pmap.c revision 181747
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/xen/pmap.c 181747 2008-08-15 04:00:44Z kmacy $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#define PMAP_DIAGNOSTIC
107
108#include "opt_cpu.h"
109#include "opt_pmap.h"
110#include "opt_msgbuf.h"
111#include "opt_smp.h"
112#include "opt_xbox.h"
113
114#include <sys/param.h>
115#include <sys/systm.h>
116#include <sys/kernel.h>
117#include <sys/ktr.h>
118#include <sys/lock.h>
119#include <sys/malloc.h>
120#include <sys/mman.h>
121#include <sys/msgbuf.h>
122#include <sys/mutex.h>
123#include <sys/proc.h>
124#include <sys/sx.h>
125#include <sys/vmmeter.h>
126#include <sys/sched.h>
127#include <sys/sysctl.h>
128#ifdef SMP
129#include <sys/smp.h>
130#endif
131
132#include <vm/vm.h>
133#include <vm/vm_param.h>
134#include <vm/vm_kern.h>
135#include <vm/vm_page.h>
136#include <vm/vm_map.h>
137#include <vm/vm_object.h>
138#include <vm/vm_extern.h>
139#include <vm/vm_pageout.h>
140#include <vm/vm_pager.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#include <xen/interface/xen.h>
157#include <machine/xen/hypervisor.h>
158#include <machine/xen/hypercall.h>
159#include <machine/xen/xenvar.h>
160#include <machine/xen/xenfunc.h>
161
162#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
163#define CPU_ENABLE_SSE
164#endif
165
166#ifndef PMAP_SHPGPERPROC
167#define PMAP_SHPGPERPROC 200
168#endif
169
170#if defined(DIAGNOSTIC)
171#define PMAP_DIAGNOSTIC
172#endif
173
174#if !defined(PMAP_DIAGNOSTIC)
175#define PMAP_INLINE	__gnu89_inline
176#else
177#define PMAP_INLINE
178#endif
179
180#define PV_STATS
181#ifdef PV_STATS
182#define PV_STAT(x)	do { x ; } while (0)
183#else
184#define PV_STAT(x)	do { } while (0)
185#endif
186
187#define	pa_index(pa)	((pa) >> PDRSHIFT)
188#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
189
190/*
191 * Get PDEs and PTEs for user/kernel address space
192 */
193#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
194#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
195
196#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
197#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
198#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
199#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
200#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
201
202#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
203
204struct pmap kernel_pmap_store;
205LIST_HEAD(pmaplist, pmap);
206static struct pmaplist allpmaps;
207static struct mtx allpmaps_lock;
208
209vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
210vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
211int pgeflag = 0;		/* PG_G or-in */
212int pseflag = 0;		/* PG_PS or-in */
213
214static int nkpt;
215vm_offset_t kernel_vm_end;
216extern u_int32_t KERNend;
217
218#ifdef PAE
219pt_entry_t pg_nx;
220#if !defined(XEN)
221static uma_zone_t pdptzone;
222#endif
223#endif
224
225/*
226 * Data for the pv entry allocation mechanism
227 */
228static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
229static struct md_page *pv_table;
230static int shpgperproc = PMAP_SHPGPERPROC;
231
232struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
233int pv_maxchunks;			/* How many chunks we have KVA for */
234vm_offset_t pv_vafree;			/* freelist stored in the PTE */
235
236/*
237 * All those kernel PT submaps that BSD is so fond of
238 */
239struct sysmaps {
240	struct	mtx lock;
241	pt_entry_t *CMAP1;
242	pt_entry_t *CMAP2;
243	caddr_t	CADDR1;
244	caddr_t	CADDR2;
245};
246static struct sysmaps sysmaps_pcpu[MAXCPU];
247pt_entry_t *CMAP1 = 0;
248static pt_entry_t *CMAP3;
249caddr_t CADDR1 = 0, ptvmmap = 0;
250static caddr_t CADDR3;
251struct msgbuf *msgbufp = 0;
252
253/*
254 * Crashdump maps.
255 */
256static caddr_t crashdumpmap;
257
258static pt_entry_t *PMAP1 = 0, *PMAP2;
259static pt_entry_t *PADDR1 = 0, *PADDR2;
260#ifdef SMP
261static int PMAP1cpu;
262static int PMAP1changedcpu;
263SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
264	   &PMAP1changedcpu, 0,
265	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
266#endif
267static int PMAP1changed;
268SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
269	   &PMAP1changed, 0,
270	   "Number of times pmap_pte_quick changed PMAP1");
271static int PMAP1unchanged;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
273	   &PMAP1unchanged, 0,
274	   "Number of times pmap_pte_quick didn't change PMAP1");
275static struct mtx PMAP2mutex;
276
277SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
278static int pg_ps_enabled;
279SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RD, &pg_ps_enabled, 0,
280    "Are large page mappings enabled?");
281
282SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
283	"Max number of PV entries");
284SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
285	"Page share factor per proc");
286
287static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
288static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
289
290static vm_page_t pmap_enter_quick_locked(multicall_entry_t **mcl, int *count, pmap_t pmap, vm_offset_t va,
291    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
292static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
293    vm_page_t *free);
294static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
295    vm_page_t *free);
296static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
297					vm_offset_t va);
298static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
299static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
300    vm_page_t m);
301
302static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
303
304static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
305static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
306static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
307static void pmap_pte_release(pt_entry_t *pte);
308static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
309static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
310static boolean_t pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr);
311static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
312
313
314#if defined(PAE) && !defined(XEN)
315static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
316#endif
317
318CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
319CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
320
321/*
322 * If you get an error here, then you set KVA_PAGES wrong! See the
323 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
324 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
325 */
326CTASSERT(KERNBASE % (1 << 24) == 0);
327
328
329
330static __inline void
331pagezero(void *page)
332{
333#if defined(I686_CPU)
334	if (cpu_class == CPUCLASS_686) {
335#if defined(CPU_ENABLE_SSE)
336		if (cpu_feature & CPUID_SSE2)
337			sse2_pagezero(page);
338		else
339#endif
340			i686_pagezero(page);
341	} else
342#endif
343		bzero(page, PAGE_SIZE);
344}
345
346void
347pd_set(struct pmap *pmap, int ptepindex, vm_paddr_t val, int type)
348{
349	vm_paddr_t pdir_ma = vtomach(&pmap->pm_pdir[ptepindex]);
350
351	switch (type) {
352	case SH_PD_SET_VA:
353#if 0
354		xen_queue_pt_update(shadow_pdir_ma,
355				    xpmap_ptom(val & ~(PG_RW)));
356#endif
357		xen_queue_pt_update(pdir_ma,
358				    xpmap_ptom(val));
359		break;
360	case SH_PD_SET_VA_MA:
361#if 0
362		xen_queue_pt_update(shadow_pdir_ma,
363				    val & ~(PG_RW));
364#endif
365		xen_queue_pt_update(pdir_ma, val);
366		break;
367	case SH_PD_SET_VA_CLEAR:
368#if 0
369		xen_queue_pt_update(shadow_pdir_ma, 0);
370#endif
371		xen_queue_pt_update(pdir_ma, 0);
372		break;
373	}
374}
375
376/*
377 * Move the kernel virtual free pointer to the next
378 * 4MB.  This is used to help improve performance
379 * by using a large (4MB) page for much of the kernel
380 * (.text, .data, .bss)
381 */
382static vm_offset_t
383pmap_kmem_choose(vm_offset_t addr)
384{
385	vm_offset_t newaddr = addr;
386
387#ifndef DISABLE_PSE
388	if (cpu_feature & CPUID_PSE)
389		newaddr = (addr + PDRMASK) & ~PDRMASK;
390#endif
391	return newaddr;
392}
393
394/*
395 *	Bootstrap the system enough to run with virtual memory.
396 *
397 *	On the i386 this is called after mapping has already been enabled
398 *	and just syncs the pmap module with what has already been done.
399 *	[We can't call it easily with mapping off since the kernel is not
400 *	mapped with PA == VA, hence we would have to relocate every address
401 *	from the linked base (virtual) address "KERNBASE" to the actual
402 *	(physical) address starting relative to 0]
403 */
404void
405pmap_bootstrap(vm_paddr_t firstaddr)
406{
407	vm_offset_t va;
408	pt_entry_t *pte, *unused;
409	struct sysmaps *sysmaps;
410	int i;
411
412	/*
413	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
414	 * large. It should instead be correctly calculated in locore.s and
415	 * not based on 'first' (which is a physical address, not a virtual
416	 * address, for the start of unused physical memory). The kernel
417	 * page tables are NOT double mapped and thus should not be included
418	 * in this calculation.
419	 */
420	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
421	virtual_avail = pmap_kmem_choose(virtual_avail);
422
423	virtual_end = VM_MAX_KERNEL_ADDRESS;
424
425	/*
426	 * Initialize the kernel pmap (which is statically allocated).
427	 */
428	PMAP_LOCK_INIT(kernel_pmap);
429	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
430#ifdef PAE
431	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
432#endif
433	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
434	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
435	LIST_INIT(&allpmaps);
436	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
437	mtx_lock_spin(&allpmaps_lock);
438	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
439	mtx_unlock_spin(&allpmaps_lock);
440	nkpt = NKPT;
441
442	/*
443	 * Reserve some special page table entries/VA space for temporary
444	 * mapping of pages.
445	 */
446#define	SYSMAP(c, p, v, n)	\
447	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
448
449	va = virtual_avail;
450	pte = vtopte(va);
451
452	/*
453	 * CMAP1/CMAP2 are used for zeroing and copying pages.
454	 * CMAP3 is used for the idle process page zeroing.
455	 */
456	for (i = 0; i < MAXCPU; i++) {
457		sysmaps = &sysmaps_pcpu[i];
458		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
459		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
460		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
461	}
462	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
463	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
464	PT_SET_MA(CADDR3, 0);
465
466	/*
467	 * Crashdump maps.
468	 */
469	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
470
471	/*
472	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
473	 */
474	SYSMAP(caddr_t, unused, ptvmmap, 1)
475
476	/*
477	 * msgbufp is used to map the system message buffer.
478	 */
479	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
480
481	/*
482	 * ptemap is used for pmap_pte_quick
483	 */
484	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
485	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
486
487	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
488
489	virtual_avail = va;
490	PT_SET_MA(CADDR1, 0);
491
492	/*
493	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
494	 * physical memory region that is used by the ACPI wakeup code.  This
495	 * mapping must not have PG_G set.
496	 */
497#ifndef XEN
498	/*
499	 * leave here deliberately to show that this is not supported
500	 */
501#ifdef XBOX
502	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
503	 * an early stadium, we cannot yet neatly map video memory ... :-(
504	 * Better fixes are very welcome! */
505	if (!arch_i386_is_xbox)
506#endif
507	for (i = 1; i < NKPT; i++)
508		PTD[i] = 0;
509
510	/* Initialize the PAT MSR if present. */
511	pmap_init_pat();
512
513	/* Turn on PG_G on kernel page(s) */
514	pmap_set_pg();
515#endif
516}
517
518/*
519 * Setup the PAT MSR.
520 */
521void
522pmap_init_pat(void)
523{
524	uint64_t pat_msr;
525
526	/* Bail if this CPU doesn't implement PAT. */
527	if (!(cpu_feature & CPUID_PAT))
528		return;
529
530#ifdef PAT_WORKS
531	/*
532	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
533	 * Program 4 and 5 as WP and WC.
534	 * Leave 6 and 7 as UC and UC-.
535	 */
536	pat_msr = rdmsr(MSR_PAT);
537	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
538	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
539	    PAT_VALUE(5, PAT_WRITE_COMBINING);
540#else
541	/*
542	 * Due to some Intel errata, we can only safely use the lower 4
543	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
544	 * of UC-.
545	 *
546	 *   Intel Pentium III Processor Specification Update
547	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
548	 * or Mode C Paging)
549	 *
550	 *   Intel Pentium IV  Processor Specification Update
551	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
552	 */
553	pat_msr = rdmsr(MSR_PAT);
554	pat_msr &= ~PAT_MASK(2);
555	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
556#endif
557	wrmsr(MSR_PAT, pat_msr);
558}
559
560/*
561 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
562 */
563void
564pmap_set_pg(void)
565{
566	pd_entry_t pdir;
567	pt_entry_t *pte;
568	vm_offset_t va, endva;
569	int i;
570
571	if (pgeflag == 0)
572		return;
573
574	i = KERNLOAD/NBPDR;
575	endva = KERNBASE + KERNend;
576
577	if (pseflag) {
578		va = KERNBASE + KERNLOAD;
579		while (va  < endva) {
580			pdir = kernel_pmap->pm_pdir[KPTDI+i];
581			pdir |= pgeflag;
582			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
583			invltlb();	/* Play it safe, invltlb() every time */
584			i++;
585			va += NBPDR;
586		}
587	} else {
588		va = (vm_offset_t)btext;
589		while (va < endva) {
590			pte = vtopte(va);
591			if (*pte & PG_V)
592				*pte |= pgeflag;
593			invltlb();	/* Play it safe, invltlb() every time */
594			va += PAGE_SIZE;
595		}
596	}
597}
598
599/*
600 * Initialize a vm_page's machine-dependent fields.
601 */
602void
603pmap_page_init(vm_page_t m)
604{
605
606	TAILQ_INIT(&m->md.pv_list);
607}
608
609#if defined(PAE) && !defined(XEN)
610
611static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
612
613static void *
614pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
615{
616	*flags = UMA_SLAB_PRIV;
617	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
618	    1, 0));
619}
620#endif
621
622/*
623 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
624 * Requirements:
625 *  - Must deal with pages in order to ensure that none of the PG_* bits
626 *    are ever set, PG_V in particular.
627 *  - Assumes we can write to ptes without pte_store() atomic ops, even
628 *    on PAE systems.  This should be ok.
629 *  - Assumes nothing will ever test these addresses for 0 to indicate
630 *    no mapping instead of correctly checking PG_V.
631 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
632 * Because PG_V is never set, there can be no mappings to invalidate.
633 */
634static int ptelist_count = 0;
635static vm_offset_t
636pmap_ptelist_alloc(vm_offset_t *head)
637{
638	vm_offset_t va;
639	vm_offset_t *phead = (vm_offset_t *)*head;
640
641	if (ptelist_count == 0) {
642		printf("out of memory!!!!!!\n");
643		return (0);	/* Out of memory */
644	}
645	ptelist_count--;
646	va = phead[ptelist_count];
647	return (va);
648}
649
650static void
651pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
652{
653	vm_offset_t *phead = (vm_offset_t *)*head;
654
655	phead[ptelist_count++] = va;
656}
657
658static void
659pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
660{
661	int i, nstackpages;
662	vm_offset_t va;
663	vm_page_t m;
664
665	nstackpages = (npages + PAGE_SIZE/sizeof(vm_offset_t) - 1)/ (PAGE_SIZE/sizeof(vm_offset_t));
666	for (i = 0; i < nstackpages; i++) {
667		va = (vm_offset_t)base + i * PAGE_SIZE;
668		m = vm_page_alloc(NULL, i,
669		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
670		    VM_ALLOC_ZERO);
671		pmap_qenter(va, &m, 1);
672	}
673
674	*head = (vm_offset_t)base;
675	for (i = npages - 1; i >= nstackpages; i--) {
676		va = (vm_offset_t)base + i * PAGE_SIZE;
677		pmap_ptelist_free(head, va);
678	}
679}
680
681
682/*
683 *	Initialize the pmap module.
684 *	Called by vm_init, to initialize any structures that the pmap
685 *	system needs to map virtual memory.
686 */
687void
688pmap_init(void)
689{
690	vm_page_t mpte;
691	vm_size_t s;
692	int i, pv_npg;
693
694
695	/*
696	 * Initialize the vm page array entries for the kernel pmap's
697	 * page table pages.
698	 */
699	for (i = 0; i < nkpt; i++) {
700		mpte = PHYS_TO_VM_PAGE(PTD[i + KPTDI] & PG_FRAME);
701		KASSERT(mpte >= vm_page_array &&
702		    mpte < &vm_page_array[vm_page_array_size],
703		    ("pmap_init: page table page is out of range"));
704		mpte->pindex = i + KPTDI;
705		mpte->phys_addr = PTD[i + KPTDI] & PG_FRAME;
706	}
707
708        /*
709	 * Initialize the address space (zone) for the pv entries.  Set a
710	 * high water mark so that the system can recover from excessive
711	 * numbers of pv entries.
712	 */
713	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
714	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
715	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
716	pv_entry_max = roundup(pv_entry_max, _NPCPV);
717	pv_entry_high_water = 9 * (pv_entry_max / 10);
718
719	/*
720	 * Are large page mappings enabled?
721	 */
722	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
723
724	/*
725	 * Calculate the size of the pv head table for superpages.
726	 */
727	for (i = 0; phys_avail[i + 1]; i += 2);
728	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
729
730	/*
731	 * Allocate memory for the pv head table for superpages.
732	 */
733	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
734	s = round_page(s);
735	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
736	for (i = 0; i < pv_npg; i++)
737		TAILQ_INIT(&pv_table[i].pv_list);
738
739	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
740	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
741	    PAGE_SIZE * pv_maxchunks);
742	if (pv_chunkbase == NULL)
743		panic("pmap_init: not enough kvm for pv chunks");
744	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
745#if defined(PAE) && !defined(XEN)
746	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
747	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
748	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
749	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
750#endif
751}
752
753
754/***************************************************
755 * Low level helper routines.....
756 ***************************************************/
757
758/*
759 * Determine the appropriate bits to set in a PTE or PDE for a specified
760 * caching mode.
761 */
762static int
763pmap_cache_bits(int mode, boolean_t is_pde)
764{
765	int pat_flag, pat_index, cache_bits;
766
767	/* The PAT bit is different for PTE's and PDE's. */
768	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
769
770	/* If we don't support PAT, map extended modes to older ones. */
771	if (!(cpu_feature & CPUID_PAT)) {
772		switch (mode) {
773		case PAT_UNCACHEABLE:
774		case PAT_WRITE_THROUGH:
775		case PAT_WRITE_BACK:
776			break;
777		case PAT_UNCACHED:
778		case PAT_WRITE_COMBINING:
779		case PAT_WRITE_PROTECTED:
780			mode = PAT_UNCACHEABLE;
781			break;
782		}
783	}
784
785	/* Map the caching mode to a PAT index. */
786	switch (mode) {
787#ifdef PAT_WORKS
788	case PAT_UNCACHEABLE:
789		pat_index = 3;
790		break;
791	case PAT_WRITE_THROUGH:
792		pat_index = 1;
793		break;
794	case PAT_WRITE_BACK:
795		pat_index = 0;
796		break;
797	case PAT_UNCACHED:
798		pat_index = 2;
799		break;
800	case PAT_WRITE_COMBINING:
801		pat_index = 5;
802		break;
803	case PAT_WRITE_PROTECTED:
804		pat_index = 4;
805		break;
806#else
807	case PAT_UNCACHED:
808	case PAT_UNCACHEABLE:
809	case PAT_WRITE_PROTECTED:
810		pat_index = 3;
811		break;
812	case PAT_WRITE_THROUGH:
813		pat_index = 1;
814		break;
815	case PAT_WRITE_BACK:
816		pat_index = 0;
817		break;
818	case PAT_WRITE_COMBINING:
819		pat_index = 2;
820		break;
821#endif
822	default:
823		panic("Unknown caching mode %d\n", mode);
824	}
825
826	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
827	cache_bits = 0;
828	if (pat_index & 0x4)
829		cache_bits |= pat_flag;
830	if (pat_index & 0x2)
831		cache_bits |= PG_NC_PCD;
832	if (pat_index & 0x1)
833		cache_bits |= PG_NC_PWT;
834	return (cache_bits);
835}
836#ifdef SMP
837/*
838 * For SMP, these functions have to use the IPI mechanism for coherence.
839 *
840 * N.B.: Before calling any of the following TLB invalidation functions,
841 * the calling processor must ensure that all stores updating a non-
842 * kernel page table are globally performed.  Otherwise, another
843 * processor could cache an old, pre-update entry without being
844 * invalidated.  This can happen one of two ways: (1) The pmap becomes
845 * active on another processor after its pm_active field is checked by
846 * one of the following functions but before a store updating the page
847 * table is globally performed. (2) The pmap becomes active on another
848 * processor before its pm_active field is checked but due to
849 * speculative loads one of the following functions stills reads the
850 * pmap as inactive on the other processor.
851 *
852 * The kernel page table is exempt because its pm_active field is
853 * immutable.  The kernel page table is always active on every
854 * processor.
855 */
856void
857pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
858{
859	u_int cpumask;
860	u_int other_cpus;
861
862	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
863	    pmap, va);
864
865	sched_pin();
866	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
867		invlpg(va);
868		smp_invlpg(va);
869	} else {
870		cpumask = PCPU_GET(cpumask);
871		other_cpus = PCPU_GET(other_cpus);
872		if (pmap->pm_active & cpumask)
873			invlpg(va);
874		if (pmap->pm_active & other_cpus)
875			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
876	}
877	sched_unpin();
878	PT_UPDATES_FLUSH();
879}
880
881void
882pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
883{
884	u_int cpumask;
885	u_int other_cpus;
886	vm_offset_t addr;
887
888	CTR3(KTR_PMAP, "pmap_invalidate_page: pmap=%p eva=0x%x sva=0x%x",
889	    pmap, sva, eva);
890
891	sched_pin();
892	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
893		for (addr = sva; addr < eva; addr += PAGE_SIZE)
894			invlpg(addr);
895		smp_invlpg_range(sva, eva);
896	} else {
897		cpumask = PCPU_GET(cpumask);
898		other_cpus = PCPU_GET(other_cpus);
899		if (pmap->pm_active & cpumask)
900			for (addr = sva; addr < eva; addr += PAGE_SIZE)
901				invlpg(addr);
902		if (pmap->pm_active & other_cpus)
903			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
904			    sva, eva);
905	}
906	sched_unpin();
907	PT_UPDATES_FLUSH();
908}
909
910void
911pmap_invalidate_all(pmap_t pmap)
912{
913	u_int cpumask;
914	u_int other_cpus;
915
916	CTR1(KTR_PMAP, "pmap_invalidate_page: pmap=%p", pmap);
917
918	sched_pin();
919	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
920		invltlb();
921		smp_invltlb();
922	} else {
923		cpumask = PCPU_GET(cpumask);
924		other_cpus = PCPU_GET(other_cpus);
925		if (pmap->pm_active & cpumask)
926			invltlb();
927		if (pmap->pm_active & other_cpus)
928			smp_masked_invltlb(pmap->pm_active & other_cpus);
929	}
930	sched_unpin();
931}
932
933void
934pmap_invalidate_cache(void)
935{
936
937	sched_pin();
938	wbinvd();
939	smp_cache_flush();
940	sched_unpin();
941}
942#else /* !SMP */
943/*
944 * Normal, non-SMP, 486+ invalidation functions.
945 * We inline these within pmap.c for speed.
946 */
947PMAP_INLINE void
948pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
949{
950	CTR2(KTR_PMAP, "pmap_invalidate_page: pmap=%p va=0x%x",
951	    pmap, va);
952
953	if (pmap == kernel_pmap || pmap->pm_active)
954		invlpg(va);
955	PT_UPDATES_FLUSH();
956}
957
958PMAP_INLINE void
959pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
960{
961	vm_offset_t addr;
962
963	if (eva - sva > PAGE_SIZE)
964		CTR3(KTR_PMAP, "pmap_invalidate_range: pmap=%p sva=0x%x eva=0x%x",
965		    pmap, sva, eva);
966
967	if (pmap == kernel_pmap || pmap->pm_active)
968		for (addr = sva; addr < eva; addr += PAGE_SIZE)
969			invlpg(addr);
970	PT_UPDATES_FLUSH();
971}
972
973PMAP_INLINE void
974pmap_invalidate_all(pmap_t pmap)
975{
976
977	CTR1(KTR_PMAP, "pmap_invalidate_all: pmap=%p", pmap);
978
979	if (pmap == kernel_pmap || pmap->pm_active)
980		invltlb();
981}
982
983PMAP_INLINE void
984pmap_invalidate_cache(void)
985{
986
987	wbinvd();
988}
989#endif /* !SMP */
990
991/*
992 * Are we current address space or kernel?  N.B. We return FALSE when
993 * a pmap's page table is in use because a kernel thread is borrowing
994 * it.  The borrowed page table can change spontaneously, making any
995 * dependence on its continued use subject to a race condition.
996 */
997static __inline int
998pmap_is_current(pmap_t pmap)
999{
1000
1001	return (pmap == kernel_pmap ||
1002	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1003		(pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1004}
1005
1006/*
1007 * If the given pmap is not the current or kernel pmap, the returned pte must
1008 * be released by passing it to pmap_pte_release().
1009 */
1010pt_entry_t *
1011pmap_pte(pmap_t pmap, vm_offset_t va)
1012{
1013	pd_entry_t newpf;
1014	pd_entry_t *pde;
1015
1016	pde = pmap_pde(pmap, va);
1017	if (*pde & PG_PS)
1018		return (pde);
1019	if (*pde != 0) {
1020		/* are we current address space or kernel? */
1021		if (pmap_is_current(pmap))
1022			return (vtopte(va));
1023		mtx_lock(&PMAP2mutex);
1024		newpf = *pde & PG_FRAME;
1025		if ((*PMAP2 & PG_FRAME) != newpf) {
1026			PT_SET_MA(PADDR2, newpf | PG_V | PG_A | PG_M);
1027			CTR3(KTR_PMAP, "pmap_pte: pmap=%p va=0x%x newpte=0x%08x",
1028			    pmap, va, (*PMAP2 & 0xffffffff));
1029		}
1030
1031		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1032	}
1033	return (0);
1034}
1035
1036/*
1037 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1038 * being NULL.
1039 */
1040static __inline void
1041pmap_pte_release(pt_entry_t *pte)
1042{
1043
1044	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2) {
1045		CTR1(KTR_PMAP, "pmap_pte_release: pte=0x%jx",
1046		    *PMAP2);
1047		PT_SET_VA(PMAP2, 0, TRUE);
1048		mtx_unlock(&PMAP2mutex);
1049	}
1050}
1051
1052static __inline void
1053invlcaddr(void *caddr)
1054{
1055
1056	invlpg((u_int)caddr);
1057	PT_UPDATES_FLUSH();
1058}
1059
1060/*
1061 * Super fast pmap_pte routine best used when scanning
1062 * the pv lists.  This eliminates many coarse-grained
1063 * invltlb calls.  Note that many of the pv list
1064 * scans are across different pmaps.  It is very wasteful
1065 * to do an entire invltlb for checking a single mapping.
1066 *
1067 * If the given pmap is not the current pmap, vm_page_queue_mtx
1068 * must be held and curthread pinned to a CPU.
1069 */
1070static pt_entry_t *
1071pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1072{
1073	pd_entry_t newpf;
1074	pd_entry_t *pde;
1075
1076	pde = pmap_pde(pmap, va);
1077	if (*pde & PG_PS)
1078		return (pde);
1079	if (*pde != 0) {
1080		/* are we current address space or kernel? */
1081		if (pmap_is_current(pmap))
1082			return (vtopte(va));
1083		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1084		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1085		newpf = *pde & PG_FRAME;
1086		if ((*PMAP1 & PG_FRAME) != newpf) {
1087			PT_SET_MA(PADDR1, newpf | PG_V | PG_A | PG_M);
1088			CTR3(KTR_PMAP, "pmap_pte_quick: pmap=%p va=0x%x newpte=0x%08x",
1089			    pmap, va, (u_long)*PMAP1);
1090
1091#ifdef SMP
1092			PMAP1cpu = PCPU_GET(cpuid);
1093#endif
1094			PMAP1changed++;
1095		} else
1096#ifdef SMP
1097		if (PMAP1cpu != PCPU_GET(cpuid)) {
1098			PMAP1cpu = PCPU_GET(cpuid);
1099			invlcaddr(PADDR1);
1100			PMAP1changedcpu++;
1101		} else
1102#endif
1103			PMAP1unchanged++;
1104		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1105	}
1106	return (0);
1107}
1108
1109/*
1110 *	Routine:	pmap_extract
1111 *	Function:
1112 *		Extract the physical page address associated
1113 *		with the given map/virtual_address pair.
1114 */
1115vm_paddr_t
1116pmap_extract(pmap_t pmap, vm_offset_t va)
1117{
1118	vm_paddr_t rtval;
1119	pt_entry_t *pte;
1120	pd_entry_t pde;
1121	pt_entry_t pteval;
1122
1123	rtval = 0;
1124	PMAP_LOCK(pmap);
1125	pde = pmap->pm_pdir[va >> PDRSHIFT];
1126	if (pde != 0) {
1127		if ((pde & PG_PS) != 0) {
1128			rtval = xpmap_mtop(pde & PG_PS_FRAME) | (va & PDRMASK);
1129			PMAP_UNLOCK(pmap);
1130			return rtval;
1131		}
1132		pte = pmap_pte(pmap, va);
1133		pteval = *pte ? xpmap_mtop(*pte) : 0;
1134		rtval = (pteval & PG_FRAME) | (va & PAGE_MASK);
1135		pmap_pte_release(pte);
1136	}
1137	PMAP_UNLOCK(pmap);
1138	return (rtval);
1139}
1140
1141/*
1142 *	Routine:	pmap_extract_ma
1143 *	Function:
1144 *		Like pmap_extract, but returns machine address
1145 */
1146vm_paddr_t
1147pmap_extract_ma(pmap_t pmap, vm_offset_t va)
1148{
1149	vm_paddr_t rtval;
1150	pt_entry_t *pte;
1151	pd_entry_t pde;
1152
1153	rtval = 0;
1154	PMAP_LOCK(pmap);
1155	pde = pmap->pm_pdir[va >> PDRSHIFT];
1156	if (pde != 0) {
1157		if ((pde & PG_PS) != 0) {
1158			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
1159			PMAP_UNLOCK(pmap);
1160			return rtval;
1161		}
1162		pte = pmap_pte(pmap, va);
1163		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1164		pmap_pte_release(pte);
1165	}
1166	PMAP_UNLOCK(pmap);
1167	return (rtval);
1168}
1169
1170/*
1171 *	Routine:	pmap_extract_and_hold
1172 *	Function:
1173 *		Atomically extract and hold the physical page
1174 *		with the given pmap and virtual address pair
1175 *		if that mapping permits the given protection.
1176 */
1177vm_page_t
1178pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1179{
1180	pd_entry_t pde;
1181	pt_entry_t pte;
1182	vm_page_t m;
1183
1184	m = NULL;
1185	vm_page_lock_queues();
1186	PMAP_LOCK(pmap);
1187	pde = PT_GET(pmap_pde(pmap, va));
1188	if (pde != 0) {
1189		if (pde & PG_PS) {
1190			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1191				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1192				    (va & PDRMASK));
1193				vm_page_hold(m);
1194			}
1195		} else {
1196			sched_pin();
1197			pte = PT_GET(pmap_pte_quick(pmap, va));
1198			if (*PMAP1)
1199				PT_SET_MA(PADDR1, 0);
1200			if ((pte & PG_V) &&
1201			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1202				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1203				vm_page_hold(m);
1204			}
1205			sched_unpin();
1206		}
1207	}
1208	vm_page_unlock_queues();
1209	PMAP_UNLOCK(pmap);
1210	return (m);
1211}
1212
1213/***************************************************
1214 * Low level mapping routines.....
1215 ***************************************************/
1216
1217/*
1218 * Add a wired page to the kva.
1219 * Note: not SMP coherent.
1220 */
1221void
1222pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1223{
1224	PT_SET_MA(va, xpmap_ptom(pa)| PG_RW | PG_V | pgeflag);
1225}
1226
1227void
1228pmap_kenter_ma(vm_offset_t va, vm_paddr_t ma)
1229{
1230	pt_entry_t *pte;
1231
1232	pte = vtopte(va);
1233	pte_store_ma(pte, ma | PG_RW | PG_V | pgeflag);
1234}
1235
1236
1237static __inline void
1238pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1239{
1240	PT_SET_MA(va, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1241}
1242
1243/*
1244 * Remove a page from the kernel pagetables.
1245 * Note: not SMP coherent.
1246 */
1247PMAP_INLINE void
1248pmap_kremove(vm_offset_t va)
1249{
1250	pt_entry_t *pte;
1251
1252	pte = vtopte(va);
1253	PT_CLEAR_VA(pte, FALSE);
1254}
1255
1256/*
1257 *	Used to map a range of physical addresses into kernel
1258 *	virtual address space.
1259 *
1260 *	The value passed in '*virt' is a suggested virtual address for
1261 *	the mapping. Architectures which can support a direct-mapped
1262 *	physical to virtual region can return the appropriate address
1263 *	within that region, leaving '*virt' unchanged. Other
1264 *	architectures should map the pages starting at '*virt' and
1265 *	update '*virt' with the first usable address after the mapped
1266 *	region.
1267 */
1268vm_offset_t
1269pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1270{
1271	vm_offset_t va, sva;
1272
1273	va = sva = *virt;
1274	CTR4(KTR_PMAP, "pmap_map: va=0x%x start=0x%jx end=0x%jx prot=0x%x",
1275	    va, start, end, prot);
1276	while (start < end) {
1277		pmap_kenter(va, start);
1278		va += PAGE_SIZE;
1279		start += PAGE_SIZE;
1280	}
1281	pmap_invalidate_range(kernel_pmap, sva, va);
1282	*virt = va;
1283	return (sva);
1284}
1285
1286
1287/*
1288 * Add a list of wired pages to the kva
1289 * this routine is only used for temporary
1290 * kernel mappings that do not need to have
1291 * page modification or references recorded.
1292 * Note that old mappings are simply written
1293 * over.  The page *must* be wired.
1294 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1295 */
1296void
1297pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1298{
1299	pt_entry_t *endpte, *pte;
1300	vm_paddr_t pa;
1301	vm_offset_t va = sva;
1302	int mclcount = 0;
1303	multicall_entry_t mcl[16];
1304	multicall_entry_t *mclp = mcl;
1305	int error;
1306
1307	CTR2(KTR_PMAP, "pmap_qenter:sva=0x%x count=%d", va, count);
1308	pte = vtopte(sva);
1309	endpte = pte + count;
1310	while (pte < endpte) {
1311		pa = xpmap_ptom(VM_PAGE_TO_PHYS(*ma)) | pgeflag | PG_RW | PG_V | PG_M | PG_A;
1312
1313		mclp->op = __HYPERVISOR_update_va_mapping;
1314		mclp->args[0] = va;
1315		mclp->args[1] = (uint32_t)(pa & 0xffffffff);
1316		mclp->args[2] = (uint32_t)(pa >> 32);
1317		mclp->args[3] = (*pte & PG_V) ? UVMF_INVLPG|UVMF_ALL : 0;
1318
1319		va += PAGE_SIZE;
1320		pte++;
1321		ma++;
1322		mclp++;
1323		mclcount++;
1324		if (mclcount == 16) {
1325			error = HYPERVISOR_multicall(mcl, mclcount);
1326			mclp = mcl;
1327			mclcount = 0;
1328			KASSERT(error == 0, ("bad multicall %d", error));
1329		}
1330	}
1331	if (mclcount) {
1332		error = HYPERVISOR_multicall(mcl, mclcount);
1333		KASSERT(error == 0, ("bad multicall %d", error));
1334	}
1335
1336#ifdef INVARIANTS
1337	for (pte = vtopte(sva), mclcount = 0; mclcount < count; mclcount++, pte++)
1338		KASSERT(*pte, ("pte not set for va=0x%x", sva + mclcount*PAGE_SIZE));
1339#endif
1340}
1341
1342
1343/*
1344 * This routine tears out page mappings from the
1345 * kernel -- it is meant only for temporary mappings.
1346 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1347 */
1348void
1349pmap_qremove(vm_offset_t sva, int count)
1350{
1351	vm_offset_t va;
1352
1353	CTR2(KTR_PMAP, "pmap_qremove: sva=0x%x count=%d", sva, count);
1354	va = sva;
1355	vm_page_lock_queues();
1356	critical_enter();
1357	while (count-- > 0) {
1358		pmap_kremove(va);
1359		va += PAGE_SIZE;
1360	}
1361	pmap_invalidate_range(kernel_pmap, sva, va);
1362	critical_exit();
1363	vm_page_unlock_queues();
1364}
1365
1366/***************************************************
1367 * Page table page management routines.....
1368 ***************************************************/
1369static __inline void
1370pmap_free_zero_pages(vm_page_t free)
1371{
1372	vm_page_t m;
1373
1374	while (free != NULL) {
1375		m = free;
1376		free = m->right;
1377		vm_page_free_zero(m);
1378	}
1379}
1380
1381/*
1382 * This routine unholds page table pages, and if the hold count
1383 * drops to zero, then it decrements the wire count.
1384 */
1385static __inline int
1386pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1387{
1388
1389	--m->wire_count;
1390	if (m->wire_count == 0)
1391		return _pmap_unwire_pte_hold(pmap, m, free);
1392	else
1393		return 0;
1394}
1395
1396static int
1397_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1398{
1399	vm_offset_t pteva;
1400
1401	PT_UPDATES_FLUSH();
1402	/*
1403	 * unmap the page table page
1404	 */
1405	xen_pt_unpin(pmap->pm_pdir[m->pindex]);
1406	/*
1407	 * page *might* contain residual mapping :-/
1408	 */
1409	PD_CLEAR_VA(pmap, m->pindex, TRUE);
1410	pmap_zero_page(m);
1411	--pmap->pm_stats.resident_count;
1412
1413	/*
1414	 * This is a release store so that the ordinary store unmapping
1415	 * the page table page is globally performed before TLB shoot-
1416	 * down is begun.
1417	 */
1418	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1419
1420	/*
1421	 * Do an invltlb to make the invalidated mapping
1422	 * take effect immediately.
1423	 */
1424	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1425	pmap_invalidate_page(pmap, pteva);
1426
1427	/*
1428	 * Put page on a list so that it is released after
1429	 * *ALL* TLB shootdown is done
1430	 */
1431	m->right = *free;
1432	*free = m;
1433
1434	return 1;
1435}
1436
1437/*
1438 * After removing a page table entry, this routine is used to
1439 * conditionally free the page, and manage the hold/wire counts.
1440 */
1441static int
1442pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1443{
1444	pd_entry_t ptepde;
1445	vm_page_t mpte;
1446
1447	if (va >= VM_MAXUSER_ADDRESS)
1448		return 0;
1449	ptepde = PT_GET(pmap_pde(pmap, va));
1450	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1451	return pmap_unwire_pte_hold(pmap, mpte, free);
1452}
1453
1454void
1455pmap_pinit0(pmap_t pmap)
1456{
1457
1458	PMAP_LOCK_INIT(pmap);
1459	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1460#ifdef PAE
1461	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1462#endif
1463	pmap->pm_active = 0;
1464	PCPU_SET(curpmap, pmap);
1465	TAILQ_INIT(&pmap->pm_pvchunk);
1466	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1467	mtx_lock_spin(&allpmaps_lock);
1468	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1469	mtx_unlock_spin(&allpmaps_lock);
1470}
1471
1472/*
1473 * Initialize a preallocated and zeroed pmap structure,
1474 * such as one in a vmspace structure.
1475 */
1476int
1477pmap_pinit(pmap_t pmap)
1478{
1479	vm_page_t m, ptdpg[NPGPTD + 1];
1480	int npgptd = NPGPTD + 1;
1481	static int color;
1482	int i;
1483
1484	PMAP_LOCK_INIT(pmap);
1485
1486	/*
1487	 * No need to allocate page table space yet but we do need a valid
1488	 * page directory table.
1489	 */
1490	if (pmap->pm_pdir == NULL) {
1491		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1492		    NBPTD);
1493		if (pmap->pm_pdir == NULL) {
1494			PMAP_LOCK_DESTROY(pmap);
1495			return (0);
1496		}
1497#if defined(XEN) && defined(PAE)
1498		pmap->pm_pdpt = (pd_entry_t *)kmem_alloc_nofault(kernel_map, 1);
1499#endif
1500
1501#if defined(PAE) && !defined(XEN)
1502		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1503		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1504		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1505		    ("pmap_pinit: pdpt misaligned"));
1506		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1507		    ("pmap_pinit: pdpt above 4g"));
1508#endif
1509	}
1510
1511	/*
1512	 * allocate the page directory page(s)
1513	 */
1514	for (i = 0; i < npgptd;) {
1515		m = vm_page_alloc(NULL, color++,
1516		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1517		    VM_ALLOC_ZERO);
1518		if (m == NULL)
1519			VM_WAIT;
1520		else {
1521			ptdpg[i++] = m;
1522		}
1523	}
1524	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1525	for (i = 0; i < NPGPTD; i++) {
1526		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1527			pagezero(&pmap->pm_pdir[i*NPTEPG]);
1528	}
1529
1530	mtx_lock_spin(&allpmaps_lock);
1531	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1532	mtx_unlock_spin(&allpmaps_lock);
1533	/* Wire in kernel global address entries. */
1534
1535	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1536#ifdef PAE
1537#ifdef XEN
1538	pmap_qenter((vm_offset_t)pmap->pm_pdpt, &ptdpg[NPGPTD], 1);
1539	if ((ptdpg[NPGPTD]->flags & PG_ZERO) == 0)
1540		bzero(pmap->pm_pdpt, PAGE_SIZE);
1541#endif
1542	for (i = 0; i < NPGPTD; i++) {
1543		vm_paddr_t ma;
1544
1545		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1546		pmap->pm_pdpt[i] = ma | PG_V;
1547
1548	}
1549#endif
1550#ifdef XEN
1551	for (i = 0; i < NPGPTD; i++) {
1552		pt_entry_t *pd;
1553		vm_paddr_t ma;
1554
1555		ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1556		pd = pmap->pm_pdir + (i * NPDEPG);
1557		PT_SET_MA(pd, *vtopte((vm_offset_t)pd) & ~(PG_M|PG_A|PG_U|PG_RW));
1558#if 0
1559		xen_pgd_pin(ma);
1560#endif
1561	}
1562
1563#ifdef PAE
1564	PT_SET_MA(pmap->pm_pdpt, *vtopte((vm_offset_t)pmap->pm_pdpt) & ~PG_RW);
1565#endif
1566	vm_page_lock_queues();
1567	xen_flush_queue();
1568	xen_pgdpt_pin(xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[NPGPTD])));
1569	for (i = 0; i < NPGPTD; i++) {
1570		vm_paddr_t ma = xpmap_ptom(VM_PAGE_TO_PHYS(ptdpg[i]));
1571		PT_SET_VA_MA(&pmap->pm_pdir[PTDPTDI + i], ma | PG_V | PG_A, FALSE);
1572	}
1573	xen_flush_queue();
1574	vm_page_unlock_queues();
1575#endif
1576	pmap->pm_active = 0;
1577	TAILQ_INIT(&pmap->pm_pvchunk);
1578	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1579
1580	return (1);
1581}
1582
1583/*
1584 * this routine is called if the page table page is not
1585 * mapped correctly.
1586 */
1587static vm_page_t
1588_pmap_allocpte(pmap_t pmap, unsigned int ptepindex, int flags)
1589{
1590	vm_paddr_t ptema;
1591	vm_page_t m;
1592
1593	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1594	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1595	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1596
1597	/*
1598	 * Allocate a page table page.
1599	 */
1600	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1601	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1602		if (flags & M_WAITOK) {
1603			PMAP_UNLOCK(pmap);
1604			vm_page_unlock_queues();
1605			VM_WAIT;
1606			vm_page_lock_queues();
1607			PMAP_LOCK(pmap);
1608		}
1609
1610		/*
1611		 * Indicate the need to retry.  While waiting, the page table
1612		 * page may have been allocated.
1613		 */
1614		return (NULL);
1615	}
1616	if ((m->flags & PG_ZERO) == 0)
1617		pmap_zero_page(m);
1618
1619	/*
1620	 * Map the pagetable page into the process address space, if
1621	 * it isn't already there.
1622	 */
1623	pmap->pm_stats.resident_count++;
1624
1625	ptema = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1626	xen_pt_pin(ptema);
1627	PT_SET_VA_MA(&pmap->pm_pdir[ptepindex],
1628		(ptema | PG_U | PG_RW | PG_V | PG_A | PG_M), TRUE);
1629
1630	KASSERT(pmap->pm_pdir[ptepindex],
1631	    ("_pmap_allocpte: ptepindex=%d did not get mapped", ptepindex));
1632	return (m);
1633}
1634
1635static vm_page_t
1636pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1637{
1638	unsigned ptepindex;
1639	pd_entry_t ptema;
1640	vm_page_t m;
1641
1642	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1643	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1644	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1645
1646	/*
1647	 * Calculate pagetable page index
1648	 */
1649	ptepindex = va >> PDRSHIFT;
1650retry:
1651	/*
1652	 * Get the page directory entry
1653	 */
1654	ptema = pmap->pm_pdir[ptepindex];
1655
1656	/*
1657	 * This supports switching from a 4MB page to a
1658	 * normal 4K page.
1659	 */
1660	if (ptema & PG_PS) {
1661		/*
1662		 * XXX
1663		 */
1664		pmap->pm_pdir[ptepindex] = 0;
1665		ptema = 0;
1666		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1667		pmap_invalidate_all(kernel_pmap);
1668	}
1669
1670	/*
1671	 * If the page table page is mapped, we just increment the
1672	 * hold count, and activate it.
1673	 */
1674	if (ptema & PG_V) {
1675		m = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
1676		m->wire_count++;
1677	} else {
1678		/*
1679		 * Here if the pte page isn't mapped, or if it has
1680		 * been deallocated.
1681		 */
1682		CTR3(KTR_PMAP, "pmap_allocpte: pmap=%p va=0x%08x flags=0x%x",
1683		    pmap, va, flags);
1684		m = _pmap_allocpte(pmap, ptepindex, flags);
1685		if (m == NULL && (flags & M_WAITOK))
1686			goto retry;
1687
1688		KASSERT(pmap->pm_pdir[ptepindex], ("ptepindex=%d did not get mapped", ptepindex));
1689	}
1690	return (m);
1691}
1692
1693
1694/***************************************************
1695* Pmap allocation/deallocation routines.
1696 ***************************************************/
1697
1698#ifdef SMP
1699/*
1700 * Deal with a SMP shootdown of other users of the pmap that we are
1701 * trying to dispose of.  This can be a bit hairy.
1702 */
1703static u_int *lazymask;
1704static u_int lazyptd;
1705static volatile u_int lazywait;
1706
1707void pmap_lazyfix_action(void);
1708
1709void
1710pmap_lazyfix_action(void)
1711{
1712	u_int mymask = PCPU_GET(cpumask);
1713
1714#ifdef COUNT_IPIS
1715	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1716#endif
1717	if (rcr3() == lazyptd)
1718		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1719	atomic_clear_int(lazymask, mymask);
1720	atomic_store_rel_int(&lazywait, 1);
1721}
1722
1723static void
1724pmap_lazyfix_self(u_int mymask)
1725{
1726
1727	if (rcr3() == lazyptd)
1728		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1729	atomic_clear_int(lazymask, mymask);
1730}
1731
1732
1733static void
1734pmap_lazyfix(pmap_t pmap)
1735{
1736	u_int mymask;
1737	u_int mask;
1738	u_int spins;
1739
1740	while ((mask = pmap->pm_active) != 0) {
1741		spins = 50000000;
1742		mask = mask & -mask;	/* Find least significant set bit */
1743		mtx_lock_spin(&smp_ipi_mtx);
1744#ifdef PAE
1745		lazyptd = vtophys(pmap->pm_pdpt);
1746#else
1747		lazyptd = vtophys(pmap->pm_pdir);
1748#endif
1749		mymask = PCPU_GET(cpumask);
1750		if (mask == mymask) {
1751			lazymask = &pmap->pm_active;
1752			pmap_lazyfix_self(mymask);
1753		} else {
1754			atomic_store_rel_int((u_int *)&lazymask,
1755			    (u_int)&pmap->pm_active);
1756			atomic_store_rel_int(&lazywait, 0);
1757			ipi_selected(mask, IPI_LAZYPMAP);
1758			while (lazywait == 0) {
1759				ia32_pause();
1760				if (--spins == 0)
1761					break;
1762			}
1763		}
1764		mtx_unlock_spin(&smp_ipi_mtx);
1765		if (spins == 0)
1766			printf("pmap_lazyfix: spun for 50000000\n");
1767	}
1768}
1769
1770#else	/* SMP */
1771
1772/*
1773 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1774 * unlikely to have to even execute this code, including the fact
1775 * that the cleanup is deferred until the parent does a wait(2), which
1776 * means that another userland process has run.
1777 */
1778static void
1779pmap_lazyfix(pmap_t pmap)
1780{
1781	u_int cr3;
1782
1783	cr3 = vtophys(pmap->pm_pdir);
1784	if (cr3 == rcr3()) {
1785		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1786		pmap->pm_active &= ~(PCPU_GET(cpumask));
1787	}
1788}
1789#endif	/* SMP */
1790
1791/*
1792 * Release any resources held by the given physical map.
1793 * Called when a pmap initialized by pmap_pinit is being released.
1794 * Should only be called if the map contains no valid mappings.
1795 */
1796void
1797pmap_release(pmap_t pmap)
1798{
1799	vm_page_t m, ptdpg[2*NPGPTD+1];
1800	vm_paddr_t ma;
1801	int i;
1802#ifdef XEN
1803#ifdef PAE
1804	int npgptd = NPGPTD + 1;
1805#else
1806	int npgptd = NPGPTD;
1807#endif
1808#else
1809	int npgptd = NPGPTD;
1810#endif
1811	KASSERT(pmap->pm_stats.resident_count == 0,
1812	    ("pmap_release: pmap resident count %ld != 0",
1813	    pmap->pm_stats.resident_count));
1814	PT_UPDATES_FLUSH();
1815
1816	pmap_lazyfix(pmap);
1817	mtx_lock_spin(&allpmaps_lock);
1818	LIST_REMOVE(pmap, pm_list);
1819	mtx_unlock_spin(&allpmaps_lock);
1820
1821	for (i = 0; i < NPGPTD; i++)
1822		ptdpg[i] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdir + (i*NPDEPG)) & PG_FRAME);
1823	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1824#if defined(PAE) && defined(XEN)
1825	ptdpg[NPGPTD] = PHYS_TO_VM_PAGE(vtophys(pmap->pm_pdpt));
1826#endif
1827
1828	for (i = 0; i < npgptd; i++) {
1829		m = ptdpg[i];
1830		ma = xpmap_ptom(VM_PAGE_TO_PHYS(m));
1831		/* unpinning L1 and L2 treated the same */
1832                xen_pgd_unpin(ma);
1833#ifdef PAE
1834		KASSERT(xpmap_ptom(VM_PAGE_TO_PHYS(m)) == (pmap->pm_pdpt[i] & PG_FRAME),
1835		    ("pmap_release: got wrong ptd page"));
1836#endif
1837		m->wire_count--;
1838		atomic_subtract_int(&cnt.v_wire_count, 1);
1839		vm_page_free(m);
1840	}
1841	PMAP_LOCK_DESTROY(pmap);
1842}
1843
1844static int
1845kvm_size(SYSCTL_HANDLER_ARGS)
1846{
1847	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1848
1849	return sysctl_handle_long(oidp, &ksize, 0, req);
1850}
1851SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1852    0, 0, kvm_size, "IU", "Size of KVM");
1853
1854static int
1855kvm_free(SYSCTL_HANDLER_ARGS)
1856{
1857	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1858
1859	return sysctl_handle_long(oidp, &kfree, 0, req);
1860}
1861SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1862    0, 0, kvm_free, "IU", "Amount of KVM free");
1863
1864/*
1865 * grow the number of kernel page table entries, if needed
1866 */
1867void
1868pmap_growkernel(vm_offset_t addr)
1869{
1870	struct pmap *pmap;
1871	vm_paddr_t ptppaddr;
1872	vm_page_t nkpg;
1873	pd_entry_t newpdir;
1874
1875	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1876	if (kernel_vm_end == 0) {
1877		kernel_vm_end = KERNBASE;
1878		nkpt = 0;
1879		while (pdir_pde(PTD, kernel_vm_end)) {
1880			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1881			nkpt++;
1882			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1883				kernel_vm_end = kernel_map->max_offset;
1884				break;
1885			}
1886		}
1887	}
1888	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1889	if (addr - 1 >= kernel_map->max_offset)
1890		addr = kernel_map->max_offset;
1891	while (kernel_vm_end < addr) {
1892		if (pdir_pde(PTD, kernel_vm_end)) {
1893			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1894			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1895				kernel_vm_end = kernel_map->max_offset;
1896				break;
1897			}
1898			continue;
1899		}
1900
1901		/*
1902		 * This index is bogus, but out of the way
1903		 */
1904		nkpg = vm_page_alloc(NULL, nkpt,
1905		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1906		if (!nkpg)
1907			panic("pmap_growkernel: no memory to grow kernel");
1908
1909		nkpt++;
1910
1911		pmap_zero_page(nkpg);
1912		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1913		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1914		PD_SET_VA(kernel_pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1915
1916		mtx_lock_spin(&allpmaps_lock);
1917		LIST_FOREACH(pmap, &allpmaps, pm_list)
1918			PD_SET_VA(pmap, (kernel_vm_end >> PDRSHIFT), newpdir, TRUE);
1919
1920		mtx_unlock_spin(&allpmaps_lock);
1921		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1922		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1923			kernel_vm_end = kernel_map->max_offset;
1924			break;
1925		}
1926	}
1927}
1928
1929
1930/***************************************************
1931 * page management routines.
1932 ***************************************************/
1933
1934CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1935CTASSERT(_NPCM == 11);
1936
1937static __inline struct pv_chunk *
1938pv_to_chunk(pv_entry_t pv)
1939{
1940
1941	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1942}
1943
1944#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1945
1946#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1947#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1948
1949static uint32_t pc_freemask[11] = {
1950	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1951	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1952	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1953	PC_FREE0_9, PC_FREE10
1954};
1955
1956SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1957	"Current number of pv entries");
1958
1959#ifdef PV_STATS
1960static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1961
1962SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1963	"Current number of pv entry chunks");
1964SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1965	"Current number of pv entry chunks allocated");
1966SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1967	"Current number of pv entry chunks frees");
1968SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1969	"Number of times tried to get a chunk page but failed.");
1970
1971static long pv_entry_frees, pv_entry_allocs;
1972static int pv_entry_spare;
1973
1974SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1975	"Current number of pv entry frees");
1976SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1977	"Current number of pv entry allocs");
1978SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1979	"Current number of spare pv entries");
1980
1981static int pmap_collect_inactive, pmap_collect_active;
1982
1983SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1984	"Current number times pmap_collect called on inactive queue");
1985SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1986	"Current number times pmap_collect called on active queue");
1987#endif
1988
1989/*
1990 * We are in a serious low memory condition.  Resort to
1991 * drastic measures to free some pages so we can allocate
1992 * another pv entry chunk.  This is normally called to
1993 * unmap inactive pages, and if necessary, active pages.
1994 */
1995static void
1996pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1997{
1998	pmap_t pmap;
1999	pt_entry_t *pte, tpte;
2000	pv_entry_t next_pv, pv;
2001	vm_offset_t va;
2002	vm_page_t m, free;
2003
2004	sched_pin();
2005	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2006		if (m->hold_count || m->busy)
2007			continue;
2008		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2009			va = pv->pv_va;
2010			pmap = PV_PMAP(pv);
2011			/* Avoid deadlock and lock recursion. */
2012			if (pmap > locked_pmap)
2013				PMAP_LOCK(pmap);
2014			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2015				continue;
2016			pmap->pm_stats.resident_count--;
2017			pte = pmap_pte_quick(pmap, va);
2018			tpte = pte_load_clear(pte);
2019			KASSERT((tpte & PG_W) == 0,
2020			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2021			if (tpte & PG_A)
2022				vm_page_flag_set(m, PG_REFERENCED);
2023			if (tpte & PG_M) {
2024				KASSERT((tpte & PG_RW),
2025	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
2026				    va, (uintmax_t)tpte));
2027				vm_page_dirty(m);
2028			}
2029			free = NULL;
2030			pmap_unuse_pt(pmap, va, &free);
2031			pmap_invalidate_page(pmap, va);
2032			pmap_free_zero_pages(free);
2033			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2034			if (TAILQ_EMPTY(&m->md.pv_list))
2035				vm_page_flag_clear(m, PG_WRITEABLE);
2036			free_pv_entry(pmap, pv);
2037			if (pmap != locked_pmap)
2038				PMAP_UNLOCK(pmap);
2039		}
2040	}
2041	sched_unpin();
2042}
2043
2044
2045/*
2046 * free the pv_entry back to the free list
2047 */
2048static void
2049free_pv_entry(pmap_t pmap, pv_entry_t pv)
2050{
2051	vm_page_t m;
2052	struct pv_chunk *pc;
2053	int idx, field, bit;
2054
2055	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2056	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2057	PV_STAT(pv_entry_frees++);
2058	PV_STAT(pv_entry_spare++);
2059	pv_entry_count--;
2060	pc = pv_to_chunk(pv);
2061	idx = pv - &pc->pc_pventry[0];
2062	field = idx / 32;
2063	bit = idx % 32;
2064	pc->pc_map[field] |= 1ul << bit;
2065	/* move to head of list */
2066	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2067	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2068	for (idx = 0; idx < _NPCM; idx++)
2069		if (pc->pc_map[idx] != pc_freemask[idx])
2070			return;
2071	PV_STAT(pv_entry_spare -= _NPCPV);
2072	PV_STAT(pc_chunk_count--);
2073	PV_STAT(pc_chunk_frees++);
2074	/* entire chunk is free, return it */
2075	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2076	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2077	pmap_qremove((vm_offset_t)pc, 1);
2078	vm_page_unwire(m, 0);
2079	vm_page_free(m);
2080	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2081}
2082
2083/*
2084 * get a new pv_entry, allocating a block from the system
2085 * when needed.
2086 */
2087static pv_entry_t
2088get_pv_entry(pmap_t pmap, int try)
2089{
2090	static const struct timeval printinterval = { 60, 0 };
2091	static struct timeval lastprint;
2092	static vm_pindex_t colour;
2093	struct vpgqueues *pq;
2094	int bit, field;
2095	pv_entry_t pv;
2096	struct pv_chunk *pc;
2097	vm_page_t m;
2098
2099	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2100	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2101	PV_STAT(pv_entry_allocs++);
2102	pv_entry_count++;
2103	if (pv_entry_count > pv_entry_high_water)
2104		if (ratecheck(&lastprint, &printinterval))
2105			printf("Approaching the limit on PV entries, consider "
2106			    "increasing either the vm.pmap.shpgperproc or the "
2107			    "vm.pmap.pv_entry_max tunable.\n");
2108	pq = NULL;
2109retry:
2110	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2111	if (pc != NULL) {
2112		for (field = 0; field < _NPCM; field++) {
2113			if (pc->pc_map[field]) {
2114				bit = bsfl(pc->pc_map[field]);
2115				break;
2116			}
2117		}
2118		if (field < _NPCM) {
2119			pv = &pc->pc_pventry[field * 32 + bit];
2120			pc->pc_map[field] &= ~(1ul << bit);
2121			/* If this was the last item, move it to tail */
2122			for (field = 0; field < _NPCM; field++)
2123				if (pc->pc_map[field] != 0) {
2124					PV_STAT(pv_entry_spare--);
2125					return (pv);	/* not full, return */
2126				}
2127			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2128			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2129			PV_STAT(pv_entry_spare--);
2130			return (pv);
2131		}
2132	}
2133	/*
2134	 * Access to the ptelist "pv_vafree" is synchronized by the page
2135	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2136	 * remain non-empty until pmap_ptelist_alloc() completes.
2137	 */
2138	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2139	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2140	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2141		if (try) {
2142			pv_entry_count--;
2143			PV_STAT(pc_chunk_tryfail++);
2144			return (NULL);
2145		}
2146		/*
2147		 * Reclaim pv entries: At first, destroy mappings to
2148		 * inactive pages.  After that, if a pv chunk entry
2149		 * is still needed, destroy mappings to active pages.
2150		 */
2151		if (pq == NULL) {
2152			PV_STAT(pmap_collect_inactive++);
2153			pq = &vm_page_queues[PQ_INACTIVE];
2154		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2155			PV_STAT(pmap_collect_active++);
2156			pq = &vm_page_queues[PQ_ACTIVE];
2157		} else
2158			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2159		pmap_collect(pmap, pq);
2160		goto retry;
2161	}
2162	PV_STAT(pc_chunk_count++);
2163	PV_STAT(pc_chunk_allocs++);
2164	colour++;
2165	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2166	pmap_qenter((vm_offset_t)pc, &m, 1);
2167	if ((m->flags & PG_ZERO) == 0)
2168		pagezero(pc);
2169	pc->pc_pmap = pmap;
2170	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2171	for (field = 1; field < _NPCM; field++)
2172		pc->pc_map[field] = pc_freemask[field];
2173	pv = &pc->pc_pventry[0];
2174	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2175	PV_STAT(pv_entry_spare += _NPCPV - 1);
2176	return (pv);
2177}
2178
2179static void
2180pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2181{
2182	pv_entry_t pv;
2183
2184	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2185	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2186	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2187		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
2188			break;
2189	}
2190	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
2191	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2192	if (TAILQ_EMPTY(&m->md.pv_list))
2193		vm_page_flag_clear(m, PG_WRITEABLE);
2194	free_pv_entry(pmap, pv);
2195}
2196
2197/*
2198 * Create a pv entry for page at pa for
2199 * (pmap, va).
2200 */
2201static void
2202pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2203{
2204	pv_entry_t pv;
2205
2206	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2207	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2208	pv = get_pv_entry(pmap, FALSE);
2209	pv->pv_va = va;
2210	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2211}
2212
2213/*
2214 * Conditionally create a pv entry.
2215 */
2216static boolean_t
2217pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2218{
2219	pv_entry_t pv;
2220
2221	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2222	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2223	if (pv_entry_count < pv_entry_high_water &&
2224	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2225		pv->pv_va = va;
2226		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2227		return (TRUE);
2228	} else
2229		return (FALSE);
2230}
2231
2232/*
2233 * pmap_remove_pte: do the things to unmap a page in a process
2234 */
2235static int
2236pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2237{
2238	pt_entry_t oldpte;
2239	vm_page_t m;
2240
2241	CTR3(KTR_PMAP, "pmap_remove_pte: pmap=%p *ptq=0x%x va=0x%x",
2242	    pmap, (u_long)*ptq, va);
2243
2244	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2245	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2246	oldpte = *ptq;
2247	PT_SET_VA_MA(ptq, 0, TRUE);
2248	if (oldpte & PG_W)
2249		pmap->pm_stats.wired_count -= 1;
2250	/*
2251	 * Machines that don't support invlpg, also don't support
2252	 * PG_G.
2253	 */
2254	if (oldpte & PG_G)
2255		pmap_invalidate_page(kernel_pmap, va);
2256	pmap->pm_stats.resident_count -= 1;
2257	/*
2258	 * XXX This is not strictly correctly, but somewhere along the line
2259	 * we are losing the managed bit on some pages. It is unclear to me
2260	 * why, but I think the most likely explanation is that xen's writable
2261	 * page table implementation doesn't respect the unused bits.
2262	 */
2263	if ((oldpte & PG_MANAGED) || ((oldpte & PG_V) && (va < VM_MAXUSER_ADDRESS))
2264		) {
2265		m = PHYS_TO_VM_PAGE(xpmap_mtop(oldpte) & PG_FRAME);
2266
2267		if (!(oldpte & PG_MANAGED))
2268			printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2269
2270		if (oldpte & PG_M) {
2271			KASSERT((oldpte & PG_RW),
2272	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
2273			    va, (uintmax_t)oldpte));
2274			vm_page_dirty(m);
2275		}
2276		if (oldpte & PG_A)
2277			vm_page_flag_set(m, PG_REFERENCED);
2278		pmap_remove_entry(pmap, m, va);
2279	} else if ((va < VM_MAXUSER_ADDRESS) && (oldpte & PG_V))
2280		printf("va=0x%x is unmanaged :-( pte=0x%llx\n", va, oldpte);
2281
2282	return (pmap_unuse_pt(pmap, va, free));
2283}
2284
2285/*
2286 * Remove a single page from a process address space
2287 */
2288static void
2289pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2290{
2291	pt_entry_t *pte;
2292
2293	CTR2(KTR_PMAP, "pmap_remove_page: pmap=%p va=0x%x",
2294	    pmap, va);
2295
2296	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2297	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2298	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2299	if ((pte = pmap_pte_quick(pmap, va)) == NULL || (*pte & PG_V) == 0)
2300		return;
2301	pmap_remove_pte(pmap, pte, va, free);
2302	pmap_invalidate_page(pmap, va);
2303	if (*PMAP1)
2304		PT_SET_MA(PADDR1, 0);
2305
2306}
2307
2308/*
2309 *	Remove the given range of addresses from the specified map.
2310 *
2311 *	It is assumed that the start and end are properly
2312 *	rounded to the page size.
2313 */
2314void
2315pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2316{
2317	vm_offset_t pdnxt;
2318	pd_entry_t ptpaddr;
2319	pt_entry_t *pte;
2320	vm_page_t free = NULL;
2321	int anyvalid;
2322
2323	CTR3(KTR_PMAP, "pmap_remove: pmap=%p sva=0x%x eva=0x%x",
2324	    pmap, sva, eva);
2325
2326	/*
2327	 * Perform an unsynchronized read.  This is, however, safe.
2328	 */
2329	if (pmap->pm_stats.resident_count == 0)
2330		return;
2331
2332	anyvalid = 0;
2333
2334	vm_page_lock_queues();
2335	sched_pin();
2336	PMAP_LOCK(pmap);
2337
2338	/*
2339	 * special handling of removing one page.  a very
2340	 * common operation and easy to short circuit some
2341	 * code.
2342	 */
2343	if ((sva + PAGE_SIZE == eva) &&
2344	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2345		pmap_remove_page(pmap, sva, &free);
2346		goto out;
2347	}
2348
2349	for (; sva < eva; sva = pdnxt) {
2350		unsigned pdirindex;
2351
2352		/*
2353		 * Calculate index for next page table.
2354		 */
2355		pdnxt = (sva + NBPDR) & ~PDRMASK;
2356		if (pmap->pm_stats.resident_count == 0)
2357			break;
2358
2359		pdirindex = sva >> PDRSHIFT;
2360		ptpaddr = pmap->pm_pdir[pdirindex];
2361
2362		/*
2363		 * Weed out invalid mappings. Note: we assume that the page
2364		 * directory table is always allocated, and in kernel virtual.
2365		 */
2366		if (ptpaddr == 0)
2367			continue;
2368
2369		/*
2370		 * Check for large page.
2371		 */
2372		if ((ptpaddr & PG_PS) != 0) {
2373			PD_CLEAR_VA(pmap, pdirindex, TRUE);
2374			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2375			anyvalid = 1;
2376			continue;
2377		}
2378
2379		/*
2380		 * Limit our scan to either the end of the va represented
2381		 * by the current page table page, or to the end of the
2382		 * range being removed.
2383		 */
2384		if (pdnxt > eva)
2385			pdnxt = eva;
2386
2387		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2388		    sva += PAGE_SIZE) {
2389			if ((*pte & PG_V) == 0)
2390				continue;
2391
2392			/*
2393			 * The TLB entry for a PG_G mapping is invalidated
2394			 * by pmap_remove_pte().
2395			 */
2396			if ((*pte & PG_G) == 0)
2397				anyvalid = 1;
2398			if (pmap_remove_pte(pmap, pte, sva, &free))
2399				break;
2400		}
2401	}
2402	PT_UPDATES_FLUSH();
2403	if (*PMAP1)
2404		PT_SET_VA_MA(PMAP1, 0, TRUE);
2405out:
2406	if (anyvalid)
2407		pmap_invalidate_all(pmap);
2408	sched_unpin();
2409	vm_page_unlock_queues();
2410	PMAP_UNLOCK(pmap);
2411	pmap_free_zero_pages(free);
2412}
2413
2414/*
2415 *	Routine:	pmap_remove_all
2416 *	Function:
2417 *		Removes this physical page from
2418 *		all physical maps in which it resides.
2419 *		Reflects back modify bits to the pager.
2420 *
2421 *	Notes:
2422 *		Original versions of this routine were very
2423 *		inefficient because they iteratively called
2424 *		pmap_remove (slow...)
2425 */
2426
2427void
2428pmap_remove_all(vm_page_t m)
2429{
2430	pv_entry_t pv;
2431	pmap_t pmap;
2432	pt_entry_t *pte, tpte;
2433	vm_page_t free;
2434
2435#if defined(PMAP_DIAGNOSTIC)
2436	/*
2437	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
2438	 */
2439	if (m->flags & PG_FICTITIOUS) {
2440		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%jx",
2441		    VM_PAGE_TO_PHYS(m) & 0xffffffff);
2442	}
2443#endif
2444	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2445	sched_pin();
2446	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2447		pmap = PV_PMAP(pv);
2448		PMAP_LOCK(pmap);
2449		pmap->pm_stats.resident_count--;
2450		pte = pmap_pte_quick(pmap, pv->pv_va);
2451
2452		tpte = *pte;
2453		PT_SET_VA_MA(pte, 0, TRUE);
2454		if (tpte & PG_W)
2455			pmap->pm_stats.wired_count--;
2456		if (tpte & PG_A)
2457			vm_page_flag_set(m, PG_REFERENCED);
2458
2459		/*
2460		 * Update the vm_page_t clean and reference bits.
2461		 */
2462		if (tpte & PG_M) {
2463			KASSERT((tpte & PG_RW),
2464	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2465			    pv->pv_va, (uintmax_t)tpte));
2466			vm_page_dirty(m);
2467		}
2468		free = NULL;
2469		pmap_unuse_pt(pmap, pv->pv_va, &free);
2470		pmap_invalidate_page(pmap, pv->pv_va);
2471		pmap_free_zero_pages(free);
2472		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2473		free_pv_entry(pmap, pv);
2474		PMAP_UNLOCK(pmap);
2475	}
2476	vm_page_flag_clear(m, PG_WRITEABLE);
2477	PT_UPDATES_FLUSH();
2478	if (*PMAP1)
2479		PT_SET_MA(PADDR1, 0);
2480	sched_unpin();
2481}
2482
2483/*
2484 *	Set the physical protection on the
2485 *	specified range of this map as requested.
2486 */
2487void
2488pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2489{
2490	vm_offset_t pdnxt;
2491	pd_entry_t ptpaddr;
2492	pt_entry_t *pte;
2493	int anychanged;
2494
2495	CTR4(KTR_PMAP, "pmap_protect: pmap=%p sva=0x%x eva=0x%x prot=0x%x",
2496	    pmap, sva, eva, prot);
2497
2498	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2499		pmap_remove(pmap, sva, eva);
2500		return;
2501	}
2502
2503#ifdef PAE
2504	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2505	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2506		return;
2507#else
2508	if (prot & VM_PROT_WRITE)
2509		return;
2510#endif
2511
2512	anychanged = 0;
2513
2514	vm_page_lock_queues();
2515	sched_pin();
2516	PMAP_LOCK(pmap);
2517	for (; sva < eva; sva = pdnxt) {
2518		pt_entry_t obits, pbits;
2519		unsigned pdirindex;
2520
2521		pdnxt = (sva + NBPDR) & ~PDRMASK;
2522
2523		pdirindex = sva >> PDRSHIFT;
2524		ptpaddr = pmap->pm_pdir[pdirindex];
2525
2526		/*
2527		 * Weed out invalid mappings. Note: we assume that the page
2528		 * directory table is always allocated, and in kernel virtual.
2529		 */
2530		if (ptpaddr == 0)
2531			continue;
2532
2533		/*
2534		 * Check for large page.
2535		 */
2536		if ((ptpaddr & PG_PS) != 0) {
2537			if ((prot & VM_PROT_WRITE) == 0)
2538				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2539#ifdef PAE
2540			if ((prot & VM_PROT_EXECUTE) == 0)
2541				pmap->pm_pdir[pdirindex] |= pg_nx;
2542#endif
2543			anychanged = 1;
2544			continue;
2545		}
2546
2547		if (pdnxt > eva)
2548			pdnxt = eva;
2549
2550		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2551		    sva += PAGE_SIZE) {
2552			vm_page_t m;
2553
2554retry:
2555			/*
2556			 * Regardless of whether a pte is 32 or 64 bits in
2557			 * size, PG_RW, PG_A, and PG_M are among the least
2558			 * significant 32 bits.
2559			 */
2560			obits = pbits = *pte;
2561			if ((pbits & PG_V) == 0)
2562				continue;
2563			if (pbits & PG_MANAGED) {
2564				m = NULL;
2565				if (pbits & PG_A) {
2566					m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2567					vm_page_flag_set(m, PG_REFERENCED);
2568					pbits &= ~PG_A;
2569				}
2570				if ((pbits & PG_M) != 0) {
2571					if (m == NULL)
2572						m = PHYS_TO_VM_PAGE(xpmap_mtop(pbits) & PG_FRAME);
2573					vm_page_dirty(m);
2574				}
2575			}
2576
2577			if ((prot & VM_PROT_WRITE) == 0)
2578				pbits &= ~(PG_RW | PG_M);
2579#ifdef PAE
2580			if ((prot & VM_PROT_EXECUTE) == 0)
2581				pbits |= pg_nx;
2582#endif
2583
2584			if (pbits != obits) {
2585#ifdef XEN
2586				obits = *pte;
2587				PT_SET_VA_MA(pte, pbits, TRUE);
2588				if (*pte != pbits)
2589					goto retry;
2590#else
2591#ifdef PAE
2592				if (!atomic_cmpset_64(pte, obits, pbits))
2593					goto retry;
2594#else
2595				if (!atomic_cmpset_int((u_int *)pte, obits,
2596				    pbits))
2597					goto retry;
2598#endif
2599#endif
2600				if (obits & PG_G)
2601					pmap_invalidate_page(pmap, sva);
2602				else
2603					anychanged = 1;
2604			}
2605		}
2606	}
2607	PT_UPDATES_FLUSH();
2608	if (*PMAP1)
2609		PT_SET_VA_MA(PMAP1, 0, TRUE);
2610	if (anychanged)
2611		pmap_invalidate_all(pmap);
2612	sched_unpin();
2613	vm_page_unlock_queues();
2614	PMAP_UNLOCK(pmap);
2615}
2616
2617/*
2618 *	Insert the given physical page (p) at
2619 *	the specified virtual address (v) in the
2620 *	target physical map with the protection requested.
2621 *
2622 *	If specified, the page will be wired down, meaning
2623 *	that the related pte can not be reclaimed.
2624 *
2625 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2626 *	or lose information.  That is, this routine must actually
2627 *	insert this page into the given map NOW.
2628 */
2629void
2630pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2631    vm_prot_t prot, boolean_t wired)
2632{
2633	vm_paddr_t pa;
2634	pd_entry_t *pde;
2635	pt_entry_t *pte;
2636	vm_paddr_t opa;
2637	pt_entry_t origpte, newpte;
2638	vm_page_t mpte, om;
2639	boolean_t invlva;
2640
2641	CTR6(KTR_PMAP, "pmap_enter: pmap=%08p va=0x%08x access=0x%x ma=0x%08x prot=0x%x wired=%d",
2642	    pmap, va, access, xpmap_ptom(VM_PAGE_TO_PHYS(m)), prot, wired);
2643	va = trunc_page(va);
2644#ifdef PMAP_DIAGNOSTIC
2645	if (va > VM_MAX_KERNEL_ADDRESS)
2646		panic("pmap_enter: toobig");
2647	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2648		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2649#endif
2650
2651	mpte = NULL;
2652
2653	vm_page_lock_queues();
2654	PMAP_LOCK(pmap);
2655	sched_pin();
2656
2657	/*
2658	 * In the case that a page table page is not
2659	 * resident, we are creating it here.
2660	 */
2661	if (va < VM_MAXUSER_ADDRESS) {
2662		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2663	}
2664#if 0 && defined(PMAP_DIAGNOSTIC)
2665	else {
2666		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2667		origpte = *pdeaddr;
2668		if ((origpte & PG_V) == 0) {
2669			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2670				pmap->pm_pdir[PTDPTDI], origpte, va);
2671		}
2672	}
2673#endif
2674
2675	pde = pmap_pde(pmap, va);
2676	if ((*pde & PG_PS) != 0)
2677		panic("pmap_enter: attempted pmap_enter on 4MB page");
2678	pte = pmap_pte_quick(pmap, va);
2679
2680	/*
2681	 * Page Directory table entry not valid, we need a new PT page
2682	 */
2683	if (pte == NULL) {
2684		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
2685			(uintmax_t)pmap->pm_pdir[va >> PDRSHIFT], va);
2686	}
2687
2688	pa = VM_PAGE_TO_PHYS(m);
2689	om = NULL;
2690	opa = origpte = 0;
2691
2692#if 0
2693	KASSERT((*pte & PG_V) || (*pte == 0), ("address set but not valid pte=%p *pte=0x%016jx",
2694		pte, *pte));
2695#endif
2696	origpte = *pte;
2697	if (origpte)
2698		origpte = xpmap_mtop(origpte);
2699	opa = origpte & PG_FRAME;
2700
2701	/*
2702	 * Mapping has not changed, must be protection or wiring change.
2703	 */
2704	if (origpte && (opa == pa)) {
2705		/*
2706		 * Wiring change, just update stats. We don't worry about
2707		 * wiring PT pages as they remain resident as long as there
2708		 * are valid mappings in them. Hence, if a user page is wired,
2709		 * the PT page will be also.
2710		 */
2711		if (wired && ((origpte & PG_W) == 0))
2712			pmap->pm_stats.wired_count++;
2713		else if (!wired && (origpte & PG_W))
2714			pmap->pm_stats.wired_count--;
2715
2716		/*
2717		 * Remove extra pte reference
2718		 */
2719		if (mpte)
2720			mpte->wire_count--;
2721
2722		/*
2723		 * We might be turning off write access to the page,
2724		 * so we go ahead and sense modify status.
2725		 */
2726		if (origpte & PG_MANAGED) {
2727			om = m;
2728			pa |= PG_MANAGED;
2729		}
2730		goto validate;
2731	}
2732	/*
2733	 * Mapping has changed, invalidate old range and fall through to
2734	 * handle validating new mapping.
2735	 */
2736	if (opa) {
2737		if (origpte & PG_W)
2738			pmap->pm_stats.wired_count--;
2739		if (origpte & PG_MANAGED) {
2740			om = PHYS_TO_VM_PAGE(opa);
2741			pmap_remove_entry(pmap, om, va);
2742		} else if (va < VM_MAXUSER_ADDRESS)
2743			printf("va=0x%x is unmanaged :-( \n", va);
2744
2745		if (mpte != NULL) {
2746			mpte->wire_count--;
2747			KASSERT(mpte->wire_count > 0,
2748			    ("pmap_enter: missing reference to page table page,"
2749			     " va: 0x%x", va));
2750		}
2751	} else
2752		pmap->pm_stats.resident_count++;
2753
2754	/*
2755	 * Enter on the PV list if part of our managed memory.
2756	 */
2757	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2758		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2759		    ("pmap_enter: managed mapping within the clean submap"));
2760		pmap_insert_entry(pmap, va, m);
2761		pa |= PG_MANAGED;
2762	}
2763
2764	/*
2765	 * Increment counters
2766	 */
2767	if (wired)
2768		pmap->pm_stats.wired_count++;
2769
2770validate:
2771	/*
2772	 * Now validate mapping with desired protection/wiring.
2773	 */
2774	newpte = (pt_entry_t)(pa | PG_V);
2775	if ((prot & VM_PROT_WRITE) != 0) {
2776		newpte |= PG_RW;
2777		vm_page_flag_set(m, PG_WRITEABLE);
2778	}
2779#ifdef PAE
2780	if ((prot & VM_PROT_EXECUTE) == 0)
2781		newpte |= pg_nx;
2782#endif
2783	if (wired)
2784		newpte |= PG_W;
2785	if (va < VM_MAXUSER_ADDRESS)
2786		newpte |= PG_U;
2787	if (pmap == kernel_pmap)
2788		newpte |= pgeflag;
2789
2790	critical_enter();
2791	/*
2792	 * if the mapping or permission bits are different, we need
2793	 * to update the pte.
2794	 */
2795	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2796		if (origpte) {
2797			invlva = FALSE;
2798			origpte = *pte;
2799			PT_SET_VA(pte, newpte | PG_A, FALSE);
2800			if (origpte & PG_A) {
2801				if (origpte & PG_MANAGED)
2802					vm_page_flag_set(om, PG_REFERENCED);
2803				if (opa != VM_PAGE_TO_PHYS(m))
2804					invlva = TRUE;
2805#ifdef PAE
2806				if ((origpte & PG_NX) == 0 &&
2807				    (newpte & PG_NX) != 0)
2808					invlva = TRUE;
2809#endif
2810			}
2811			if (origpte & PG_M) {
2812				KASSERT((origpte & PG_RW),
2813	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2814				    va, (uintmax_t)origpte));
2815				if ((origpte & PG_MANAGED) != 0)
2816					vm_page_dirty(om);
2817				if ((prot & VM_PROT_WRITE) == 0)
2818					invlva = TRUE;
2819			}
2820			if (invlva)
2821				pmap_invalidate_page(pmap, va);
2822		} else{
2823			PT_SET_VA(pte, newpte | PG_A, FALSE);
2824		}
2825
2826	}
2827	PT_UPDATES_FLUSH();
2828	critical_exit();
2829	if (*PMAP1)
2830		PT_SET_VA_MA(PMAP1, 0, TRUE);
2831	sched_unpin();
2832	vm_page_unlock_queues();
2833	PMAP_UNLOCK(pmap);
2834}
2835
2836/*
2837 * Maps a sequence of resident pages belonging to the same object.
2838 * The sequence begins with the given page m_start.  This page is
2839 * mapped at the given virtual address start.  Each subsequent page is
2840 * mapped at a virtual address that is offset from start by the same
2841 * amount as the page is offset from m_start within the object.  The
2842 * last page in the sequence is the page with the largest offset from
2843 * m_start that can be mapped at a virtual address less than the given
2844 * virtual address end.  Not every virtual page between start and end
2845 * is mapped; only those for which a resident page exists with the
2846 * corresponding offset from m_start are mapped.
2847 */
2848void
2849pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2850    vm_page_t m_start, vm_prot_t prot)
2851{
2852	vm_page_t m, mpte;
2853	vm_pindex_t diff, psize;
2854	multicall_entry_t mcl[16];
2855	multicall_entry_t *mclp = mcl;
2856	int error, count = 0;
2857
2858	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2859	psize = atop(end - start);
2860
2861	mpte = NULL;
2862	m = m_start;
2863	PMAP_LOCK(pmap);
2864	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2865		mpte = pmap_enter_quick_locked(&mclp, &count, pmap, start + ptoa(diff), m,
2866		    prot, mpte);
2867		m = TAILQ_NEXT(m, listq);
2868		if (count == 16) {
2869			error = HYPERVISOR_multicall(mcl, count);
2870			KASSERT(error == 0, ("bad multicall %d", error));
2871			mclp = mcl;
2872			count = 0;
2873		}
2874	}
2875	if (count) {
2876		error = HYPERVISOR_multicall(mcl, count);
2877		KASSERT(error == 0, ("bad multicall %d", error));
2878	}
2879
2880	PMAP_UNLOCK(pmap);
2881}
2882
2883/*
2884 * this code makes some *MAJOR* assumptions:
2885 * 1. Current pmap & pmap exists.
2886 * 2. Not wired.
2887 * 3. Read access.
2888 * 4. No page table pages.
2889 * but is *MUCH* faster than pmap_enter...
2890 */
2891
2892void
2893pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2894{
2895	multicall_entry_t mcl, *mclp;
2896	int count = 0;
2897	mclp = &mcl;
2898
2899	CTR4(KTR_PMAP, "pmap_enter_quick: pmap=%p va=0x%x m=%p prot=0x%x",
2900	    pmap, va, m, prot);
2901
2902	PMAP_LOCK(pmap);
2903	(void) pmap_enter_quick_locked(&mclp, &count, pmap, va, m, prot, NULL);
2904	if (count)
2905		HYPERVISOR_multicall(&mcl, count);
2906	PMAP_UNLOCK(pmap);
2907}
2908
2909#ifdef notyet
2910void
2911pmap_enter_quick_range(pmap_t pmap, vm_offset_t *addrs, vm_page_t *pages, vm_prot_t *prots, int count)
2912{
2913	int i, error, index = 0;
2914	multicall_entry_t mcl[16];
2915	multicall_entry_t *mclp = mcl;
2916
2917	PMAP_LOCK(pmap);
2918	for (i = 0; i < count; i++, addrs++, pages++, prots++) {
2919		if (!pmap_is_prefaultable_locked(pmap, *addrs))
2920			continue;
2921
2922		(void) pmap_enter_quick_locked(&mclp, &index, pmap, *addrs, *pages, *prots, NULL);
2923		if (index == 16) {
2924			error = HYPERVISOR_multicall(mcl, index);
2925			mclp = mcl;
2926			index = 0;
2927			KASSERT(error == 0, ("bad multicall %d", error));
2928		}
2929	}
2930	if (index) {
2931		error = HYPERVISOR_multicall(mcl, index);
2932		KASSERT(error == 0, ("bad multicall %d", error));
2933	}
2934
2935	PMAP_UNLOCK(pmap);
2936}
2937#endif
2938
2939static vm_page_t
2940pmap_enter_quick_locked(multicall_entry_t **mclpp, int *count, pmap_t pmap, vm_offset_t va, vm_page_t m,
2941    vm_prot_t prot, vm_page_t mpte)
2942{
2943	pt_entry_t *pte;
2944	vm_paddr_t pa;
2945	vm_page_t free;
2946	multicall_entry_t *mcl = *mclpp;
2947
2948	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2949	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2950	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2951	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2952	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2953
2954	/*
2955	 * In the case that a page table page is not
2956	 * resident, we are creating it here.
2957	 */
2958	if (va < VM_MAXUSER_ADDRESS) {
2959		unsigned ptepindex;
2960		pd_entry_t ptema;
2961
2962		/*
2963		 * Calculate pagetable page index
2964		 */
2965		ptepindex = va >> PDRSHIFT;
2966		if (mpte && (mpte->pindex == ptepindex)) {
2967			mpte->wire_count++;
2968		} else {
2969			/*
2970			 * Get the page directory entry
2971			 */
2972			ptema = pmap->pm_pdir[ptepindex];
2973
2974			/*
2975			 * If the page table page is mapped, we just increment
2976			 * the hold count, and activate it.
2977			 */
2978			if (ptema & PG_V) {
2979				if (ptema & PG_PS)
2980					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2981				mpte = PHYS_TO_VM_PAGE(xpmap_mtop(ptema) & PG_FRAME);
2982				mpte->wire_count++;
2983			} else {
2984				mpte = _pmap_allocpte(pmap, ptepindex,
2985				    M_NOWAIT);
2986				if (mpte == NULL)
2987					return (mpte);
2988			}
2989		}
2990	} else {
2991		mpte = NULL;
2992	}
2993
2994	/*
2995	 * This call to vtopte makes the assumption that we are
2996	 * entering the page into the current pmap.  In order to support
2997	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2998	 * But that isn't as quick as vtopte.
2999	 */
3000	KASSERT(pmap_is_current(pmap), ("entering pages in non-current pmap"));
3001	pte = vtopte(va);
3002	if (*pte & PG_V) {
3003		if (mpte != NULL) {
3004			mpte->wire_count--;
3005			mpte = NULL;
3006		}
3007		return (mpte);
3008	}
3009
3010	/*
3011	 * Enter on the PV list if part of our managed memory.
3012	 */
3013	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3014	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3015		if (mpte != NULL) {
3016			free = NULL;
3017			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3018				pmap_invalidate_page(pmap, va);
3019				pmap_free_zero_pages(free);
3020			}
3021
3022			mpte = NULL;
3023		}
3024		return (mpte);
3025	}
3026
3027	/*
3028	 * Increment counters
3029	 */
3030	pmap->pm_stats.resident_count++;
3031
3032	pa = VM_PAGE_TO_PHYS(m);
3033#ifdef PAE
3034	if ((prot & VM_PROT_EXECUTE) == 0)
3035		pa |= pg_nx;
3036#endif
3037
3038#if 0
3039	/*
3040	 * Now validate mapping with RO protection
3041	 */
3042	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3043		pte_store(pte, pa | PG_V | PG_U);
3044	else
3045		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3046#else
3047	/*
3048	 * Now validate mapping with RO protection
3049	 */
3050	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3051		pa = 	xpmap_ptom(pa | PG_V | PG_U);
3052	else
3053		pa = xpmap_ptom(pa | PG_V | PG_U | PG_MANAGED);
3054
3055	mcl->op = __HYPERVISOR_update_va_mapping;
3056	mcl->args[0] = va;
3057	mcl->args[1] = (uint32_t)(pa & 0xffffffff);
3058	mcl->args[2] = (uint32_t)(pa >> 32);
3059	mcl->args[3] = 0;
3060	*mclpp = mcl + 1;
3061	*count = *count + 1;
3062#endif
3063	return mpte;
3064}
3065
3066/*
3067 * Make a temporary mapping for a physical address.  This is only intended
3068 * to be used for panic dumps.
3069 */
3070void *
3071pmap_kenter_temporary(vm_paddr_t pa, int i)
3072{
3073	vm_offset_t va;
3074
3075	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3076	pmap_kenter(va, pa);
3077	invlpg(va);
3078	return ((void *)crashdumpmap);
3079}
3080
3081/*
3082 * This code maps large physical mmap regions into the
3083 * processor address space.  Note that some shortcuts
3084 * are taken, but the code works.
3085 */
3086void
3087pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
3088		    vm_object_t object, vm_pindex_t pindex,
3089		    vm_size_t size)
3090{
3091	vm_page_t p;
3092
3093	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3094	KASSERT(object->type == OBJT_DEVICE,
3095	    ("pmap_object_init_pt: non-device object"));
3096	if (pseflag &&
3097	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
3098		int i;
3099		vm_page_t m[1];
3100		unsigned int ptepindex;
3101		int npdes;
3102		pd_entry_t ptepa;
3103
3104		PMAP_LOCK(pmap);
3105		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
3106			goto out;
3107		PMAP_UNLOCK(pmap);
3108retry:
3109		p = vm_page_lookup(object, pindex);
3110		if (p != NULL) {
3111			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
3112				goto retry;
3113		} else {
3114			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
3115			if (p == NULL)
3116				return;
3117			m[0] = p;
3118
3119			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
3120				vm_page_lock_queues();
3121				vm_page_free(p);
3122				vm_page_unlock_queues();
3123				return;
3124			}
3125
3126			p = vm_page_lookup(object, pindex);
3127			vm_page_lock_queues();
3128			vm_page_wakeup(p);
3129			vm_page_unlock_queues();
3130		}
3131
3132		ptepa = VM_PAGE_TO_PHYS(p);
3133		if (ptepa & (NBPDR - 1))
3134			return;
3135
3136		p->valid = VM_PAGE_BITS_ALL;
3137
3138		PMAP_LOCK(pmap);
3139		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
3140		npdes = size >> PDRSHIFT;
3141		critical_enter();
3142		for(i = 0; i < npdes; i++) {
3143			PD_SET_VA(pmap, ptepindex,
3144			    ptepa | PG_U | PG_M | PG_RW | PG_V | PG_PS, FALSE);
3145			ptepa += NBPDR;
3146			ptepindex += 1;
3147		}
3148		pmap_invalidate_all(pmap);
3149		critical_exit();
3150out:
3151		PMAP_UNLOCK(pmap);
3152	}
3153}
3154
3155/*
3156 *	Routine:	pmap_change_wiring
3157 *	Function:	Change the wiring attribute for a map/virtual-address
3158 *			pair.
3159 *	In/out conditions:
3160 *			The mapping must already exist in the pmap.
3161 */
3162void
3163pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3164{
3165	pt_entry_t *pte;
3166
3167	vm_page_lock_queues();
3168	PMAP_LOCK(pmap);
3169	pte = pmap_pte(pmap, va);
3170
3171	if (wired && !pmap_pte_w(pte)) {
3172		PT_SET_VA_MA((pte), *(pte) | PG_W, TRUE);
3173		pmap->pm_stats.wired_count++;
3174	} else if (!wired && pmap_pte_w(pte)) {
3175		PT_SET_VA_MA((pte), *(pte) & ~PG_W, TRUE);
3176		pmap->pm_stats.wired_count--;
3177	}
3178
3179	/*
3180	 * Wiring is not a hardware characteristic so there is no need to
3181	 * invalidate TLB.
3182	 */
3183	pmap_pte_release(pte);
3184	PMAP_UNLOCK(pmap);
3185	vm_page_unlock_queues();
3186}
3187
3188
3189
3190/*
3191 *	Copy the range specified by src_addr/len
3192 *	from the source map to the range dst_addr/len
3193 *	in the destination map.
3194 *
3195 *	This routine is only advisory and need not do anything.
3196 */
3197
3198void
3199pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3200	  vm_offset_t src_addr)
3201{
3202	vm_page_t   free;
3203	vm_offset_t addr;
3204	vm_offset_t end_addr = src_addr + len;
3205	vm_offset_t pdnxt;
3206
3207	if (dst_addr != src_addr)
3208		return;
3209
3210	if (!pmap_is_current(src_pmap)) {
3211		CTR2(KTR_PMAP,
3212		    "pmap_copy, skipping: pdir[PTDPTDI]=0x%jx PTDpde[0]=0x%jx",
3213		    (src_pmap->pm_pdir[PTDPTDI] & PG_FRAME), (PTDpde[0] & PG_FRAME));
3214
3215		return;
3216	}
3217	CTR5(KTR_PMAP, "pmap_copy:  dst_pmap=%p src_pmap=%p dst_addr=0x%x len=%d src_addr=0x%x",
3218	    dst_pmap, src_pmap, dst_addr, len, src_addr);
3219
3220	vm_page_lock_queues();
3221	if (dst_pmap < src_pmap) {
3222		PMAP_LOCK(dst_pmap);
3223		PMAP_LOCK(src_pmap);
3224	} else {
3225		PMAP_LOCK(src_pmap);
3226		PMAP_LOCK(dst_pmap);
3227	}
3228	sched_pin();
3229	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3230		pt_entry_t *src_pte, *dst_pte;
3231		vm_page_t dstmpte, srcmpte;
3232		pd_entry_t srcptepaddr;
3233		unsigned ptepindex;
3234
3235		if (addr >= UPT_MIN_ADDRESS)
3236			panic("pmap_copy: invalid to pmap_copy page tables");
3237
3238		pdnxt = (addr + NBPDR) & ~PDRMASK;
3239		ptepindex = addr >> PDRSHIFT;
3240
3241		srcptepaddr = PT_GET(&src_pmap->pm_pdir[ptepindex]);
3242		if (srcptepaddr == 0)
3243			continue;
3244
3245		if (srcptepaddr & PG_PS) {
3246			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3247				PD_SET_VA(dst_pmap, ptepindex, srcptepaddr & ~PG_W, TRUE);
3248				dst_pmap->pm_stats.resident_count +=
3249				    NBPDR / PAGE_SIZE;
3250			}
3251			continue;
3252		}
3253
3254		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3255		if (srcmpte->wire_count == 0)
3256			panic("pmap_copy: source page table page is unused");
3257
3258		if (pdnxt > end_addr)
3259			pdnxt = end_addr;
3260
3261		src_pte = vtopte(addr);
3262		while (addr < pdnxt) {
3263			pt_entry_t ptetemp;
3264			ptetemp = *src_pte;
3265			/*
3266			 * we only virtual copy managed pages
3267			 */
3268			if ((ptetemp & PG_MANAGED) != 0) {
3269				dstmpte = pmap_allocpte(dst_pmap, addr,
3270				    M_NOWAIT);
3271				if (dstmpte == NULL)
3272					break;
3273				dst_pte = pmap_pte_quick(dst_pmap, addr);
3274				if (*dst_pte == 0 &&
3275				    pmap_try_insert_pv_entry(dst_pmap, addr,
3276				    PHYS_TO_VM_PAGE(xpmap_mtop(ptetemp) & PG_FRAME))) {
3277					/*
3278					 * Clear the wired, modified, and
3279					 * accessed (referenced) bits
3280					 * during the copy.
3281					 */
3282					KASSERT(ptetemp != 0, ("src_pte not set"));
3283					PT_SET_VA_MA(dst_pte, ptetemp & ~(PG_W | PG_M | PG_A), TRUE /* XXX debug */);
3284					KASSERT(*dst_pte == (ptetemp & ~(PG_W | PG_M | PG_A)),
3285					    ("no pmap copy expected: 0x%jx saw: 0x%jx",
3286						ptetemp &  ~(PG_W | PG_M | PG_A), *dst_pte));
3287					dst_pmap->pm_stats.resident_count++;
3288	 			} else {
3289					free = NULL;
3290					if (pmap_unwire_pte_hold(dst_pmap,
3291					    dstmpte, &free)) {
3292						pmap_invalidate_page(dst_pmap,
3293						    addr);
3294						pmap_free_zero_pages(free);
3295					}
3296				}
3297				if (dstmpte->wire_count >= srcmpte->wire_count)
3298					break;
3299			}
3300			addr += PAGE_SIZE;
3301			src_pte++;
3302		}
3303	}
3304	PT_UPDATES_FLUSH();
3305	sched_unpin();
3306	vm_page_unlock_queues();
3307	PMAP_UNLOCK(src_pmap);
3308	PMAP_UNLOCK(dst_pmap);
3309}
3310
3311/*
3312 *	pmap_zero_page zeros the specified hardware page by mapping
3313 *	the page into KVM and using bzero to clear its contents.
3314 */
3315void
3316pmap_zero_page(vm_page_t m)
3317{
3318	struct sysmaps *sysmaps;
3319
3320	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3321	mtx_lock(&sysmaps->lock);
3322	if (*sysmaps->CMAP2)
3323		panic("pmap_zero_page: CMAP2 busy");
3324	sched_pin();
3325	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3326	pagezero(sysmaps->CADDR2);
3327	PT_SET_MA(sysmaps->CADDR2, 0);
3328	sched_unpin();
3329	mtx_unlock(&sysmaps->lock);
3330}
3331
3332/*
3333 *	pmap_zero_page_area zeros the specified hardware page by mapping
3334 *	the page into KVM and using bzero to clear its contents.
3335 *
3336 *	off and size may not cover an area beyond a single hardware page.
3337 */
3338void
3339pmap_zero_page_area(vm_page_t m, int off, int size)
3340{
3341	struct sysmaps *sysmaps;
3342
3343	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3344	mtx_lock(&sysmaps->lock);
3345	if (*sysmaps->CMAP2)
3346		panic("pmap_zero_page: CMAP2 busy");
3347	sched_pin();
3348	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3349
3350	if (off == 0 && size == PAGE_SIZE)
3351		pagezero(sysmaps->CADDR2);
3352	else
3353		bzero((char *)sysmaps->CADDR2 + off, size);
3354	PT_SET_MA(sysmaps->CADDR2, 0);
3355	sched_unpin();
3356	mtx_unlock(&sysmaps->lock);
3357}
3358
3359/*
3360 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3361 *	the page into KVM and using bzero to clear its contents.  This
3362 *	is intended to be called from the vm_pagezero process only and
3363 *	outside of Giant.
3364 */
3365void
3366pmap_zero_page_idle(vm_page_t m)
3367{
3368
3369	if (*CMAP3)
3370		panic("pmap_zero_page: CMAP3 busy");
3371	sched_pin();
3372	PT_SET_MA(CADDR3, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(m)) | PG_A | PG_M);
3373	pagezero(CADDR3);
3374	PT_SET_MA(CADDR3, 0);
3375	sched_unpin();
3376}
3377
3378/*
3379 *	pmap_copy_page copies the specified (machine independent)
3380 *	page by mapping the page into virtual memory and using
3381 *	bcopy to copy the page, one machine dependent page at a
3382 *	time.
3383 */
3384void
3385pmap_copy_page(vm_page_t src, vm_page_t dst)
3386{
3387	struct sysmaps *sysmaps;
3388
3389	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3390	mtx_lock(&sysmaps->lock);
3391	if (*sysmaps->CMAP1)
3392		panic("pmap_copy_page: CMAP1 busy");
3393	if (*sysmaps->CMAP2)
3394		panic("pmap_copy_page: CMAP2 busy");
3395	sched_pin();
3396	PT_SET_MA(sysmaps->CADDR1, PG_V | xpmap_ptom(VM_PAGE_TO_PHYS(src)) | PG_A);
3397	PT_SET_MA(sysmaps->CADDR2, PG_V | PG_RW | xpmap_ptom(VM_PAGE_TO_PHYS(dst)) | PG_A | PG_M);
3398	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
3399	PT_SET_MA(sysmaps->CADDR1, 0);
3400	PT_SET_MA(sysmaps->CADDR2, 0);
3401	sched_unpin();
3402	mtx_unlock(&sysmaps->lock);
3403}
3404
3405/*
3406 * Returns true if the pmap's pv is one of the first
3407 * 16 pvs linked to from this page.  This count may
3408 * be changed upwards or downwards in the future; it
3409 * is only necessary that true be returned for a small
3410 * subset of pmaps for proper page aging.
3411 */
3412boolean_t
3413pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3414{
3415	pv_entry_t pv;
3416	int loops = 0;
3417
3418	if (m->flags & PG_FICTITIOUS)
3419		return (FALSE);
3420
3421	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3422	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3423		if (PV_PMAP(pv) == pmap) {
3424			return TRUE;
3425		}
3426		loops++;
3427		if (loops >= 16)
3428			break;
3429	}
3430	return (FALSE);
3431}
3432
3433/*
3434 *	pmap_page_wired_mappings:
3435 *
3436 *	Return the number of managed mappings to the given physical page
3437 *	that are wired.
3438 */
3439int
3440pmap_page_wired_mappings(vm_page_t m)
3441{
3442	pv_entry_t pv;
3443	pt_entry_t *pte;
3444	pmap_t pmap;
3445	int count;
3446
3447	count = 0;
3448	if ((m->flags & PG_FICTITIOUS) != 0)
3449		return (count);
3450	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3451	sched_pin();
3452	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3453		pmap = PV_PMAP(pv);
3454		PMAP_LOCK(pmap);
3455		pte = pmap_pte_quick(pmap, pv->pv_va);
3456		if ((*pte & PG_W) != 0)
3457			count++;
3458		PMAP_UNLOCK(pmap);
3459	}
3460	sched_unpin();
3461	return (count);
3462}
3463
3464/*
3465 * Returns TRUE if the given page is mapped individually or as part of
3466 * a 4mpage.  Otherwise, returns FALSE.
3467 */
3468boolean_t
3469pmap_page_is_mapped(vm_page_t m)
3470{
3471	struct md_page *pvh;
3472
3473	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
3474		return (FALSE);
3475	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3476	if (TAILQ_EMPTY(&m->md.pv_list)) {
3477		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3478		return (!TAILQ_EMPTY(&pvh->pv_list));
3479	} else
3480		return (TRUE);
3481}
3482
3483/*
3484 * Remove all pages from specified address space
3485 * this aids process exit speeds.  Also, this code
3486 * is special cased for current process only, but
3487 * can have the more generic (and slightly slower)
3488 * mode enabled.  This is much faster than pmap_remove
3489 * in the case of running down an entire address space.
3490 */
3491void
3492pmap_remove_pages(pmap_t pmap)
3493{
3494	pt_entry_t *pte, tpte;
3495	vm_page_t m, free = NULL;
3496	pv_entry_t pv;
3497	struct pv_chunk *pc, *npc;
3498	int field, idx;
3499	int32_t bit;
3500	uint32_t inuse, bitmask;
3501	int allfree;
3502
3503	CTR1(KTR_PMAP, "pmap_remove_pages: pmap=%p", pmap);
3504
3505	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3506		printf("warning: pmap_remove_pages called with non-current pmap\n");
3507		return;
3508	}
3509	vm_page_lock_queues();
3510	KASSERT(pmap_is_current(pmap), ("removing pages from non-current pmap"));
3511	PMAP_LOCK(pmap);
3512	sched_pin();
3513	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3514		allfree = 1;
3515		for (field = 0; field < _NPCM; field++) {
3516			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3517			while (inuse != 0) {
3518				bit = bsfl(inuse);
3519				bitmask = 1UL << bit;
3520				idx = field * 32 + bit;
3521				pv = &pc->pc_pventry[idx];
3522				inuse &= ~bitmask;
3523
3524				pte = vtopte(pv->pv_va);
3525				tpte = *pte ? xpmap_mtop(*pte) : 0;
3526
3527				if (tpte == 0) {
3528					printf(
3529					    "TPTE at %p  IS ZERO @ VA %08x\n",
3530					    pte, pv->pv_va);
3531					panic("bad pte");
3532				}
3533
3534/*
3535 * We cannot remove wired pages from a process' mapping at this time
3536 */
3537				if (tpte & PG_W) {
3538					allfree = 0;
3539					continue;
3540				}
3541
3542				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3543				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3544				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3545				    m, (uintmax_t)m->phys_addr,
3546				    (uintmax_t)tpte));
3547
3548				KASSERT(m < &vm_page_array[vm_page_array_size],
3549					("pmap_remove_pages: bad tpte %#jx",
3550					(uintmax_t)tpte));
3551
3552
3553				PT_CLEAR_VA(pte, FALSE);
3554
3555				/*
3556				 * Update the vm_page_t clean/reference bits.
3557				 */
3558				if (tpte & PG_M)
3559					vm_page_dirty(m);
3560
3561				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3562				if (TAILQ_EMPTY(&m->md.pv_list))
3563					vm_page_flag_clear(m, PG_WRITEABLE);
3564
3565				pmap_unuse_pt(pmap, pv->pv_va, &free);
3566
3567				/* Mark free */
3568				PV_STAT(pv_entry_frees++);
3569				PV_STAT(pv_entry_spare++);
3570				pv_entry_count--;
3571				pc->pc_map[field] |= bitmask;
3572				pmap->pm_stats.resident_count--;
3573			}
3574		}
3575		PT_UPDATES_FLUSH();
3576		if (allfree) {
3577			PV_STAT(pv_entry_spare -= _NPCPV);
3578			PV_STAT(pc_chunk_count--);
3579			PV_STAT(pc_chunk_frees++);
3580			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3581			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3582			pmap_qremove((vm_offset_t)pc, 1);
3583			vm_page_unwire(m, 0);
3584			vm_page_free(m);
3585			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3586		}
3587	}
3588	PT_UPDATES_FLUSH();
3589	if (*PMAP1)
3590		PT_SET_MA(PADDR1, 0);
3591
3592	sched_unpin();
3593	pmap_invalidate_all(pmap);
3594	vm_page_unlock_queues();
3595	PMAP_UNLOCK(pmap);
3596	pmap_free_zero_pages(free);
3597}
3598
3599/*
3600 *	pmap_is_modified:
3601 *
3602 *	Return whether or not the specified physical page was modified
3603 *	in any physical maps.
3604 */
3605boolean_t
3606pmap_is_modified(vm_page_t m)
3607{
3608	pv_entry_t pv;
3609	pt_entry_t *pte;
3610	pmap_t pmap;
3611	boolean_t rv;
3612
3613	rv = FALSE;
3614	if (m->flags & PG_FICTITIOUS)
3615		return (rv);
3616
3617	sched_pin();
3618	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3619	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3620		pmap = PV_PMAP(pv);
3621		PMAP_LOCK(pmap);
3622		pte = pmap_pte_quick(pmap, pv->pv_va);
3623		rv = (*pte & PG_M) != 0;
3624		PMAP_UNLOCK(pmap);
3625		if (rv)
3626			break;
3627	}
3628	if (*PMAP1)
3629		PT_SET_MA(PADDR1, 0);
3630	sched_unpin();
3631	return (rv);
3632}
3633
3634/*
3635 *	pmap_is_prefaultable:
3636 *
3637 *	Return whether or not the specified virtual address is elgible
3638 *	for prefault.
3639 */
3640static boolean_t
3641pmap_is_prefaultable_locked(pmap_t pmap, vm_offset_t addr)
3642{
3643	pt_entry_t *pte;
3644	boolean_t rv = FALSE;
3645
3646	return (rv);
3647
3648	if (pmap_is_current(pmap) && *pmap_pde(pmap, addr)) {
3649		pte = vtopte(addr);
3650		rv = (*pte == 0);
3651	}
3652	return (rv);
3653}
3654
3655boolean_t
3656pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3657{
3658	boolean_t rv;
3659
3660	PMAP_LOCK(pmap);
3661	rv = pmap_is_prefaultable_locked(pmap, addr);
3662	PMAP_UNLOCK(pmap);
3663	return (rv);
3664}
3665
3666void
3667pmap_map_readonly(pmap_t pmap, vm_offset_t va, int len)
3668{
3669	int i, npages = round_page(len) >> PAGE_SHIFT;
3670	for (i = 0; i < npages; i++) {
3671		pt_entry_t *pte;
3672		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3673		pte_store(pte, xpmap_mtop(*pte & ~(PG_RW|PG_M)));
3674		PMAP_MARK_PRIV(xpmap_mtop(*pte));
3675		pmap_pte_release(pte);
3676	}
3677}
3678
3679void
3680pmap_map_readwrite(pmap_t pmap, vm_offset_t va, int len)
3681{
3682	int i, npages = round_page(len) >> PAGE_SHIFT;
3683	for (i = 0; i < npages; i++) {
3684		pt_entry_t *pte;
3685		pte = pmap_pte(pmap, (vm_offset_t)(va + i*PAGE_SIZE));
3686		PMAP_MARK_UNPRIV(xpmap_mtop(*pte));
3687		pte_store(pte, xpmap_mtop(*pte) | (PG_RW|PG_M));
3688		pmap_pte_release(pte);
3689	}
3690}
3691
3692/*
3693 * Clear the write and modified bits in each of the given page's mappings.
3694 */
3695void
3696pmap_remove_write(vm_page_t m)
3697{
3698	pv_entry_t pv;
3699	pmap_t pmap;
3700	pt_entry_t oldpte, *pte;
3701
3702	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3703	if ((m->flags & PG_FICTITIOUS) != 0 ||
3704	    (m->flags & PG_WRITEABLE) == 0)
3705		return;
3706	sched_pin();
3707	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3708		pmap = PV_PMAP(pv);
3709		PMAP_LOCK(pmap);
3710		pte = pmap_pte_quick(pmap, pv->pv_va);
3711retry:
3712		oldpte = *pte;
3713		if ((oldpte & PG_RW) != 0) {
3714			/*
3715			 * Regardless of whether a pte is 32 or 64 bits
3716			 * in size, PG_RW and PG_M are among the least
3717			 * significant 32 bits.
3718			 */
3719			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3720			    oldpte & ~(PG_RW | PG_M)))
3721				goto retry;
3722			if ((oldpte & PG_M) != 0)
3723				vm_page_dirty(m);
3724			pmap_invalidate_page(pmap, pv->pv_va);
3725		}
3726		PMAP_UNLOCK(pmap);
3727	}
3728	vm_page_flag_clear(m, PG_WRITEABLE);
3729	PT_UPDATES_FLUSH();
3730	if (*PMAP1)
3731		PT_SET_MA(PADDR1, 0);
3732	sched_unpin();
3733}
3734
3735/*
3736 *	pmap_ts_referenced:
3737 *
3738 *	Return a count of reference bits for a page, clearing those bits.
3739 *	It is not necessary for every reference bit to be cleared, but it
3740 *	is necessary that 0 only be returned when there are truly no
3741 *	reference bits set.
3742 *
3743 *	XXX: The exact number of bits to check and clear is a matter that
3744 *	should be tested and standardized at some point in the future for
3745 *	optimal aging of shared pages.
3746 */
3747int
3748pmap_ts_referenced(vm_page_t m)
3749{
3750	pv_entry_t pv, pvf, pvn;
3751	pmap_t pmap;
3752	pt_entry_t *pte;
3753	int rtval = 0;
3754
3755	if (m->flags & PG_FICTITIOUS)
3756		return (rtval);
3757	sched_pin();
3758	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3759	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3760		pvf = pv;
3761		do {
3762			pvn = TAILQ_NEXT(pv, pv_list);
3763			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3764			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3765			pmap = PV_PMAP(pv);
3766			PMAP_LOCK(pmap);
3767			pte = pmap_pte_quick(pmap, pv->pv_va);
3768			if ((*pte & PG_A) != 0) {
3769				PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3770				pmap_invalidate_page(pmap, pv->pv_va);
3771				rtval++;
3772				if (rtval > 4)
3773					pvn = NULL;
3774			}
3775			PMAP_UNLOCK(pmap);
3776		} while ((pv = pvn) != NULL && pv != pvf);
3777	}
3778	PT_UPDATES_FLUSH();
3779	if (*PMAP1)
3780		PT_SET_MA(PADDR1, 0);
3781
3782	sched_unpin();
3783	return (rtval);
3784}
3785
3786/*
3787 *	Clear the modify bits on the specified physical page.
3788 */
3789void
3790pmap_clear_modify(vm_page_t m)
3791{
3792	pv_entry_t pv;
3793	pmap_t pmap;
3794	pt_entry_t *pte;
3795
3796	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3797	if ((m->flags & PG_FICTITIOUS) != 0)
3798		return;
3799	sched_pin();
3800	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3801		pmap = PV_PMAP(pv);
3802		PMAP_LOCK(pmap);
3803		pte = pmap_pte_quick(pmap, pv->pv_va);
3804		if ((*pte & PG_M) != 0) {
3805			/*
3806			 * Regardless of whether a pte is 32 or 64 bits
3807			 * in size, PG_M is among the least significant
3808			 * 32 bits.
3809			 */
3810			PT_SET_VA_MA(pte, *pte & ~PG_M, FALSE);
3811			pmap_invalidate_page(pmap, pv->pv_va);
3812		}
3813		PMAP_UNLOCK(pmap);
3814	}
3815	sched_unpin();
3816}
3817
3818/*
3819 *	pmap_clear_reference:
3820 *
3821 *	Clear the reference bit on the specified physical page.
3822 */
3823void
3824pmap_clear_reference(vm_page_t m)
3825{
3826	pv_entry_t pv;
3827	pmap_t pmap;
3828	pt_entry_t *pte;
3829
3830	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3831	if ((m->flags & PG_FICTITIOUS) != 0)
3832		return;
3833	sched_pin();
3834	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3835		pmap = PV_PMAP(pv);
3836		PMAP_LOCK(pmap);
3837		pte = pmap_pte_quick(pmap, pv->pv_va);
3838		if ((*pte & PG_A) != 0) {
3839			/*
3840			 * Regardless of whether a pte is 32 or 64 bits
3841			 * in size, PG_A is among the least significant
3842			 * 32 bits.
3843			 */
3844			PT_SET_VA_MA(pte, *pte & ~PG_A, FALSE);
3845			pmap_invalidate_page(pmap, pv->pv_va);
3846		}
3847		PMAP_UNLOCK(pmap);
3848	}
3849	sched_unpin();
3850}
3851
3852/*
3853 * Miscellaneous support routines follow
3854 */
3855
3856/*
3857 * Map a set of physical memory pages into the kernel virtual
3858 * address space. Return a pointer to where it is mapped. This
3859 * routine is intended to be used for mapping device memory,
3860 * NOT real memory.
3861 */
3862void *
3863pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3864{
3865	vm_offset_t va, tmpva, offset;
3866
3867	offset = pa & PAGE_MASK;
3868	size = roundup(offset + size, PAGE_SIZE);
3869	pa = pa & PG_FRAME;
3870
3871	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3872		va = KERNBASE + pa;
3873	else
3874		va = kmem_alloc_nofault(kernel_map, size);
3875	if (!va)
3876		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3877
3878	for (tmpva = va; size > 0; ) {
3879		pmap_kenter_attr(tmpva, pa, mode);
3880		size -= PAGE_SIZE;
3881		tmpva += PAGE_SIZE;
3882		pa += PAGE_SIZE;
3883	}
3884	pmap_invalidate_range(kernel_pmap, va, tmpva);
3885	pmap_invalidate_cache();
3886	return ((void *)(va + offset));
3887}
3888
3889void *
3890pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3891{
3892
3893	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3894}
3895
3896void *
3897pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3898{
3899
3900	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3901}
3902
3903void
3904pmap_unmapdev(vm_offset_t va, vm_size_t size)
3905{
3906	vm_offset_t base, offset, tmpva;
3907
3908	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3909		return;
3910	base = trunc_page(va);
3911	offset = va & PAGE_MASK;
3912	size = roundup(offset + size, PAGE_SIZE);
3913	critical_enter();
3914	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3915		pmap_kremove(tmpva);
3916	pmap_invalidate_range(kernel_pmap, va, tmpva);
3917	critical_exit();
3918	kmem_free(kernel_map, base, size);
3919}
3920
3921int
3922pmap_change_attr(va, size, mode)
3923	vm_offset_t va;
3924	vm_size_t size;
3925	int mode;
3926{
3927	vm_offset_t base, offset, tmpva;
3928	pt_entry_t *pte;
3929	u_int opte, npte;
3930	pd_entry_t *pde;
3931
3932	base = trunc_page(va);
3933	offset = va & PAGE_MASK;
3934	size = roundup(offset + size, PAGE_SIZE);
3935
3936	/* Only supported on kernel virtual addresses. */
3937	if (base <= VM_MAXUSER_ADDRESS)
3938		return (EINVAL);
3939
3940	/* 4MB pages and pages that aren't mapped aren't supported. */
3941	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3942		pde = pmap_pde(kernel_pmap, tmpva);
3943		if (*pde & PG_PS)
3944			return (EINVAL);
3945		if ((*pde & PG_V) == 0)
3946			return (EINVAL);
3947		pte = vtopte(va);
3948		if ((*pte & PG_V) == 0)
3949			return (EINVAL);
3950	}
3951
3952	/*
3953	 * Ok, all the pages exist and are 4k, so run through them updating
3954	 * their cache mode.
3955	 */
3956	for (tmpva = base; size > 0; ) {
3957		pte = vtopte(tmpva);
3958
3959		/*
3960		 * The cache mode bits are all in the low 32-bits of the
3961		 * PTE, so we can just spin on updating the low 32-bits.
3962		 */
3963		do {
3964			opte = *(u_int *)pte;
3965			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
3966			npte |= pmap_cache_bits(mode, 0);
3967			PT_SET_VA_MA(pte, npte, TRUE);
3968		} while (npte != opte && (*pte != npte));
3969		tmpva += PAGE_SIZE;
3970		size -= PAGE_SIZE;
3971	}
3972
3973	/*
3974	 * Flush CPU caches to make sure any data isn't cached that shouldn't
3975	 * be, etc.
3976	 */
3977	pmap_invalidate_range(kernel_pmap, base, tmpva);
3978	pmap_invalidate_cache();
3979	return (0);
3980}
3981
3982/*
3983 * perform the pmap work for mincore
3984 */
3985int
3986pmap_mincore(pmap_t pmap, vm_offset_t addr)
3987{
3988	pt_entry_t *ptep, pte;
3989	vm_page_t m;
3990	int val = 0;
3991
3992	PMAP_LOCK(pmap);
3993	ptep = pmap_pte(pmap, addr);
3994	pte = (ptep != NULL) ? PT_GET(ptep) : 0;
3995	pmap_pte_release(ptep);
3996	PMAP_UNLOCK(pmap);
3997
3998	if (pte != 0) {
3999		vm_paddr_t pa;
4000
4001		val = MINCORE_INCORE;
4002		if ((pte & PG_MANAGED) == 0)
4003			return val;
4004
4005		pa = pte & PG_FRAME;
4006
4007		m = PHYS_TO_VM_PAGE(pa);
4008
4009		/*
4010		 * Modified by us
4011		 */
4012		if (pte & PG_M)
4013			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4014		else {
4015			/*
4016			 * Modified by someone else
4017			 */
4018			vm_page_lock_queues();
4019			if (m->dirty || pmap_is_modified(m))
4020				val |= MINCORE_MODIFIED_OTHER;
4021			vm_page_unlock_queues();
4022		}
4023		/*
4024		 * Referenced by us
4025		 */
4026		if (pte & PG_A)
4027			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
4028		else {
4029			/*
4030			 * Referenced by someone else
4031			 */
4032			vm_page_lock_queues();
4033			if ((m->flags & PG_REFERENCED) ||
4034			    pmap_ts_referenced(m)) {
4035				val |= MINCORE_REFERENCED_OTHER;
4036				vm_page_flag_set(m, PG_REFERENCED);
4037			}
4038			vm_page_unlock_queues();
4039		}
4040	}
4041	return val;
4042}
4043
4044void
4045pmap_activate(struct thread *td)
4046{
4047	pmap_t	pmap, oldpmap;
4048	u_int32_t  cr3;
4049
4050	critical_enter();
4051	pmap = vmspace_pmap(td->td_proc->p_vmspace);
4052	oldpmap = PCPU_GET(curpmap);
4053#if defined(SMP)
4054	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
4055	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
4056#else
4057	oldpmap->pm_active &= ~1;
4058	pmap->pm_active |= 1;
4059#endif
4060#ifdef PAE
4061	cr3 = vtophys(pmap->pm_pdpt);
4062#else
4063	cr3 = vtophys(pmap->pm_pdir);
4064#endif
4065	/*
4066	 * pmap_activate is for the current thread on the current cpu
4067	 */
4068	td->td_pcb->pcb_cr3 = cr3;
4069	PT_UPDATES_FLUSH();
4070	load_cr3(cr3);
4071
4072	PCPU_SET(curpmap, pmap);
4073	critical_exit();
4074}
4075
4076/*
4077 *	Increase the starting virtual address of the given mapping if a
4078 *	different alignment might result in more superpage mappings.
4079 */
4080void
4081pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
4082    vm_offset_t *addr, vm_size_t size)
4083{
4084	vm_offset_t superpage_offset;
4085
4086	if (size < NBPDR)
4087		return;
4088	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
4089		offset += ptoa(object->pg_color);
4090	superpage_offset = offset & PDRMASK;
4091	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
4092	    (*addr & PDRMASK) == superpage_offset)
4093		return;
4094	if ((*addr & PDRMASK) < superpage_offset)
4095		*addr = (*addr & ~PDRMASK) + superpage_offset;
4096	else
4097		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
4098}
4099
4100#if defined(PMAP_DEBUG)
4101pmap_pid_dump(int pid)
4102{
4103	pmap_t pmap;
4104	struct proc *p;
4105	int npte = 0;
4106	int index;
4107
4108	sx_slock(&allproc_lock);
4109	FOREACH_PROC_IN_SYSTEM(p) {
4110		if (p->p_pid != pid)
4111			continue;
4112
4113		if (p->p_vmspace) {
4114			int i,j;
4115			index = 0;
4116			pmap = vmspace_pmap(p->p_vmspace);
4117			for (i = 0; i < NPDEPTD; i++) {
4118				pd_entry_t *pde;
4119				pt_entry_t *pte;
4120				vm_offset_t base = i << PDRSHIFT;
4121
4122				pde = &pmap->pm_pdir[i];
4123				if (pde && pmap_pde_v(pde)) {
4124					for (j = 0; j < NPTEPG; j++) {
4125						vm_offset_t va = base + (j << PAGE_SHIFT);
4126						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
4127							if (index) {
4128								index = 0;
4129								printf("\n");
4130							}
4131							sx_sunlock(&allproc_lock);
4132							return npte;
4133						}
4134						pte = pmap_pte(pmap, va);
4135						if (pte && pmap_pte_v(pte)) {
4136							pt_entry_t pa;
4137							vm_page_t m;
4138							pa = PT_GET(pte);
4139							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
4140							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
4141								va, pa, m->hold_count, m->wire_count, m->flags);
4142							npte++;
4143							index++;
4144							if (index >= 2) {
4145								index = 0;
4146								printf("\n");
4147							} else {
4148								printf(" ");
4149							}
4150						}
4151					}
4152				}
4153			}
4154		}
4155	}
4156	sx_sunlock(&allproc_lock);
4157	return npte;
4158}
4159#endif
4160
4161#if defined(DEBUG)
4162
4163static void	pads(pmap_t pm);
4164void		pmap_pvdump(vm_paddr_t pa);
4165
4166/* print address space of pmap*/
4167static void
4168pads(pmap_t pm)
4169{
4170	int i, j;
4171	vm_paddr_t va;
4172	pt_entry_t *ptep;
4173
4174	if (pm == kernel_pmap)
4175		return;
4176	for (i = 0; i < NPDEPTD; i++)
4177		if (pm->pm_pdir[i])
4178			for (j = 0; j < NPTEPG; j++) {
4179				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
4180				if (pm == kernel_pmap && va < KERNBASE)
4181					continue;
4182				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
4183					continue;
4184				ptep = pmap_pte(pm, va);
4185				if (pmap_pte_v(ptep))
4186					printf("%x:%x ", va, *ptep);
4187			};
4188
4189}
4190
4191void
4192pmap_pvdump(vm_paddr_t pa)
4193{
4194	pv_entry_t pv;
4195	pmap_t pmap;
4196	vm_page_t m;
4197
4198	printf("pa %x", pa);
4199	m = PHYS_TO_VM_PAGE(pa);
4200	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4201		pmap = PV_PMAP(pv);
4202		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
4203		pads(pmap);
4204	}
4205	printf(" ");
4206}
4207#endif
4208