swapped out, we count its %cpu usage as zero.
319	 * This behaviour is consistent with the userland ps(1) tool.
320	 */
321	if ((p->p_flag & P_INMEM) == 0)
322		return (0);
323	swtime = (ticks - p->p_swtick) / hz;
324
325	/*
326	 * For short-lived processes, the sched_pctcpu() returns small
327	 * values even for cpu intensive processes.  Therefore we use
328	 * our own estimate in this case.
329	 */
330	if (swtime < RACCT_PCPU_SECS)
331		return (pcpu);
332
333	p_pctcpu = 0;
334	FOREACH_THREAD_IN_PROC(p, td) {
335		if (td == PCPU_GET(idlethread))
336			continue;
337#ifdef SMP
338		found = 0;
339		STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
340			if (td == pc->pc_idlethread) {
341				found = 1;
342				break;
343			}
344		}
345		if (found)
346			continue;
347#endif
348		thread_lock(td);
349#ifdef SCHED_4BSD
350		pctcpu = sched_pctcpu(td);
351		/* Count also the yet unfinished second. */
352		pctcpu_next = (pctcpu * ccpu_exp[1]) >> FSHIFT;
353		pctcpu_next += sched_pctcpu_delta(td);
354		p_pctcpu += max(pctcpu, pctcpu_next);
355#else
356		/*
357		 * In ULE the %cpu statistics are updated on every
358		 * sched_pctcpu() call.  So special calculations to
359		 * account for the latest (unfinished) second are
360		 * not needed.
361		 */
362		p_pctcpu += sched_pctcpu(td);
363#endif
364		thread_unlock(td);
365	}
366
367#ifdef SCHED_4BSD
368	if (swtime <= CCPU_EXP_MAX)
369		return ((100 * (uint64_t)p_pctcpu * 1000000) /
370		    (FSCALE - ccpu_exp[swtime]));
371#endif
372
373	return ((100 * (uint64_t)p_pctcpu * 1000000) / FSCALE);
374}
375
376static void
377racct_add_racct(struct racct *dest, const struct racct *src)
378{
379	int i;
380
381	mtx_assert(&racct_lock, MA_OWNED);
382
383	/*
384	 * Update resource usage in dest.
385	 */
386	for (i = 0; i <= RACCT_MAX; i++) {
387		KASSERT(dest->r_resources[i] >= 0,
388		    ("racct propagation meltdown: dest < 0"));
389		KASSERT(src->r_resources[i] >= 0,
390		    ("racct propagation meltdown: src < 0"));
391		dest->r_resources[i] += src->r_resources[i];
392	}
393}
394
395static void
396racct_sub_racct(struct racct *dest, const struct racct *src)
397{
398	int i;
399
400	mtx_assert(&racct_lock, MA_OWNED);
401
402	/*
403	 * Update resource usage in dest.
404	 */
405	for (i = 0; i <= RACCT_MAX; i++) {
406		if (!RACCT_IS_SLOPPY(i)) {
407			KASSERT(dest->r_resources[i] >= 0,
408			    ("racct propagation meltdown: dest < 0"));
409			KASSERT(src->r_resources[i] >= 0,
410			    ("racct propagation meltdown: src < 0"));
411			KASSERT(src->r_resources[i] <= dest->r_resources[i],
412			    ("racct propagation meltdown: src > dest"));
413		}
414		if (RACCT_CAN_DROP(i)) {
415			dest->r_resources[i] -= src->r_resources[i];
416			if (dest->r_resources[i] < 0) {
417				KASSERT(RACCT_IS_SLOPPY(i),
418				    ("racct_sub_racct: usage < 0"));
419				dest->r_resources[i] = 0;
420			}
421		}
422	}
423}
424
425void
426racct_create(struct racct **racctp)
427{
428
429	SDT_PROBE(racct, kernel, racct, create, racctp, 0, 0, 0, 0);
430
431	KASSERT(*racctp == NULL, ("racct already allocated"));
432
433	*racctp = uma_zalloc(racct_zone, M_WAITOK | M_ZERO);
434}
435
436static void
437racct_destroy_locked(struct racct **racctp)
438{
439	int i;
440	struct racct *racct;
441
442	SDT_PROBE(racct, kernel, racct, destroy, racctp, 0, 0, 0, 0);
443
444	mtx_assert(&racct_lock, MA_OWNED);
445	KASSERT(racctp != NULL, ("NULL racctp"));
446	KASSERT(*racctp != NULL, ("NULL racct"));
447
448	racct = *racctp;
449
450	for (i = 0; i <= RACCT_MAX; i++) {
451		if (RACCT_IS_SLOPPY(i))
452			continue;
453		if (!RACCT_IS_RECLAIMABLE(i))
454			continue;
455		KASSERT(racct->r_resources[i] == 0,
456		    ("destroying non-empty racct: "
457		    "%ju allocated for resource %d\n",
458		    racct->r_resources[i], i));
459	}
460	uma_zfree(racct_zone, racct);
461	*racctp = NULL;
462}
463
464void
465racct_destroy(struct racct **racct)
466{
467
468	mtx_lock(&racct_lock);
469	racct_destroy_locked(racct);
470	mtx_unlock(&racct_lock);
471}
472
473/*
474 * Increase consumption of 'resource' by 'amount' for 'racct'
475 * and all its parents.  Differently from other cases, 'amount' here
476 * may be less than zero.
477 */
478static void
479racct_alloc_resource(struct racct *racct, int resource,
480    uint64_t amount)
481{
482
483	mtx_assert(&racct_lock, MA_OWNED);
484	KASSERT(racct != NULL, ("NULL racct"));
485
486	racct->r_resources[resource] += amount;
487	if (racct->r_resources[resource] < 0) {
488		KASSERT(RACCT_IS_SLOPPY(resource) || RACCT_IS_DECAYING(resource),
489		    ("racct_alloc_resource: usage < 0"));
490		racct->r_resources[resource] = 0;
491	}
492
493	/*
494	 * There are some cases where the racct %cpu resource would grow
495	 * beyond 100%.
496	 * For example in racct_proc_exit() we add the process %cpu usage
497	 * to the ucred racct containers.  If too many processes terminated
498	 * in a short time span, the ucred %cpu resource could grow too much.
499	 * Also, the 4BSD scheduler sometimes returns for a thread more than
500	 * 100% cpu usage.  So we set a boundary here to 100%.
501	 */
502	if ((resource == RACCT_PCTCPU) &&
503	    (racct->r_resources[RACCT_PCTCPU] > 100 * 1000000))
504		racct->r_resources[RACCT_PCTCPU] = 100 * 1000000;
505}
506
507static int
508racct_add_locked(struct proc *p, int resource, uint64_t amount)
509{
510#ifdef RCTL
511	int error;
512#endif
513
514	SDT_PROBE(racct, kernel, rusage, add, p, resource, amount, 0, 0);
515
516	/*
517	 * We need proc lock to dereference p->p_ucred.
518	 */
519	PROC_LOCK_ASSERT(p, MA_OWNED);
520
521#ifdef RCTL
522	error = rctl_enforce(p, resource, amount);
523	if (error && RACCT_IS_DENIABLE(resource)) {
524		SDT_PROBE(racct, kernel, rusage, add_failure, p, resource,
525		    amount, 0, 0);
526		return (error);
527	}
528#endif
529	racct_alloc_resource(p->p_racct, resource, amount);
530	racct_add_cred_locked(p->p_ucred, resource, amount);
531
532	return (0);
533}
534
535/*
536 * Increase allocation of 'resource' by 'amount' for process 'p'.
537 * Return 0 if it's below limits, or errno, if it's not.
538 */
539int
540racct_add(struct proc *p, int resource, uint64_t amount)
541{
542	int error;
543
544	mtx_lock(&racct_lock);
545	error = racct_add_locked(p, resource, amount);
546	mtx_unlock(&racct_lock);
547	return (error);
548}
549
550static void
551racct_add_cred_locked(struct ucred *cred, int resource, uint64_t amount)
552{
553	struct prison *pr;
554
555	SDT_PROBE(racct, kernel, rusage, add_cred, cred, resource, amount,
556	    0, 0);
557
558	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, amount);
559	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
560		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
561		    amount);
562	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, amount);
563}
564
565/*
566 * Increase allocation of 'resource' by 'amount' for credential 'cred'.
567 * Doesn't check for limits and never fails.
568 *
569 * XXX: Shouldn't this ever return an error?
570 */
571void
572racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
573{
574
575	mtx_lock(&racct_lock);
576	racct_add_cred_locked(cred, resource, amount);
577	mtx_unlock(&racct_lock);
578}
579
580/*
581 * Increase allocation of 'resource' by 'amount' for process 'p'.
582 * Doesn't check for limits and never fails.
583 */
584void
585racct_add_force(struct proc *p, int resource, uint64_t amount)
586{
587
588	SDT_PROBE(racct, kernel, rusage, add_force, p, resource, amount, 0, 0);
589
590	/*
591	 * We need proc lock to dereference p->p_ucred.
592	 */
593	PROC_LOCK_ASSERT(p, MA_OWNED);
594
595	mtx_lock(&racct_lock);
596	racct_alloc_resource(p->p_racct, resource, amount);
597	mtx_unlock(&racct_lock);
598	racct_add_cred(p->p_ucred, resource, amount);
599}
600
601static int
602racct_set_locked(struct proc *p, int resource, uint64_t amount)
603{
604	int64_t old_amount, decayed_amount;
605	int64_t diff_proc, diff_cred;
606#ifdef RCTL
607	int error;
608#endif
609
610	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
611
612	/*
613	 * We need proc lock to dereference p->p_ucred.
614	 */
615	PROC_LOCK_ASSERT(p, MA_OWNED);
616
617	old_amount = p->p_racct->r_resources[resource];
618	/*
619	 * The diffs may be negative.
620	 */
621	diff_proc = amount - old_amount;
622	if (RACCT_IS_DECAYING(resource)) {
623		/*
624		 * Resources in per-credential racct containers may decay.
625		 * If this is the case, we need to calculate the difference
626		 * between the new amount and the proportional value of the
627		 * old amount that has decayed in the ucred racct containers.
628		 */
629		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
630		diff_cred = amount - decayed_amount;
631	} else
632		diff_cred = diff_proc;
633#ifdef notyet
634	KASSERT(diff_proc >= 0 || RACCT_CAN_DROP(resource),
635	    ("racct_set: usage of non-droppable resource %d dropping",
636	     resource));
637#endif
638#ifdef RCTL
639	if (diff_proc > 0) {
640		error = rctl_enforce(p, resource, diff_proc);
641		if (error && RACCT_IS_DENIABLE(resource)) {
642			SDT_PROBE(racct, kernel, rusage, set_failure, p,
643			    resource, amount, 0, 0);
644			return (error);
645		}
646	}
647#endif
648	racct_alloc_resource(p->p_racct, resource, diff_proc);
649	if (diff_cred > 0)
650		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
651	else if (diff_cred < 0)
652		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
653
654	return (0);
655}
656
657/*
658 * Set allocation of 'resource' to 'amount' for process 'p'.
659 * Return 0 if it's below limits, or errno, if it's not.
660 *
661 * Note that decreasing the allocation always returns 0,
662 * even if it's above the limit.
663 */
664int
665racct_set(struct proc *p, int resource, uint64_t amount)
666{
667	int error;
668
669	mtx_lock(&racct_lock);
670	error = racct_set_locked(p, resource, amount);
671	mtx_unlock(&racct_lock);
672	return (error);
673}
674
675static void
676racct_set_force_locked(struct proc *p, int resource, uint64_t amount)
677{
678	int64_t old_amount, decayed_amount;
679	int64_t diff_proc, diff_cred;
680
681	SDT_PROBE(racct, kernel, rusage, set, p, resource, amount, 0, 0);
682
683	/*
684	 * We need proc lock to dereference p->p_ucred.
685	 */
686	PROC_LOCK_ASSERT(p, MA_OWNED);
687
688	old_amount = p->p_racct->r_resources[resource];
689	/*
690	 * The diffs may be negative.
691	 */
692	diff_proc = amount - old_amount;
693	if (RACCT_IS_DECAYING(resource)) {
694		/*
695		 * Resources in per-credential racct containers may decay.
696		 * If this is the case, we need to calculate the difference
697		 * between the new amount and the proportional value of the
698		 * old amount that has decayed in the ucred racct containers.
699		 */
700		decayed_amount = old_amount * RACCT_DECAY_FACTOR / FSCALE;
701		diff_cred = amount - decayed_amount;
702	} else
703		diff_cred = diff_proc;
704
705	racct_alloc_resource(p->p_racct, resource, diff_proc);
706	if (diff_cred > 0)
707		racct_add_cred_locked(p->p_ucred, resource, diff_cred);
708	else if (diff_cred < 0)
709		racct_sub_cred_locked(p->p_ucred, resource, -diff_cred);
710}
711
712void
713racct_set_force(struct proc *p, int resource, uint64_t amount)
714{
715	mtx_lock(&racct_lock);
716	racct_set_force_locked(p, resource, amount);
717	mtx_unlock(&racct_lock);
718}
719
720/*
721 * Returns amount of 'resource' the process 'p' can keep allocated.
722 * Allocating more than that would be denied, unless the resource
723 * is marked undeniable.  Amount of already allocated resource does
724 * not matter.
725 */
726uint64_t
727racct_get_limit(struct proc *p, int resource)
728{
729
730#ifdef RCTL
731	return (rctl_get_limit(p, resource));
732#else
733	return (UINT64_MAX);
734#endif
735}
736
737/*
738 * Returns amount of 'resource' the process 'p' can keep allocated.
739 * Allocating more than that would be denied, unless the resource
740 * is marked undeniable.  Amount of already allocated resource does
741 * matter.
742 */
743uint64_t
744racct_get_available(struct proc *p, int resource)
745{
746
747#ifdef RCTL
748	return (rctl_get_available(p, resource));
749#else
750	return (UINT64_MAX);
751#endif
752}
753
754/*
755 * Returns amount of the %cpu resource that process 'p' can add to its %cpu
756 * utilization.  Adding more than that would lead to the process being
757 * throttled.
758 */
759static int64_t
760racct_pcpu_available(struct proc *p)
761{
762
763#ifdef RCTL
764	return (rctl_pcpu_available(p));
765#else
766	return (INT64_MAX);
767#endif
768}
769
770/*
771 * Decrease allocation of 'resource' by 'amount' for process 'p'.
772 */
773void
774racct_sub(struct proc *p, int resource, uint64_t amount)
775{
776
777	SDT_PROBE(racct, kernel, rusage, sub, p, resource, amount, 0, 0);
778
779	/*
780	 * We need proc lock to dereference p->p_ucred.
781	 */
782	PROC_LOCK_ASSERT(p, MA_OWNED);
783	KASSERT(RACCT_CAN_DROP(resource),
784	    ("racct_sub: called for non-droppable resource %d", resource));
785
786	mtx_lock(&racct_lock);
787	KASSERT(amount <= p->p_racct->r_resources[resource],
788	    ("racct_sub: freeing %ju of resource %d, which is more "
789	     "than allocated %jd for %s (pid %d)", amount, resource,
790	    (intmax_t)p->p_racct->r_resources[resource], p->p_comm, p->p_pid));
791
792	racct_alloc_resource(p->p_racct, resource, -amount);
793	racct_sub_cred_locked(p->p_ucred, resource, amount);
794	mtx_unlock(&racct_lock);
795}
796
797static void
798racct_sub_cred_locked(struct ucred *cred, int resource, uint64_t amount)
799{
800	struct prison *pr;
801
802	SDT_PROBE(racct, kernel, rusage, sub_cred, cred, resource, amount,
803	    0, 0);
804
805#ifdef notyet
806	KASSERT(RACCT_CAN_DROP(resource),
807	    ("racct_sub_cred: called for resource %d which can not drop",
808	     resource));
809#endif
810
811	racct_alloc_resource(cred->cr_ruidinfo->ui_racct, resource, -amount);
812	for (pr = cred->cr_prison; pr != NULL; pr = pr->pr_parent)
813		racct_alloc_resource(pr->pr_prison_racct->prr_racct, resource,
814		    -amount);
815	racct_alloc_resource(cred->cr_loginclass->lc_racct, resource, -amount);
816}
817
818/*
819 * Decrease allocation of 'resource' by 'amount' for credential 'cred'.
820 */
821void
822racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
823{
824
825	mtx_lock(&racct_lock);
826	racct_sub_cred_locked(cred, resource, amount);
827	mtx_unlock(&racct_lock);
828}
829
830/*
831 * Inherit resource usage information from the parent process.
832 */
833int
834racct_proc_fork(struct proc *parent, struct proc *child)
835{
836	int i, error = 0;
837
838	/*
839	 * Create racct for the child process.
840	 */
841	racct_create(&child->p_racct);
842
843	PROC_LOCK(parent);
844	PROC_LOCK(child);
845	mtx_lock(&racct_lock);
846
847#ifdef RCTL
848	error = rctl_proc_fork(parent, child);
849	if (error != 0)
850		goto out;
851#endif
852
853	/* Init process cpu time. */
854	child->p_prev_runtime = 0;
855	child->p_throttled = 0;
856
857	/*
858	 * Inherit resource usage.
859	 */
860	for (i = 0; i <= RACCT_MAX; i++) {
861		if (parent->p_racct->r_resources[i] == 0 ||
862		    !RACCT_IS_INHERITABLE(i))
863			continue;
864
865		error = racct_set_locked(child, i,
866		    parent->p_racct->r_resources[i]);
867		if (error != 0)
868			goto out;
869	}
870
871	error = racct_add_locked(child, RACCT_NPROC, 1);
872	error += racct_add_locked(child, RACCT_NTHR, 1);
873
874out:
875	mtx_unlock(&racct_lock);
876	PROC_UNLOCK(child);
877	PROC_UNLOCK(parent);
878
879	if (error != 0)
880		racct_proc_exit(child);
881
882	return (error);
883}
884
885/*
886 * Called at the end of fork1(), to handle rules that require the process
887 * to be fully initialized.
888 */
889void
890racct_proc_fork_done(struct proc *child)
891{
892
893#ifdef RCTL
894	PROC_LOCK(child);
895	mtx_lock(&racct_lock);
896	rctl_enforce(child, RACCT_NPROC, 0);
897	rctl_enforce(child, RACCT_NTHR, 0);
898	mtx_unlock(&racct_lock);
899	PROC_UNLOCK(child);
900#endif
901}
902
903void
904racct_proc_exit(struct proc *p)
905{
906	int i;
907	uint64_t runtime;
908	struct timeval wallclock;
909	uint64_t pct_estimate, pct;
910
911	PROC_LOCK(p);
912	/*
913	 * We don't need to calculate rux, proc_reap() has already done this.
914	 */
915	runtime = cputick2usec(p->p_rux.rux_runtime);
916#ifdef notyet
917	KASSERT(runtime >= p->p_prev_runtime, ("runtime < p_prev_runtime"));
918#else
919	if (runtime < p->p_prev_runtime)
920		runtime = p->p_prev_runtime;
921#endif
922	microuptime(&wallclock);
923	timevalsub(&wallclock, &p->p_stats->p_start);
924	pct_estimate = (1000000 * runtime * 100) /
925	    ((uint64_t)wallclock.tv_sec * 1000000 +
926	    wallclock.tv_usec);
927	pct = racct_getpcpu(p, pct_estimate);
928
929	mtx_lock(&racct_lock);
930	racct_set_locked(p, RACCT_CPU, runtime);
931	racct_add_cred_locked(p->p_ucred, RACCT_PCTCPU, pct);
932
933	for (i = 0; i <= RACCT_MAX; i++) {
934		if (p->p_racct->r_resources[i] == 0)
935			continue;
936	    	if (!RACCT_IS_RECLAIMABLE(i))
937			continue;
938		racct_set_locked(p, i, 0);
939	}
940
941	mtx_unlock(&racct_lock);
942	PROC_UNLOCK(p);
943
944#ifdef RCTL
945	rctl_racct_release(p->p_racct);
946#endif
947	racct_destroy(&p->p_racct);
948}
949
950/*
951 * Called after credentials change, to move resource utilisation
952 * between raccts.
953 */
954void
955racct_proc_ucred_changed(struct proc *p, struct ucred *oldcred,
956    struct ucred *newcred)
957{
958	struct uidinfo *olduip, *newuip;
959	struct loginclass *oldlc, *newlc;
960	struct prison *oldpr, *newpr, *pr;
961
962	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
963
964	newuip = newcred->cr_ruidinfo;
965	olduip = oldcred->cr_ruidinfo;
966	newlc = newcred->cr_loginclass;
967	oldlc = oldcred->cr_loginclass;
968	newpr = newcred->cr_prison;
969	oldpr = oldcred->cr_prison;
970
971	mtx_lock(&racct_lock);
972	if (newuip != olduip) {
973		racct_sub_racct(olduip->ui_racct, p->p_racct);
974		racct_add_racct(newuip->ui_racct, p->p_racct);
975	}
976	if (newlc != oldlc) {
977		racct_sub_racct(oldlc->lc_racct, p->p_racct);
978		racct_add_racct(newlc->lc_racct, p->p_racct);
979	}
980	if (newpr != oldpr) {
981		for (pr = oldpr; pr != NULL; pr = pr->pr_parent)
982			racct_sub_racct(pr->pr_prison_racct->prr_racct,
983			    p->p_racct);
984		for (pr = newpr; pr != NULL; pr = pr->pr_parent)
985			racct_add_racct(pr->pr_prison_racct->prr_racct,
986			    p->p_racct);
987	}
988	mtx_unlock(&racct_lock);
989
990#ifdef RCTL
991	rctl_proc_ucred_changed(p, newcred);
992#endif
993}
994
995void
996racct_move(struct racct *dest, struct racct *src)
997{
998
999	mtx_lock(&racct_lock);
1000
1001	racct_add_racct(dest, src);
1002	racct_sub_racct(src, src);
1003
1004	mtx_unlock(&racct_lock);
1005}
1006
1007static void
1008racct_proc_throttle(struct proc *p)
1009{
1010	struct thread *td;
1011#ifdef SMP
1012	int cpuid;
1013#endif
1014
1015	PROC_LOCK_ASSERT(p, MA_OWNED);
1016
1017	/*
1018	 * Do not block kernel processes.  Also do not block processes with
1019	 * low %cpu utilization to improve interactivity.
1020	 */
1021	if (((p->p_flag & (P_SYSTEM | P_KTHREAD)) != 0) ||
1022	    (p->p_racct->r_resources[RACCT_PCTCPU] <= pcpu_threshold))
1023		return;
1024	p->p_throttled = 1;
1025
1026	FOREACH_THREAD_IN_PROC(p, td) {
1027		switch (td->td_state) {
1028		case TDS_RUNQ:
1029			/*
1030			 * If the thread is on the scheduler run-queue, we can
1031			 * not just remove it from there.  So we set the flag
1032			 * TDF_NEEDRESCHED for the thread, so that once it is
1033			 * running, it is taken off the cpu as soon as possible.
1034			 */
1035			thread_lock(td);
1036			td->td_flags |= TDF_NEEDRESCHED;
1037			thread_unlock(td);
1038			break;
1039		case TDS_RUNNING:
1040			/*
1041			 * If the thread is running, we request a context
1042			 * switch for it by setting the TDF_NEEDRESCHED flag.
1043			 */
1044			thread_lock(td);
1045			td->td_flags |= TDF_NEEDRESCHED;
1046#ifdef SMP
1047			cpuid = td->td_oncpu;
1048			if ((cpuid != NOCPU) && (td != curthread))
1049				ipi_cpu(cpuid, IPI_AST);
1050#endif
1051			thread_unlock(td);
1052			break;
1053		default:
1054			break;
1055		}
1056	}
1057}
1058
1059static void
1060racct_proc_wakeup(struct proc *p)
1061{
1062	PROC_LOCK_ASSERT(p, MA_OWNED);
1063
1064	if (p->p_throttled) {
1065		p->p_throttled = 0;
1066		wakeup(p->p_racct);
1067	}
1068}
1069
1070static void
1071racct_decay_resource(struct racct *racct, void * res, void* dummy)
1072{
1073	int resource;
1074	int64_t r_old, r_new;
1075
1076	resource = *(int *)res;
1077	r_old = racct->r_resources[resource];
1078
1079	/* If there is nothing to decay, just exit. */
1080	if (r_old <= 0)
1081		return;
1082
1083	mtx_lock(&racct_lock);
1084	r_new = r_old * RACCT_DECAY_FACTOR / FSCALE;
1085	racct->r_resources[resource] = r_new;
1086	mtx_unlock(&racct_lock);
1087}
1088
1089static void
1090racct_decay(int resource)
1091{
1092	ui_racct_foreach(racct_decay_resource, &resource, NULL);
1093	loginclass_racct_foreach(racct_decay_resource, &resource, NULL);
1094	prison_racct_foreach(racct_decay_resource, &resource, NULL);
1095}
1096
1097static void
1098racctd(void)
1099{
1100	struct thread *td;
1101	struct proc *p;
1102	struct timeval wallclock;
1103	uint64_t runtime;
1104	uint64_t pct, pct_estimate;
1105
1106	for (;;) {
1107		racct_decay(RACCT_PCTCPU);
1108
1109		sx_slock(&allproc_lock);
1110
1111		LIST_FOREACH(p, &zombproc, p_list) {
1112			PROC_LOCK(p);
1113			racct_set(p, RACCT_PCTCPU, 0);
1114			PROC_UNLOCK(p);
1115		}
1116
1117		FOREACH_PROC_IN_SYSTEM(p) {
1118			PROC_LOCK(p);
1119			if (p->p_state != PRS_NORMAL) {
1120				PROC_UNLOCK(p);
1121				continue;
1122			}
1123
1124			microuptime(&wallclock);
1125			timevalsub(&wallclock, &p->p_stats->p_start);
1126			PROC_SLOCK(p);
1127			FOREACH_THREAD_IN_PROC(p, td)
1128				ruxagg(p, td);
1129			runtime = cputick2usec(p->p_rux.rux_runtime);
1130			PROC_SUNLOCK(p);
1131#ifdef notyet
1132			KASSERT(runtime >= p->p_prev_runtime,
1133			    ("runtime < p_prev_runtime"));
1134#else
1135			if (runtime < p->p_prev_runtime)
1136				runtime = p->p_prev_runtime;
1137#endif
1138			p->p_prev_runtime = runtime;
1139			pct_estimate = (1000000 * runtime * 100) /
1140			    ((uint64_t)wallclock.tv_sec * 1000000 +
1141			    wallclock.tv_usec);
1142			pct = racct_getpcpu(p, pct_estimate);
1143			mtx_lock(&racct_lock);
1144			racct_set_force_locked(p, RACCT_PCTCPU, pct);
1145			racct_set_locked(p, RACCT_CPU, runtime);
1146			racct_set_locked(p, RACCT_WALLCLOCK,
1147			    (uint64_t)wallclock.tv_sec * 1000000 +
1148			    wallclock.tv_usec);
1149			mtx_unlock(&racct_lock);
1150			PROC_UNLOCK(p);
1151		}
1152
1153		/*
1154		 * To ensure that processes are throttled in a fair way, we need
1155		 * to iterate over all processes again and check the limits
1156		 * for %cpu resource only after ucred racct containers have been
1157		 * properly filled.
1158		 */
1159		FOREACH_PROC_IN_SYSTEM(p) {
1160			PROC_LOCK(p);
1161			if (p->p_state != PRS_NORMAL) {
1162				PROC_UNLOCK(p);
1163				continue;
1164			}
1165
1166			if (racct_pcpu_available(p) <= 0)
1167				racct_proc_throttle(p);
1168			else if (p->p_throttled)
1169				racct_proc_wakeup(p);
1170			PROC_UNLOCK(p);
1171		}
1172		sx_sunlock(&allproc_lock);
1173		pause("-", hz);
1174	}
1175}
1176
1177static struct kproc_desc racctd_kp = {
1178	"racctd",
1179	racctd,
1180	NULL
1181};
1182SYSINIT(racctd, SI_SUB_RACCTD, SI_ORDER_FIRST, kproc_start, &racctd_kp);
1183
1184static void
1185racct_init(void)
1186{
1187
1188	racct_zone = uma_zcreate("racct", sizeof(struct racct),
1189	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
1190	/*
1191	 * XXX: Move this somewhere.
1192	 */
1193	prison0.pr_prison_racct = prison_racct_find("0");
1194}
1195SYSINIT(racct, SI_SUB_RACCT, SI_ORDER_FIRST, racct_init, NULL);
1196
1197#else /* !RACCT */
1198
1199int
1200racct_add(struct proc *p, int resource, uint64_t amount)
1201{
1202
1203	return (0);
1204}
1205
1206void
1207racct_add_cred(struct ucred *cred, int resource, uint64_t amount)
1208{
1209}
1210
1211void
1212racct_add_force(struct proc *p, int resource, uint64_t amount)
1213{
1214
1215	return;
1216}
1217
1218int
1219racct_set(struct proc *p, int resource, uint64_t amount)
1220{
1221
1222	return (0);
1223}
1224
1225void
1226racct_set_force(struct proc *p, int resource, uint64_t amount)
1227{
1228}
1229
1230void
1231racct_sub(struct proc *p, int resource, uint64_t amount)
1232{
1233}
1234
1235void
1236racct_sub_cred(struct ucred *cred, int resource, uint64_t amount)
1237{
1238}
1239
1240uint64_t
1241racct_get_limit(struct proc *p, int resource)
1242{
1243
1244	return (UINT64_MAX);
1245}
1246
1247uint64_t
1248racct_get_available(struct proc *p, int resource)
1249{
1250
1251	return (UINT64_MAX);
1252}
1253
1254void
1255racct_create(struct racct **racctp)
1256{
1257}
1258
1259void
1260racct_destroy(struct racct **racctp)
1261{
1262}
1263
1264int
1265racct_proc_fork(struct proc *parent, struct proc *child)
1266{
1267
1268	return (0);
1269}
1270
1271void
1272racct_proc_fork_done(struct proc *child)
1273{
1274}
1275
1276void
1277racct_proc_exit(struct proc *p)
1278{
1279}
1280
1281#endif /* !RACCT */
1282