kern_ktrace.c revision 255219
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.
4 * Copyright (c) 2005 Robert N. M. Watson
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/kern/kern_ktrace.c 255219 2013-09-05 00:09:56Z pjd $");
36
37#include "opt_ktrace.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/fcntl.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/malloc.h>
47#include <sys/mount.h>
48#include <sys/namei.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/unistd.h>
52#include <sys/vnode.h>
53#include <sys/socket.h>
54#include <sys/stat.h>
55#include <sys/ktrace.h>
56#include <sys/sx.h>
57#include <sys/sysctl.h>
58#include <sys/sysent.h>
59#include <sys/syslog.h>
60#include <sys/sysproto.h>
61
62#include <security/mac/mac_framework.h>
63
64/*
65 * The ktrace facility allows the tracing of certain key events in user space
66 * processes, such as system calls, signal delivery, context switches, and
67 * user generated events using utrace(2).  It works by streaming event
68 * records and data to a vnode associated with the process using the
69 * ktrace(2) system call.  In general, records can be written directly from
70 * the context that generates the event.  One important exception to this is
71 * during a context switch, where sleeping is not permitted.  To handle this
72 * case, trace events are generated using in-kernel ktr_request records, and
73 * then delivered to disk at a convenient moment -- either immediately, the
74 * next traceable event, at system call return, or at process exit.
75 *
76 * When dealing with multiple threads or processes writing to the same event
77 * log, ordering guarantees are weak: specifically, if an event has multiple
78 * records (i.e., system call enter and return), they may be interlaced with
79 * records from another event.  Process and thread ID information is provided
80 * in the record, and user applications can de-interlace events if required.
81 */
82
83static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
84
85#ifdef KTRACE
86
87FEATURE(ktrace, "Kernel support for system-call tracing");
88
89#ifndef KTRACE_REQUEST_POOL
90#define	KTRACE_REQUEST_POOL	100
91#endif
92
93struct ktr_request {
94	struct	ktr_header ktr_header;
95	void	*ktr_buffer;
96	union {
97		struct	ktr_proc_ctor ktr_proc_ctor;
98		struct	ktr_cap_fail ktr_cap_fail;
99		struct	ktr_syscall ktr_syscall;
100		struct	ktr_sysret ktr_sysret;
101		struct	ktr_genio ktr_genio;
102		struct	ktr_psig ktr_psig;
103		struct	ktr_csw ktr_csw;
104		struct	ktr_fault ktr_fault;
105		struct	ktr_faultend ktr_faultend;
106	} ktr_data;
107	STAILQ_ENTRY(ktr_request) ktr_list;
108};
109
110static int data_lengths[] = {
111	0,					/* none */
112	offsetof(struct ktr_syscall, ktr_args),	/* KTR_SYSCALL */
113	sizeof(struct ktr_sysret),		/* KTR_SYSRET */
114	0,					/* KTR_NAMEI */
115	sizeof(struct ktr_genio),		/* KTR_GENIO */
116	sizeof(struct ktr_psig),		/* KTR_PSIG */
117	sizeof(struct ktr_csw),			/* KTR_CSW */
118	0,					/* KTR_USER */
119	0,					/* KTR_STRUCT */
120	0,					/* KTR_SYSCTL */
121	sizeof(struct ktr_proc_ctor),		/* KTR_PROCCTOR */
122	0,					/* KTR_PROCDTOR */
123	sizeof(struct ktr_cap_fail),		/* KTR_CAPFAIL */
124	sizeof(struct ktr_fault),		/* KTR_FAULT */
125	sizeof(struct ktr_faultend),		/* KTR_FAULTEND */
126};
127
128static STAILQ_HEAD(, ktr_request) ktr_free;
129
130static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
131
132static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
133TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
134
135static u_int ktr_geniosize = PAGE_SIZE;
136TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
137SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
138    0, "Maximum size of genio event payload");
139
140static int print_message = 1;
141static struct mtx ktrace_mtx;
142static struct sx ktrace_sx;
143
144static void ktrace_init(void *dummy);
145static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
146static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
147static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
148static struct ktr_request *ktr_getrequest(int type);
149static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
150static void ktr_freeproc(struct proc *p, struct ucred **uc,
151    struct vnode **vp);
152static void ktr_freerequest(struct ktr_request *req);
153static void ktr_freerequest_locked(struct ktr_request *req);
154static void ktr_writerequest(struct thread *td, struct ktr_request *req);
155static int ktrcanset(struct thread *,struct proc *);
156static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
157static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
158static void ktrprocctor_entered(struct thread *, struct proc *);
159
160/*
161 * ktrace itself generates events, such as context switches, which we do not
162 * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
163 * whether or not it is in a region where tracing of events should be
164 * suppressed.
165 */
166static void
167ktrace_enter(struct thread *td)
168{
169
170	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
171	td->td_pflags |= TDP_INKTRACE;
172}
173
174static void
175ktrace_exit(struct thread *td)
176{
177
178	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
179	td->td_pflags &= ~TDP_INKTRACE;
180}
181
182static void
183ktrace_assert(struct thread *td)
184{
185
186	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
187}
188
189static void
190ktrace_init(void *dummy)
191{
192	struct ktr_request *req;
193	int i;
194
195	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
196	sx_init(&ktrace_sx, "ktrace_sx");
197	STAILQ_INIT(&ktr_free);
198	for (i = 0; i < ktr_requestpool; i++) {
199		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
200		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
201	}
202}
203SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
204
205static int
206sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
207{
208	struct thread *td;
209	u_int newsize, oldsize, wantsize;
210	int error;
211
212	/* Handle easy read-only case first to avoid warnings from GCC. */
213	if (!req->newptr) {
214		oldsize = ktr_requestpool;
215		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
216	}
217
218	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
219	if (error)
220		return (error);
221	td = curthread;
222	ktrace_enter(td);
223	oldsize = ktr_requestpool;
224	newsize = ktrace_resize_pool(oldsize, wantsize);
225	ktrace_exit(td);
226	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
227	if (error)
228		return (error);
229	if (wantsize > oldsize && newsize < wantsize)
230		return (ENOSPC);
231	return (0);
232}
233SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
234    &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
235    "Pool buffer size for ktrace(1)");
236
237static u_int
238ktrace_resize_pool(u_int oldsize, u_int newsize)
239{
240	STAILQ_HEAD(, ktr_request) ktr_new;
241	struct ktr_request *req;
242	int bound;
243
244	print_message = 1;
245	bound = newsize - oldsize;
246	if (bound == 0)
247		return (ktr_requestpool);
248	if (bound < 0) {
249		mtx_lock(&ktrace_mtx);
250		/* Shrink pool down to newsize if possible. */
251		while (bound++ < 0) {
252			req = STAILQ_FIRST(&ktr_free);
253			if (req == NULL)
254				break;
255			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
256			ktr_requestpool--;
257			free(req, M_KTRACE);
258		}
259	} else {
260		/* Grow pool up to newsize. */
261		STAILQ_INIT(&ktr_new);
262		while (bound-- > 0) {
263			req = malloc(sizeof(struct ktr_request), M_KTRACE,
264			    M_WAITOK);
265			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
266		}
267		mtx_lock(&ktrace_mtx);
268		STAILQ_CONCAT(&ktr_free, &ktr_new);
269		ktr_requestpool += (newsize - oldsize);
270	}
271	mtx_unlock(&ktrace_mtx);
272	return (ktr_requestpool);
273}
274
275/* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
276CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
277    (sizeof((struct thread *)NULL)->td_name));
278
279static struct ktr_request *
280ktr_getrequest_entered(struct thread *td, int type)
281{
282	struct ktr_request *req;
283	struct proc *p = td->td_proc;
284	int pm;
285
286	mtx_lock(&ktrace_mtx);
287	if (!KTRCHECK(td, type)) {
288		mtx_unlock(&ktrace_mtx);
289		return (NULL);
290	}
291	req = STAILQ_FIRST(&ktr_free);
292	if (req != NULL) {
293		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
294		req->ktr_header.ktr_type = type;
295		if (p->p_traceflag & KTRFAC_DROP) {
296			req->ktr_header.ktr_type |= KTR_DROP;
297			p->p_traceflag &= ~KTRFAC_DROP;
298		}
299		mtx_unlock(&ktrace_mtx);
300		microtime(&req->ktr_header.ktr_time);
301		req->ktr_header.ktr_pid = p->p_pid;
302		req->ktr_header.ktr_tid = td->td_tid;
303		bcopy(td->td_name, req->ktr_header.ktr_comm,
304		    sizeof(req->ktr_header.ktr_comm));
305		req->ktr_buffer = NULL;
306		req->ktr_header.ktr_len = 0;
307	} else {
308		p->p_traceflag |= KTRFAC_DROP;
309		pm = print_message;
310		print_message = 0;
311		mtx_unlock(&ktrace_mtx);
312		if (pm)
313			printf("Out of ktrace request objects.\n");
314	}
315	return (req);
316}
317
318static struct ktr_request *
319ktr_getrequest(int type)
320{
321	struct thread *td = curthread;
322	struct ktr_request *req;
323
324	ktrace_enter(td);
325	req = ktr_getrequest_entered(td, type);
326	if (req == NULL)
327		ktrace_exit(td);
328
329	return (req);
330}
331
332/*
333 * Some trace generation environments don't permit direct access to VFS,
334 * such as during a context switch where sleeping is not allowed.  Under these
335 * circumstances, queue a request to the thread to be written asynchronously
336 * later.
337 */
338static void
339ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
340{
341
342	mtx_lock(&ktrace_mtx);
343	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
344	mtx_unlock(&ktrace_mtx);
345}
346
347/*
348 * Drain any pending ktrace records from the per-thread queue to disk.  This
349 * is used both internally before committing other records, and also on
350 * system call return.  We drain all the ones we can find at the time when
351 * drain is requested, but don't keep draining after that as those events
352 * may be approximately "after" the current event.
353 */
354static void
355ktr_drain(struct thread *td)
356{
357	struct ktr_request *queued_req;
358	STAILQ_HEAD(, ktr_request) local_queue;
359
360	ktrace_assert(td);
361	sx_assert(&ktrace_sx, SX_XLOCKED);
362
363	STAILQ_INIT(&local_queue);
364
365	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
366		mtx_lock(&ktrace_mtx);
367		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
368		mtx_unlock(&ktrace_mtx);
369
370		while ((queued_req = STAILQ_FIRST(&local_queue))) {
371			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
372			ktr_writerequest(td, queued_req);
373			ktr_freerequest(queued_req);
374		}
375	}
376}
377
378/*
379 * Submit a trace record for immediate commit to disk -- to be used only
380 * where entering VFS is OK.  First drain any pending records that may have
381 * been cached in the thread.
382 */
383static void
384ktr_submitrequest(struct thread *td, struct ktr_request *req)
385{
386
387	ktrace_assert(td);
388
389	sx_xlock(&ktrace_sx);
390	ktr_drain(td);
391	ktr_writerequest(td, req);
392	ktr_freerequest(req);
393	sx_xunlock(&ktrace_sx);
394	ktrace_exit(td);
395}
396
397static void
398ktr_freerequest(struct ktr_request *req)
399{
400
401	mtx_lock(&ktrace_mtx);
402	ktr_freerequest_locked(req);
403	mtx_unlock(&ktrace_mtx);
404}
405
406static void
407ktr_freerequest_locked(struct ktr_request *req)
408{
409
410	mtx_assert(&ktrace_mtx, MA_OWNED);
411	if (req->ktr_buffer != NULL)
412		free(req->ktr_buffer, M_KTRACE);
413	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
414}
415
416/*
417 * Disable tracing for a process and release all associated resources.
418 * The caller is responsible for releasing a reference on the returned
419 * vnode and credentials.
420 */
421static void
422ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
423{
424	struct ktr_request *req;
425
426	PROC_LOCK_ASSERT(p, MA_OWNED);
427	mtx_assert(&ktrace_mtx, MA_OWNED);
428	*uc = p->p_tracecred;
429	p->p_tracecred = NULL;
430	if (vp != NULL)
431		*vp = p->p_tracevp;
432	p->p_tracevp = NULL;
433	p->p_traceflag = 0;
434	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
435		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
436		ktr_freerequest_locked(req);
437	}
438}
439
440void
441ktrsyscall(code, narg, args)
442	int code, narg;
443	register_t args[];
444{
445	struct ktr_request *req;
446	struct ktr_syscall *ktp;
447	size_t buflen;
448	char *buf = NULL;
449
450	buflen = sizeof(register_t) * narg;
451	if (buflen > 0) {
452		buf = malloc(buflen, M_KTRACE, M_WAITOK);
453		bcopy(args, buf, buflen);
454	}
455	req = ktr_getrequest(KTR_SYSCALL);
456	if (req == NULL) {
457		if (buf != NULL)
458			free(buf, M_KTRACE);
459		return;
460	}
461	ktp = &req->ktr_data.ktr_syscall;
462	ktp->ktr_code = code;
463	ktp->ktr_narg = narg;
464	if (buflen > 0) {
465		req->ktr_header.ktr_len = buflen;
466		req->ktr_buffer = buf;
467	}
468	ktr_submitrequest(curthread, req);
469}
470
471void
472ktrsysret(code, error, retval)
473	int code, error;
474	register_t retval;
475{
476	struct ktr_request *req;
477	struct ktr_sysret *ktp;
478
479	req = ktr_getrequest(KTR_SYSRET);
480	if (req == NULL)
481		return;
482	ktp = &req->ktr_data.ktr_sysret;
483	ktp->ktr_code = code;
484	ktp->ktr_error = error;
485	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
486	ktr_submitrequest(curthread, req);
487}
488
489/*
490 * When a setuid process execs, disable tracing.
491 *
492 * XXX: We toss any pending asynchronous records.
493 */
494void
495ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
496{
497
498	PROC_LOCK_ASSERT(p, MA_OWNED);
499	mtx_lock(&ktrace_mtx);
500	ktr_freeproc(p, uc, vp);
501	mtx_unlock(&ktrace_mtx);
502}
503
504/*
505 * When a process exits, drain per-process asynchronous trace records
506 * and disable tracing.
507 */
508void
509ktrprocexit(struct thread *td)
510{
511	struct ktr_request *req;
512	struct proc *p;
513	struct ucred *cred;
514	struct vnode *vp;
515
516	p = td->td_proc;
517	if (p->p_traceflag == 0)
518		return;
519
520	ktrace_enter(td);
521	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
522	if (req != NULL)
523		ktr_enqueuerequest(td, req);
524	sx_xlock(&ktrace_sx);
525	ktr_drain(td);
526	sx_xunlock(&ktrace_sx);
527	PROC_LOCK(p);
528	mtx_lock(&ktrace_mtx);
529	ktr_freeproc(p, &cred, &vp);
530	mtx_unlock(&ktrace_mtx);
531	PROC_UNLOCK(p);
532	if (vp != NULL)
533		vrele(vp);
534	if (cred != NULL)
535		crfree(cred);
536	ktrace_exit(td);
537}
538
539static void
540ktrprocctor_entered(struct thread *td, struct proc *p)
541{
542	struct ktr_proc_ctor *ktp;
543	struct ktr_request *req;
544	struct thread *td2;
545
546	ktrace_assert(td);
547	td2 = FIRST_THREAD_IN_PROC(p);
548	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
549	if (req == NULL)
550		return;
551	ktp = &req->ktr_data.ktr_proc_ctor;
552	ktp->sv_flags = p->p_sysent->sv_flags;
553	ktr_enqueuerequest(td2, req);
554}
555
556void
557ktrprocctor(struct proc *p)
558{
559	struct thread *td = curthread;
560
561	if ((p->p_traceflag & KTRFAC_MASK) == 0)
562		return;
563
564	ktrace_enter(td);
565	ktrprocctor_entered(td, p);
566	ktrace_exit(td);
567}
568
569/*
570 * When a process forks, enable tracing in the new process if needed.
571 */
572void
573ktrprocfork(struct proc *p1, struct proc *p2)
574{
575
576	PROC_LOCK(p1);
577	mtx_lock(&ktrace_mtx);
578	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
579	if (p1->p_traceflag & KTRFAC_INHERIT) {
580		p2->p_traceflag = p1->p_traceflag;
581		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
582			VREF(p2->p_tracevp);
583			KASSERT(p1->p_tracecred != NULL,
584			    ("ktrace vnode with no cred"));
585			p2->p_tracecred = crhold(p1->p_tracecred);
586		}
587	}
588	mtx_unlock(&ktrace_mtx);
589	PROC_UNLOCK(p1);
590
591	ktrprocctor(p2);
592}
593
594/*
595 * When a thread returns, drain any asynchronous records generated by the
596 * system call.
597 */
598void
599ktruserret(struct thread *td)
600{
601
602	ktrace_enter(td);
603	sx_xlock(&ktrace_sx);
604	ktr_drain(td);
605	sx_xunlock(&ktrace_sx);
606	ktrace_exit(td);
607}
608
609void
610ktrnamei(path)
611	char *path;
612{
613	struct ktr_request *req;
614	int namelen;
615	char *buf = NULL;
616
617	namelen = strlen(path);
618	if (namelen > 0) {
619		buf = malloc(namelen, M_KTRACE, M_WAITOK);
620		bcopy(path, buf, namelen);
621	}
622	req = ktr_getrequest(KTR_NAMEI);
623	if (req == NULL) {
624		if (buf != NULL)
625			free(buf, M_KTRACE);
626		return;
627	}
628	if (namelen > 0) {
629		req->ktr_header.ktr_len = namelen;
630		req->ktr_buffer = buf;
631	}
632	ktr_submitrequest(curthread, req);
633}
634
635void
636ktrsysctl(name, namelen)
637	int *name;
638	u_int namelen;
639{
640	struct ktr_request *req;
641	u_int mib[CTL_MAXNAME + 2];
642	char *mibname;
643	size_t mibnamelen;
644	int error;
645
646	/* Lookup name of mib. */
647	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
648	mib[0] = 0;
649	mib[1] = 1;
650	bcopy(name, mib + 2, namelen * sizeof(*name));
651	mibnamelen = 128;
652	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
653	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
654	    NULL, 0, &mibnamelen, 0);
655	if (error) {
656		free(mibname, M_KTRACE);
657		return;
658	}
659	req = ktr_getrequest(KTR_SYSCTL);
660	if (req == NULL) {
661		free(mibname, M_KTRACE);
662		return;
663	}
664	req->ktr_header.ktr_len = mibnamelen;
665	req->ktr_buffer = mibname;
666	ktr_submitrequest(curthread, req);
667}
668
669void
670ktrgenio(fd, rw, uio, error)
671	int fd;
672	enum uio_rw rw;
673	struct uio *uio;
674	int error;
675{
676	struct ktr_request *req;
677	struct ktr_genio *ktg;
678	int datalen;
679	char *buf;
680
681	if (error) {
682		free(uio, M_IOV);
683		return;
684	}
685	uio->uio_offset = 0;
686	uio->uio_rw = UIO_WRITE;
687	datalen = MIN(uio->uio_resid, ktr_geniosize);
688	buf = malloc(datalen, M_KTRACE, M_WAITOK);
689	error = uiomove(buf, datalen, uio);
690	free(uio, M_IOV);
691	if (error) {
692		free(buf, M_KTRACE);
693		return;
694	}
695	req = ktr_getrequest(KTR_GENIO);
696	if (req == NULL) {
697		free(buf, M_KTRACE);
698		return;
699	}
700	ktg = &req->ktr_data.ktr_genio;
701	ktg->ktr_fd = fd;
702	ktg->ktr_rw = rw;
703	req->ktr_header.ktr_len = datalen;
704	req->ktr_buffer = buf;
705	ktr_submitrequest(curthread, req);
706}
707
708void
709ktrpsig(sig, action, mask, code)
710	int sig;
711	sig_t action;
712	sigset_t *mask;
713	int code;
714{
715	struct thread *td = curthread;
716	struct ktr_request *req;
717	struct ktr_psig	*kp;
718
719	req = ktr_getrequest(KTR_PSIG);
720	if (req == NULL)
721		return;
722	kp = &req->ktr_data.ktr_psig;
723	kp->signo = (char)sig;
724	kp->action = action;
725	kp->mask = *mask;
726	kp->code = code;
727	ktr_enqueuerequest(td, req);
728	ktrace_exit(td);
729}
730
731void
732ktrcsw(out, user, wmesg)
733	int out, user;
734	const char *wmesg;
735{
736	struct thread *td = curthread;
737	struct ktr_request *req;
738	struct ktr_csw *kc;
739
740	req = ktr_getrequest(KTR_CSW);
741	if (req == NULL)
742		return;
743	kc = &req->ktr_data.ktr_csw;
744	kc->out = out;
745	kc->user = user;
746	if (wmesg != NULL)
747		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
748	else
749		bzero(kc->wmesg, sizeof(kc->wmesg));
750	ktr_enqueuerequest(td, req);
751	ktrace_exit(td);
752}
753
754void
755ktrstruct(name, data, datalen)
756	const char *name;
757	void *data;
758	size_t datalen;
759{
760	struct ktr_request *req;
761	char *buf = NULL;
762	size_t buflen;
763
764	if (!data)
765		datalen = 0;
766	buflen = strlen(name) + 1 + datalen;
767	buf = malloc(buflen, M_KTRACE, M_WAITOK);
768	strcpy(buf, name);
769	bcopy(data, buf + strlen(name) + 1, datalen);
770	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
771		free(buf, M_KTRACE);
772		return;
773	}
774	req->ktr_buffer = buf;
775	req->ktr_header.ktr_len = buflen;
776	ktr_submitrequest(curthread, req);
777}
778
779void
780ktrcapfail(type, needed, held)
781	enum ktr_cap_fail_type type;
782	const cap_rights_t *needed;
783	const cap_rights_t *held;
784{
785	struct thread *td = curthread;
786	struct ktr_request *req;
787	struct ktr_cap_fail *kcf;
788
789	req = ktr_getrequest(KTR_CAPFAIL);
790	if (req == NULL)
791		return;
792	kcf = &req->ktr_data.ktr_cap_fail;
793	kcf->cap_type = type;
794	kcf->cap_needed = *needed;
795	kcf->cap_held = *held;
796	ktr_enqueuerequest(td, req);
797	ktrace_exit(td);
798}
799
800void
801ktrfault(vaddr, type)
802	vm_offset_t vaddr;
803	int type;
804{
805	struct thread *td = curthread;
806	struct ktr_request *req;
807	struct ktr_fault *kf;
808
809	req = ktr_getrequest(KTR_FAULT);
810	if (req == NULL)
811		return;
812	kf = &req->ktr_data.ktr_fault;
813	kf->vaddr = vaddr;
814	kf->type = type;
815	ktr_enqueuerequest(td, req);
816	ktrace_exit(td);
817}
818
819void
820ktrfaultend(result)
821	int result;
822{
823	struct thread *td = curthread;
824	struct ktr_request *req;
825	struct ktr_faultend *kf;
826
827	req = ktr_getrequest(KTR_FAULTEND);
828	if (req == NULL)
829		return;
830	kf = &req->ktr_data.ktr_faultend;
831	kf->result = result;
832	ktr_enqueuerequest(td, req);
833	ktrace_exit(td);
834}
835#endif /* KTRACE */
836
837/* Interface and common routines */
838
839#ifndef _SYS_SYSPROTO_H_
840struct ktrace_args {
841	char	*fname;
842	int	ops;
843	int	facs;
844	int	pid;
845};
846#endif
847/* ARGSUSED */
848int
849sys_ktrace(td, uap)
850	struct thread *td;
851	register struct ktrace_args *uap;
852{
853#ifdef KTRACE
854	register struct vnode *vp = NULL;
855	register struct proc *p;
856	struct pgrp *pg;
857	int facs = uap->facs & ~KTRFAC_ROOT;
858	int ops = KTROP(uap->ops);
859	int descend = uap->ops & KTRFLAG_DESCEND;
860	int nfound, ret = 0;
861	int flags, error = 0;
862	struct nameidata nd;
863	struct ucred *cred;
864
865	/*
866	 * Need something to (un)trace.
867	 */
868	if (ops != KTROP_CLEARFILE && facs == 0)
869		return (EINVAL);
870
871	ktrace_enter(td);
872	if (ops != KTROP_CLEAR) {
873		/*
874		 * an operation which requires a file argument.
875		 */
876		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
877		flags = FREAD | FWRITE | O_NOFOLLOW;
878		error = vn_open(&nd, &flags, 0, NULL);
879		if (error) {
880			ktrace_exit(td);
881			return (error);
882		}
883		NDFREE(&nd, NDF_ONLY_PNBUF);
884		vp = nd.ni_vp;
885		VOP_UNLOCK(vp, 0);
886		if (vp->v_type != VREG) {
887			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
888			ktrace_exit(td);
889			return (EACCES);
890		}
891	}
892	/*
893	 * Clear all uses of the tracefile.
894	 */
895	if (ops == KTROP_CLEARFILE) {
896		int vrele_count;
897
898		vrele_count = 0;
899		sx_slock(&allproc_lock);
900		FOREACH_PROC_IN_SYSTEM(p) {
901			PROC_LOCK(p);
902			if (p->p_tracevp == vp) {
903				if (ktrcanset(td, p)) {
904					mtx_lock(&ktrace_mtx);
905					ktr_freeproc(p, &cred, NULL);
906					mtx_unlock(&ktrace_mtx);
907					vrele_count++;
908					crfree(cred);
909				} else
910					error = EPERM;
911			}
912			PROC_UNLOCK(p);
913		}
914		sx_sunlock(&allproc_lock);
915		if (vrele_count > 0) {
916			while (vrele_count-- > 0)
917				vrele(vp);
918		}
919		goto done;
920	}
921	/*
922	 * do it
923	 */
924	sx_slock(&proctree_lock);
925	if (uap->pid < 0) {
926		/*
927		 * by process group
928		 */
929		pg = pgfind(-uap->pid);
930		if (pg == NULL) {
931			sx_sunlock(&proctree_lock);
932			error = ESRCH;
933			goto done;
934		}
935		/*
936		 * ktrops() may call vrele(). Lock pg_members
937		 * by the proctree_lock rather than pg_mtx.
938		 */
939		PGRP_UNLOCK(pg);
940		nfound = 0;
941		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
942			PROC_LOCK(p);
943			if (p->p_state == PRS_NEW ||
944			    p_cansee(td, p) != 0) {
945				PROC_UNLOCK(p);
946				continue;
947			}
948			nfound++;
949			if (descend)
950				ret |= ktrsetchildren(td, p, ops, facs, vp);
951			else
952				ret |= ktrops(td, p, ops, facs, vp);
953		}
954		if (nfound == 0) {
955			sx_sunlock(&proctree_lock);
956			error = ESRCH;
957			goto done;
958		}
959	} else {
960		/*
961		 * by pid
962		 */
963		p = pfind(uap->pid);
964		if (p == NULL)
965			error = ESRCH;
966		else
967			error = p_cansee(td, p);
968		if (error) {
969			if (p != NULL)
970				PROC_UNLOCK(p);
971			sx_sunlock(&proctree_lock);
972			goto done;
973		}
974		if (descend)
975			ret |= ktrsetchildren(td, p, ops, facs, vp);
976		else
977			ret |= ktrops(td, p, ops, facs, vp);
978	}
979	sx_sunlock(&proctree_lock);
980	if (!ret)
981		error = EPERM;
982done:
983	if (vp != NULL)
984		(void) vn_close(vp, FWRITE, td->td_ucred, td);
985	ktrace_exit(td);
986	return (error);
987#else /* !KTRACE */
988	return (ENOSYS);
989#endif /* KTRACE */
990}
991
992/* ARGSUSED */
993int
994sys_utrace(td, uap)
995	struct thread *td;
996	register struct utrace_args *uap;
997{
998
999#ifdef KTRACE
1000	struct ktr_request *req;
1001	void *cp;
1002	int error;
1003
1004	if (!KTRPOINT(td, KTR_USER))
1005		return (0);
1006	if (uap->len > KTR_USER_MAXLEN)
1007		return (EINVAL);
1008	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
1009	error = copyin(uap->addr, cp, uap->len);
1010	if (error) {
1011		free(cp, M_KTRACE);
1012		return (error);
1013	}
1014	req = ktr_getrequest(KTR_USER);
1015	if (req == NULL) {
1016		free(cp, M_KTRACE);
1017		return (ENOMEM);
1018	}
1019	req->ktr_buffer = cp;
1020	req->ktr_header.ktr_len = uap->len;
1021	ktr_submitrequest(td, req);
1022	return (0);
1023#else /* !KTRACE */
1024	return (ENOSYS);
1025#endif /* KTRACE */
1026}
1027
1028#ifdef KTRACE
1029static int
1030ktrops(td, p, ops, facs, vp)
1031	struct thread *td;
1032	struct proc *p;
1033	int ops, facs;
1034	struct vnode *vp;
1035{
1036	struct vnode *tracevp = NULL;
1037	struct ucred *tracecred = NULL;
1038
1039	PROC_LOCK_ASSERT(p, MA_OWNED);
1040	if (!ktrcanset(td, p)) {
1041		PROC_UNLOCK(p);
1042		return (0);
1043	}
1044	if (p->p_flag & P_WEXIT) {
1045		/* If the process is exiting, just ignore it. */
1046		PROC_UNLOCK(p);
1047		return (1);
1048	}
1049	mtx_lock(&ktrace_mtx);
1050	if (ops == KTROP_SET) {
1051		if (p->p_tracevp != vp) {
1052			/*
1053			 * if trace file already in use, relinquish below
1054			 */
1055			tracevp = p->p_tracevp;
1056			VREF(vp);
1057			p->p_tracevp = vp;
1058		}
1059		if (p->p_tracecred != td->td_ucred) {
1060			tracecred = p->p_tracecred;
1061			p->p_tracecred = crhold(td->td_ucred);
1062		}
1063		p->p_traceflag |= facs;
1064		if (priv_check(td, PRIV_KTRACE) == 0)
1065			p->p_traceflag |= KTRFAC_ROOT;
1066	} else {
1067		/* KTROP_CLEAR */
1068		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
1069			/* no more tracing */
1070			ktr_freeproc(p, &tracecred, &tracevp);
1071	}
1072	mtx_unlock(&ktrace_mtx);
1073	if ((p->p_traceflag & KTRFAC_MASK) != 0)
1074		ktrprocctor_entered(td, p);
1075	PROC_UNLOCK(p);
1076	if (tracevp != NULL)
1077		vrele(tracevp);
1078	if (tracecred != NULL)
1079		crfree(tracecred);
1080
1081	return (1);
1082}
1083
1084static int
1085ktrsetchildren(td, top, ops, facs, vp)
1086	struct thread *td;
1087	struct proc *top;
1088	int ops, facs;
1089	struct vnode *vp;
1090{
1091	register struct proc *p;
1092	register int ret = 0;
1093
1094	p = top;
1095	PROC_LOCK_ASSERT(p, MA_OWNED);
1096	sx_assert(&proctree_lock, SX_LOCKED);
1097	for (;;) {
1098		ret |= ktrops(td, p, ops, facs, vp);
1099		/*
1100		 * If this process has children, descend to them next,
1101		 * otherwise do any siblings, and if done with this level,
1102		 * follow back up the tree (but not past top).
1103		 */
1104		if (!LIST_EMPTY(&p->p_children))
1105			p = LIST_FIRST(&p->p_children);
1106		else for (;;) {
1107			if (p == top)
1108				return (ret);
1109			if (LIST_NEXT(p, p_sibling)) {
1110				p = LIST_NEXT(p, p_sibling);
1111				break;
1112			}
1113			p = p->p_pptr;
1114		}
1115		PROC_LOCK(p);
1116	}
1117	/*NOTREACHED*/
1118}
1119
1120static void
1121ktr_writerequest(struct thread *td, struct ktr_request *req)
1122{
1123	struct ktr_header *kth;
1124	struct vnode *vp;
1125	struct proc *p;
1126	struct ucred *cred;
1127	struct uio auio;
1128	struct iovec aiov[3];
1129	struct mount *mp;
1130	int datalen, buflen, vrele_count;
1131	int error;
1132
1133	/*
1134	 * We hold the vnode and credential for use in I/O in case ktrace is
1135	 * disabled on the process as we write out the request.
1136	 *
1137	 * XXXRW: This is not ideal: we could end up performing a write after
1138	 * the vnode has been closed.
1139	 */
1140	mtx_lock(&ktrace_mtx);
1141	vp = td->td_proc->p_tracevp;
1142	cred = td->td_proc->p_tracecred;
1143
1144	/*
1145	 * If vp is NULL, the vp has been cleared out from under this
1146	 * request, so just drop it.  Make sure the credential and vnode are
1147	 * in sync: we should have both or neither.
1148	 */
1149	if (vp == NULL) {
1150		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
1151		mtx_unlock(&ktrace_mtx);
1152		return;
1153	}
1154	VREF(vp);
1155	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
1156	crhold(cred);
1157	mtx_unlock(&ktrace_mtx);
1158
1159	kth = &req->ktr_header;
1160	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
1161	    sizeof(data_lengths) / sizeof(data_lengths[0]),
1162	    ("data_lengths array overflow"));
1163	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
1164	buflen = kth->ktr_len;
1165	auio.uio_iov = &aiov[0];
1166	auio.uio_offset = 0;
1167	auio.uio_segflg = UIO_SYSSPACE;
1168	auio.uio_rw = UIO_WRITE;
1169	aiov[0].iov_base = (caddr_t)kth;
1170	aiov[0].iov_len = sizeof(struct ktr_header);
1171	auio.uio_resid = sizeof(struct ktr_header);
1172	auio.uio_iovcnt = 1;
1173	auio.uio_td = td;
1174	if (datalen != 0) {
1175		aiov[1].iov_base = (caddr_t)&req->ktr_data;
1176		aiov[1].iov_len = datalen;
1177		auio.uio_resid += datalen;
1178		auio.uio_iovcnt++;
1179		kth->ktr_len += datalen;
1180	}
1181	if (buflen != 0) {
1182		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
1183		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
1184		aiov[auio.uio_iovcnt].iov_len = buflen;
1185		auio.uio_resid += buflen;
1186		auio.uio_iovcnt++;
1187	}
1188
1189	vn_start_write(vp, &mp, V_WAIT);
1190	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1191#ifdef MAC
1192	error = mac_vnode_check_write(cred, NOCRED, vp);
1193	if (error == 0)
1194#endif
1195		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
1196	VOP_UNLOCK(vp, 0);
1197	vn_finished_write(mp);
1198	crfree(cred);
1199	if (!error) {
1200		vrele(vp);
1201		return;
1202	}
1203
1204	/*
1205	 * If error encountered, give up tracing on this vnode.  We defer
1206	 * all the vrele()'s on the vnode until after we are finished walking
1207	 * the various lists to avoid needlessly holding locks.
1208	 * NB: at this point we still hold the vnode reference that must
1209	 * not go away as we need the valid vnode to compare with. Thus let
1210	 * vrele_count start at 1 and the reference will be freed
1211	 * by the loop at the end after our last use of vp.
1212	 */
1213	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
1214	    error);
1215	vrele_count = 1;
1216	/*
1217	 * First, clear this vnode from being used by any processes in the
1218	 * system.
1219	 * XXX - If one process gets an EPERM writing to the vnode, should
1220	 * we really do this?  Other processes might have suitable
1221	 * credentials for the operation.
1222	 */
1223	cred = NULL;
1224	sx_slock(&allproc_lock);
1225	FOREACH_PROC_IN_SYSTEM(p) {
1226		PROC_LOCK(p);
1227		if (p->p_tracevp == vp) {
1228			mtx_lock(&ktrace_mtx);
1229			ktr_freeproc(p, &cred, NULL);
1230			mtx_unlock(&ktrace_mtx);
1231			vrele_count++;
1232		}
1233		PROC_UNLOCK(p);
1234		if (cred != NULL) {
1235			crfree(cred);
1236			cred = NULL;
1237		}
1238	}
1239	sx_sunlock(&allproc_lock);
1240
1241	while (vrele_count-- > 0)
1242		vrele(vp);
1243}
1244
1245/*
1246 * Return true if caller has permission to set the ktracing state
1247 * of target.  Essentially, the target can't possess any
1248 * more permissions than the caller.  KTRFAC_ROOT signifies that
1249 * root previously set the tracing status on the target process, and
1250 * so, only root may further change it.
1251 */
1252static int
1253ktrcanset(td, targetp)
1254	struct thread *td;
1255	struct proc *targetp;
1256{
1257
1258	PROC_LOCK_ASSERT(targetp, MA_OWNED);
1259	if (targetp->p_traceflag & KTRFAC_ROOT &&
1260	    priv_check(td, PRIV_KTRACE))
1261		return (0);
1262
1263	if (p_candebug(td, targetp) != 0)
1264		return (0);
1265
1266	return (1);
1267}
1268
1269#endif /* KTRACE */
1270