pmap.c revision 202628
1169691Skan/*-
297403Sobrien * Copyright (c) 1991 Regents of the University of California.
3169691Skan * All rights reserved.
4169691Skan * Copyright (c) 1994 John S. Dyson
597403Sobrien * All rights reserved.
697403Sobrien * Copyright (c) 1994 David Greenman
797403Sobrien * All rights reserved.
897403Sobrien * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
997403Sobrien * All rights reserved.
1097403Sobrien *
1197403Sobrien * This code is derived from software contributed to Berkeley by
1297403Sobrien * the Systems Programming Group of the University of Utah Computer
1397403Sobrien * Science Department and William Jolitz of UUNET Technologies Inc.
1497403Sobrien *
1597403Sobrien * Redistribution and use in source and binary forms, with or without
1697403Sobrien * modification, are permitted provided that the following conditions
1797403Sobrien * are met:
1897403Sobrien * 1. Redistributions of source code must retain the above copyright
19169691Skan *    notice, this list of conditions and the following disclaimer.
2097403Sobrien * 2. Redistributions in binary form must reproduce the above copyright
2197403Sobrien *    notice, this list of conditions and the following disclaimer in the
2297403Sobrien *    documentation and/or other materials provided with the distribution.
2397403Sobrien * 3. All advertising materials mentioning features or use of this software
2497403Sobrien *    must display the following acknowledgement:
2597403Sobrien *	This product includes software developed by the University of
2697403Sobrien *	California, Berkeley and its contributors.
2797403Sobrien * 4. Neither the name of the University nor the names of its contributors
2897403Sobrien *    may be used to endorse or promote products derived from this software
2997403Sobrien *    without specific prior written permission.
3097403Sobrien *
31169691Skan * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32169691Skan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33169691Skan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34169691Skan * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35169691Skan * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
3697403Sobrien * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
3797403Sobrien * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38132720Skan * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39132720Skan * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
4097403Sobrien * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
4197403Sobrien * SUCH DAMAGE.
4297403Sobrien *
4397403Sobrien *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
4497403Sobrien */
45169691Skan/*-
46169691Skan * Copyright (c) 2003 Networks Associates Technology, Inc.
4797403Sobrien * All rights reserved.
4897403Sobrien *
49132720Skan * This software was developed for the FreeBSD Project by Jake Burkholder,
5097403Sobrien * Safeport Network Services, and Network Associates Laboratories, the
5197403Sobrien * Security Research Division of Network Associates, Inc. under
52169691Skan * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
5397403Sobrien * CHATS research program.
54132720Skan *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 202628 2010-01-19 15:31:18Z ed $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#define PMAP_DIAGNOSTIC
107
108#include "opt_cpu.h"
109#include "opt_pmap.h"
110#include "opt_msgbuf.h"
111#include "opt_smp.h"
112#include "opt_xbox.h"
113
114#include <sys/param.h>
115#include <sys/systm.h>
116#include <sys/kernel.h>
117#include <sys/ktr.h>
118#include <sys/lock.h>
119#include <sys/malloc.h>
120#include <sys/mman.h>
121#include <sys/msgbuf.h>
122#include <sys/mutex.h>
123#include <sys/proc.h>
124#include <sys/sf_buf.h>
125#include <sys/sx.h>
126#include <sys/vmmeter.h>
127#include <sys/sched.h>
128#include <sys/sysctl.h>
129#ifdef SMP
130#include <sys/smp.h>
131#endif
132
133#include <vm/vm.h>
134#include <vm/vm_param.h>
135#include <vm/vm_kern.h>
136#include <vm/vm_page.h>
137#include <vm/vm_map.h>
138#include <vm/vm_object.h>
139#include <vm/vm_extern.h>
140#include <vm/vm_pageout.h>
141#include <vm/vm_pager.h>
142#include <vm/uma.h>
143
144#include <machine/cpu.h>
145#include <machine/cputypes.h>
146#include <machine/md_var.h>
147#include <machine/pcb.h>
148#include <machine/specialreg.h>
149#ifdef SMP
150#include <machine/smp.h>
151#endif
152
153#ifdef XBOX
154#include <machine/xbox.h>
155#endif
156
157#include <xen/interface/xen.h>
158#include <xen/hypervisor.h>
159#include <machine/xen/hypercall.h>
160#include <machine/xen/xenvar.h>
161#include <machine/xen/xenfunc.h>
162
163#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
164#define CPU_ENABLE_SSE
165#endif
166
167#ifndef PMAP_SHPGPERPROC
168#define PMAP_SHPGPERPROC 200
169#endif
170
171#if defined(DIAGNOSTIC)
172#define PMAP_DIAGNOSTIC
173#endif
174
175#if !defined(PMAP_DIAGNOSTIC)
176#define PMAP_INLINE	extern inline
177#else
178#define PMAP_INLINE
179#endif
180
181#define PV_STATS
182#ifdef PV_STATS
183#define PV_STAT(x)	do { x ; } while (0)
184#else
185#define PV_STAT(x)	do { } while (0)
186#endif
187
188#define	pa_index(pa)	((pa) >> PDRSHIFT)
189#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
190
191/*
192 * Get PDEs and PTEs for user/kernel address space
193 */
194#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
195#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
196
197#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
198#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
199#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
200#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
201#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
202
203#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
204
205struct pmap kernel_pmap_store;
206LIST_HEAD(pmaplist, pmap);
207static struct pmaplist allpmaps;
208static struct mtx allpmaps_lock;
209
210vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
211vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
212int pgeflag = 0;		/* PG_G or-in */
213int pseflag = 0;		/* PG_PS or-in */
214
215int nkpt;
216vm_offset_t kernel_vm_end;
217extern u_int32_t KERNend;
218
219#ifdef PAE
220pt_entry_t pg_nx;
221#if !defined(XEN)
222static uma_zone_t pdptzone;
223#endif
224#endif
225
226static int pat_works;			/* Is page attribute table sane? */
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0;
251static pt_entry_t *CMAP3;
252caddr_t CADDR1 = 0, ptvmmap = 0;
253static caddr_t CADDR3;
254struct msgbuf *msgbufp = 0;
255
256/*
257 * Crashdump maps.
258 */
259static caddr_t crashdumpmap;
260
261static pt_entry_t *PMAP1 = 0, *PMAP2;
262static pt_entry_t *PADDR1 = 0, *PADDR2;
263#ifdef SMP
264static int PMAP1cpu;
265static int PMAP1changedcpu;
266SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
267	   &PMAP1changedcpu, 0,
268	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
269#endif
270static int PMAP1changed;
271SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
272	   &PMAP1changed, 0,
273	   "Number of times pmap_pte_quick changed PMAP1");
274static int PMAP1unchanged;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
276	   &PMAP1unchanged, 0,
277	   "Number of times pmap_pte_quick didn't change PMAP1");
278static struct mtx PMAP2mutex;
279
280SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
281static int pg_ps_enabled;
282SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
283    "Are large page mappings enabled?");
284
285SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
286	"Max number of PV entries");
287SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
288	"Page share factor per proc");
289
290static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
291static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
292
293static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
294    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
295static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
296    vm_page_t *free);
297static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
298    vm_page_t *free);
299static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
300					vm_offset_t va);
301static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
302static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
303    vm_page_t m);
304
305static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
306
307static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
308static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
309static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
310static void pmap_pte_release(pt_entry_t *pte);
311static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
312static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
313static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
314static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
315
316static __inline void pagezero(void *page);
317
318#if defined(PAE) && !defined(XEN)
319static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
320#endif
321#ifndef XEN
322static void pmap_set_pg(void);
323#endif
324
325CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
326CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
327
328/*
329 * If you get an error here, then you set KVA_PAGES wrong! See the
330 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
331 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
332 */
333CTASSERT(KERNBASE % (1 << 24) == 0);
334
335
336
337void
338pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
339{
340	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
341
342	switch (type) {
343	case SH_PD_SET_VA:
344#if 0
345		xen_queue_pt_update(shadow_pdir_ma,
346				    xpmap_ptom(val & ~(PG_RW)));
347#endif
348		xen_queue_pt_update(pdir_ma,
349				    xpmap_ptom(val));
350		break;
351	case SH_PD_SET_VA_MA:
352#if 0
353		xen_queue_pt_update(shadow_pdir_ma,
354				    val & ~(PG_RW));
355#endif
356		xen_queue_pt_update(pdir_ma, val);
357		break;
358	case SH_PD_SET_VA_CLEAR:
359#if 0
360		xen_queue_pt_update(shadow_pdir_ma, 0);
361#endif
362		xen_queue_pt_update(pdir_ma, 0);
363		break;
364	}
365}
366
367/*
368 * Move the kernel virtual free pointer to the next
369 * 4MB.  This is used to help improve performance
370 * by using a large (4MB) page for much of the kernel
371 * (.text, .data, .bss)
372 */
373static vm_offset_t
374pmap_kmem_choose(vm_offset_t addr)
375{
376	vm_offset_t newaddr = addr;
377
378#ifndef DISABLE_PSE
379	if (cpu_feature & CPUID_PSE)
380		newaddr = (addr + PDRMASK) & ~PDRMASK;
381#endif
382	return newaddr;
383}
384
385/*
386 *	Bootstrap the system enough to run with virtual memory.
387 *
388 *	On the i386 this is called after mapping has already been enabled
389 *	and just syncs the pmap module with what has already been done.
390 *	[We can't call it easily with mapping off since the kernel is not
391 *	mapped with PA == VA, hence we would have to relocate every address
392 *	from the linked base (virtual) address "KERNBASE" to the actual
393 *	(physical) address starting relative to 0]
394 */
395void
396pmap_bootstrap(vm_paddr_t firstaddr)
397{
398	vm_offset_t va;
399	pt_entry_t *pte, *unused;
400	struct sysmaps *sysmaps;
401	int i;
402
403	/*
404	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
405	 * large. It should instead be correctly calculated in locore.s and
406	 * not based on 'first' (which is a physical address, not a virtual
407	 * address, for the start of unused physical memory). The kernel
408	 * page tables are NOT double mapped and thus should not be included
409	 * in this calculation.
410	 */
411	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
412	virtual_avail = pmap_kmem_choose(virtual_avail);
413
414	virtual_end = VM_MAX_KERNEL_ADDRESS;
415
416	/*
417	 * Initialize the kernel pmap (which is statically allocated).
418	 */
419	PMAP_LOCK_INIT(kernel_pmap);
420	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
421#ifdef PAE
422	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
423#endif
424	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
425	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
426	LIST_INIT(&allpmaps);
427	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
428	mtx_lock_spin(&allpmaps_lock);
429	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
430	mtx_unlock_spin(&allpmaps_lock);
431	if (nkpt == 0)
432		nkpt = NKPT;
433
434	/*
435	 * Reserve some special page table entries/VA space for temporary
436	 * mapping of pages.
437	 */
438#define	SYSMAP(c, p, v, n)	\
439	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
440
441	va = virtual_avail;
442	pte = vtopte(va);
443
444	/*
445	 * CMAP1/CMAP2 are used for zeroing and copying pages.
446	 * CMAP3 is used for the idle process page zeroing.
447	 */
448	for (i = 0; i < MAXCPU; i++) {
449		sysmaps = &sysmaps_pcpu[i];
450		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
451		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
452		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
453	}
454	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
455	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
456	PT_SET_MA(CADDR3, 0);
457
458	/*
459	 * Crashdump maps.
460	 */
461	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
462
463	/*
464	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
465	 */
466	SYSMAP(caddr_t, unused, ptvmmap, 1)
467
468	/*
469	 * msgbufp is used to map the system message buffer.
470	 */
471	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
472
473	/*
474	 * ptemap is used for pmap_pte_quick
475	 */
476	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
477	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
478
479	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
480
481	virtual_avail = va;
482	PT_SET_MA(CADDR1, 0);
483
484	/*
485	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
486	 * physical memory region that is used by the ACPI wakeup code.  This
487	 * mapping must not have PG_G set.
488	 */
489#ifndef XEN
490	/*
491	 * leave here deliberately to show that this is not supported
492	 */
493#ifdef XBOX
494	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
495	 * an early stadium, we cannot yet neatly map video memory ... :-(
496	 * Better fixes are very welcome! */
497	if (!arch_i386_is_xbox)
498#endif
499	for (i = 1; i < NKPT; i++)
500		PTD[i] = 0;
501
502	/* Initialize the PAT MSR if present. */
503	pmap_init_pat();
504
505	/* Turn on PG_G on kernel page(s) */
506	pmap_set_pg();
507#endif
508}
509
510/*
511 * Setup the PAT MSR.
512 */
513void
514pmap_init_pat(void)
515{
516	uint64_t pat_msr;
517
518	/* Bail if this CPU doesn't implement PAT. */
519	if (!(cpu_feature & CPUID_PAT))
520		return;
521
522	if (cpu_vendor_id != CPU_VENDOR_INTEL ||
523	    (CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe)) {
524		/*
525		 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
526		 * Program 4 and 5 as WP and WC.
527		 * Leave 6 and 7 as UC and UC-.
528		 */
529		pat_msr = rdmsr(MSR_PAT);
530		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
531		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
532		    PAT_VALUE(5, PAT_WRITE_COMBINING);
533		pat_works = 1;
534	} else {
535		/*
536		 * Due to some Intel errata, we can only safely use the lower 4
537		 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
538		 * of UC-.
539		 *
540		 *   Intel Pentium III Processor Specification Update
541		 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
542		 * or Mode C Paging)
543		 *
544		 *   Intel Pentium IV  Processor Specification Update
545		 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
546		 */
547		pat_msr = rdmsr(MSR_PAT);
548		pat_msr &= ~PAT_MASK(2);
549		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
550		pat_works = 0;
551	}
552	wrmsr(MSR_PAT, pat_msr);
553}
554
555#ifndef XEN
556/*
557 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
558 */
559static void
560pmap_set_pg(void)
561{
562	pd_entry_t pdir;
563	pt_entry_t *pte;
564	vm_offset_t va, endva;
565	int i;
566
567	if (pgeflag == 0)
568		return;
569
570	i = KERNLOAD/NBPDR;
571	endva = KERNBASE + KERNend;
572
573	if (pseflag) {
574		va = KERNBASE + KERNLOAD;
575		while (va  < endva) {
576			pdir = kernel_pmap->pm_pdir[KPTDI+i];
577			pdir |= pgeflag;
578			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
579			invltlb();	/* Play it safe, invltlb() every time */
580			i++;
581			va += NBPDR;
582		}
583	} else {
584		va = (vm_offset_t)btext;
585		while (va < endva) {
586			pte = vtopte(va);
587			if (*pte & PG_V)
588				*pte |= pgeflag;
589			invltlb();	/* Play it safe, invltlb() every time */
590			va += PAGE_SIZE;
591		}
592	}
593}
594#endif
595
596/*
597 * Initialize a vm_page's machine-dependent fields.
598 */
599void
600pmap_page_init(vm_page_t m)
601{
602
603	TAILQ_INIT(&m->md.pv_list);
604	m->md.pat_mode = PAT_WRITE_BACK;
605}
606
607#if defined(PAE) && !defined(XEN)
608static void *
609pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
610{
611
612	/* Inform UMA that this allocator uses kernel_map/object. */
613	*flags = UMA_SLAB_KERNEL;
614	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
615	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
616}
617#endif
618
619/*
620 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
621 * Requirements:
622 *  - Must deal with pages in order to ensure that none of the PG_* bits
623 *    are ever set, PG_V in particular.
624 *  - Assumes we can write to ptes without pte_store() atomic ops, even
625 *    on PAE systems.  This should be ok.
626 *  - Assumes nothing will ever test these addresses for 0 to indicate
627 *    no mapping instead of correctly checking PG_V.
628 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
629 * Because PG_V is never set, there can be no mappings to invalidate.
630 */
631static int ptelist_count = 0;
632static vm_offset_t
633pmap_ptelist_alloc(vm_offset_t *head)
634{
635	vm_offset_t va;
636	vm_offset_t *phead = (vm_offset_t *)*head;
637
638	if (ptelist_count == 0) {
639		printf("out of memory!!!!!!\n");
640		return (0);	/* Out of memory */
641	}
642	ptelist_count--;
643	va = phead[ptelist_count];
644	return (va);
645}
646
647static void
648pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
649{
650	vm_offset_t *phead = (vm_offset_t *)*head;
651
652	phead[ptelist_count++] = va;
653}
654
655static void
656pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
657{
658	int i, nstackpages;
659	vm_offset_t va;
660	vm_page_t m;
661
662	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
663	for (i = 0; i < nstackpages; i++) {
664		va = (vm_offset_t)base + i * PAGE_SIZE;
665		m = vm_page_alloc(NULL, i,
666		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
667		    VM_ALLOC_ZERO);
668		pmap_qenter(va, &m, 1);
669	}
670
671	*head = (vm_offset_t)base;
672	for (i = npages - 1; i >= nstackpages; i--) {
673		va = (vm_offset_t)base + i * PAGE_SIZE;
674		pmap_ptelist_free(head, va);
675	}
676}
677
678
679/*
680 *	Initialize the pmap module.
681 *	Called by vm_init, to initialize any structures that the pmap
682 *	system needs to map virtual memory.
683 */
684void
685pmap_init(void)
686{
687	vm_page_t mpte;
688	vm_size_t s;
689	int i, pv_npg;
690
691	/*
692	 * Initialize the vm page array entries for the kernel pmap's
693	 * page table pages.
694	 */
695	for (i = 0; i < nkpt; i++) {
696		mpte = PHYS_TO_VM_PAGE(xpmap_mtop(PTD[i + KPTDI] & PG_FRAME));
697		KASSERT(mpte >= vm_page_array &&
698		    mpte < &vm_page_array[vm_page_array_size],
699		    ("pmap_init: page table page is out of range"));
700		mpte->pindex = i + KPTDI;
701		mpte->phys_addr = xpmap_mtop(PTD[i + KPTDI] & PG_FRAME);
702	}
703
704        /*
705	 * Initialize the address space (zone) for the pv entries.  Set a
706	 * high water mark so that the system can recover from excessive
707	 * numbers of pv entries.
708	 */
709	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
710	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
711	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
712	pv_entry_max = roundup(pv_entry_max, _NPCPV);
713	pv_entry_high_water = 9 * (pv_entry_max / 10);
714
715	/*
716	 * Are large page mappings enabled?
717	 */
718	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
719
720	/*
721	 * Calculate the size of the pv head table for superpages.
722	 */
723	for (i = 0; phys_avail[i + 1]; i += 2);
724	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
725
726	/*
727	 * Allocate memory for the pv head table for superpages.
728	 */
729	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
730	s = round_page(s);
731	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
732	for (i = 0; i < pv_npg; i++)
733		TAILQ_INIT(&pv_table[i].pv_list);
734
735	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
736	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
737	    PAGE_SIZE * pv_maxchunks);
738	if (pv_chunkbase == NULL)
739		panic("pmap_init: not enough kvm for pv chunks");
740	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
741#if defined(PAE) && !defined(XEN)
742	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
743	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
744	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
745	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
746#endif
747}
748
749
750/***************************************************
751 * Low level helper routines.....
752 ***************************************************/
753
754/*
755 * Determine the appropriate bits to set in a PTE or PDE for a specified
756 * caching mode.
757 */
758int
759pmap_cache_bits(int mode, boolean_t is_pde)
760{
761	int pat_flag, pat_index, cache_bits;
762
763	/* The PAT bit is different for PTE's and PDE's. */
764	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
765
766	/* If we don't support PAT, map extended modes to older ones. */
767	if (!(cpu_feature & CPUID_PAT)) {
768		switch (mode) {
769		case PAT_UNCACHEABLE:
770		case PAT_WRITE_THROUGH:
771		case PAT_WRITE_BACK:
772			break;
773		case PAT_UNCACHED:
774		case PAT_WRITE_COMBINING:
775		case PAT_WRITE_PROTECTED:
776			mode = PAT_UNCACHEABLE;
777			break;
778		}
779	}
780
781	/* Map the caching mode to a PAT index. */
782	if (pat_works) {
783		switch (mode) {
784			case PAT_UNCACHEABLE:
785				pat_index = 3;
786				break;
787			case PAT_WRITE_THROUGH:
788				pat_index = 1;
789				break;
790			case PAT_WRITE_BACK:
791				pat_index = 0;
792				break;
793			case PAT_UNCACHED:
794				pat_index = 2;
795				break;
796			case PAT_WRITE_COMBINING:
797				pat_index = 5;
798				break;
799			case PAT_WRITE_PROTECTED:
800				pat_index = 4;
801				break;
802			default:
803				panic("Unknown caching mode %d\n", mode);
804		}
805	} else {
806		switch (mode) {
807			case PAT_UNCACHED:
808			case PAT_UNCACHEABLE:
809			case PAT_WRITE_PROTECTED:
810				pat_index = 3;
811				break;
812			case PAT_WRITE_THROUGH:
813				pat_index = 1;
814				break;
815			case PAT_WRITE_BACK:
816				pat_index = 0;
817				break;
818			case PAT_WRITE_COMBINING:
819				pat_index = 2;
820				break;
821			default:
822				panic("Unknown caching mode %d\n", mode);
823		}
824	}
825
826	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
827	cache_bits = 0;
828	if (pat_index & 0x4)
829		cache_bits |= pat_flag;
830	if (pat_index & 0x2)
831		cache_bits |= PG_NC_PCD;
832	if (pat_index & 0x1)
833		cache_bits |= PG_NC_PWT;
834	return (cache_bits);
835}
836#ifdef SMP
837/*
838 * For SMP, these functions have to use the IPI mechanism for coherence.
839 *
840 * N.B.: Before calling any of the following TLB invalidation functions,
841 * the calling processor must ensure that all stores updating a non-
842 * kernel page table are globally performed.  Otherwise, another
843 * processor could cache an old, pre-update entry without being
844 * invalidated.  This can happen one of two ways: (1) The pmap becomes
845 * active on another processor after its pm_active field is checked by
846 * one of the following functions but before a store updating the page
847 * table is globally performed. (2) The pmap becomes active on another
848 * processor before its pm_active field is checked but due to
849 * speculative loads one of the following functions stills reads the
850 * pmap as inactive on the other processor.
851 *
852 * The kernel page table is exempt because its pm_active field is
853 * immutable.  The kernel page table is always active on every
854 * processor.
855 */
856void
857pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
858{
859	u_int cpumask;
860	u_int other_cpus;
861
862	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
863	    pmap, va);
864
865	sched_pin();
866	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
867		invlpg(va);
868		smp_invlpg(va);
869	} else {
870		cpumask = PCPU_GET(cpumask);
871		other_cpus = PCPU_GET(other_cpus);
872		if (pmap->pm_active & cpumask)
873			invlpg(va);
874		if (pmap->pm_active & other_cpus)
875			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
876	}
877	sched_unpin();
878	PT_UPDATES_FLUSH();
879}
880
881void
882pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
883{
884	u_int cpumask;
885	u_int other_cpus;
886	vm_offset_t addr;
887
888	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
889	    pmap, sva, eva);
890
891	sched_pin();
892	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
893		for (addr = sva; addr < eva; addr += PAGE_SIZE)
894			invlpg(addr);
895		smp_invlpg_range(sva, eva);
896	} else {
897		cpumask = PCPU_GET(cpumask);
898		other_cpus = PCPU_GET(other_cpus);
899		if (pmap->pm_active & cpumask)
900			for (addr = sva; addr < eva; addr += PAGE_SIZE)
901				invlpg(addr);
902		if (pmap->pm_active & other_cpus)
903			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
904			    sva, eva);
905	}
906	sched_unpin();
907	PT_UPDATES_FLUSH();
908}
909
910void
911pmap_invalidate_all(pmap_t pmap)
912{
913	u_int cpumask;
914	u_int other_cpus;
915
916	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
917
918	sched_pin();
919	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
920		invltlb();
921		smp_invltlb();
922	} else {
923		cpumask = PCPU_GET(cpumask);
924		other_cpus = PCPU_GET(other_cpus);
925		if (pmap->pm_active & cpumask)
926			invltlb();
927		if (pmap->pm_active & other_cpus)
928			smp_masked_invltlb(pmap->pm_active & other_cpus);
929	}
930	sched_unpin();
931}
932
933void
934pmap_invalidate_cache(void)
935{
936
937	sched_pin();
938	wbinvd();
939	smp_cache_flush();
940	sched_unpin();
941}
942#else /* !SMP */
943/*
944 * Normal, non-SMP, 486+ invalidation functions.
945 * We inline these within pmap.c for speed.
946 */
947PMAP_INLINE void
948pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
949{
950	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
951	    pmap, va);
952
953	if (pmap == kernel_pmap || pmap->pm_active)
954		invlpg(va);
955	PT_UPDATES_FLUSH();
956}
957
958PMAP_INLINE void
959pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
960{
961	vm_offset_t addr;
962
963	if (eva - sva > PAGE_SIZE)
964		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
965		    pmap, sva, eva);
966
967	if (pmap == kernel_pmap || pmap->pm_active)
968		for (addr = sva; addr < eva; addr += PAGE_SIZE)
969			invlpg(addr);
970	PT_UPDATES_FLUSH();
971}
972
973PMAP_INLINE void
974pmap_invalidate_all(pmap_t pmap)
975{
976
977	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
978
979	if (pmap == kernel_pmap || pmap->pm_active)
980		invltlb();
981}
982
983PMAP_INLINE void
984pmap_invalidate_cache(void)
985{
986
987	wbinvd();
988}
989#endif /* !SMP */
990
991void
992pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
993{
994
995	KASSERT((sva & PAGE_MASK) == 0,
996	    ("pmap_invalidate_cache_range: sva not page-aligned"));
997	KASSERT((eva & PAGE_MASK) == 0,
998	    ("pmap_invalidate_cache_range: eva not page-aligned"));
999
1000	if (cpu_feature & CPUID_SS)
1001		; /* If "Self Snoop" is supported, do nothing. */
1002	else if (cpu_feature & CPUID_CLFSH) {
1003
1004		/*
1005		 * Otherwise, do per-cache line flush.  Use the mfence
1006		 * instruction to insure that previous stores are
1007		 * included in the write-back.  The processor
1008		 * propagates flush to other processors in the cache
1009		 * coherence domain.
1010		 */
1011		mfence();
1012		for (; sva < eva; sva += cpu_clflush_line_size)
1013			clflush(sva);
1014		mfence();
1015	} else {
1016
1017		/*
1018		 * No targeted cache flush methods are supported by CPU,
1019		 * globally invalidate cache as a last resort.
1020		 */
1021		pmap_invalidate_cache();
1022	}
1023}
1024
1025/*
1026 * Are we current address space or kernel?  N.B. We return FALSE when
1027 * a pmap's page table is in use because a kernel thread is borrowing
1028 * it.  The borrowed page table can change spontaneously, making any
1029 * dependence on its continued use subject to a race condition.
1030 */
1031static __inline int
1032pmap_is_current(pmap_t pmap)
1033{
1034
1035	return (pmap == kernel_pmap ||
1036	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1037		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1038}
1039
1040/*
1041 * If the given pmap is not the current or kernel pmap, the returned pte must
1042 * be released by passing it to pmap_pte_release().
1043 */
1044pt_entry_t *
1045pmap_pte(pmap_t pmap, vm_offset_t va)
1046{
1047	pd_entry_t newpf;
1048	pd_entry_t *pde;
1049
1050	pde = pmap_pde(pmap, va);
1051	if (*pde & PG_PS)
1052		return (pde);
1053	if (*pde != 0) {
1054		/* are we current address space or kernel? */
1055		if (pmap_is_current(pmap))
1056			return (vtopte(va));
1057		mtx_lock(&PMAP2mutex);
1058		newpf = *pde & PG_FRAME;
1059		if ((*PMAP2 & PG_FRAME) != newpf) {
1060			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1061			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1062			    pmap, va, (*PMAP2 & 0xffffffff));
1063		}
1064
1065		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1066	}
1067	return (0);
1068}
1069
1070/*
1071 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1072 * being NULL.
1073 */
1074static __inline void
1075pmap_pte_release(pt_entry_t *pte)
1076{
1077
1078	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1079		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1080		    *PMAP2);
1081		PT_SET_VA(PMAP2, 0, TRUE);
1082		mtx_unlock(&PMAP2mutex);
1083	}
1084}
1085
1086static __inline void
1087invlcaddr(void *caddr)
1088{
1089
1090	invlpg((u_int)caddr);
1091	PT_UPDATES_FLUSH();
1092}
1093
1094/*
1095 * Super fast pmap_pte routine best used when scanning
1096 * the pv lists.  This eliminates many coarse-grained
1097 * invltlb calls.  Note that many of the pv list
1098 * scans are across different pmaps.  It is very wasteful
1099 * to do an entire invltlb for checking a single mapping.
1100 *
1101 * If the given pmap is not the current pmap, vm_page_queue_mtx
1102 * must be held and curthread pinned to a CPU.
1103 */
1104static pt_entry_t *
1105pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1106{
1107	pd_entry_t newpf;
1108	pd_entry_t *pde;
1109
1110	pde = pmap_pde(pmap, va);
1111	if (*pde & PG_PS)
1112		return (pde);
1113	if (*pde != 0) {
1114		/* are we current address space or kernel? */
1115		if (pmap_is_current(pmap))
1116			return (vtopte(va));
1117		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1118		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1119		newpf = *pde & PG_FRAME;
1120		if ((*PMAP1 & PG_FRAME) != newpf) {
1121			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1122			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1123			    pmap, va, (u_long)*PMAP1);
1124
1125#ifdef SMP
1126			PMAP1cpu = PCPU_GET(cpuid);
1127#endif
1128			PMAP1changed++;
1129		} else
1130#ifdef SMP
1131		if (PMAP1cpu != PCPU_GET(cpuid)) {
1132			PMAP1cpu = PCPU_GET(cpuid);
1133			invlcaddr(PADDR1);
1134			PMAP1changedcpu++;
1135		} else
1136#endif
1137			PMAP1unchanged++;
1138		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1139	}
1140	return (0);
1141}
1142
1143/*
1144 *	Routine:	pmap_extract
1145 *	Function:
1146 *		Extract the physical page address associated
1147 *		with the given map/virtual_address pair.
1148 */
1149vm_paddr_t
1150pmap_extract(pmap_t pmap, vm_offset_t va)
1151{
1152	vm_paddr_t rtval;
1153	pt_entry_t *pte;
1154	pd_entry_t pde;
1155	pt_entry_t pteval;
1156
1157	rtval = 0;
1158	PMAP_LOCK(pmap);
1159	pde = pmap->pm_pdir[va >> PDRSHIFT];
1160	if (pde != 0) {
1161		if ((pde & PG_PS) != 0) {
1162			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1163			PMAP_UNLOCK(pmap);
1164			return rtval;
1165		}
1166		pte = pmap_pte(pmap, va);
1167		pteval = *pte ? xpmap_mtop(*pte) : 0;
1168		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1169		pmap_pte_release(pte);
1170	}
1171	PMAP_UNLOCK(pmap);
1172	return (rtval);
1173}
1174
1175/*
1176 *	Routine:	pmap_extract_ma
1177 *	Function:
1178 *		Like pmap_extract, but returns machine address
1179 */
1180vm_paddr_t
1181pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1182{
1183	vm_paddr_t rtval;
1184	pt_entry_t *pte;
1185	pd_entry_t pde;
1186
1187	rtval = 0;
1188	PMAP_LOCK(pmap);
1189	pde = pmap->pm_pdir[va >> PDRSHIFT];
1190	if (pde != 0) {
1191		if ((pde & PG_PS) != 0) {
1192			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1193			PMAP_UNLOCK(pmap);
1194			return rtval;
1195		}
1196		pte = pmap_pte(pmap, va);
1197		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1198		pmap_pte_release(pte);
1199	}
1200	PMAP_UNLOCK(pmap);
1201	return (rtval);
1202}
1203
1204/*
1205 *	Routine:	pmap_extract_and_hold
1206 *	Function:
1207 *		Atomically extract and hold the physical page
1208 *		with the given pmap and virtual address pair
1209 *		if that mapping permits the given protection.
1210 */
1211vm_page_t
1212pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1213{
1214	pd_entry_t pde;
1215	pt_entry_t pte;
1216	vm_page_t m;
1217
1218	m = NULL;
1219	vm_page_lock_queues();
1220	PMAP_LOCK(pmap);
1221	pde = PT_GET(pmap_pde(pmap, va));
1222	if (pde != 0) {
1223		if (pde & PG_PS) {
1224			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1225				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1226				    (va & PDRMASK));
1227				vm_page_hold(m);
1228			}
1229		} else {
1230			sched_pin();
1231			pte = PT_GET(pmap_pte_quick(pmap, va));
1232			if (*PMAP1)
1233				PT_SET_MA(PADDR1, 0);
1234			if ((pte & PG_V) &&
1235			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1236				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1237				vm_page_hold(m);
1238			}
1239			sched_unpin();
1240		}
1241	}
1242	vm_page_unlock_queues();
1243	PMAP_UNLOCK(pmap);
1244	return (m);
1245}
1246
1247/***************************************************
1248 * Low level mapping routines.....
1249 ***************************************************/
1250
1251/*
1252 * Add a wired page to the kva.
1253 * Note: not SMP coherent.
1254 */
1255void
1256pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1257{
1258	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1259}
1260
1261void
1262pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1263{
1264	pt_entry_t *pte;
1265
1266	pte = vtopte(va);
1267	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1268}
1269
1270
1271static __inline void
1272pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1273{
1274	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1275}
1276
1277/*
1278 * Remove a page from the kernel pagetables.
1279 * Note: not SMP coherent.
1280 */
1281PMAP_INLINE void
1282pmap_kremove(vm_offset_t va)
1283{
1284	pt_entry_t *pte;
1285
1286	pte = vtopte(va);
1287	PT_CLEAR_VA(pte, FALSE);
1288}
1289
1290/*
1291 *	Used to map a range of physical addresses into kernel
1292 *	virtual address space.
1293 *
1294 *	The value passed in '*virt' is a suggested virtual address for
1295 *	the mapping. Architectures which can support a direct-mapped
1296 *	physical to virtual region can return the appropriate address
1297 *	within that region, leaving '*virt' unchanged. Other
1298 *	architectures should map the pages starting at '*virt' and
1299 *	update '*virt' with the first usable address after the mapped
1300 *	region.
1301 */
1302vm_offset_t
1303pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1304{
1305	vm_offset_t va, sva;
1306
1307	va = sva = *virt;
1308	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1309	    va, start, end, prot);
1310	while (start < end) {
1311		pmap_kenter(va, start);
1312		va += PAGE_SIZE;
1313		start += PAGE_SIZE;
1314	}
1315	pmap_invalidate_range(kernel_pmap, sva, va);
1316	*virt = va;
1317	return (sva);
1318}
1319
1320
1321/*
1322 * Add a list of wired pages to the kva
1323 * this routine is only used for temporary
1324 * kernel mappings that do not need to have
1325 * page modification or references recorded.
1326 * Note that old mappings are simply written
1327 * over.  The page *must* be wired.
1328 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1329 */
1330void
1331pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1332{
1333	pt_entry_t *endpte, *pte;
1334	vm_paddr_t pa;
1335	vm_offset_t va = sva;
1336	int mclcount = 0;
1337	multicall_entry_t mcl[16];
1338	multicall_entry_t *mclp = mcl;
1339	int error;
1340
1341	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1342	pte = vtopte(sva);
1343	endpte = pte + count;
1344	while (pte < endpte) {
1345		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1346
1347		mclp->op = __HYPERVISOR_update_va_mapping;
1348		mclp->args[0] = va;
1349		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1350		mclp->args[2] = (uint32_t)(pa >> 32);
1351		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1352
1353		va += PAGE_SIZE;
1354		pte++;
1355		ma++;
1356		mclp++;
1357		mclcount++;
1358		if (mclcount == 16) {
1359			error = HYPERVISOR_multicall(mcl, mclcount);
1360			mclp = mcl;
1361			mclcount = 0;
1362			KASSERT(error == 0, ("bad multicall %d", error));
1363		}
1364	}
1365	if (mclcount) {
1366		error = HYPERVISOR_multicall(mcl, mclcount);
1367		KASSERT(error == 0, ("bad multicall %d", error));
1368	}
1369
1370#ifdef INVARIANTS
1371	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1372		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1373#endif
1374}
1375
1376
1377/*
1378 * This routine tears out page mappings from the
1379 * kernel -- it is meant only for temporary mappings.
1380 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1381 */
1382void
1383pmap_qremove(vm_offset_t sva, int count)
1384{
1385	vm_offset_t va;
1386
1387	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1388	va = sva;
1389	vm_page_lock_queues();
1390	critical_enter();
1391	while (count-- > 0) {
1392		pmap_kremove(va);
1393		va += PAGE_SIZE;
1394	}
1395	pmap_invalidate_range(kernel_pmap, sva, va);
1396	critical_exit();
1397	vm_page_unlock_queues();
1398}
1399
1400/***************************************************
1401 * Page table page management routines.....
1402 ***************************************************/
1403static __inline void
1404pmap_free_zero_pages(vm_page_t free)
1405{
1406	vm_page_t m;
1407
1408	while (free != NULL) {
1409		m = free;
1410		free = m->right;
1411		vm_page_free_zero(m);
1412	}
1413}
1414
1415/*
1416 * This routine unholds page table pages, and if the hold count
1417 * drops to zero, then it decrements the wire count.
1418 */
1419static __inline int
1420pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1421{
1422
1423	--m->wire_count;
1424	if (m->wire_count == 0)
1425		return _pmap_unwire_pte_hold(pmap, m, free);
1426	else
1427		return 0;
1428}
1429
1430static int
1431_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1432{
1433	vm_offset_t pteva;
1434
1435	PT_UPDATES_FLUSH();
1436	/*
1437	 * unmap the page table page
1438	 */
1439	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1440	/*
1441	 * page *might* contain residual mapping :-/
1442	 */
1443	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1444	pmap_zero_page(m);
1445	--pmap->pm_stats.resident_count;
1446
1447	/*
1448	 * This is a release store so that the ordinary store unmapping
1449	 * the page table page is globally performed before TLB shoot-
1450	 * down is begun.
1451	 */
1452	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1453
1454	/*
1455	 * Do an invltlb to make the invalidated mapping
1456	 * take effect immediately.
1457	 */
1458	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1459	pmap_invalidate_page(pmap, pteva);
1460
1461	/*
1462	 * Put page on a list so that it is released after
1463	 * *ALL* TLB shootdown is done
1464	 */
1465	m->right = *free;
1466	*free = m;
1467
1468	return 1;
1469}
1470
1471/*
1472 * After removing a page table entry, this routine is used to
1473 * conditionally free the page, and manage the hold/wire counts.
1474 */
1475static int
1476pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1477{
1478	pd_entry_t ptepde;
1479	vm_page_t mpte;
1480
1481	if (va >= VM_MAXUSER_ADDRESS)
1482		return 0;
1483	ptepde = PT_GET(pmap_pde(pmap, va));
1484	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1485	return pmap_unwire_pte_hold(pmap, mpte, free);
1486}
1487
1488void
1489pmap_pinit0(pmap_t pmap)
1490{
1491
1492	PMAP_LOCK_INIT(pmap);
1493	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1494#ifdef PAE
1495	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1496#endif
1497	pmap->pm_active = 0;
1498	PCPU_SET(curpmap, pmap);
1499	TAILQ_INIT(&pmap->pm_pvchunk);
1500	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1501	mtx_lock_spin(&allpmaps_lock);
1502	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1503	mtx_unlock_spin(&allpmaps_lock);
1504}
1505
1506/*
1507 * Initialize a preallocated and zeroed pmap structure,
1508 * such as one in a vmspace structure.
1509 */
1510int
1511pmap_pinit(pmap_t pmap)
1512{
1513	vm_page_t m, ptdpg[NPGPTD + 1];
1514	int npgptd = NPGPTD + 1;
1515	static int color;
1516	int i;
1517
1518	PMAP_LOCK_INIT(pmap);
1519
1520	/*
1521	 * No need to allocate page table space yet but we do need a valid
1522	 * page directory table.
1523	 */
1524	if (pmap->pm_pdir == NULL) {
1525		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1526		    NBPTD);
1527		if (pmap->pm_pdir == NULL) {
1528			PMAP_LOCK_DESTROY(pmap);
1529			return (0);
1530		}
1531#if defined(XEN) && defined(PAE)
1532		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1533#endif
1534
1535#if defined(PAE) && !defined(XEN)
1536		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1537		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1538		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1539		    ("pmap_pinit: pdpt misaligned"));
1540		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1541		    ("pmap_pinit: pdpt above 4g"));
1542#endif
1543	}
1544
1545	/*
1546	 * allocate the page directory page(s)
1547	 */
1548	for (i = 0; i < npgptd;) {
1549		m = vm_page_alloc(NULL, color++,
1550		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1551		    VM_ALLOC_ZERO);
1552		if (m == NULL)
1553			VM_WAIT;
1554		else {
1555			ptdpg[i++] = m;
1556		}
1557	}
1558	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1559	for (i = 0; i < NPGPTD; i++) {
1560		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1561			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1562	}
1563
1564	mtx_lock_spin(&allpmaps_lock);
1565	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1566	mtx_unlock_spin(&allpmaps_lock);
1567	/* Wire in kernel global address entries. */
1568
1569	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1570#ifdef PAE
1571#ifdef XEN
1572	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1573	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1574		bzero(pmap->pm_pdpt, PAGE_SIZE);
1575#endif
1576	for (i = 0; i < NPGPTD; i++) {
1577		vm_paddr_t ma;
1578
1579		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1580		pmap->pm_pdpt[i] = ma | PG_V;
1581
1582	}
1583#endif
1584#ifdef XEN
1585	for (i = 0; i < NPGPTD; i++) {
1586		pt_entry_t *pd;
1587		vm_paddr_t ma;
1588
1589		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1590		pd = pmap->pm_pdir + (i * NPDEPG);
1591		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1592#if 0
1593		xen_pgd_pin(ma);
1594#endif
1595	}
1596
1597#ifdef PAE
1598	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1599#endif
1600	vm_page_lock_queues();
1601	xen_flush_queue();
1602	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1603	for (i = 0; i < NPGPTD; i++) {
1604		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1605		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1606	}
1607	xen_flush_queue();
1608	vm_page_unlock_queues();
1609#endif
1610	pmap->pm_active = 0;
1611	TAILQ_INIT(&pmap->pm_pvchunk);
1612	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1613
1614	return (1);
1615}
1616
1617/*
1618 * this routine is called if the page table page is not
1619 * mapped correctly.
1620 */
1621static vm_page_t
1622_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1623{
1624	vm_paddr_t ptema;
1625	vm_page_t m;
1626
1627	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1628	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1629	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1630
1631	/*
1632	 * Allocate a page table page.
1633	 */
1634	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1635	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1636		if (flags & M_WAITOK) {
1637			PMAP_UNLOCK(pmap);
1638			vm_page_unlock_queues();
1639			VM_WAIT;
1640			vm_page_lock_queues();
1641			PMAP_LOCK(pmap);
1642		}
1643
1644		/*
1645		 * Indicate the need to retry.  While waiting, the page table
1646		 * page may have been allocated.
1647		 */
1648		return (NULL);
1649	}
1650	if ((m->flags & PG_ZERO) == 0)
1651		pmap_zero_page(m);
1652
1653	/*
1654	 * Map the pagetable page into the process address space, if
1655	 * it isn't already there.
1656	 */
1657	pmap->pm_stats.resident_count++;
1658
1659	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1660	xen_pt_pin(ptema);
1661	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1662		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1663
1664	KASSERT(pmap->pm_pdir[ptepindex],
1665	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1666	return (m);
1667}
1668
1669static vm_page_t
1670pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1671{
1672	unsigned ptepindex;
1673	pd_entry_t ptema;
1674	vm_page_t m;
1675
1676	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1677	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1678	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1679
1680	/*
1681	 * Calculate pagetable page index
1682	 */
1683	ptepindex = va >> PDRSHIFT;
1684retry:
1685	/*
1686	 * Get the page directory entry
1687	 */
1688	ptema = pmap->pm_pdir[ptepindex];
1689
1690	/*
1691	 * This supports switching from a 4MB page to a
1692	 * normal 4K page.
1693	 */
1694	if (ptema & PG_PS) {
1695		/*
1696		 * XXX
1697		 */
1698		pmap->pm_pdir[ptepindex] = 0;
1699		ptema = 0;
1700		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1701		pmap_invalidate_all(kernel_pmap);
1702	}
1703
1704	/*
1705	 * If the page table page is mapped, we just increment the
1706	 * hold count, and activate it.
1707	 */
1708	if (ptema & PG_V) {
1709		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1710		m->wire_count++;
1711	} else {
1712		/*
1713		 * Here if the pte page isn't mapped, or if it has
1714		 * been deallocated.
1715		 */
1716		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1717		    pmap, va, flags);
1718		m = _pmap_allocpte(pmap, ptepindex, flags);
1719		if (m == NULL && (flags & M_WAITOK))
1720			goto retry;
1721
1722		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1723	}
1724	return (m);
1725}
1726
1727
1728/***************************************************
1729* Pmap allocation/deallocation routines.
1730 ***************************************************/
1731
1732#ifdef SMP
1733/*
1734 * Deal with a SMP shootdown of other users of the pmap that we are
1735 * trying to dispose of.  This can be a bit hairy.
1736 */
1737static cpumask_t *lazymask;
1738static u_int lazyptd;
1739static volatile u_int lazywait;
1740
1741void pmap_lazyfix_action(void);
1742
1743void
1744pmap_lazyfix_action(void)
1745{
1746	cpumask_t mymask = PCPU_GET(cpumask);
1747
1748#ifdef COUNT_IPIS
1749	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1750#endif
1751	if (rcr3() == lazyptd)
1752		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1753	atomic_clear_int(lazymask, mymask);
1754	atomic_store_rel_int(&lazywait, 1);
1755}
1756
1757static void
1758pmap_lazyfix_self(cpumask_t mymask)
1759{
1760
1761	if (rcr3() == lazyptd)
1762		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1763	atomic_clear_int(lazymask, mymask);
1764}
1765
1766
1767static void
1768pmap_lazyfix(pmap_t pmap)
1769{
1770	cpumask_t mymask, mask;
1771	u_int spins;
1772
1773	while ((mask = pmap->pm_active) != 0) {
1774		spins = 50000000;
1775		mask = mask & -mask;	/* Find least significant set bit */
1776		mtx_lock_spin(&smp_ipi_mtx);
1777#ifdef PAE
1778		lazyptd = vtophys(pmap->pm_pdpt);
1779#else
1780		lazyptd = vtophys(pmap->pm_pdir);
1781#endif
1782		mymask = PCPU_GET(cpumask);
1783		if (mask == mymask) {
1784			lazymask = &pmap->pm_active;
1785			pmap_lazyfix_self(mymask);
1786		} else {
1787			atomic_store_rel_int((u_int *)&lazymask,
1788			    (u_int)&pmap->pm_active);
1789			atomic_store_rel_int(&lazywait, 0);
1790			ipi_selected(mask, IPI_LAZYPMAP);
1791			while (lazywait == 0) {
1792				ia32_pause();
1793				if (--spins == 0)
1794					break;
1795			}
1796		}
1797		mtx_unlock_spin(&smp_ipi_mtx);
1798		if (spins == 0)
1799			printf("pmap_lazyfix: spun for 50000000\n");
1800	}
1801}
1802
1803#else	/* SMP */
1804
1805/*
1806 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1807 * unlikely to have to even execute this code, including the fact
1808 * that the cleanup is deferred until the parent does a wait(2), which
1809 * means that another userland process has run.
1810 */
1811static void
1812pmap_lazyfix(pmap_t pmap)
1813{
1814	u_int cr3;
1815
1816	cr3 = vtophys(pmap->pm_pdir);
1817	if (cr3 == rcr3()) {
1818		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1819		pmap->pm_active &= ~(PCPU_GET(cpumask));
1820	}
1821}
1822#endif	/* SMP */
1823
1824/*
1825 * Release any resources held by the given physical map.
1826 * Called when a pmap initialized by pmap_pinit is being released.
1827 * Should only be called if the map contains no valid mappings.
1828 */
1829void
1830pmap_release(pmap_t pmap)
1831{
1832	vm_page_t m, ptdpg[2*NPGPTD+1];
1833	vm_paddr_t ma;
1834	int i;
1835#ifdef XEN
1836#ifdef PAE
1837	int npgptd = NPGPTD + 1;
1838#else
1839	int npgptd = NPGPTD;
1840#endif
1841#else
1842	int npgptd = NPGPTD;
1843#endif
1844	KASSERT(pmap->pm_stats.resident_count == 0,
1845	    ("pmap_release: pmap resident count %ld != 0",
1846	    pmap->pm_stats.resident_count));
1847	PT_UPDATES_FLUSH();
1848
1849	pmap_lazyfix(pmap);
1850	mtx_lock_spin(&allpmaps_lock);
1851	LIST_REMOVE(pmap, pm_list);
1852	mtx_unlock_spin(&allpmaps_lock);
1853
1854	for (i = 0; i < NPGPTD; i++)
1855		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1856	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1857#if defined(PAE) && defined(XEN)
1858	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1859#endif
1860
1861	for (i = 0; i < npgptd; i++) {
1862		m = ptdpg[i];
1863		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1864		/* unpinning L1 and L2 treated the same */
1865                xen_pgd_unpin(ma);
1866#ifdef PAE
1867		KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1868		    ("pmap_release: got wrong ptd page"));
1869#endif
1870		m->wire_count--;
1871		atomic_subtract_int(&cnt.v_wire_count, 1);
1872		vm_page_free(m);
1873	}
1874	PMAP_LOCK_DESTROY(pmap);
1875}
1876
1877static int
1878kvm_size(SYSCTL_HANDLER_ARGS)
1879{
1880	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1881
1882	return sysctl_handle_long(oidp, &ksize, 0, req);
1883}
1884SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1885    0, 0, kvm_size, "IU", "Size of KVM");
1886
1887static int
1888kvm_free(SYSCTL_HANDLER_ARGS)
1889{
1890	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1891
1892	return sysctl_handle_long(oidp, &kfree, 0, req);
1893}
1894SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1895    0, 0, kvm_free, "IU", "Amount of KVM free");
1896
1897/*
1898 * grow the number of kernel page table entries, if needed
1899 */
1900void
1901pmap_growkernel(vm_offset_t addr)
1902{
1903	struct pmap *pmap;
1904	vm_paddr_t ptppaddr;
1905	vm_page_t nkpg;
1906	pd_entry_t newpdir;
1907
1908	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1909	if (kernel_vm_end == 0) {
1910		kernel_vm_end = KERNBASE;
1911		nkpt = 0;
1912		while (pdir_pde(PTD, kernel_vm_end)) {
1913			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1914			nkpt++;
1915			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1916				kernel_vm_end = kernel_map->max_offset;
1917				break;
1918			}
1919		}
1920	}
1921	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1922	if (addr - 1 >= kernel_map->max_offset)
1923		addr = kernel_map->max_offset;
1924	while (kernel_vm_end < addr) {
1925		if (pdir_pde(PTD, kernel_vm_end)) {
1926			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1927			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1928				kernel_vm_end = kernel_map->max_offset;
1929				break;
1930			}
1931			continue;
1932		}
1933
1934		/*
1935		 * This index is bogus, but out of the way
1936		 */
1937		nkpg = vm_page_alloc(NULL, nkpt,
1938		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1939		if (!nkpg)
1940			panic("pmap_growkernel: no memory to grow kernel");
1941
1942		nkpt++;
1943
1944		pmap_zero_page(nkpg);
1945		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1946		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1947		vm_page_lock_queues();
1948		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1949		mtx_lock_spin(&allpmaps_lock);
1950		LIST_FOREACH(pmap, &allpmaps, pm_list)
1951			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1952
1953		mtx_unlock_spin(&allpmaps_lock);
1954		vm_page_unlock_queues();
1955
1956		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1957		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1958			kernel_vm_end = kernel_map->max_offset;
1959			break;
1960		}
1961	}
1962}
1963
1964
1965/***************************************************
1966 * page management routines.
1967 ***************************************************/
1968
1969CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1970CTASSERT(_NPCM == 11);
1971
1972static __inline struct pv_chunk *
1973pv_to_chunk(pv_entry_t pv)
1974{
1975
1976	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1977}
1978
1979#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1980
1981#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1982#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1983
1984static uint32_t pc_freemask[11] = {
1985	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1986	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1987	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1988	PC_FREE0_9, PC_FREE10
1989};
1990
1991SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1992	"Current number of pv entries");
1993
1994#ifdef PV_STATS
1995static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1996
1997SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1998	"Current number of pv entry chunks");
1999SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2000	"Current number of pv entry chunks allocated");
2001SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2002	"Current number of pv entry chunks frees");
2003SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2004	"Number of times tried to get a chunk page but failed.");
2005
2006static long pv_entry_frees, pv_entry_allocs;
2007static int pv_entry_spare;
2008
2009SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2010	"Current number of pv entry frees");
2011SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2012	"Current number of pv entry allocs");
2013SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2014	"Current number of spare pv entries");
2015
2016static int pmap_collect_inactive, pmap_collect_active;
2017
2018SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2019	"Current number times pmap_collect called on inactive queue");
2020SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2021	"Current number times pmap_collect called on active queue");
2022#endif
2023
2024/*
2025 * We are in a serious low memory condition.  Resort to
2026 * drastic measures to free some pages so we can allocate
2027 * another pv entry chunk.  This is normally called to
2028 * unmap inactive pages, and if necessary, active pages.
2029 */
2030static void
2031pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2032{
2033	pmap_t pmap;
2034	pt_entry_t *pte, tpte;
2035	pv_entry_t next_pv, pv;
2036	vm_offset_t va;
2037	vm_page_t m, free;
2038
2039	sched_pin();
2040	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2041		if (m->hold_count || m->busy)
2042			continue;
2043		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2044			va = pv->pv_va;
2045			pmap = PV_PMAP(pv);
2046			/* Avoid deadlock and lock recursion. */
2047			if (pmap > locked_pmap)
2048				PMAP_LOCK(pmap);
2049			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2050				continue;
2051			pmap->pm_stats.resident_count--;
2052			pte = pmap_pte_quick(pmap, va);
2053			tpte = pte_load_clear(pte);
2054			KASSERT((tpte & PG_W) == 0,
2055			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2056			if (tpte & PG_A)
2057				vm_page_flag_set(m, PG_REFERENCED);
2058			if (tpte & PG_M) {
2059				KASSERT((tpte & PG_RW),
2060	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
2061				    va, (uintmax_t)tpte));
2062				vm_page_dirty(m);
2063			}
2064			free = NULL;
2065			pmap_unuse_pt(pmap, va, &free);
2066			pmap_invalidate_page(pmap, va);
2067			pmap_free_zero_pages(free);
2068			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2069			if (TAILQ_EMPTY(&m->md.pv_list))
2070				vm_page_flag_clear(m, PG_WRITEABLE);
2071			free_pv_entry(pmap, pv);
2072			if (pmap != locked_pmap)
2073				PMAP_UNLOCK(pmap);
2074		}
2075	}
2076	sched_unpin();
2077}
2078
2079
2080/*
2081 * free the pv_entry back to the free list
2082 */
2083static void
2084free_pv_entry(pmap_t pmap, pv_entry_t pv)
2085{
2086	vm_page_t m;
2087	struct pv_chunk *pc;
2088	int idx, field, bit;
2089
2090	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2091	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2092	PV_STAT(pv_entry_frees++);
2093	PV_STAT(pv_entry_spare++);
2094	pv_entry_count--;
2095	pc = pv_to_chunk(pv);
2096	idx = pv - &pc->pc_pventry[0];
2097	field = idx / 32;
2098	bit = idx % 32;
2099	pc->pc_map[field] |= 1ul << bit;
2100	/* move to head of list */
2101	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2102	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2103	for (idx = 0; idx < _NPCM; idx++)
2104		if (pc->pc_map[idx] != pc_freemask[idx])
2105			return;
2106	PV_STAT(pv_entry_spare -= _NPCPV);
2107	PV_STAT(pc_chunk_count--);
2108	PV_STAT(pc_chunk_frees++);
2109	/* entire chunk is free, return it */
2110	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2111	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2112	pmap_qremove((vm_offset_t)pc, 1);
2113	vm_page_unwire(m, 0);
2114	vm_page_free(m);
2115	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2116}
2117
2118/*
2119 * get a new pv_entry, allocating a block from the system
2120 * when needed.
2121 */
2122static pv_entry_t
2123get_pv_entry(pmap_t pmap, int try)
2124{
2125	static const struct timeval printinterval = { 60, 0 };
2126	static struct timeval lastprint;
2127	static vm_pindex_t colour;
2128	struct vpgqueues *pq;
2129	int bit, field;
2130	pv_entry_t pv;
2131	struct pv_chunk *pc;
2132	vm_page_t m;
2133
2134	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2135	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2136	PV_STAT(pv_entry_allocs++);
2137	pv_entry_count++;
2138	if (pv_entry_count > pv_entry_high_water)
2139		if (ratecheck(&lastprint, &printinterval))
2140			printf("Approaching the limit on PV entries, consider "
2141			    "increasing either the vm.pmap.shpgperproc or the "
2142			    "vm.pmap.pv_entry_max tunable.\n");
2143	pq = NULL;
2144retry:
2145	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2146	if (pc != NULL) {
2147		for (field = 0; field < _NPCM; field++) {
2148			if (pc->pc_map[field]) {
2149				bit = bsfl(pc->pc_map[field]);
2150				break;
2151			}
2152		}
2153		if (field < _NPCM) {
2154			pv = &pc->pc_pventry[field * 32 + bit];
2155			pc->pc_map[field] &= ~(1ul << bit);
2156			/* If this was the last item, move it to tail */
2157			for (field = 0; field < _NPCM; field++)
2158				if (pc->pc_map[field] != 0) {
2159					PV_STAT(pv_entry_spare--);
2160					return (pv);	/* not full, return */
2161				}
2162			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2163			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2164			PV_STAT(pv_entry_spare--);
2165			return (pv);
2166		}
2167	}
2168	/*
2169	 * Access to the ptelist "pv_vafree" is synchronized by the page
2170	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2171	 * remain non-empty until pmap_ptelist_alloc() completes.
2172	 */
2173	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2174	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2175	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2176		if (try) {
2177			pv_entry_count--;
2178			PV_STAT(pc_chunk_tryfail++);
2179			return (NULL);
2180		}
2181		/*
2182		 * Reclaim pv entries: At first, destroy mappings to
2183		 * inactive pages.  After that, if a pv chunk entry
2184		 * is still needed, destroy mappings to active pages.
2185		 */
2186		if (pq == NULL) {
2187			PV_STAT(pmap_collect_inactive++);
2188			pq = &vm_page_queues[PQ_INACTIVE];
2189		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2190			PV_STAT(pmap_collect_active++);
2191			pq = &vm_page_queues[PQ_ACTIVE];
2192		} else
2193			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2194		pmap_collect(pmap, pq);
2195		goto retry;
2196	}
2197	PV_STAT(pc_chunk_count++);
2198	PV_STAT(pc_chunk_allocs++);
2199	colour++;
2200	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2201	pmap_qenter((vm_offset_t)pc, &m, 1);
2202	if ((m->flags & PG_ZERO) == 0)
2203		pagezero(pc);
2204	pc->pc_pmap = pmap;
2205	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2206	for (field = 1; field < _NPCM; field++)
2207		pc->pc_map[field] = pc_freemask[field];
2208	pv = &pc->pc_pventry[0];
2209	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2210	PV_STAT(pv_entry_spare += _NPCPV - 1);
2211	return (pv);
2212}
2213
2214static void
2215pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2216{
2217	pv_entry_t pv;
2218
2219	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2220	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2221	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2222		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
2223			break;
2224	}
2225	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
2226	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2227	if (TAILQ_EMPTY(&m->md.pv_list))
2228		vm_page_flag_clear(m, PG_WRITEABLE);
2229	free_pv_entry(pmap, pv);
2230}
2231
2232/*
2233 * Create a pv entry for page at pa for
2234 * (pmap, va).
2235 */
2236static void
2237pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2238{
2239	pv_entry_t pv;
2240
2241	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2242	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2243	pv = get_pv_entry(pmap, FALSE);
2244	pv->pv_va = va;
2245	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2246}
2247
2248/*
2249 * Conditionally create a pv entry.
2250 */
2251static boolean_t
2252pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2253{
2254	pv_entry_t pv;
2255
2256	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2257	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2258	if (pv_entry_count < pv_entry_high_water &&
2259	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2260		pv->pv_va = va;
2261		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2262		return (TRUE);
2263	} else
2264		return (FALSE);
2265}
2266
2267/*
2268 * pmap_remove_pte: do the things to unmap a page in a process
2269 */
2270static int
2271pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2272{
2273	pt_entry_t oldpte;
2274	vm_page_t m;
2275
2276	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2277	    pmap, (u_long)*ptq, va);
2278
2279	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2280	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2281	oldpte = *ptq;
2282	PT_SET_VA_MA(ptq, 0, TRUE);
2283	if (oldpte & PG_W)
2284		pmap->pm_stats.wired_count -= 1;
2285	/*
2286	 * Machines that don't support invlpg, also don't support
2287	 * PG_G.
2288	 */
2289	if (oldpte & PG_G)
2290		pmap_invalidate_page(kernel_pmap, va);
2291	pmap->pm_stats.resident_count -= 1;
2292	/*
2293	 * XXX This is not strictly correctly, but somewhere along the line
2294	 * we are losing the managed bit on some pages. It is unclear to me
2295	 * why, but I think the most likely explanation is that xen's writable
2296	 * page table implementation doesn't respect the unused bits.
2297	 */
2298	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2299		) {
2300		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2301
2302		if (!(oldpte & PG_MANAGED))
2303			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2304
2305		if (oldpte & PG_M) {
2306			KASSERT((oldpte & PG_RW),
2307	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
2308			    va, (uintmax_t)oldpte));
2309			vm_page_dirty(m);
2310		}
2311		if (oldpte & PG_A)
2312			vm_page_flag_set(m, PG_REFERENCED);
2313		pmap_remove_entry(pmap, m, va);
2314	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2315		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2316
2317	return (pmap_unuse_pt(pmap, va, free));
2318}
2319
2320/*
2321 * Remove a single page from a process address space
2322 */
2323static void
2324pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2325{
2326	pt_entry_t *pte;
2327
2328	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2329	    pmap, va);
2330
2331	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2332	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2333	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2334	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2335		return;
2336	pmap_remove_pte(pmap, pte, va, free);
2337	pmap_invalidate_page(pmap, va);
2338	if (*PMAP1)
2339		PT_SET_MA(PADDR1, 0);
2340
2341}
2342
2343/*
2344 *	Remove the given range of addresses from the specified map.
2345 *
2346 *	It is assumed that the start and end are properly
2347 *	rounded to the page size.
2348 */
2349void
2350pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2351{
2352	vm_offset_t pdnxt;
2353	pd_entry_t ptpaddr;
2354	pt_entry_t *pte;
2355	vm_page_t free = NULL;
2356	int anyvalid;
2357
2358	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2359	    pmap, sva, eva);
2360
2361	/*
2362	 * Perform an unsynchronized read.  This is, however, safe.
2363	 */
2364	if (pmap->pm_stats.resident_count == 0)
2365		return;
2366
2367	anyvalid = 0;
2368
2369	vm_page_lock_queues();
2370	sched_pin();
2371	PMAP_LOCK(pmap);
2372
2373	/*
2374	 * special handling of removing one page.  a very
2375	 * common operation and easy to short circuit some
2376	 * code.
2377	 */
2378	if ((sva + PAGE_SIZE == eva) &&
2379	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2380		pmap_remove_page(pmap, sva, &free);
2381		goto out;
2382	}
2383
2384	for (; sva < eva; sva = pdnxt) {
2385		unsigned pdirindex;
2386
2387		/*
2388		 * Calculate index for next page table.
2389		 */
2390		pdnxt = (sva + NBPDR) & ~PDRMASK;
2391		if (pmap->pm_stats.resident_count == 0)
2392			break;
2393
2394		pdirindex = sva >> PDRSHIFT;
2395		ptpaddr = pmap->pm_pdir[pdirindex];
2396
2397		/*
2398		 * Weed out invalid mappings. Note: we assume that the page
2399		 * directory table is always allocated, and in kernel virtual.
2400		 */
2401		if (ptpaddr == 0)
2402			continue;
2403
2404		/*
2405		 * Check for large page.
2406		 */
2407		if ((ptpaddr & PG_PS) != 0) {
2408			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2409			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2410			anyvalid = 1;
2411			continue;
2412		}
2413
2414		/*
2415		 * Limit our scan to either the end of the va represented
2416		 * by the current page table page, or to the end of the
2417		 * range being removed.
2418		 */
2419		if (pdnxt > eva)
2420			pdnxt = eva;
2421
2422		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2423		    sva += PAGE_SIZE) {
2424			if ((*pte & PG_V) == 0)
2425				continue;
2426
2427			/*
2428			 * The TLB entry for a PG_G mapping is invalidated
2429			 * by pmap_remove_pte().
2430			 */
2431			if ((*pte & PG_G) == 0)
2432				anyvalid = 1;
2433			if (pmap_remove_pte(pmap, pte, sva, &free))
2434				break;
2435		}
2436	}
2437	PT_UPDATES_FLUSH();
2438	if (*PMAP1)
2439		PT_SET_VA_MA(PMAP1, 0, TRUE);
2440out:
2441	if (anyvalid)
2442		pmap_invalidate_all(pmap);
2443	sched_unpin();
2444	vm_page_unlock_queues();
2445	PMAP_UNLOCK(pmap);
2446	pmap_free_zero_pages(free);
2447}
2448
2449/*
2450 *	Routine:	pmap_remove_all
2451 *	Function:
2452 *		Removes this physical page from
2453 *		all physical maps in which it resides.
2454 *		Reflects back modify bits to the pager.
2455 *
2456 *	Notes:
2457 *		Original versions of this routine were very
2458 *		inefficient because they iteratively called
2459 *		pmap_remove (slow...)
2460 */
2461
2462void
2463pmap_remove_all(vm_page_t m)
2464{
2465	pv_entry_t pv;
2466	pmap_t pmap;
2467	pt_entry_t *pte, tpte;
2468	vm_page_t free;
2469
2470#if defined(PMAP_DIAGNOSTIC)
2471	/*
2472	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2473	 */
2474	if (m->flags & PG_FICTITIOUS) {
2475		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
2476		    VM_PAGE_TO_PHYS(m) & 0xffffffff);
2477	}
2478#endif
2479	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2480	sched_pin();
2481	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2482		pmap = PV_PMAP(pv);
2483		PMAP_LOCK(pmap);
2484		pmap->pm_stats.resident_count--;
2485		pte = pmap_pte_quick(pmap, pv->pv_va);
2486
2487		tpte = *pte;
2488		PT_SET_VA_MA(pte, 0, TRUE);
2489		if (tpte & PG_W)
2490			pmap->pm_stats.wired_count--;
2491		if (tpte & PG_A)
2492			vm_page_flag_set(m, PG_REFERENCED);
2493
2494		/*
2495		 * Update the vm_page_t clean and reference bits.
2496		 */
2497		if (tpte & PG_M) {
2498			KASSERT((tpte & PG_RW),
2499	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2500			    pv->pv_va, (uintmax_t)tpte));
2501			vm_page_dirty(m);
2502		}
2503		free = NULL;
2504		pmap_unuse_pt(pmap, pv->pv_va, &free);
2505		pmap_invalidate_page(pmap, pv->pv_va);
2506		pmap_free_zero_pages(free);
2507		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2508		free_pv_entry(pmap, pv);
2509		PMAP_UNLOCK(pmap);
2510	}
2511	vm_page_flag_clear(m, PG_WRITEABLE);
2512	PT_UPDATES_FLUSH();
2513	if (*PMAP1)
2514		PT_SET_MA(PADDR1, 0);
2515	sched_unpin();
2516}
2517
2518/*
2519 *	Set the physical protection on the
2520 *	specified range of this map as requested.
2521 */
2522void
2523pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2524{
2525	vm_offset_t pdnxt;
2526	pd_entry_t ptpaddr;
2527	pt_entry_t *pte;
2528	int anychanged;
2529
2530	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2531	    pmap, sva, eva, prot);
2532
2533	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2534		pmap_remove(pmap, sva, eva);
2535		return;
2536	}
2537
2538#ifdef PAE
2539	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2540	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2541		return;
2542#else
2543	if (prot & VM_PROT_WRITE)
2544		return;
2545#endif
2546
2547	anychanged = 0;
2548
2549	vm_page_lock_queues();
2550	sched_pin();
2551	PMAP_LOCK(pmap);
2552	for (; sva < eva; sva = pdnxt) {
2553		pt_entry_t obits, pbits;
2554		unsigned pdirindex;
2555
2556		pdnxt = (sva + NBPDR) & ~PDRMASK;
2557
2558		pdirindex = sva >> PDRSHIFT;
2559		ptpaddr = pmap->pm_pdir[pdirindex];
2560
2561		/*
2562		 * Weed out invalid mappings. Note: we assume that the page
2563		 * directory table is always allocated, and in kernel virtual.
2564		 */
2565		if (ptpaddr == 0)
2566			continue;
2567
2568		/*
2569		 * Check for large page.
2570		 */
2571		if ((ptpaddr & PG_PS) != 0) {
2572			if ((prot & VM_PROT_WRITE) == 0)
2573				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2574#ifdef PAE
2575			if ((prot & VM_PROT_EXECUTE) == 0)
2576				pmap->pm_pdir[pdirindex] |= pg_nx;
2577#endif
2578			anychanged = 1;
2579			continue;
2580		}
2581
2582		if (pdnxt > eva)
2583			pdnxt = eva;
2584
2585		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2586		    sva += PAGE_SIZE) {
2587			vm_page_t m;
2588
2589retry:
2590			/*
2591			 * Regardless of whether a pte is 32 or 64 bits in
2592			 * size, PG_RW, PG_A, and PG_M are among the least
2593			 * significant 32 bits.
2594			 */
2595			obits = pbits = *pte;
2596			if ((pbits & PG_V) == 0)
2597				continue;
2598			if (pbits & PG_MANAGED) {
2599				m = NULL;
2600				if (pbits & PG_A) {
2601					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2602					vm_page_flag_set(m, PG_REFERENCED);
2603					pbits &= ~PG_A;
2604				}
2605				if ((pbits & PG_M) != 0) {
2606					if (m == NULL)
2607						m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2608					vm_page_dirty(m);
2609				}
2610			}
2611
2612			if ((prot & VM_PROT_WRITE) == 0)
2613				pbits &= ~(PG_RW | PG_M);
2614#ifdef PAE
2615			if ((prot & VM_PROT_EXECUTE) == 0)
2616				pbits |= pg_nx;
2617#endif
2618
2619			if (pbits != obits) {
2620#ifdef XEN
2621				obits = *pte;
2622				PT_SET_VA_MA(pte, pbits, TRUE);
2623				if (*pte != pbits)
2624					goto retry;
2625#else
2626#ifdef PAE
2627				if (!atomic_cmpset_64(pte, obits, pbits))
2628					goto retry;
2629#else
2630				if (!atomic_cmpset_int((u_int *)pte, obits,
2631				    pbits))
2632					goto retry;
2633#endif
2634#endif
2635				if (obits & PG_G)
2636					pmap_invalidate_page(pmap, sva);
2637				else
2638					anychanged = 1;
2639			}
2640		}
2641	}
2642	PT_UPDATES_FLUSH();
2643	if (*PMAP1)
2644		PT_SET_VA_MA(PMAP1, 0, TRUE);
2645	if (anychanged)
2646		pmap_invalidate_all(pmap);
2647	sched_unpin();
2648	vm_page_unlock_queues();
2649	PMAP_UNLOCK(pmap);
2650}
2651
2652/*
2653 *	Insert the given physical page (p) at
2654 *	the specified virtual address (v) in the
2655 *	target physical map with the protection requested.
2656 *
2657 *	If specified, the page will be wired down, meaning
2658 *	that the related pte can not be reclaimed.
2659 *
2660 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2661 *	or lose information.  That is, this routine must actually
2662 *	insert this page into the given map NOW.
2663 */
2664void
2665pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2666    vm_prot_t prot, boolean_t wired)
2667{
2668	vm_paddr_t pa;
2669	pd_entry_t *pde;
2670	pt_entry_t *pte;
2671	vm_paddr_t opa;
2672	pt_entry_t origpte, newpte;
2673	vm_page_t mpte, om;
2674	boolean_t invlva;
2675
2676	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2677	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2678	va = trunc_page(va);
2679#ifdef PMAP_DIAGNOSTIC
2680	if (va > VM_MAX_KERNEL_ADDRESS)
2681		panic("pmap_enter: toobig");
2682	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2683		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2684#endif
2685
2686	mpte = NULL;
2687
2688	vm_page_lock_queues();
2689	PMAP_LOCK(pmap);
2690	sched_pin();
2691
2692	/*
2693	 * In the case that a page table page is not
2694	 * resident, we are creating it here.
2695	 */
2696	if (va < VM_MAXUSER_ADDRESS) {
2697		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2698	}
2699#if 0 && defined(PMAP_DIAGNOSTIC)
2700	else {
2701		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2702		origpte = *pdeaddr;
2703		if ((origpte & PG_V) == 0) {
2704			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2705				pmap->pm_pdir[PTDPTDI], origpte, va);
2706		}
2707	}
2708#endif
2709
2710	pde = pmap_pde(pmap, va);
2711	if ((*pde & PG_PS) != 0)
2712		panic("pmap_enter: attempted pmap_enter on 4MB page");
2713	pte = pmap_pte_quick(pmap, va);
2714
2715	/*
2716	 * Page Directory table entry not valid, we need a new PT page
2717	 */
2718	if (pte == NULL) {
2719		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2720			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2721	}
2722
2723	pa = VM_PAGE_TO_PHYS(m);
2724	om = NULL;
2725	opa = origpte = 0;
2726
2727#if 0
2728	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2729		pte, *pte));
2730#endif
2731	origpte = *pte;
2732	if (origpte)
2733		origpte = xpmap_mtop(origpte);
2734	opa = origpte & PG_FRAME;
2735
2736	/*
2737	 * Mapping has not changed, must be protection or wiring change.
2738	 */
2739	if (origpte && (opa == pa)) {
2740		/*
2741		 * Wiring change, just update stats. We don't worry about
2742		 * wiring PT pages as they remain resident as long as there
2743		 * are valid mappings in them. Hence, if a user page is wired,
2744		 * the PT page will be also.
2745		 */
2746		if (wired && ((origpte & PG_W) == 0))
2747			pmap->pm_stats.wired_count++;
2748		else if (!wired && (origpte & PG_W))
2749			pmap->pm_stats.wired_count--;
2750
2751		/*
2752		 * Remove extra pte reference
2753		 */
2754		if (mpte)
2755			mpte->wire_count--;
2756
2757		/*
2758		 * We might be turning off write access to the page,
2759		 * so we go ahead and sense modify status.
2760		 */
2761		if (origpte & PG_MANAGED) {
2762			om = m;
2763			pa |= PG_MANAGED;
2764		}
2765		goto validate;
2766	}
2767	/*
2768	 * Mapping has changed, invalidate old range and fall through to
2769	 * handle validating new mapping.
2770	 */
2771	if (opa) {
2772		if (origpte & PG_W)
2773			pmap->pm_stats.wired_count--;
2774		if (origpte & PG_MANAGED) {
2775			om = PHYS_TO_VM_PAGE(opa);
2776			pmap_remove_entry(pmap, om, va);
2777		} else if (va < VM_MAXUSER_ADDRESS)
2778			printf("va=0x%x is unmanaged :-( \n", va);
2779
2780		if (mpte != NULL) {
2781			mpte->wire_count--;
2782			KASSERT(mpte->wire_count > 0,
2783			    ("pmap_enter: missing reference to page table page,"
2784			     " va: 0x%x", va));
2785		}
2786	} else
2787		pmap->pm_stats.resident_count++;
2788
2789	/*
2790	 * Enter on the PV list if part of our managed memory.
2791	 */
2792	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2793		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2794		    ("pmap_enter: managed mapping within the clean submap"));
2795		pmap_insert_entry(pmap, va, m);
2796		pa |= PG_MANAGED;
2797	}
2798
2799	/*
2800	 * Increment counters
2801	 */
2802	if (wired)
2803		pmap->pm_stats.wired_count++;
2804
2805validate:
2806	/*
2807	 * Now validate mapping with desired protection/wiring.
2808	 */
2809	newpte = (pt_entry_t)(pa | PG_V);
2810	if ((prot & VM_PROT_WRITE) != 0) {
2811		newpte |= PG_RW;
2812		vm_page_flag_set(m, PG_WRITEABLE);
2813	}
2814#ifdef PAE
2815	if ((prot & VM_PROT_EXECUTE) == 0)
2816		newpte |= pg_nx;
2817#endif
2818	if (wired)
2819		newpte |= PG_W;
2820	if (va < VM_MAXUSER_ADDRESS)
2821		newpte |= PG_U;
2822	if (pmap == kernel_pmap)
2823		newpte |= pgeflag;
2824
2825	critical_enter();
2826	/*
2827	 * if the mapping or permission bits are different, we need
2828	 * to update the pte.
2829	 */
2830	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2831		if (origpte) {
2832			invlva = FALSE;
2833			origpte = *pte;
2834			PT_SET_VA(pte, newpte | PG_A, FALSE);
2835			if (origpte & PG_A) {
2836				if (origpte & PG_MANAGED)
2837					vm_page_flag_set(om, PG_REFERENCED);
2838				if (opa != VM_PAGE_TO_PHYS(m))
2839					invlva = TRUE;
2840#ifdef PAE
2841				if ((origpte & PG_NX) == 0 &&
2842				    (newpte & PG_NX) != 0)
2843					invlva = TRUE;
2844#endif
2845			}
2846			if (origpte & PG_M) {
2847				KASSERT((origpte & PG_RW),
2848	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2849				    va, (uintmax_t)origpte));
2850				if ((origpte & PG_MANAGED) != 0)
2851					vm_page_dirty(om);
2852				if ((prot & VM_PROT_WRITE) == 0)
2853					invlva = TRUE;
2854			}
2855			if (invlva)
2856				pmap_invalidate_page(pmap, va);
2857		} else{
2858			PT_SET_VA(pte, newpte | PG_A, FALSE);
2859		}
2860
2861	}
2862	PT_UPDATES_FLUSH();
2863	critical_exit();
2864	if (*PMAP1)
2865		PT_SET_VA_MA(PMAP1, 0, TRUE);
2866	sched_unpin();
2867	vm_page_unlock_queues();
2868	PMAP_UNLOCK(pmap);
2869}
2870
2871/*
2872 * Maps a sequence of resident pages belonging to the same object.
2873 * The sequence begins with the given page m_start.  This page is
2874 * mapped at the given virtual address start.  Each subsequent page is
2875 * mapped at a virtual address that is offset from start by the same
2876 * amount as the page is offset from m_start within the object.  The
2877 * last page in the sequence is the page with the largest offset from
2878 * m_start that can be mapped at a virtual address less than the given
2879 * virtual address end.  Not every virtual page between start and end
2880 * is mapped; only those for which a resident page exists with the
2881 * corresponding offset from m_start are mapped.
2882 */
2883void
2884pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2885    vm_page_t m_start, vm_prot_t prot)
2886{
2887	vm_page_t m, mpte;
2888	vm_pindex_t diff, psize;
2889	multicall_entry_t mcl[16];
2890	multicall_entry_t *mclp = mcl;
2891	int error, count = 0;
2892
2893	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2894	psize = atop(end - start);
2895
2896	mpte = NULL;
2897	m = m_start;
2898	PMAP_LOCK(pmap);
2899	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2900		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2901		    prot, mpte);
2902		m = TAILQ_NEXT(m, listq);
2903		if (count == 16) {
2904			error = HYPERVISOR_multicall(mcl, count);
2905			KASSERT(error == 0, ("bad multicall %d", error));
2906			mclp = mcl;
2907			count = 0;
2908		}
2909	}
2910	if (count) {
2911		error = HYPERVISOR_multicall(mcl, count);
2912		KASSERT(error == 0, ("bad multicall %d", error));
2913	}
2914
2915	PMAP_UNLOCK(pmap);
2916}
2917
2918/*
2919 * this code makes some *MAJOR* assumptions:
2920 * 1. Current pmap & pmap exists.
2921 * 2. Not wired.
2922 * 3. Read access.
2923 * 4. No page table pages.
2924 * but is *MUCH* faster than pmap_enter...
2925 */
2926
2927void
2928pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2929{
2930	multicall_entry_t mcl, *mclp;
2931	int count = 0;
2932	mclp = &mcl;
2933
2934	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2935	    pmap, va, m, prot);
2936
2937	PMAP_LOCK(pmap);
2938	(void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2939	if (count)
2940		HYPERVISOR_multicall(&mcl, count);
2941	PMAP_UNLOCK(pmap);
2942}
2943
2944#ifdef notyet
2945void
2946pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2947{
2948	int i, error, index = 0;
2949	multicall_entry_t mcl[16];
2950	multicall_entry_t *mclp = mcl;
2951
2952	PMAP_LOCK(pmap);
2953	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2954		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2955			continue;
2956
2957		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2958		if (index == 16) {
2959			error = HYPERVISOR_multicall(mcl, index);
2960			mclp = mcl;
2961			index = 0;
2962			KASSERT(error == 0, ("bad multicall %d", error));
2963		}
2964	}
2965	if (index) {
2966		error = HYPERVISOR_multicall(mcl, index);
2967		KASSERT(error == 0, ("bad multicall %d", error));
2968	}
2969
2970	PMAP_UNLOCK(pmap);
2971}
2972#endif
2973
2974static vm_page_t
2975pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2976    vm_prot_t prot, vm_page_t mpte)
2977{
2978	pt_entry_t *pte;
2979	vm_paddr_t pa;
2980	vm_page_t free;
2981	multicall_entry_t *mcl = *mclpp;
2982
2983	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2984	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2985	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2986	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2987	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2988
2989	/*
2990	 * In the case that a page table page is not
2991	 * resident, we are creating it here.
2992	 */
2993	if (va < VM_MAXUSER_ADDRESS) {
2994		unsigned ptepindex;
2995		pd_entry_t ptema;
2996
2997		/*
2998		 * Calculate pagetable page index
2999		 */
3000		ptepindex = va >> PDRSHIFT;
3001		if (mpte && (mpte->pindex == ptepindex)) {
3002			mpte->wire_count++;
3003		} else {
3004			/*
3005			 * Get the page directory entry
3006			 */
3007			ptema = pmap->pm_pdir[ptepindex];
3008
3009			/*
3010			 * If the page table page is mapped, we just increment
3011			 * the hold count, and activate it.
3012			 */
3013			if (ptema & PG_V) {
3014				if (ptema & PG_PS)
3015					panic("pmap_enter_quick: unexpected mapping into 4MB page");
3016				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
3017				mpte->wire_count++;
3018			} else {
3019				mpte = _pmap_allocpte(pmap, ptepindex,
3020				    M_NOWAIT);
3021				if (mpte == NULL)
3022					return (mpte);
3023			}
3024		}
3025	} else {
3026		mpte = NULL;
3027	}
3028
3029	/*
3030	 * This call to vtopte makes the assumption that we are
3031	 * entering the page into the current pmap.  In order to support
3032	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3033	 * But that isn't as quick as vtopte.
3034	 */
3035	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3036	pte = vtopte(va);
3037	if (*pte & PG_V) {
3038		if (mpte != NULL) {
3039			mpte->wire_count--;
3040			mpte = NULL;
3041		}
3042		return (mpte);
3043	}
3044
3045	/*
3046	 * Enter on the PV list if part of our managed memory.
3047	 */
3048	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3049	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3050		if (mpte != NULL) {
3051			free = NULL;
3052			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3053				pmap_invalidate_page(pmap, va);
3054				pmap_free_zero_pages(free);
3055			}
3056
3057			mpte = NULL;
3058		}
3059		return (mpte);
3060	}
3061
3062	/*
3063	 * Increment counters
3064	 */
3065	pmap->pm_stats.resident_count++;
3066
3067	pa = VM_PAGE_TO_PHYS(m);
3068#ifdef PAE
3069	if ((prot & VM_PROT_EXECUTE) == 0)
3070		pa |= pg_nx;
3071#endif
3072
3073#if 0
3074	/*
3075	 * Now validate mapping with RO protection
3076	 */
3077	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3078		pte_store(pte, pa | PG_V | PG_U);
3079	else
3080		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3081#else
3082	/*
3083	 * Now validate mapping with RO protection
3084	 */
3085	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3086		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3087	else
3088		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3089
3090	mcl->op = __HYPERVISOR_update_va_mapping;
3091	mcl->args[0] = va;
3092	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3093	mcl->args[2] = (uint32_t)(pa >> 32);
3094	mcl->args[3] = 0;
3095	*mclpp = mcl + 1;
3096	*count = *count + 1;
3097#endif
3098	return mpte;
3099}
3100
3101/*
3102 * Make a temporary mapping for a physical address.  This is only intended
3103 * to be used for panic dumps.
3104 */
3105void *
3106pmap_kenter_temporary(vm_paddr_t pa, int i)
3107{
3108	vm_offset_t va;
3109	vm_paddr_t ma = xpmap_ptom(pa);
3110
3111	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3112	PT_SET_MA(va, (ma & ~PAGE_MASK) | PG_V | pgeflag);
3113	invlpg(va);
3114	return ((void *)crashdumpmap);
3115}
3116
3117/*
3118 * This code maps large physical mmap regions into the
3119 * processor address space.  Note that some shortcuts
3120 * are taken, but the code works.
3121 */
3122void
3123pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3124		    vm_object_t object, vm_pindex_t pindex,
3125		    vm_size_t size)
3126{
3127	vm_page_t p;
3128
3129	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3130	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3131	    ("pmap_object_init_pt: non-device object"));
3132	if (pseflag &&
3133	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3134		int i;
3135		vm_page_t m[1];
3136		unsigned int ptepindex;
3137		int npdes;
3138		pd_entry_t ptepa;
3139
3140		PMAP_LOCK(pmap);
3141		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3142			goto out;
3143		PMAP_UNLOCK(pmap);
3144retry:
3145		p = vm_page_lookup(object, pindex);
3146		if (p != NULL) {
3147			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3148				goto retry;
3149		} else {
3150			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3151			if (p == NULL)
3152				return;
3153			m[0] = p;
3154
3155			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3156				vm_page_lock_queues();
3157				vm_page_free(p);
3158				vm_page_unlock_queues();
3159				return;
3160			}
3161
3162			p = vm_page_lookup(object, pindex);
3163			vm_page_wakeup(p);
3164		}
3165
3166		ptepa = VM_PAGE_TO_PHYS(p);
3167		if (ptepa & (NBPDR - 1))
3168			return;
3169
3170		p->valid = VM_PAGE_BITS_ALL;
3171
3172		PMAP_LOCK(pmap);
3173		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3174		npdes = size >> PDRSHIFT;
3175		critical_enter();
3176		for(i = 0; i < npdes; i++) {
3177			PD_SET_VA(pmap, ptepindex,
3178			    ptepa | PG_U | PG_M | PG_RW | PG_V | PG_PS, FALSE);
3179			ptepa += NBPDR;
3180			ptepindex += 1;
3181		}
3182		pmap_invalidate_all(pmap);
3183		critical_exit();
3184out:
3185		PMAP_UNLOCK(pmap);
3186	}
3187}
3188
3189/*
3190 *	Routine:	pmap_change_wiring
3191 *	Function:	Change the wiring attribute for a map/virtual-address
3192 *			pair.
3193 *	In/out conditions:
3194 *			The mapping must already exist in the pmap.
3195 */
3196void
3197pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3198{
3199	pt_entry_t *pte;
3200
3201	vm_page_lock_queues();
3202	PMAP_LOCK(pmap);
3203	pte = pmap_pte(pmap, va);
3204
3205	if (wired && !pmap_pte_w(pte)) {
3206		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3207		pmap->pm_stats.wired_count++;
3208	} else if (!wired && pmap_pte_w(pte)) {
3209		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3210		pmap->pm_stats.wired_count--;
3211	}
3212
3213	/*
3214	 * Wiring is not a hardware characteristic so there is no need to
3215	 * invalidate TLB.
3216	 */
3217	pmap_pte_release(pte);
3218	PMAP_UNLOCK(pmap);
3219	vm_page_unlock_queues();
3220}
3221
3222
3223
3224/*
3225 *	Copy the range specified by src_addr/len
3226 *	from the source map to the range dst_addr/len
3227 *	in the destination map.
3228 *
3229 *	This routine is only advisory and need not do anything.
3230 */
3231
3232void
3233pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3234	  vm_offset_t src_addr)
3235{
3236	vm_page_t   free;
3237	vm_offset_t addr;
3238	vm_offset_t end_addr = src_addr + len;
3239	vm_offset_t pdnxt;
3240
3241	if (dst_addr != src_addr)
3242		return;
3243
3244	if (!pmap_is_current(src_pmap)) {
3245		CTR2(KTR_PMAP,
3246		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3247		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3248
3249		return;
3250	}
3251	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3252	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3253
3254	vm_page_lock_queues();
3255	if (dst_pmap < src_pmap) {
3256		PMAP_LOCK(dst_pmap);
3257		PMAP_LOCK(src_pmap);
3258	} else {
3259		PMAP_LOCK(src_pmap);
3260		PMAP_LOCK(dst_pmap);
3261	}
3262	sched_pin();
3263	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3264		pt_entry_t *src_pte, *dst_pte;
3265		vm_page_t dstmpte, srcmpte;
3266		pd_entry_t srcptepaddr;
3267		unsigned ptepindex;
3268
3269		if (addr >= UPT_MIN_ADDRESS)
3270			panic("pmap_copy: invalid to pmap_copy page tables");
3271
3272		pdnxt = (addr + NBPDR) & ~PDRMASK;
3273		ptepindex = addr >> PDRSHIFT;
3274
3275		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3276		if (srcptepaddr == 0)
3277			continue;
3278
3279		if (srcptepaddr & PG_PS) {
3280			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3281				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3282				dst_pmap->pm_stats.resident_count +=
3283				    NBPDR / PAGE_SIZE;
3284			}
3285			continue;
3286		}
3287
3288		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3289		if (srcmpte->wire_count == 0)
3290			panic("pmap_copy: source page table page is unused");
3291
3292		if (pdnxt > end_addr)
3293			pdnxt = end_addr;
3294
3295		src_pte = vtopte(addr);
3296		while (addr < pdnxt) {
3297			pt_entry_t ptetemp;
3298			ptetemp = *src_pte;
3299			/*
3300			 * we only virtual copy managed pages
3301			 */
3302			if ((ptetemp & PG_MANAGED) != 0) {
3303				dstmpte = pmap_allocpte(dst_pmap, addr,
3304				    M_NOWAIT);
3305				if (dstmpte == NULL)
3306					break;
3307				dst_pte = pmap_pte_quick(dst_pmap, addr);
3308				if (*dst_pte == 0 &&
3309				    pmap_try_insert_pv_entry(dst_pmap, addr,
3310				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3311					/*
3312					 * Clear the wired, modified, and
3313					 * accessed (referenced) bits
3314					 * during the copy.
3315					 */
3316					KASSERT(ptetemp != 0, ("src_pte not set"));
3317					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3318					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3319					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3320						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3321					dst_pmap->pm_stats.resident_count++;
3322	 			} else {
3323					free = NULL;
3324					if (pmap_unwire_pte_hold(dst_pmap,
3325					    dstmpte, &free)) {
3326						pmap_invalidate_page(dst_pmap,
3327						    addr);
3328						pmap_free_zero_pages(free);
3329					}
3330				}
3331				if (dstmpte->wire_count >= srcmpte->wire_count)
3332					break;
3333			}
3334			addr += PAGE_SIZE;
3335			src_pte++;
3336		}
3337	}
3338	PT_UPDATES_FLUSH();
3339	sched_unpin();
3340	vm_page_unlock_queues();
3341	PMAP_UNLOCK(src_pmap);
3342	PMAP_UNLOCK(dst_pmap);
3343}
3344
3345static __inline void
3346pagezero(void *page)
3347{
3348#if defined(I686_CPU)
3349	if (cpu_class == CPUCLASS_686) {
3350#if defined(CPU_ENABLE_SSE)
3351		if (cpu_feature & CPUID_SSE2)
3352			sse2_pagezero(page);
3353		else
3354#endif
3355			i686_pagezero(page);
3356	} else
3357#endif
3358		bzero(page, PAGE_SIZE);
3359}
3360
3361/*
3362 *	pmap_zero_page zeros the specified hardware page by mapping
3363 *	the page into KVM and using bzero to clear its contents.
3364 */
3365void
3366pmap_zero_page(vm_page_t m)
3367{
3368	struct sysmaps *sysmaps;
3369
3370	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3371	mtx_lock(&sysmaps->lock);
3372	if (*sysmaps->CMAP2)
3373		panic("pmap_zero_page: CMAP2 busy");
3374	sched_pin();
3375	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3376	pagezero(sysmaps->CADDR2);
3377	PT_SET_MA(sysmaps->CADDR2, 0);
3378	sched_unpin();
3379	mtx_unlock(&sysmaps->lock);
3380}
3381
3382/*
3383 *	pmap_zero_page_area zeros the specified hardware page by mapping
3384 *	the page into KVM and using bzero to clear its contents.
3385 *
3386 *	off and size may not cover an area beyond a single hardware page.
3387 */
3388void
3389pmap_zero_page_area(vm_page_t m, int off, int size)
3390{
3391	struct sysmaps *sysmaps;
3392
3393	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3394	mtx_lock(&sysmaps->lock);
3395	if (*sysmaps->CMAP2)
3396		panic("pmap_zero_page: CMAP2 busy");
3397	sched_pin();
3398	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3399
3400	if (off == 0 && size == PAGE_SIZE)
3401		pagezero(sysmaps->CADDR2);
3402	else
3403		bzero((char *)sysmaps->CADDR2 + off, size);
3404	PT_SET_MA(sysmaps->CADDR2, 0);
3405	sched_unpin();
3406	mtx_unlock(&sysmaps->lock);
3407}
3408
3409/*
3410 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3411 *	the page into KVM and using bzero to clear its contents.  This
3412 *	is intended to be called from the vm_pagezero process only and
3413 *	outside of Giant.
3414 */
3415void
3416pmap_zero_page_idle(vm_page_t m)
3417{
3418
3419	if (*CMAP3)
3420		panic("pmap_zero_page: CMAP3 busy");
3421	sched_pin();
3422	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3423	pagezero(CADDR3);
3424	PT_SET_MA(CADDR3, 0);
3425	sched_unpin();
3426}
3427
3428/*
3429 *	pmap_copy_page copies the specified (machine independent)
3430 *	page by mapping the page into virtual memory and using
3431 *	bcopy to copy the page, one machine dependent page at a
3432 *	time.
3433 */
3434void
3435pmap_copy_page(vm_page_t src, vm_page_t dst)
3436{
3437	struct sysmaps *sysmaps;
3438
3439	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3440	mtx_lock(&sysmaps->lock);
3441	if (*sysmaps->CMAP1)
3442		panic("pmap_copy_page: CMAP1 busy");
3443	if (*sysmaps->CMAP2)
3444		panic("pmap_copy_page: CMAP2 busy");
3445	sched_pin();
3446	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3447	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3448	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3449	PT_SET_MA(sysmaps->CADDR1, 0);
3450	PT_SET_MA(sysmaps->CADDR2, 0);
3451	sched_unpin();
3452	mtx_unlock(&sysmaps->lock);
3453}
3454
3455/*
3456 * Returns true if the pmap's pv is one of the first
3457 * 16 pvs linked to from this page.  This count may
3458 * be changed upwards or downwards in the future; it
3459 * is only necessary that true be returned for a small
3460 * subset of pmaps for proper page aging.
3461 */
3462boolean_t
3463pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3464{
3465	pv_entry_t pv;
3466	int loops = 0;
3467
3468	if (m->flags & PG_FICTITIOUS)
3469		return (FALSE);
3470
3471	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3472	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3473		if (PV_PMAP(pv) == pmap) {
3474			return TRUE;
3475		}
3476		loops++;
3477		if (loops >= 16)
3478			break;
3479	}
3480	return (FALSE);
3481}
3482
3483/*
3484 *	pmap_page_wired_mappings:
3485 *
3486 *	Return the number of managed mappings to the given physical page
3487 *	that are wired.
3488 */
3489int
3490pmap_page_wired_mappings(vm_page_t m)
3491{
3492	pv_entry_t pv;
3493	pt_entry_t *pte;
3494	pmap_t pmap;
3495	int count;
3496
3497	count = 0;
3498	if ((m->flags & PG_FICTITIOUS) != 0)
3499		return (count);
3500	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3501	sched_pin();
3502	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3503		pmap = PV_PMAP(pv);
3504		PMAP_LOCK(pmap);
3505		pte = pmap_pte_quick(pmap, pv->pv_va);
3506		if ((*pte & PG_W) != 0)
3507			count++;
3508		PMAP_UNLOCK(pmap);
3509	}
3510	sched_unpin();
3511	return (count);
3512}
3513
3514/*
3515 * Returns TRUE if the given page is mapped individually or as part of
3516 * a 4mpage.  Otherwise, returns FALSE.
3517 */
3518boolean_t
3519pmap_page_is_mapped(vm_page_t m)
3520{
3521	struct md_page *pvh;
3522
3523	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3524		return (FALSE);
3525	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3526	if (TAILQ_EMPTY(&m->md.pv_list)) {
3527		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3528		return (!TAILQ_EMPTY(&pvh->pv_list));
3529	} else
3530		return (TRUE);
3531}
3532
3533/*
3534 * Remove all pages from specified address space
3535 * this aids process exit speeds.  Also, this code
3536 * is special cased for current process only, but
3537 * can have the more generic (and slightly slower)
3538 * mode enabled.  This is much faster than pmap_remove
3539 * in the case of running down an entire address space.
3540 */
3541void
3542pmap_remove_pages(pmap_t pmap)
3543{
3544	pt_entry_t *pte, tpte;
3545	vm_page_t m, free = NULL;
3546	pv_entry_t pv;
3547	struct pv_chunk *pc, *npc;
3548	int field, idx;
3549	int32_t bit;
3550	uint32_t inuse, bitmask;
3551	int allfree;
3552
3553	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3554
3555	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3556		printf("warning: pmap_remove_pages called with non-current pmap\n");
3557		return;
3558	}
3559	vm_page_lock_queues();
3560	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3561	PMAP_LOCK(pmap);
3562	sched_pin();
3563	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3564		allfree = 1;
3565		for (field = 0; field < _NPCM; field++) {
3566			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3567			while (inuse != 0) {
3568				bit = bsfl(inuse);
3569				bitmask = 1UL << bit;
3570				idx = field * 32 + bit;
3571				pv = &pc->pc_pventry[idx];
3572				inuse &= ~bitmask;
3573
3574				pte = vtopte(pv->pv_va);
3575				tpte = *pte ? xpmap_mtop(*pte) : 0;
3576
3577				if (tpte == 0) {
3578					printf(
3579					    "TPTE at %p  IS ZERO @ VA %08x\n",
3580					    pte, pv->pv_va);
3581					panic("bad pte");
3582				}
3583
3584/*
3585 * We cannot remove wired pages from a process' mapping at this time
3586 */
3587				if (tpte & PG_W) {
3588					allfree = 0;
3589					continue;
3590				}
3591
3592				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3593				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3594				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3595				    m, (uintmax_t)m->phys_addr,
3596				    (uintmax_t)tpte));
3597
3598				KASSERT(m < &vm_page_array[vm_page_array_size],
3599					("pmap_remove_pages: bad tpte %#jx",
3600					(uintmax_t)tpte));
3601
3602
3603				PT_CLEAR_VA(pte, FALSE);
3604
3605				/*
3606				 * Update the vm_page_t clean/reference bits.
3607				 */
3608				if (tpte & PG_M)
3609					vm_page_dirty(m);
3610
3611				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3612				if (TAILQ_EMPTY(&m->md.pv_list))
3613					vm_page_flag_clear(m, PG_WRITEABLE);
3614
3615				pmap_unuse_pt(pmap, pv->pv_va, &free);
3616
3617				/* Mark free */
3618				PV_STAT(pv_entry_frees++);
3619				PV_STAT(pv_entry_spare++);
3620				pv_entry_count--;
3621				pc->pc_map[field] |= bitmask;
3622				pmap->pm_stats.resident_count--;
3623			}
3624		}
3625		PT_UPDATES_FLUSH();
3626		if (allfree) {
3627			PV_STAT(pv_entry_spare -= _NPCPV);
3628			PV_STAT(pc_chunk_count--);
3629			PV_STAT(pc_chunk_frees++);
3630			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3631			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3632			pmap_qremove((vm_offset_t)pc, 1);
3633			vm_page_unwire(m, 0);
3634			vm_page_free(m);
3635			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3636		}
3637	}
3638	PT_UPDATES_FLUSH();
3639	if (*PMAP1)
3640		PT_SET_MA(PADDR1, 0);
3641
3642	sched_unpin();
3643	pmap_invalidate_all(pmap);
3644	vm_page_unlock_queues();
3645	PMAP_UNLOCK(pmap);
3646	pmap_free_zero_pages(free);
3647}
3648
3649/*
3650 *	pmap_is_modified:
3651 *
3652 *	Return whether or not the specified physical page was modified
3653 *	in any physical maps.
3654 */
3655boolean_t
3656pmap_is_modified(vm_page_t m)
3657{
3658	pv_entry_t pv;
3659	pt_entry_t *pte;
3660	pmap_t pmap;
3661	boolean_t rv;
3662
3663	rv = FALSE;
3664	if (m->flags & PG_FICTITIOUS)
3665		return (rv);
3666
3667	sched_pin();
3668	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3669	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3670		pmap = PV_PMAP(pv);
3671		PMAP_LOCK(pmap);
3672		pte = pmap_pte_quick(pmap, pv->pv_va);
3673		rv = (*pte & PG_M) != 0;
3674		PMAP_UNLOCK(pmap);
3675		if (rv)
3676			break;
3677	}
3678	if (*PMAP1)
3679		PT_SET_MA(PADDR1, 0);
3680	sched_unpin();
3681	return (rv);
3682}
3683
3684/*
3685 *	pmap_is_prefaultable:
3686 *
3687 *	Return whether or not the specified virtual address is elgible
3688 *	for prefault.
3689 */
3690static boolean_t
3691pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3692{
3693	pt_entry_t *pte;
3694	boolean_t rv = FALSE;
3695
3696	return (rv);
3697
3698	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3699		pte = vtopte(addr);
3700		rv = (*pte == 0);
3701	}
3702	return (rv);
3703}
3704
3705boolean_t
3706pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3707{
3708	boolean_t rv;
3709
3710	PMAP_LOCK(pmap);
3711	rv = pmap_is_prefaultable_locked(pmap, addr);
3712	PMAP_UNLOCK(pmap);
3713	return (rv);
3714}
3715
3716void
3717pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3718{
3719	int i, npages = round_page(len) >> PAGE_SHIFT;
3720	for (i = 0; i < npages; i++) {
3721		pt_entry_t *pte;
3722		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3723		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3724		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3725		pmap_pte_release(pte);
3726	}
3727}
3728
3729void
3730pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3731{
3732	int i, npages = round_page(len) >> PAGE_SHIFT;
3733	for (i = 0; i < npages; i++) {
3734		pt_entry_t *pte;
3735		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3736		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3737		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3738		pmap_pte_release(pte);
3739	}
3740}
3741
3742/*
3743 * Clear the write and modified bits in each of the given page's mappings.
3744 */
3745void
3746pmap_remove_write(vm_page_t m)
3747{
3748	pv_entry_t pv;
3749	pmap_t pmap;
3750	pt_entry_t oldpte, *pte;
3751
3752	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3753	if ((m->flags & PG_FICTITIOUS) != 0 ||
3754	    (m->flags & PG_WRITEABLE) == 0)
3755		return;
3756	sched_pin();
3757	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3758		pmap = PV_PMAP(pv);
3759		PMAP_LOCK(pmap);
3760		pte = pmap_pte_quick(pmap, pv->pv_va);
3761retry:
3762		oldpte = *pte;
3763		if ((oldpte & PG_RW) != 0) {
3764			vm_paddr_t newpte = oldpte & ~(PG_RW | PG_M);
3765
3766			/*
3767			 * Regardless of whether a pte is 32 or 64 bits
3768			 * in size, PG_RW and PG_M are among the least
3769			 * significant 32 bits.
3770			 */
3771			PT_SET_VA_MA(pte, newpte, TRUE);
3772			if (*pte != newpte)
3773				goto retry;
3774
3775			if ((oldpte & PG_M) != 0)
3776				vm_page_dirty(m);
3777			pmap_invalidate_page(pmap, pv->pv_va);
3778		}
3779		PMAP_UNLOCK(pmap);
3780	}
3781	vm_page_flag_clear(m, PG_WRITEABLE);
3782	PT_UPDATES_FLUSH();
3783	if (*PMAP1)
3784		PT_SET_MA(PADDR1, 0);
3785	sched_unpin();
3786}
3787
3788/*
3789 *	pmap_ts_referenced:
3790 *
3791 *	Return a count of reference bits for a page, clearing those bits.
3792 *	It is not necessary for every reference bit to be cleared, but it
3793 *	is necessary that 0 only be returned when there are truly no
3794 *	reference bits set.
3795 *
3796 *	XXX: The exact number of bits to check and clear is a matter that
3797 *	should be tested and standardized at some point in the future for
3798 *	optimal aging of shared pages.
3799 */
3800int
3801pmap_ts_referenced(vm_page_t m)
3802{
3803	pv_entry_t pv, pvf, pvn;
3804	pmap_t pmap;
3805	pt_entry_t *pte;
3806	int rtval = 0;
3807
3808	if (m->flags & PG_FICTITIOUS)
3809		return (rtval);
3810	sched_pin();
3811	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3812	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3813		pvf = pv;
3814		do {
3815			pvn = TAILQ_NEXT(pv, pv_list);
3816			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3817			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3818			pmap = PV_PMAP(pv);
3819			PMAP_LOCK(pmap);
3820			pte = pmap_pte_quick(pmap, pv->pv_va);
3821			if ((*pte & PG_A) != 0) {
3822				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3823				pmap_invalidate_page(pmap, pv->pv_va);
3824				rtval++;
3825				if (rtval > 4)
3826					pvn = NULL;
3827			}
3828			PMAP_UNLOCK(pmap);
3829		} while ((pv = pvn) != NULL && pv != pvf);
3830	}
3831	PT_UPDATES_FLUSH();
3832	if (*PMAP1)
3833		PT_SET_MA(PADDR1, 0);
3834
3835	sched_unpin();
3836	return (rtval);
3837}
3838
3839/*
3840 *	Clear the modify bits on the specified physical page.
3841 */
3842void
3843pmap_clear_modify(vm_page_t m)
3844{
3845	pv_entry_t pv;
3846	pmap_t pmap;
3847	pt_entry_t *pte;
3848
3849	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3850	if ((m->flags & PG_FICTITIOUS) != 0)
3851		return;
3852	sched_pin();
3853	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3854		pmap = PV_PMAP(pv);
3855		PMAP_LOCK(pmap);
3856		pte = pmap_pte_quick(pmap, pv->pv_va);
3857		if ((*pte & PG_M) != 0) {
3858			/*
3859			 * Regardless of whether a pte is 32 or 64 bits
3860			 * in size, PG_M is among the least significant
3861			 * 32 bits.
3862			 */
3863			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3864			pmap_invalidate_page(pmap, pv->pv_va);
3865		}
3866		PMAP_UNLOCK(pmap);
3867	}
3868	sched_unpin();
3869}
3870
3871/*
3872 *	pmap_clear_reference:
3873 *
3874 *	Clear the reference bit on the specified physical page.
3875 */
3876void
3877pmap_clear_reference(vm_page_t m)
3878{
3879	pv_entry_t pv;
3880	pmap_t pmap;
3881	pt_entry_t *pte;
3882
3883	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3884	if ((m->flags & PG_FICTITIOUS) != 0)
3885		return;
3886	sched_pin();
3887	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3888		pmap = PV_PMAP(pv);
3889		PMAP_LOCK(pmap);
3890		pte = pmap_pte_quick(pmap, pv->pv_va);
3891		if ((*pte & PG_A) != 0) {
3892			/*
3893			 * Regardless of whether a pte is 32 or 64 bits
3894			 * in size, PG_A is among the least significant
3895			 * 32 bits.
3896			 */
3897			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3898			pmap_invalidate_page(pmap, pv->pv_va);
3899		}
3900		PMAP_UNLOCK(pmap);
3901	}
3902	sched_unpin();
3903}
3904
3905/*
3906 * Miscellaneous support routines follow
3907 */
3908
3909/*
3910 * Map a set of physical memory pages into the kernel virtual
3911 * address space. Return a pointer to where it is mapped. This
3912 * routine is intended to be used for mapping device memory,
3913 * NOT real memory.
3914 */
3915void *
3916pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3917{
3918	vm_offset_t va, offset;
3919	vm_size_t tmpsize;
3920
3921	offset = pa & PAGE_MASK;
3922	size = roundup(offset + size, PAGE_SIZE);
3923	pa = pa & PG_FRAME;
3924
3925	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3926		va = KERNBASE + pa;
3927	else
3928		va = kmem_alloc_nofault(kernel_map, size);
3929	if (!va)
3930		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3931
3932	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
3933		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
3934	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
3935	pmap_invalidate_cache_range(va, va + size);
3936	return ((void *)(va + offset));
3937}
3938
3939void *
3940pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3941{
3942
3943	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3944}
3945
3946void *
3947pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3948{
3949
3950	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3951}
3952
3953void
3954pmap_unmapdev(vm_offset_t va, vm_size_t size)
3955{
3956	vm_offset_t base, offset, tmpva;
3957
3958	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3959		return;
3960	base = trunc_page(va);
3961	offset = va & PAGE_MASK;
3962	size = roundup(offset + size, PAGE_SIZE);
3963	critical_enter();
3964	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3965		pmap_kremove(tmpva);
3966	pmap_invalidate_range(kernel_pmap, va, tmpva);
3967	critical_exit();
3968	kmem_free(kernel_map, base, size);
3969}
3970
3971/*
3972 * Sets the memory attribute for the specified page.
3973 */
3974void
3975pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
3976{
3977	struct sysmaps *sysmaps;
3978	vm_offset_t sva, eva;
3979
3980	m->md.pat_mode = ma;
3981	if ((m->flags & PG_FICTITIOUS) != 0)
3982		return;
3983
3984	/*
3985	 * If "m" is a normal page, flush it from the cache.
3986	 * See pmap_invalidate_cache_range().
3987	 *
3988	 * First, try to find an existing mapping of the page by sf
3989	 * buffer. sf_buf_invalidate_cache() modifies mapping and
3990	 * flushes the cache.
3991	 */
3992	if (sf_buf_invalidate_cache(m))
3993		return;
3994
3995	/*
3996	 * If page is not mapped by sf buffer, but CPU does not
3997	 * support self snoop, map the page transient and do
3998	 * invalidation. In the worst case, whole cache is flushed by
3999	 * pmap_invalidate_cache_range().
4000	 */
4001	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4002		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4003		mtx_lock(&sysmaps->lock);
4004		if (*sysmaps->CMAP2)
4005			panic("pmap_page_set_memattr: CMAP2 busy");
4006		sched_pin();
4007		PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW |
4008		    xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M |
4009		    pmap_cache_bits(m->md.pat_mode, 0));
4010		invlcaddr(sysmaps->CADDR2);
4011		sva = (vm_offset_t)sysmaps->CADDR2;
4012		eva = sva + PAGE_SIZE;
4013	} else
4014		sva = eva = 0; /* gcc */
4015	pmap_invalidate_cache_range(sva, eva);
4016	if (sva != 0) {
4017		PT_SET_MA(sysmaps->CADDR2, 0);
4018		sched_unpin();
4019		mtx_unlock(&sysmaps->lock);
4020	}
4021}
4022
4023int
4024pmap_change_attr(va, size, mode)
4025	vm_offset_t va;
4026	vm_size_t size;
4027	int mode;
4028{
4029	vm_offset_t base, offset, tmpva;
4030	pt_entry_t *pte;
4031	u_int opte, npte;
4032	pd_entry_t *pde;
4033	boolean_t changed;
4034
4035	base = trunc_page(va);
4036	offset = va & PAGE_MASK;
4037	size = roundup(offset + size, PAGE_SIZE);
4038
4039	/* Only supported on kernel virtual addresses. */
4040	if (base <= VM_MAXUSER_ADDRESS)
4041		return (EINVAL);
4042
4043	/* 4MB pages and pages that aren't mapped aren't supported. */
4044	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
4045		pde = pmap_pde(kernel_pmap, tmpva);
4046		if (*pde & PG_PS)
4047			return (EINVAL);
4048		if ((*pde & PG_V) == 0)
4049			return (EINVAL);
4050		pte = vtopte(va);
4051		if ((*pte & PG_V) == 0)
4052			return (EINVAL);
4053	}
4054
4055	changed = FALSE;
4056
4057	/*
4058	 * Ok, all the pages exist and are 4k, so run through them updating
4059	 * their cache mode.
4060	 */
4061	for (tmpva = base; size > 0; ) {
4062		pte = vtopte(tmpva);
4063
4064		/*
4065		 * The cache mode bits are all in the low 32-bits of the
4066		 * PTE, so we can just spin on updating the low 32-bits.
4067		 */
4068		do {
4069			opte = *(u_int *)pte;
4070			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
4071			npte |= pmap_cache_bits(mode, 0);
4072			PT_SET_VA_MA(pte, npte, TRUE);
4073		} while (npte != opte && (*pte != npte));
4074		if (npte != opte)
4075			changed = TRUE;
4076		tmpva += PAGE_SIZE;
4077		size -= PAGE_SIZE;
4078	}
4079
4080	/*
4081	 * Flush CPU caches to make sure any data isn't cached that shouldn't
4082	 * be, etc.
4083	 */
4084	if (changed) {
4085		pmap_invalidate_range(kernel_pmap, base, tmpva);
4086		pmap_invalidate_cache_range(base, tmpva);
4087	}
4088	return (0);
4089}
4090
4091/*
4092 * perform the pmap work for mincore
4093 */
4094int
4095pmap_mincore(pmap_t pmap, vm_offset_t addr)
4096{
4097	pt_entry_t *ptep, pte;
4098	vm_page_t m;
4099	int val = 0;
4100
4101	PMAP_LOCK(pmap);
4102	ptep = pmap_pte(pmap, addr);
4103	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
4104	pmap_pte_release(ptep);
4105	PMAP_UNLOCK(pmap);
4106
4107	if (pte != 0) {
4108		vm_paddr_t pa;
4109
4110		val = MINCORE_INCORE;
4111		if ((pte & PG_MANAGED) == 0)
4112			return val;
4113
4114		pa = pte & PG_FRAME;
4115
4116		m = PHYS_TO_VM_PAGE(pa);
4117
4118		/*
4119		 * Modified by us
4120		 */
4121		if (pte & PG_M)
4122			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4123		else {
4124			/*
4125			 * Modified by someone else
4126			 */
4127			vm_page_lock_queues();
4128			if (m->dirty || pmap_is_modified(m))
4129				val |= MINCORE_MODIFIED_OTHER;
4130			vm_page_unlock_queues();
4131		}
4132		/*
4133		 * Referenced by us
4134		 */
4135		if (pte & PG_A)
4136			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4137		else {
4138			/*
4139			 * Referenced by someone else
4140			 */
4141			vm_page_lock_queues();
4142			if ((m->flags & PG_REFERENCED) ||
4143			    pmap_ts_referenced(m)) {
4144				val |= MINCORE_REFERENCED_OTHER;
4145				vm_page_flag_set(m, PG_REFERENCED);
4146			}
4147			vm_page_unlock_queues();
4148		}
4149	}
4150	return val;
4151}
4152
4153void
4154pmap_activate(struct thread *td)
4155{
4156	pmap_t	pmap, oldpmap;
4157	u_int32_t  cr3;
4158
4159	critical_enter();
4160	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4161	oldpmap = PCPU_GET(curpmap);
4162#if defined(SMP)
4163	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4164	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4165#else
4166	oldpmap->pm_active &= ~1;
4167	pmap->pm_active |= 1;
4168#endif
4169#ifdef PAE
4170	cr3 = vtophys(pmap->pm_pdpt);
4171#else
4172	cr3 = vtophys(pmap->pm_pdir);
4173#endif
4174	/*
4175	 * pmap_activate is for the current thread on the current cpu
4176	 */
4177	td->td_pcb->pcb_cr3 = cr3;
4178	PT_UPDATES_FLUSH();
4179	load_cr3(cr3);
4180	PCPU_SET(curpmap, pmap);
4181	critical_exit();
4182}
4183
4184void
4185pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
4186{
4187}
4188
4189/*
4190 *	Increase the starting virtual address of the given mapping if a
4191 *	different alignment might result in more superpage mappings.
4192 */
4193void
4194pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4195    vm_offset_t *addr, vm_size_t size)
4196{
4197	vm_offset_t superpage_offset;
4198
4199	if (size < NBPDR)
4200		return;
4201	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4202		offset += ptoa(object->pg_color);
4203	superpage_offset = offset & PDRMASK;
4204	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4205	    (*addr & PDRMASK) == superpage_offset)
4206		return;
4207	if ((*addr & PDRMASK) < superpage_offset)
4208		*addr = (*addr & ~PDRMASK) + superpage_offset;
4209	else
4210		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4211}
4212
4213#ifdef XEN
4214
4215void
4216pmap_suspend()
4217{
4218	pmap_t pmap;
4219	int i, pdir, offset;
4220	vm_paddr_t pdirma;
4221	mmu_update_t mu[4];
4222
4223	/*
4224	 * We need to remove the recursive mapping structure from all
4225	 * our pmaps so that Xen doesn't get confused when it restores
4226	 * the page tables. The recursive map lives at page directory
4227	 * index PTDPTDI. We assume that the suspend code has stopped
4228	 * the other vcpus (if any).
4229	 */
4230	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4231		for (i = 0; i < 4; i++) {
4232			/*
4233			 * Figure out which page directory (L2) page
4234			 * contains this bit of the recursive map and
4235			 * the offset within that page of the map
4236			 * entry
4237			 */
4238			pdir = (PTDPTDI + i) / NPDEPG;
4239			offset = (PTDPTDI + i) % NPDEPG;
4240			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4241			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4242			mu[i].val = 0;
4243		}
4244		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4245	}
4246}
4247
4248void
4249pmap_resume()
4250{
4251	pmap_t pmap;
4252	int i, pdir, offset;
4253	vm_paddr_t pdirma;
4254	mmu_update_t mu[4];
4255
4256	/*
4257	 * Restore the recursive map that we removed on suspend.
4258	 */
4259	LIST_FOREACH(pmap, &allpmaps, pm_list) {
4260		for (i = 0; i < 4; i++) {
4261			/*
4262			 * Figure out which page directory (L2) page
4263			 * contains this bit of the recursive map and
4264			 * the offset within that page of the map
4265			 * entry
4266			 */
4267			pdir = (PTDPTDI + i) / NPDEPG;
4268			offset = (PTDPTDI + i) % NPDEPG;
4269			pdirma = pmap->pm_pdpt[pdir] & PG_FRAME;
4270			mu[i].ptr = pdirma + offset * sizeof(pd_entry_t);
4271			mu[i].val = (pmap->pm_pdpt[i] & PG_FRAME) | PG_V;
4272		}
4273		HYPERVISOR_mmu_update(mu, 4, NULL, DOMID_SELF);
4274	}
4275}
4276
4277#endif
4278
4279#if defined(PMAP_DEBUG)
4280pmap_pid_dump(int pid)
4281{
4282	pmap_t pmap;
4283	struct proc *p;
4284	int npte = 0;
4285	int index;
4286
4287	sx_slock(&allproc_lock);
4288	FOREACH_PROC_IN_SYSTEM(p) {
4289		if (p->p_pid != pid)
4290			continue;
4291
4292		if (p->p_vmspace) {
4293			int i,j;
4294			index = 0;
4295			pmap = vmspace_pmap(p->p_vmspace);
4296			for (i = 0; i < NPDEPTD; i++) {
4297				pd_entry_t *pde;
4298				pt_entry_t *pte;
4299				vm_offset_t base = i << PDRSHIFT;
4300
4301				pde = &pmap->pm_pdir[i];
4302				if (pde && pmap_pde_v(pde)) {
4303					for (j = 0; j < NPTEPG; j++) {
4304						vm_offset_t va = base + (j << PAGE_SHIFT);
4305						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4306							if (index) {
4307								index = 0;
4308								printf("\n");
4309							}
4310							sx_sunlock(&allproc_lock);
4311							return npte;
4312						}
4313						pte = pmap_pte(pmap, va);
4314						if (pte && pmap_pte_v(pte)) {
4315							pt_entry_t pa;
4316							vm_page_t m;
4317							pa = PT_GET(pte);
4318							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4319							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4320								va, pa, m->hold_count, m->wire_count, m->flags);
4321							npte++;
4322							index++;
4323							if (index >= 2) {
4324								index = 0;
4325								printf("\n");
4326							} else {
4327								printf(" ");
4328							}
4329						}
4330					}
4331				}
4332			}
4333		}
4334	}
4335	sx_sunlock(&allproc_lock);
4336	return npte;
4337}
4338#endif
4339
4340#if defined(DEBUG)
4341
4342static void	pads(pmap_t pm);
4343void		pmap_pvdump(vm_paddr_t pa);
4344
4345/* print address space of pmap*/
4346static void
4347pads(pmap_t pm)
4348{
4349	int i, j;
4350	vm_paddr_t va;
4351	pt_entry_t *ptep;
4352
4353	if (pm == kernel_pmap)
4354		return;
4355	for (i = 0; i < NPDEPTD; i++)
4356		if (pm->pm_pdir[i])
4357			for (j = 0; j < NPTEPG; j++) {
4358				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4359				if (pm == kernel_pmap && va < KERNBASE)
4360					continue;
4361				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4362					continue;
4363				ptep = pmap_pte(pm, va);
4364				if (pmap_pte_v(ptep))
4365					printf("%x:%x ", va, *ptep);
4366			};
4367
4368}
4369
4370void
4371pmap_pvdump(vm_paddr_t pa)
4372{
4373	pv_entry_t pv;
4374	pmap_t pmap;
4375	vm_page_t m;
4376
4377	printf("pa %x", pa);
4378	m = PHYS_TO_VM_PAGE(pa);
4379	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4380		pmap = PV_PMAP(pv);
4381		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4382		pads(pmap);
4383	}
4384	printf(" ");
4385}
4386#endif
4387