pmap.c revision 245577
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 245577 2013-01-17 21:32:25Z jhb $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	Since the information managed by this module is
84 *	also stored by the logical address mapping module,
85 *	this module may throw away valid virtual-to-physical
86 *	mappings at almost any time.  However, invalidations
87 *	of virtual-to-physical mappings must be done as
88 *	requested.
89 *
90 *	In order to cope with hardware architectures which
91 *	make virtual-to-physical map invalidates expensive,
92 *	this module may delay invalidate or reduced protection
93 *	operations until such time as they are actually
94 *	necessary.  This module is given full information as
95 *	to which processors are currently using which maps,
96 *	and to when physical maps must be made correct.
97 */
98
99#include "opt_apic.h"
100#include "opt_cpu.h"
101#include "opt_pmap.h"
102#include "opt_smp.h"
103#include "opt_xbox.h"
104
105#include <sys/param.h>
106#include <sys/systm.h>
107#include <sys/kernel.h>
108#include <sys/ktr.h>
109#include <sys/lock.h>
110#include <sys/malloc.h>
111#include <sys/mman.h>
112#include <sys/msgbuf.h>
113#include <sys/mutex.h>
114#include <sys/proc.h>
115#include <sys/rwlock.h>
116#include <sys/sf_buf.h>
117#include <sys/sx.h>
118#include <sys/vmmeter.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#ifdef SMP
122#include <sys/smp.h>
123#else
124#include <sys/cpuset.h>
125#endif
126
127#include <vm/vm.h>
128#include <vm/vm_param.h>
129#include <vm/vm_kern.h>
130#include <vm/vm_page.h>
131#include <vm/vm_map.h>
132#include <vm/vm_object.h>
133#include <vm/vm_extern.h>
134#include <vm/vm_pageout.h>
135#include <vm/vm_pager.h>
136#include <vm/vm_reserv.h>
137#include <vm/uma.h>
138
139#include <machine/cpu.h>
140#include <machine/cputypes.h>
141#include <machine/md_var.h>
142#include <machine/pcb.h>
143#include <machine/specialreg.h>
144#ifdef SMP
145#include <machine/smp.h>
146#endif
147
148#ifdef XBOX
149#include <machine/xbox.h>
150#endif
151
152#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
153#define CPU_ENABLE_SSE
154#endif
155
156#ifndef PMAP_SHPGPERPROC
157#define PMAP_SHPGPERPROC 200
158#endif
159
160#if !defined(DIAGNOSTIC)
161#ifdef __GNUC_GNU_INLINE__
162#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
163#else
164#define PMAP_INLINE	extern inline
165#endif
166#else
167#define PMAP_INLINE
168#endif
169
170#ifdef PV_STATS
171#define PV_STAT(x)	do { x ; } while (0)
172#else
173#define PV_STAT(x)	do { } while (0)
174#endif
175
176#define	pa_index(pa)	((pa) >> PDRSHIFT)
177#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
178
179/*
180 * Get PDEs and PTEs for user/kernel address space
181 */
182#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
183#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
184
185#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
186#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
187#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
188#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
189#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
190
191#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
192    atomic_clear_int((u_int *)(pte), PG_W))
193#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
194
195struct pmap kernel_pmap_store;
196LIST_HEAD(pmaplist, pmap);
197static struct pmaplist allpmaps;
198static struct mtx allpmaps_lock;
199
200vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
201vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
202int pgeflag = 0;		/* PG_G or-in */
203int pseflag = 0;		/* PG_PS or-in */
204
205static int nkpt = NKPT;
206vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
207extern u_int32_t KERNend;
208extern u_int32_t KPTphys;
209
210#ifdef PAE
211pt_entry_t pg_nx;
212static uma_zone_t pdptzone;
213#endif
214
215static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
216
217static int pat_works = 1;
218SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
219    "Is page attribute table fully functional?");
220
221static int pg_ps_enabled = 1;
222SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
223    "Are large page mappings enabled?");
224
225#define	PAT_INDEX_SIZE	8
226static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
227
228static struct rwlock_padalign pvh_global_lock;
229
230/*
231 * Data for the pv entry allocation mechanism
232 */
233static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
234static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
235static struct md_page *pv_table;
236static int shpgperproc = PMAP_SHPGPERPROC;
237
238struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
239int pv_maxchunks;			/* How many chunks we have KVA for */
240vm_offset_t pv_vafree;			/* freelist stored in the PTE */
241
242/*
243 * All those kernel PT submaps that BSD is so fond of
244 */
245struct sysmaps {
246	struct	mtx lock;
247	pt_entry_t *CMAP1;
248	pt_entry_t *CMAP2;
249	caddr_t	CADDR1;
250	caddr_t	CADDR2;
251};
252static struct sysmaps sysmaps_pcpu[MAXCPU];
253pt_entry_t *CMAP1 = 0;
254static pt_entry_t *CMAP3;
255static pd_entry_t *KPTD;
256caddr_t CADDR1 = 0, ptvmmap = 0;
257static caddr_t CADDR3;
258struct msgbuf *msgbufp = 0;
259
260/*
261 * Crashdump maps.
262 */
263static caddr_t crashdumpmap;
264
265static pt_entry_t *PMAP1 = 0, *PMAP2;
266static pt_entry_t *PADDR1 = 0, *PADDR2;
267#ifdef SMP
268static int PMAP1cpu;
269static int PMAP1changedcpu;
270SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
271	   &PMAP1changedcpu, 0,
272	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
273#endif
274static int PMAP1changed;
275SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
276	   &PMAP1changed, 0,
277	   "Number of times pmap_pte_quick changed PMAP1");
278static int PMAP1unchanged;
279SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
280	   &PMAP1unchanged, 0,
281	   "Number of times pmap_pte_quick didn't change PMAP1");
282static struct mtx PMAP2mutex;
283
284static void	free_pv_chunk(struct pv_chunk *pc);
285static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
286static pv_entry_t get_pv_entry(pmap_t pmap, boolean_t try);
287static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
288static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
289static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
290static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
291static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
292		    vm_offset_t va);
293static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
294
295static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
296static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
297    vm_prot_t prot);
298static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
299    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
300static void pmap_flush_page(vm_page_t m);
301static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
302static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
303static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
304static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
305static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
306static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
307static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
308static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
309static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
310static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
311    vm_prot_t prot);
312static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
313static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
314    vm_page_t *free);
315static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
316    vm_page_t *free);
317static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
318static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
319    vm_page_t *free);
320static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
321					vm_offset_t va);
322static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
323static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
324    vm_page_t m);
325static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
326    pd_entry_t newpde);
327static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
328
329static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
330
331static vm_page_t _pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags);
332static void _pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free);
333static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
334static void pmap_pte_release(pt_entry_t *pte);
335static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
336#ifdef PAE
337static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
338#endif
339static void pmap_set_pg(void);
340
341static __inline void pagezero(void *page);
342
343CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
344CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
345
346/*
347 * If you get an error here, then you set KVA_PAGES wrong! See the
348 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
349 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
350 */
351CTASSERT(KERNBASE % (1 << 24) == 0);
352
353/*
354 *	Bootstrap the system enough to run with virtual memory.
355 *
356 *	On the i386 this is called after mapping has already been enabled
357 *	and just syncs the pmap module with what has already been done.
358 *	[We can't call it easily with mapping off since the kernel is not
359 *	mapped with PA == VA, hence we would have to relocate every address
360 *	from the linked base (virtual) address "KERNBASE" to the actual
361 *	(physical) address starting relative to 0]
362 */
363void
364pmap_bootstrap(vm_paddr_t firstaddr)
365{
366	vm_offset_t va;
367	pt_entry_t *pte, *unused;
368	struct sysmaps *sysmaps;
369	int i;
370
371	/*
372	 * Initialize the first available kernel virtual address.  However,
373	 * using "firstaddr" may waste a few pages of the kernel virtual
374	 * address space, because locore may not have mapped every physical
375	 * page that it allocated.  Preferably, locore would provide a first
376	 * unused virtual address in addition to "firstaddr".
377	 */
378	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
379
380	virtual_end = VM_MAX_KERNEL_ADDRESS;
381
382	/*
383	 * Initialize the kernel pmap (which is statically allocated).
384	 */
385	PMAP_LOCK_INIT(kernel_pmap);
386	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
387#ifdef PAE
388	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
389#endif
390	kernel_pmap->pm_root = NULL;
391	CPU_FILL(&kernel_pmap->pm_active);	/* don't allow deactivation */
392	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
393
394 	/*
395	 * Initialize the global pv list lock.
396	 */
397	rw_init(&pvh_global_lock, "pmap pv global");
398
399	LIST_INIT(&allpmaps);
400
401	/*
402	 * Request a spin mutex so that changes to allpmaps cannot be
403	 * preempted by smp_rendezvous_cpus().  Otherwise,
404	 * pmap_update_pde_kernel() could access allpmaps while it is
405	 * being changed.
406	 */
407	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
408	mtx_lock_spin(&allpmaps_lock);
409	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
410	mtx_unlock_spin(&allpmaps_lock);
411
412	/*
413	 * Reserve some special page table entries/VA space for temporary
414	 * mapping of pages.
415	 */
416#define	SYSMAP(c, p, v, n)	\
417	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
418
419	va = virtual_avail;
420	pte = vtopte(va);
421
422	/*
423	 * CMAP1/CMAP2 are used for zeroing and copying pages.
424	 * CMAP3 is used for the idle process page zeroing.
425	 */
426	for (i = 0; i < MAXCPU; i++) {
427		sysmaps = &sysmaps_pcpu[i];
428		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
429		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
430		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
431	}
432	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
433	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
434
435	/*
436	 * Crashdump maps.
437	 */
438	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
439
440	/*
441	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
442	 */
443	SYSMAP(caddr_t, unused, ptvmmap, 1)
444
445	/*
446	 * msgbufp is used to map the system message buffer.
447	 */
448	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(msgbufsize)))
449
450	/*
451	 * KPTmap is used by pmap_kextract().
452	 *
453	 * KPTmap is first initialized by locore.  However, that initial
454	 * KPTmap can only support NKPT page table pages.  Here, a larger
455	 * KPTmap is created that can support KVA_PAGES page table pages.
456	 */
457	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
458
459	for (i = 0; i < NKPT; i++)
460		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
461
462	/*
463	 * Adjust the start of the KPTD and KPTmap so that the implementation
464	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
465	 */
466	KPTD -= KPTDI;
467	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
468
469	/*
470	 * PADDR1 and PADDR2 are used by pmap_pte_quick() and pmap_pte(),
471	 * respectively.
472	 */
473	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
474	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
475
476	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
477
478	virtual_avail = va;
479
480	/*
481	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
482	 * physical memory region that is used by the ACPI wakeup code.  This
483	 * mapping must not have PG_G set.
484	 */
485#ifdef XBOX
486	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
487	 * an early stadium, we cannot yet neatly map video memory ... :-(
488	 * Better fixes are very welcome! */
489	if (!arch_i386_is_xbox)
490#endif
491	for (i = 1; i < NKPT; i++)
492		PTD[i] = 0;
493
494	/* Initialize the PAT MSR if present. */
495	pmap_init_pat();
496
497	/* Turn on PG_G on kernel page(s) */
498	pmap_set_pg();
499}
500
501/*
502 * Setup the PAT MSR.
503 */
504void
505pmap_init_pat(void)
506{
507	int pat_table[PAT_INDEX_SIZE];
508	uint64_t pat_msr;
509	u_long cr0, cr4;
510	int i;
511
512	/* Set default PAT index table. */
513	for (i = 0; i < PAT_INDEX_SIZE; i++)
514		pat_table[i] = -1;
515	pat_table[PAT_WRITE_BACK] = 0;
516	pat_table[PAT_WRITE_THROUGH] = 1;
517	pat_table[PAT_UNCACHEABLE] = 3;
518	pat_table[PAT_WRITE_COMBINING] = 3;
519	pat_table[PAT_WRITE_PROTECTED] = 3;
520	pat_table[PAT_UNCACHED] = 3;
521
522	/* Bail if this CPU doesn't implement PAT. */
523	if ((cpu_feature & CPUID_PAT) == 0) {
524		for (i = 0; i < PAT_INDEX_SIZE; i++)
525			pat_index[i] = pat_table[i];
526		pat_works = 0;
527		return;
528	}
529
530	/*
531	 * Due to some Intel errata, we can only safely use the lower 4
532	 * PAT entries.
533	 *
534	 *   Intel Pentium III Processor Specification Update
535	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
536	 * or Mode C Paging)
537	 *
538	 *   Intel Pentium IV  Processor Specification Update
539	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
540	 */
541	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
542	    !(CPUID_TO_FAMILY(cpu_id) == 6 && CPUID_TO_MODEL(cpu_id) >= 0xe))
543		pat_works = 0;
544
545	/* Initialize default PAT entries. */
546	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
547	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
548	    PAT_VALUE(2, PAT_UNCACHED) |
549	    PAT_VALUE(3, PAT_UNCACHEABLE) |
550	    PAT_VALUE(4, PAT_WRITE_BACK) |
551	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
552	    PAT_VALUE(6, PAT_UNCACHED) |
553	    PAT_VALUE(7, PAT_UNCACHEABLE);
554
555	if (pat_works) {
556		/*
557		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
558		 * Program 5 and 6 as WP and WC.
559		 * Leave 4 and 7 as WB and UC.
560		 */
561		pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
562		pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
563		    PAT_VALUE(6, PAT_WRITE_COMBINING);
564		pat_table[PAT_UNCACHED] = 2;
565		pat_table[PAT_WRITE_PROTECTED] = 5;
566		pat_table[PAT_WRITE_COMBINING] = 6;
567	} else {
568		/*
569		 * Just replace PAT Index 2 with WC instead of UC-.
570		 */
571		pat_msr &= ~PAT_MASK(2);
572		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
573		pat_table[PAT_WRITE_COMBINING] = 2;
574	}
575
576	/* Disable PGE. */
577	cr4 = rcr4();
578	load_cr4(cr4 & ~CR4_PGE);
579
580	/* Disable caches (CD = 1, NW = 0). */
581	cr0 = rcr0();
582	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
583
584	/* Flushes caches and TLBs. */
585	wbinvd();
586	invltlb();
587
588	/* Update PAT and index table. */
589	wrmsr(MSR_PAT, pat_msr);
590	for (i = 0; i < PAT_INDEX_SIZE; i++)
591		pat_index[i] = pat_table[i];
592
593	/* Flush caches and TLBs again. */
594	wbinvd();
595	invltlb();
596
597	/* Restore caches and PGE. */
598	load_cr0(cr0);
599	load_cr4(cr4);
600}
601
602/*
603 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
604 */
605static void
606pmap_set_pg(void)
607{
608	pt_entry_t *pte;
609	vm_offset_t va, endva;
610
611	if (pgeflag == 0)
612		return;
613
614	endva = KERNBASE + KERNend;
615
616	if (pseflag) {
617		va = KERNBASE + KERNLOAD;
618		while (va  < endva) {
619			pdir_pde(PTD, va) |= pgeflag;
620			invltlb();	/* Play it safe, invltlb() every time */
621			va += NBPDR;
622		}
623	} else {
624		va = (vm_offset_t)btext;
625		while (va < endva) {
626			pte = vtopte(va);
627			if (*pte)
628				*pte |= pgeflag;
629			invltlb();	/* Play it safe, invltlb() every time */
630			va += PAGE_SIZE;
631		}
632	}
633}
634
635/*
636 * Initialize a vm_page's machine-dependent fields.
637 */
638void
639pmap_page_init(vm_page_t m)
640{
641
642	TAILQ_INIT(&m->md.pv_list);
643	m->md.pat_mode = PAT_WRITE_BACK;
644}
645
646#ifdef PAE
647static void *
648pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
649{
650
651	/* Inform UMA that this allocator uses kernel_map/object. */
652	*flags = UMA_SLAB_KERNEL;
653	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
654	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
655}
656#endif
657
658/*
659 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
660 * Requirements:
661 *  - Must deal with pages in order to ensure that none of the PG_* bits
662 *    are ever set, PG_V in particular.
663 *  - Assumes we can write to ptes without pte_store() atomic ops, even
664 *    on PAE systems.  This should be ok.
665 *  - Assumes nothing will ever test these addresses for 0 to indicate
666 *    no mapping instead of correctly checking PG_V.
667 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
668 * Because PG_V is never set, there can be no mappings to invalidate.
669 */
670static vm_offset_t
671pmap_ptelist_alloc(vm_offset_t *head)
672{
673	pt_entry_t *pte;
674	vm_offset_t va;
675
676	va = *head;
677	if (va == 0)
678		return (va);	/* Out of memory */
679	pte = vtopte(va);
680	*head = *pte;
681	if (*head & PG_V)
682		panic("pmap_ptelist_alloc: va with PG_V set!");
683	*pte = 0;
684	return (va);
685}
686
687static void
688pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
689{
690	pt_entry_t *pte;
691
692	if (va & PG_V)
693		panic("pmap_ptelist_free: freeing va with PG_V set!");
694	pte = vtopte(va);
695	*pte = *head;		/* virtual! PG_V is 0 though */
696	*head = va;
697}
698
699static void
700pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
701{
702	int i;
703	vm_offset_t va;
704
705	*head = 0;
706	for (i = npages - 1; i >= 0; i--) {
707		va = (vm_offset_t)base + i * PAGE_SIZE;
708		pmap_ptelist_free(head, va);
709	}
710}
711
712
713/*
714 *	Initialize the pmap module.
715 *	Called by vm_init, to initialize any structures that the pmap
716 *	system needs to map virtual memory.
717 */
718void
719pmap_init(void)
720{
721	vm_page_t mpte;
722	vm_size_t s;
723	int i, pv_npg;
724
725	/*
726	 * Initialize the vm page array entries for the kernel pmap's
727	 * page table pages.
728	 */
729	for (i = 0; i < NKPT; i++) {
730		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
731		KASSERT(mpte >= vm_page_array &&
732		    mpte < &vm_page_array[vm_page_array_size],
733		    ("pmap_init: page table page is out of range"));
734		mpte->pindex = i + KPTDI;
735		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
736	}
737
738	/*
739	 * Initialize the address space (zone) for the pv entries.  Set a
740	 * high water mark so that the system can recover from excessive
741	 * numbers of pv entries.
742	 */
743	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
744	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
745	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
746	pv_entry_max = roundup(pv_entry_max, _NPCPV);
747	pv_entry_high_water = 9 * (pv_entry_max / 10);
748
749	/*
750	 * If the kernel is running in a virtual machine on an AMD Family 10h
751	 * processor, then it must assume that MCA is enabled by the virtual
752	 * machine monitor.
753	 */
754	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
755	    CPUID_TO_FAMILY(cpu_id) == 0x10)
756		workaround_erratum383 = 1;
757
758	/*
759	 * Are large page mappings supported and enabled?
760	 */
761	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
762	if (pseflag == 0)
763		pg_ps_enabled = 0;
764	else if (pg_ps_enabled) {
765		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
766		    ("pmap_init: can't assign to pagesizes[1]"));
767		pagesizes[1] = NBPDR;
768	}
769
770	/*
771	 * Calculate the size of the pv head table for superpages.
772	 */
773	for (i = 0; phys_avail[i + 1]; i += 2);
774	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
775
776	/*
777	 * Allocate memory for the pv head table for superpages.
778	 */
779	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
780	s = round_page(s);
781	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
782	for (i = 0; i < pv_npg; i++)
783		TAILQ_INIT(&pv_table[i].pv_list);
784
785	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
786	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
787	    PAGE_SIZE * pv_maxchunks);
788	if (pv_chunkbase == NULL)
789		panic("pmap_init: not enough kvm for pv chunks");
790	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
791#ifdef PAE
792	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
793	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
794	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
795	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
796#endif
797}
798
799
800SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
801	"Max number of PV entries");
802SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
803	"Page share factor per proc");
804
805static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
806    "2/4MB page mapping counters");
807
808static u_long pmap_pde_demotions;
809SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
810    &pmap_pde_demotions, 0, "2/4MB page demotions");
811
812static u_long pmap_pde_mappings;
813SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
814    &pmap_pde_mappings, 0, "2/4MB page mappings");
815
816static u_long pmap_pde_p_failures;
817SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
818    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
819
820static u_long pmap_pde_promotions;
821SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
822    &pmap_pde_promotions, 0, "2/4MB page promotions");
823
824/***************************************************
825 * Low level helper routines.....
826 ***************************************************/
827
828/*
829 * Determine the appropriate bits to set in a PTE or PDE for a specified
830 * caching mode.
831 */
832int
833pmap_cache_bits(int mode, boolean_t is_pde)
834{
835	int cache_bits, pat_flag, pat_idx;
836
837	if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
838		panic("Unknown caching mode %d\n", mode);
839
840	/* The PAT bit is different for PTE's and PDE's. */
841	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
842
843	/* Map the caching mode to a PAT index. */
844	pat_idx = pat_index[mode];
845
846	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
847	cache_bits = 0;
848	if (pat_idx & 0x4)
849		cache_bits |= pat_flag;
850	if (pat_idx & 0x2)
851		cache_bits |= PG_NC_PCD;
852	if (pat_idx & 0x1)
853		cache_bits |= PG_NC_PWT;
854	return (cache_bits);
855}
856
857/*
858 * The caller is responsible for maintaining TLB consistency.
859 */
860static void
861pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
862{
863	pd_entry_t *pde;
864	pmap_t pmap;
865	boolean_t PTD_updated;
866
867	PTD_updated = FALSE;
868	mtx_lock_spin(&allpmaps_lock);
869	LIST_FOREACH(pmap, &allpmaps, pm_list) {
870		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
871		    PG_FRAME))
872			PTD_updated = TRUE;
873		pde = pmap_pde(pmap, va);
874		pde_store(pde, newpde);
875	}
876	mtx_unlock_spin(&allpmaps_lock);
877	KASSERT(PTD_updated,
878	    ("pmap_kenter_pde: current page table is not in allpmaps"));
879}
880
881/*
882 * After changing the page size for the specified virtual address in the page
883 * table, flush the corresponding entries from the processor's TLB.  Only the
884 * calling processor's TLB is affected.
885 *
886 * The calling thread must be pinned to a processor.
887 */
888static void
889pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
890{
891	u_long cr4;
892
893	if ((newpde & PG_PS) == 0)
894		/* Demotion: flush a specific 2MB page mapping. */
895		invlpg(va);
896	else if ((newpde & PG_G) == 0)
897		/*
898		 * Promotion: flush every 4KB page mapping from the TLB
899		 * because there are too many to flush individually.
900		 */
901		invltlb();
902	else {
903		/*
904		 * Promotion: flush every 4KB page mapping from the TLB,
905		 * including any global (PG_G) mappings.
906		 */
907		cr4 = rcr4();
908		load_cr4(cr4 & ~CR4_PGE);
909		/*
910		 * Although preemption at this point could be detrimental to
911		 * performance, it would not lead to an error.  PG_G is simply
912		 * ignored if CR4.PGE is clear.  Moreover, in case this block
913		 * is re-entered, the load_cr4() either above or below will
914		 * modify CR4.PGE flushing the TLB.
915		 */
916		load_cr4(cr4 | CR4_PGE);
917	}
918}
919#ifdef SMP
920/*
921 * For SMP, these functions have to use the IPI mechanism for coherence.
922 *
923 * N.B.: Before calling any of the following TLB invalidation functions,
924 * the calling processor must ensure that all stores updating a non-
925 * kernel page table are globally performed.  Otherwise, another
926 * processor could cache an old, pre-update entry without being
927 * invalidated.  This can happen one of two ways: (1) The pmap becomes
928 * active on another processor after its pm_active field is checked by
929 * one of the following functions but before a store updating the page
930 * table is globally performed. (2) The pmap becomes active on another
931 * processor before its pm_active field is checked but due to
932 * speculative loads one of the following functions stills reads the
933 * pmap as inactive on the other processor.
934 *
935 * The kernel page table is exempt because its pm_active field is
936 * immutable.  The kernel page table is always active on every
937 * processor.
938 */
939void
940pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
941{
942	cpuset_t other_cpus;
943	u_int cpuid;
944
945	sched_pin();
946	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
947		invlpg(va);
948		smp_invlpg(va);
949	} else {
950		cpuid = PCPU_GET(cpuid);
951		other_cpus = all_cpus;
952		CPU_CLR(cpuid, &other_cpus);
953		if (CPU_ISSET(cpuid, &pmap->pm_active))
954			invlpg(va);
955		CPU_AND(&other_cpus, &pmap->pm_active);
956		if (!CPU_EMPTY(&other_cpus))
957			smp_masked_invlpg(other_cpus, va);
958	}
959	sched_unpin();
960}
961
962void
963pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
964{
965	cpuset_t other_cpus;
966	vm_offset_t addr;
967	u_int cpuid;
968
969	sched_pin();
970	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
971		for (addr = sva; addr < eva; addr += PAGE_SIZE)
972			invlpg(addr);
973		smp_invlpg_range(sva, eva);
974	} else {
975		cpuid = PCPU_GET(cpuid);
976		other_cpus = all_cpus;
977		CPU_CLR(cpuid, &other_cpus);
978		if (CPU_ISSET(cpuid, &pmap->pm_active))
979			for (addr = sva; addr < eva; addr += PAGE_SIZE)
980				invlpg(addr);
981		CPU_AND(&other_cpus, &pmap->pm_active);
982		if (!CPU_EMPTY(&other_cpus))
983			smp_masked_invlpg_range(other_cpus, sva, eva);
984	}
985	sched_unpin();
986}
987
988void
989pmap_invalidate_all(pmap_t pmap)
990{
991	cpuset_t other_cpus;
992	u_int cpuid;
993
994	sched_pin();
995	if (pmap == kernel_pmap || !CPU_CMP(&pmap->pm_active, &all_cpus)) {
996		invltlb();
997		smp_invltlb();
998	} else {
999		cpuid = PCPU_GET(cpuid);
1000		other_cpus = all_cpus;
1001		CPU_CLR(cpuid, &other_cpus);
1002		if (CPU_ISSET(cpuid, &pmap->pm_active))
1003			invltlb();
1004		CPU_AND(&other_cpus, &pmap->pm_active);
1005		if (!CPU_EMPTY(&other_cpus))
1006			smp_masked_invltlb(other_cpus);
1007	}
1008	sched_unpin();
1009}
1010
1011void
1012pmap_invalidate_cache(void)
1013{
1014
1015	sched_pin();
1016	wbinvd();
1017	smp_cache_flush();
1018	sched_unpin();
1019}
1020
1021struct pde_action {
1022	cpuset_t invalidate;	/* processors that invalidate their TLB */
1023	vm_offset_t va;
1024	pd_entry_t *pde;
1025	pd_entry_t newpde;
1026	u_int store;		/* processor that updates the PDE */
1027};
1028
1029static void
1030pmap_update_pde_kernel(void *arg)
1031{
1032	struct pde_action *act = arg;
1033	pd_entry_t *pde;
1034	pmap_t pmap;
1035
1036	if (act->store == PCPU_GET(cpuid)) {
1037
1038		/*
1039		 * Elsewhere, this operation requires allpmaps_lock for
1040		 * synchronization.  Here, it does not because it is being
1041		 * performed in the context of an all_cpus rendezvous.
1042		 */
1043		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1044			pde = pmap_pde(pmap, act->va);
1045			pde_store(pde, act->newpde);
1046		}
1047	}
1048}
1049
1050static void
1051pmap_update_pde_user(void *arg)
1052{
1053	struct pde_action *act = arg;
1054
1055	if (act->store == PCPU_GET(cpuid))
1056		pde_store(act->pde, act->newpde);
1057}
1058
1059static void
1060pmap_update_pde_teardown(void *arg)
1061{
1062	struct pde_action *act = arg;
1063
1064	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
1065		pmap_update_pde_invalidate(act->va, act->newpde);
1066}
1067
1068/*
1069 * Change the page size for the specified virtual address in a way that
1070 * prevents any possibility of the TLB ever having two entries that map the
1071 * same virtual address using different page sizes.  This is the recommended
1072 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1073 * machine check exception for a TLB state that is improperly diagnosed as a
1074 * hardware error.
1075 */
1076static void
1077pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1078{
1079	struct pde_action act;
1080	cpuset_t active, other_cpus;
1081	u_int cpuid;
1082
1083	sched_pin();
1084	cpuid = PCPU_GET(cpuid);
1085	other_cpus = all_cpus;
1086	CPU_CLR(cpuid, &other_cpus);
1087	if (pmap == kernel_pmap)
1088		active = all_cpus;
1089	else
1090		active = pmap->pm_active;
1091	if (CPU_OVERLAP(&active, &other_cpus)) {
1092		act.store = cpuid;
1093		act.invalidate = active;
1094		act.va = va;
1095		act.pde = pde;
1096		act.newpde = newpde;
1097		CPU_SET(cpuid, &active);
1098		smp_rendezvous_cpus(active,
1099		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1100		    pmap_update_pde_kernel : pmap_update_pde_user,
1101		    pmap_update_pde_teardown, &act);
1102	} else {
1103		if (pmap == kernel_pmap)
1104			pmap_kenter_pde(va, newpde);
1105		else
1106			pde_store(pde, newpde);
1107		if (CPU_ISSET(cpuid, &active))
1108			pmap_update_pde_invalidate(va, newpde);
1109	}
1110	sched_unpin();
1111}
1112#else /* !SMP */
1113/*
1114 * Normal, non-SMP, 486+ invalidation functions.
1115 * We inline these within pmap.c for speed.
1116 */
1117PMAP_INLINE void
1118pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1119{
1120
1121	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1122		invlpg(va);
1123}
1124
1125PMAP_INLINE void
1126pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1127{
1128	vm_offset_t addr;
1129
1130	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1131		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1132			invlpg(addr);
1133}
1134
1135PMAP_INLINE void
1136pmap_invalidate_all(pmap_t pmap)
1137{
1138
1139	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1140		invltlb();
1141}
1142
1143PMAP_INLINE void
1144pmap_invalidate_cache(void)
1145{
1146
1147	wbinvd();
1148}
1149
1150static void
1151pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1152{
1153
1154	if (pmap == kernel_pmap)
1155		pmap_kenter_pde(va, newpde);
1156	else
1157		pde_store(pde, newpde);
1158	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1159		pmap_update_pde_invalidate(va, newpde);
1160}
1161#endif /* !SMP */
1162
1163#define	PMAP_CLFLUSH_THRESHOLD	(2 * 1024 * 1024)
1164
1165void
1166pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1167{
1168
1169	KASSERT((sva & PAGE_MASK) == 0,
1170	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1171	KASSERT((eva & PAGE_MASK) == 0,
1172	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1173
1174	if (cpu_feature & CPUID_SS)
1175		; /* If "Self Snoop" is supported, do nothing. */
1176	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1177	    eva - sva < PMAP_CLFLUSH_THRESHOLD) {
1178
1179#ifdef DEV_APIC
1180		/*
1181		 * XXX: Some CPUs fault, hang, or trash the local APIC
1182		 * registers if we use CLFLUSH on the local APIC
1183		 * range.  The local APIC is always uncached, so we
1184		 * don't need to flush for that range anyway.
1185		 */
1186		if (pmap_kextract(sva) == lapic_paddr)
1187			return;
1188#endif
1189		/*
1190		 * Otherwise, do per-cache line flush.  Use the mfence
1191		 * instruction to insure that previous stores are
1192		 * included in the write-back.  The processor
1193		 * propagates flush to other processors in the cache
1194		 * coherence domain.
1195		 */
1196		mfence();
1197		for (; sva < eva; sva += cpu_clflush_line_size)
1198			clflush(sva);
1199		mfence();
1200	} else {
1201
1202		/*
1203		 * No targeted cache flush methods are supported by CPU,
1204		 * or the supplied range is bigger than 2MB.
1205		 * Globally invalidate cache.
1206		 */
1207		pmap_invalidate_cache();
1208	}
1209}
1210
1211void
1212pmap_invalidate_cache_pages(vm_page_t *pages, int count)
1213{
1214	int i;
1215
1216	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
1217	    (cpu_feature & CPUID_CLFSH) == 0) {
1218		pmap_invalidate_cache();
1219	} else {
1220		for (i = 0; i < count; i++)
1221			pmap_flush_page(pages[i]);
1222	}
1223}
1224
1225/*
1226 * Are we current address space or kernel?  N.B. We return FALSE when
1227 * a pmap's page table is in use because a kernel thread is borrowing
1228 * it.  The borrowed page table can change spontaneously, making any
1229 * dependence on its continued use subject to a race condition.
1230 */
1231static __inline int
1232pmap_is_current(pmap_t pmap)
1233{
1234
1235	return (pmap == kernel_pmap ||
1236	    (pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1237	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1238}
1239
1240/*
1241 * If the given pmap is not the current or kernel pmap, the returned pte must
1242 * be released by passing it to pmap_pte_release().
1243 */
1244pt_entry_t *
1245pmap_pte(pmap_t pmap, vm_offset_t va)
1246{
1247	pd_entry_t newpf;
1248	pd_entry_t *pde;
1249
1250	pde = pmap_pde(pmap, va);
1251	if (*pde & PG_PS)
1252		return (pde);
1253	if (*pde != 0) {
1254		/* are we current address space or kernel? */
1255		if (pmap_is_current(pmap))
1256			return (vtopte(va));
1257		mtx_lock(&PMAP2mutex);
1258		newpf = *pde & PG_FRAME;
1259		if ((*PMAP2 & PG_FRAME) != newpf) {
1260			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1261			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1262		}
1263		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1264	}
1265	return (NULL);
1266}
1267
1268/*
1269 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1270 * being NULL.
1271 */
1272static __inline void
1273pmap_pte_release(pt_entry_t *pte)
1274{
1275
1276	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1277		mtx_unlock(&PMAP2mutex);
1278}
1279
1280static __inline void
1281invlcaddr(void *caddr)
1282{
1283
1284	invlpg((u_int)caddr);
1285}
1286
1287/*
1288 * Super fast pmap_pte routine best used when scanning
1289 * the pv lists.  This eliminates many coarse-grained
1290 * invltlb calls.  Note that many of the pv list
1291 * scans are across different pmaps.  It is very wasteful
1292 * to do an entire invltlb for checking a single mapping.
1293 *
1294 * If the given pmap is not the current pmap, pvh_global_lock
1295 * must be held and curthread pinned to a CPU.
1296 */
1297static pt_entry_t *
1298pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1299{
1300	pd_entry_t newpf;
1301	pd_entry_t *pde;
1302
1303	pde = pmap_pde(pmap, va);
1304	if (*pde & PG_PS)
1305		return (pde);
1306	if (*pde != 0) {
1307		/* are we current address space or kernel? */
1308		if (pmap_is_current(pmap))
1309			return (vtopte(va));
1310		rw_assert(&pvh_global_lock, RA_WLOCKED);
1311		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1312		newpf = *pde & PG_FRAME;
1313		if ((*PMAP1 & PG_FRAME) != newpf) {
1314			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1315#ifdef SMP
1316			PMAP1cpu = PCPU_GET(cpuid);
1317#endif
1318			invlcaddr(PADDR1);
1319			PMAP1changed++;
1320		} else
1321#ifdef SMP
1322		if (PMAP1cpu != PCPU_GET(cpuid)) {
1323			PMAP1cpu = PCPU_GET(cpuid);
1324			invlcaddr(PADDR1);
1325			PMAP1changedcpu++;
1326		} else
1327#endif
1328			PMAP1unchanged++;
1329		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1330	}
1331	return (0);
1332}
1333
1334/*
1335 *	Routine:	pmap_extract
1336 *	Function:
1337 *		Extract the physical page address associated
1338 *		with the given map/virtual_address pair.
1339 */
1340vm_paddr_t
1341pmap_extract(pmap_t pmap, vm_offset_t va)
1342{
1343	vm_paddr_t rtval;
1344	pt_entry_t *pte;
1345	pd_entry_t pde;
1346
1347	rtval = 0;
1348	PMAP_LOCK(pmap);
1349	pde = pmap->pm_pdir[va >> PDRSHIFT];
1350	if (pde != 0) {
1351		if ((pde & PG_PS) != 0)
1352			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1353		else {
1354			pte = pmap_pte(pmap, va);
1355			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1356			pmap_pte_release(pte);
1357		}
1358	}
1359	PMAP_UNLOCK(pmap);
1360	return (rtval);
1361}
1362
1363/*
1364 *	Routine:	pmap_extract_and_hold
1365 *	Function:
1366 *		Atomically extract and hold the physical page
1367 *		with the given pmap and virtual address pair
1368 *		if that mapping permits the given protection.
1369 */
1370vm_page_t
1371pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1372{
1373	pd_entry_t pde;
1374	pt_entry_t pte, *ptep;
1375	vm_page_t m;
1376	vm_paddr_t pa;
1377
1378	pa = 0;
1379	m = NULL;
1380	PMAP_LOCK(pmap);
1381retry:
1382	pde = *pmap_pde(pmap, va);
1383	if (pde != 0) {
1384		if (pde & PG_PS) {
1385			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1386				if (vm_page_pa_tryrelock(pmap, (pde &
1387				    PG_PS_FRAME) | (va & PDRMASK), &pa))
1388					goto retry;
1389				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1390				    (va & PDRMASK));
1391				vm_page_hold(m);
1392			}
1393		} else {
1394			ptep = pmap_pte(pmap, va);
1395			pte = *ptep;
1396			pmap_pte_release(ptep);
1397			if (pte != 0 &&
1398			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1399				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
1400				    &pa))
1401					goto retry;
1402				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1403				vm_page_hold(m);
1404			}
1405		}
1406	}
1407	PA_UNLOCK_COND(pa);
1408	PMAP_UNLOCK(pmap);
1409	return (m);
1410}
1411
1412/***************************************************
1413 * Low level mapping routines.....
1414 ***************************************************/
1415
1416/*
1417 * Add a wired page to the kva.
1418 * Note: not SMP coherent.
1419 *
1420 * This function may be used before pmap_bootstrap() is called.
1421 */
1422PMAP_INLINE void
1423pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1424{
1425	pt_entry_t *pte;
1426
1427	pte = vtopte(va);
1428	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1429}
1430
1431static __inline void
1432pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1433{
1434	pt_entry_t *pte;
1435
1436	pte = vtopte(va);
1437	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1438}
1439
1440/*
1441 * Remove a page from the kernel pagetables.
1442 * Note: not SMP coherent.
1443 *
1444 * This function may be used before pmap_bootstrap() is called.
1445 */
1446PMAP_INLINE void
1447pmap_kremove(vm_offset_t va)
1448{
1449	pt_entry_t *pte;
1450
1451	pte = vtopte(va);
1452	pte_clear(pte);
1453}
1454
1455/*
1456 *	Used to map a range of physical addresses into kernel
1457 *	virtual address space.
1458 *
1459 *	The value passed in '*virt' is a suggested virtual address for
1460 *	the mapping. Architectures which can support a direct-mapped
1461 *	physical to virtual region can return the appropriate address
1462 *	within that region, leaving '*virt' unchanged. Other
1463 *	architectures should map the pages starting at '*virt' and
1464 *	update '*virt' with the first usable address after the mapped
1465 *	region.
1466 */
1467vm_offset_t
1468pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1469{
1470	vm_offset_t va, sva;
1471	vm_paddr_t superpage_offset;
1472	pd_entry_t newpde;
1473
1474	va = *virt;
1475	/*
1476	 * Does the physical address range's size and alignment permit at
1477	 * least one superpage mapping to be created?
1478	 */
1479	superpage_offset = start & PDRMASK;
1480	if ((end - start) - ((NBPDR - superpage_offset) & PDRMASK) >= NBPDR) {
1481		/*
1482		 * Increase the starting virtual address so that its alignment
1483		 * does not preclude the use of superpage mappings.
1484		 */
1485		if ((va & PDRMASK) < superpage_offset)
1486			va = (va & ~PDRMASK) + superpage_offset;
1487		else if ((va & PDRMASK) > superpage_offset)
1488			va = ((va + PDRMASK) & ~PDRMASK) + superpage_offset;
1489	}
1490	sva = va;
1491	while (start < end) {
1492		if ((start & PDRMASK) == 0 && end - start >= NBPDR &&
1493		    pseflag) {
1494			KASSERT((va & PDRMASK) == 0,
1495			    ("pmap_map: misaligned va %#x", va));
1496			newpde = start | PG_PS | pgeflag | PG_RW | PG_V;
1497			pmap_kenter_pde(va, newpde);
1498			va += NBPDR;
1499			start += NBPDR;
1500		} else {
1501			pmap_kenter(va, start);
1502			va += PAGE_SIZE;
1503			start += PAGE_SIZE;
1504		}
1505	}
1506	pmap_invalidate_range(kernel_pmap, sva, va);
1507	*virt = va;
1508	return (sva);
1509}
1510
1511
1512/*
1513 * Add a list of wired pages to the kva
1514 * this routine is only used for temporary
1515 * kernel mappings that do not need to have
1516 * page modification or references recorded.
1517 * Note that old mappings are simply written
1518 * over.  The page *must* be wired.
1519 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1520 */
1521void
1522pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1523{
1524	pt_entry_t *endpte, oldpte, pa, *pte;
1525	vm_page_t m;
1526
1527	oldpte = 0;
1528	pte = vtopte(sva);
1529	endpte = pte + count;
1530	while (pte < endpte) {
1531		m = *ma++;
1532		pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
1533		if ((*pte & (PG_FRAME | PG_PTE_CACHE)) != pa) {
1534			oldpte |= *pte;
1535			pte_store(pte, pa | pgeflag | PG_RW | PG_V);
1536		}
1537		pte++;
1538	}
1539	if (__predict_false((oldpte & PG_V) != 0))
1540		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1541		    PAGE_SIZE);
1542}
1543
1544/*
1545 * This routine tears out page mappings from the
1546 * kernel -- it is meant only for temporary mappings.
1547 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1548 */
1549void
1550pmap_qremove(vm_offset_t sva, int count)
1551{
1552	vm_offset_t va;
1553
1554	va = sva;
1555	while (count-- > 0) {
1556		pmap_kremove(va);
1557		va += PAGE_SIZE;
1558	}
1559	pmap_invalidate_range(kernel_pmap, sva, va);
1560}
1561
1562/***************************************************
1563 * Page table page management routines.....
1564 ***************************************************/
1565static __inline void
1566pmap_free_zero_pages(vm_page_t free)
1567{
1568	vm_page_t m;
1569
1570	while (free != NULL) {
1571		m = free;
1572		free = m->right;
1573		/* Preserve the page's PG_ZERO setting. */
1574		vm_page_free_toq(m);
1575	}
1576}
1577
1578/*
1579 * Schedule the specified unused page table page to be freed.  Specifically,
1580 * add the page to the specified list of pages that will be released to the
1581 * physical memory manager after the TLB has been updated.
1582 */
1583static __inline void
1584pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1585{
1586
1587	if (set_PG_ZERO)
1588		m->flags |= PG_ZERO;
1589	else
1590		m->flags &= ~PG_ZERO;
1591	m->right = *free;
1592	*free = m;
1593}
1594
1595/*
1596 * Inserts the specified page table page into the specified pmap's collection
1597 * of idle page table pages.  Each of a pmap's page table pages is responsible
1598 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1599 * ordered by this virtual address range.
1600 */
1601static void
1602pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1603{
1604	vm_page_t root;
1605
1606	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1607	root = pmap->pm_root;
1608	if (root == NULL) {
1609		mpte->left = NULL;
1610		mpte->right = NULL;
1611	} else {
1612		root = vm_page_splay(mpte->pindex, root);
1613		if (mpte->pindex < root->pindex) {
1614			mpte->left = root->left;
1615			mpte->right = root;
1616			root->left = NULL;
1617		} else if (mpte->pindex == root->pindex)
1618			panic("pmap_insert_pt_page: pindex already inserted");
1619		else {
1620			mpte->right = root->right;
1621			mpte->left = root;
1622			root->right = NULL;
1623		}
1624	}
1625	pmap->pm_root = mpte;
1626}
1627
1628/*
1629 * Looks for a page table page mapping the specified virtual address in the
1630 * specified pmap's collection of idle page table pages.  Returns NULL if there
1631 * is no page table page corresponding to the specified virtual address.
1632 */
1633static vm_page_t
1634pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1635{
1636	vm_page_t mpte;
1637	vm_pindex_t pindex = va >> PDRSHIFT;
1638
1639	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1640	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1641		mpte = vm_page_splay(pindex, mpte);
1642		if ((pmap->pm_root = mpte)->pindex != pindex)
1643			mpte = NULL;
1644	}
1645	return (mpte);
1646}
1647
1648/*
1649 * Removes the specified page table page from the specified pmap's collection
1650 * of idle page table pages.  The specified page table page must be a member of
1651 * the pmap's collection.
1652 */
1653static void
1654pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1655{
1656	vm_page_t root;
1657
1658	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1659	if (mpte != pmap->pm_root)
1660		vm_page_splay(mpte->pindex, pmap->pm_root);
1661	if (mpte->left == NULL)
1662		root = mpte->right;
1663	else {
1664		root = vm_page_splay(mpte->pindex, mpte->left);
1665		root->right = mpte->right;
1666	}
1667	pmap->pm_root = root;
1668}
1669
1670/*
1671 * Decrements a page table page's wire count, which is used to record the
1672 * number of valid page table entries within the page.  If the wire count
1673 * drops to zero, then the page table page is unmapped.  Returns TRUE if the
1674 * page table page was unmapped and FALSE otherwise.
1675 */
1676static inline boolean_t
1677pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1678{
1679
1680	--m->wire_count;
1681	if (m->wire_count == 0) {
1682		_pmap_unwire_ptp(pmap, m, free);
1683		return (TRUE);
1684	} else
1685		return (FALSE);
1686}
1687
1688static void
1689_pmap_unwire_ptp(pmap_t pmap, vm_page_t m, vm_page_t *free)
1690{
1691	vm_offset_t pteva;
1692
1693	/*
1694	 * unmap the page table page
1695	 */
1696	pmap->pm_pdir[m->pindex] = 0;
1697	--pmap->pm_stats.resident_count;
1698
1699	/*
1700	 * This is a release store so that the ordinary store unmapping
1701	 * the page table page is globally performed before TLB shoot-
1702	 * down is begun.
1703	 */
1704	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1705
1706	/*
1707	 * Do an invltlb to make the invalidated mapping
1708	 * take effect immediately.
1709	 */
1710	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1711	pmap_invalidate_page(pmap, pteva);
1712
1713	/*
1714	 * Put page on a list so that it is released after
1715	 * *ALL* TLB shootdown is done
1716	 */
1717	pmap_add_delayed_free_list(m, free, TRUE);
1718}
1719
1720/*
1721 * After removing a page table entry, this routine is used to
1722 * conditionally free the page, and manage the hold/wire counts.
1723 */
1724static int
1725pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1726{
1727	pd_entry_t ptepde;
1728	vm_page_t mpte;
1729
1730	if (va >= VM_MAXUSER_ADDRESS)
1731		return (0);
1732	ptepde = *pmap_pde(pmap, va);
1733	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1734	return (pmap_unwire_ptp(pmap, mpte, free));
1735}
1736
1737/*
1738 * Initialize the pmap for the swapper process.
1739 */
1740void
1741pmap_pinit0(pmap_t pmap)
1742{
1743
1744	PMAP_LOCK_INIT(pmap);
1745	/*
1746	 * Since the page table directory is shared with the kernel pmap,
1747	 * which is already included in the list "allpmaps", this pmap does
1748	 * not need to be inserted into that list.
1749	 */
1750	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1751#ifdef PAE
1752	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1753#endif
1754	pmap->pm_root = NULL;
1755	CPU_ZERO(&pmap->pm_active);
1756	PCPU_SET(curpmap, pmap);
1757	TAILQ_INIT(&pmap->pm_pvchunk);
1758	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1759}
1760
1761/*
1762 * Initialize a preallocated and zeroed pmap structure,
1763 * such as one in a vmspace structure.
1764 */
1765int
1766pmap_pinit(pmap_t pmap)
1767{
1768	vm_page_t m, ptdpg[NPGPTD];
1769	vm_paddr_t pa;
1770	int i;
1771
1772	PMAP_LOCK_INIT(pmap);
1773
1774	/*
1775	 * No need to allocate page table space yet but we do need a valid
1776	 * page directory table.
1777	 */
1778	if (pmap->pm_pdir == NULL) {
1779		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1780		    NBPTD);
1781		if (pmap->pm_pdir == NULL) {
1782			PMAP_LOCK_DESTROY(pmap);
1783			return (0);
1784		}
1785#ifdef PAE
1786		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1787		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1788		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1789		    ("pmap_pinit: pdpt misaligned"));
1790		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1791		    ("pmap_pinit: pdpt above 4g"));
1792#endif
1793		pmap->pm_root = NULL;
1794	}
1795	KASSERT(pmap->pm_root == NULL,
1796	    ("pmap_pinit: pmap has reserved page table page(s)"));
1797
1798	/*
1799	 * allocate the page directory page(s)
1800	 */
1801	for (i = 0; i < NPGPTD;) {
1802		m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
1803		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1804		if (m == NULL)
1805			VM_WAIT;
1806		else {
1807			ptdpg[i++] = m;
1808		}
1809	}
1810
1811	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1812
1813	for (i = 0; i < NPGPTD; i++)
1814		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1815			pagezero(pmap->pm_pdir + (i * NPDEPG));
1816
1817	mtx_lock_spin(&allpmaps_lock);
1818	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1819	/* Copy the kernel page table directory entries. */
1820	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1821	mtx_unlock_spin(&allpmaps_lock);
1822
1823	/* install self-referential address mapping entry(s) */
1824	for (i = 0; i < NPGPTD; i++) {
1825		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1826		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1827#ifdef PAE
1828		pmap->pm_pdpt[i] = pa | PG_V;
1829#endif
1830	}
1831
1832	CPU_ZERO(&pmap->pm_active);
1833	TAILQ_INIT(&pmap->pm_pvchunk);
1834	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1835
1836	return (1);
1837}
1838
1839/*
1840 * this routine is called if the page table page is not
1841 * mapped correctly.
1842 */
1843static vm_page_t
1844_pmap_allocpte(pmap_t pmap, u_int ptepindex, int flags)
1845{
1846	vm_paddr_t ptepa;
1847	vm_page_t m;
1848
1849	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1850	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1851	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1852
1853	/*
1854	 * Allocate a page table page.
1855	 */
1856	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1857	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1858		if (flags & M_WAITOK) {
1859			PMAP_UNLOCK(pmap);
1860			rw_wunlock(&pvh_global_lock);
1861			VM_WAIT;
1862			rw_wlock(&pvh_global_lock);
1863			PMAP_LOCK(pmap);
1864		}
1865
1866		/*
1867		 * Indicate the need to retry.  While waiting, the page table
1868		 * page may have been allocated.
1869		 */
1870		return (NULL);
1871	}
1872	if ((m->flags & PG_ZERO) == 0)
1873		pmap_zero_page(m);
1874
1875	/*
1876	 * Map the pagetable page into the process address space, if
1877	 * it isn't already there.
1878	 */
1879
1880	pmap->pm_stats.resident_count++;
1881
1882	ptepa = VM_PAGE_TO_PHYS(m);
1883	pmap->pm_pdir[ptepindex] =
1884		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1885
1886	return (m);
1887}
1888
1889static vm_page_t
1890pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1891{
1892	u_int ptepindex;
1893	pd_entry_t ptepa;
1894	vm_page_t m;
1895
1896	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1897	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1898	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1899
1900	/*
1901	 * Calculate pagetable page index
1902	 */
1903	ptepindex = va >> PDRSHIFT;
1904retry:
1905	/*
1906	 * Get the page directory entry
1907	 */
1908	ptepa = pmap->pm_pdir[ptepindex];
1909
1910	/*
1911	 * This supports switching from a 4MB page to a
1912	 * normal 4K page.
1913	 */
1914	if (ptepa & PG_PS) {
1915		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1916		ptepa = pmap->pm_pdir[ptepindex];
1917	}
1918
1919	/*
1920	 * If the page table page is mapped, we just increment the
1921	 * hold count, and activate it.
1922	 */
1923	if (ptepa) {
1924		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1925		m->wire_count++;
1926	} else {
1927		/*
1928		 * Here if the pte page isn't mapped, or if it has
1929		 * been deallocated.
1930		 */
1931		m = _pmap_allocpte(pmap, ptepindex, flags);
1932		if (m == NULL && (flags & M_WAITOK))
1933			goto retry;
1934	}
1935	return (m);
1936}
1937
1938
1939/***************************************************
1940* Pmap allocation/deallocation routines.
1941 ***************************************************/
1942
1943#ifdef SMP
1944/*
1945 * Deal with a SMP shootdown of other users of the pmap that we are
1946 * trying to dispose of.  This can be a bit hairy.
1947 */
1948static cpuset_t *lazymask;
1949static u_int lazyptd;
1950static volatile u_int lazywait;
1951
1952void pmap_lazyfix_action(void);
1953
1954void
1955pmap_lazyfix_action(void)
1956{
1957
1958#ifdef COUNT_IPIS
1959	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1960#endif
1961	if (rcr3() == lazyptd)
1962		load_cr3(curpcb->pcb_cr3);
1963	CPU_CLR_ATOMIC(PCPU_GET(cpuid), lazymask);
1964	atomic_store_rel_int(&lazywait, 1);
1965}
1966
1967static void
1968pmap_lazyfix_self(u_int cpuid)
1969{
1970
1971	if (rcr3() == lazyptd)
1972		load_cr3(curpcb->pcb_cr3);
1973	CPU_CLR_ATOMIC(cpuid, lazymask);
1974}
1975
1976
1977static void
1978pmap_lazyfix(pmap_t pmap)
1979{
1980	cpuset_t mymask, mask;
1981	u_int cpuid, spins;
1982	int lsb;
1983
1984	mask = pmap->pm_active;
1985	while (!CPU_EMPTY(&mask)) {
1986		spins = 50000000;
1987
1988		/* Find least significant set bit. */
1989		lsb = cpusetobj_ffs(&mask);
1990		MPASS(lsb != 0);
1991		lsb--;
1992		CPU_SETOF(lsb, &mask);
1993		mtx_lock_spin(&smp_ipi_mtx);
1994#ifdef PAE
1995		lazyptd = vtophys(pmap->pm_pdpt);
1996#else
1997		lazyptd = vtophys(pmap->pm_pdir);
1998#endif
1999		cpuid = PCPU_GET(cpuid);
2000
2001		/* Use a cpuset just for having an easy check. */
2002		CPU_SETOF(cpuid, &mymask);
2003		if (!CPU_CMP(&mask, &mymask)) {
2004			lazymask = &pmap->pm_active;
2005			pmap_lazyfix_self(cpuid);
2006		} else {
2007			atomic_store_rel_int((u_int *)&lazymask,
2008			    (u_int)&pmap->pm_active);
2009			atomic_store_rel_int(&lazywait, 0);
2010			ipi_selected(mask, IPI_LAZYPMAP);
2011			while (lazywait == 0) {
2012				ia32_pause();
2013				if (--spins == 0)
2014					break;
2015			}
2016		}
2017		mtx_unlock_spin(&smp_ipi_mtx);
2018		if (spins == 0)
2019			printf("pmap_lazyfix: spun for 50000000\n");
2020		mask = pmap->pm_active;
2021	}
2022}
2023
2024#else	/* SMP */
2025
2026/*
2027 * Cleaning up on uniprocessor is easy.  For various reasons, we're
2028 * unlikely to have to even execute this code, including the fact
2029 * that the cleanup is deferred until the parent does a wait(2), which
2030 * means that another userland process has run.
2031 */
2032static void
2033pmap_lazyfix(pmap_t pmap)
2034{
2035	u_int cr3;
2036
2037	cr3 = vtophys(pmap->pm_pdir);
2038	if (cr3 == rcr3()) {
2039		load_cr3(curpcb->pcb_cr3);
2040		CPU_CLR(PCPU_GET(cpuid), &pmap->pm_active);
2041	}
2042}
2043#endif	/* SMP */
2044
2045/*
2046 * Release any resources held by the given physical map.
2047 * Called when a pmap initialized by pmap_pinit is being released.
2048 * Should only be called if the map contains no valid mappings.
2049 */
2050void
2051pmap_release(pmap_t pmap)
2052{
2053	vm_page_t m, ptdpg[NPGPTD];
2054	int i;
2055
2056	KASSERT(pmap->pm_stats.resident_count == 0,
2057	    ("pmap_release: pmap resident count %ld != 0",
2058	    pmap->pm_stats.resident_count));
2059	KASSERT(pmap->pm_root == NULL,
2060	    ("pmap_release: pmap has reserved page table page(s)"));
2061
2062	pmap_lazyfix(pmap);
2063	mtx_lock_spin(&allpmaps_lock);
2064	LIST_REMOVE(pmap, pm_list);
2065	mtx_unlock_spin(&allpmaps_lock);
2066
2067	for (i = 0; i < NPGPTD; i++)
2068		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
2069		    PG_FRAME);
2070
2071	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
2072	    sizeof(*pmap->pm_pdir));
2073
2074	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2075
2076	for (i = 0; i < NPGPTD; i++) {
2077		m = ptdpg[i];
2078#ifdef PAE
2079		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2080		    ("pmap_release: got wrong ptd page"));
2081#endif
2082		m->wire_count--;
2083		atomic_subtract_int(&cnt.v_wire_count, 1);
2084		vm_page_free_zero(m);
2085	}
2086	PMAP_LOCK_DESTROY(pmap);
2087}
2088
2089static int
2090kvm_size(SYSCTL_HANDLER_ARGS)
2091{
2092	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2093
2094	return (sysctl_handle_long(oidp, &ksize, 0, req));
2095}
2096SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2097    0, 0, kvm_size, "IU", "Size of KVM");
2098
2099static int
2100kvm_free(SYSCTL_HANDLER_ARGS)
2101{
2102	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2103
2104	return (sysctl_handle_long(oidp, &kfree, 0, req));
2105}
2106SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2107    0, 0, kvm_free, "IU", "Amount of KVM free");
2108
2109/*
2110 * grow the number of kernel page table entries, if needed
2111 */
2112void
2113pmap_growkernel(vm_offset_t addr)
2114{
2115	vm_paddr_t ptppaddr;
2116	vm_page_t nkpg;
2117	pd_entry_t newpdir;
2118
2119	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2120	addr = roundup2(addr, NBPDR);
2121	if (addr - 1 >= kernel_map->max_offset)
2122		addr = kernel_map->max_offset;
2123	while (kernel_vm_end < addr) {
2124		if (pdir_pde(PTD, kernel_vm_end)) {
2125			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2126			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2127				kernel_vm_end = kernel_map->max_offset;
2128				break;
2129			}
2130			continue;
2131		}
2132
2133		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2134		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2135		    VM_ALLOC_ZERO);
2136		if (nkpg == NULL)
2137			panic("pmap_growkernel: no memory to grow kernel");
2138
2139		nkpt++;
2140
2141		if ((nkpg->flags & PG_ZERO) == 0)
2142			pmap_zero_page(nkpg);
2143		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2144		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2145		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2146
2147		pmap_kenter_pde(kernel_vm_end, newpdir);
2148		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2149		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2150			kernel_vm_end = kernel_map->max_offset;
2151			break;
2152		}
2153	}
2154}
2155
2156
2157/***************************************************
2158 * page management routines.
2159 ***************************************************/
2160
2161CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2162CTASSERT(_NPCM == 11);
2163CTASSERT(_NPCPV == 336);
2164
2165static __inline struct pv_chunk *
2166pv_to_chunk(pv_entry_t pv)
2167{
2168
2169	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2170}
2171
2172#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2173
2174#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2175#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2176
2177static const uint32_t pc_freemask[_NPCM] = {
2178	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2179	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2180	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2181	PC_FREE0_9, PC_FREE10
2182};
2183
2184SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2185	"Current number of pv entries");
2186
2187#ifdef PV_STATS
2188static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2189
2190SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2191	"Current number of pv entry chunks");
2192SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2193	"Current number of pv entry chunks allocated");
2194SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2195	"Current number of pv entry chunks frees");
2196SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2197	"Number of times tried to get a chunk page but failed.");
2198
2199static long pv_entry_frees, pv_entry_allocs;
2200static int pv_entry_spare;
2201
2202SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2203	"Current number of pv entry frees");
2204SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2205	"Current number of pv entry allocs");
2206SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2207	"Current number of spare pv entries");
2208#endif
2209
2210/*
2211 * We are in a serious low memory condition.  Resort to
2212 * drastic measures to free some pages so we can allocate
2213 * another pv entry chunk.
2214 */
2215static vm_page_t
2216pmap_pv_reclaim(pmap_t locked_pmap)
2217{
2218	struct pch newtail;
2219	struct pv_chunk *pc;
2220	struct md_page *pvh;
2221	pd_entry_t *pde;
2222	pmap_t pmap;
2223	pt_entry_t *pte, tpte;
2224	pv_entry_t pv;
2225	vm_offset_t va;
2226	vm_page_t free, m, m_pc;
2227	uint32_t inuse;
2228	int bit, field, freed;
2229
2230	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2231	pmap = NULL;
2232	free = m_pc = NULL;
2233	TAILQ_INIT(&newtail);
2234	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2235	    free == NULL)) {
2236		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2237		if (pmap != pc->pc_pmap) {
2238			if (pmap != NULL) {
2239				pmap_invalidate_all(pmap);
2240				if (pmap != locked_pmap)
2241					PMAP_UNLOCK(pmap);
2242			}
2243			pmap = pc->pc_pmap;
2244			/* Avoid deadlock and lock recursion. */
2245			if (pmap > locked_pmap)
2246				PMAP_LOCK(pmap);
2247			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2248				pmap = NULL;
2249				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2250				continue;
2251			}
2252		}
2253
2254		/*
2255		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2256		 */
2257		freed = 0;
2258		for (field = 0; field < _NPCM; field++) {
2259			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2260			    inuse != 0; inuse &= ~(1UL << bit)) {
2261				bit = bsfl(inuse);
2262				pv = &pc->pc_pventry[field * 32 + bit];
2263				va = pv->pv_va;
2264				pde = pmap_pde(pmap, va);
2265				if ((*pde & PG_PS) != 0)
2266					continue;
2267				pte = pmap_pte(pmap, va);
2268				tpte = *pte;
2269				if ((tpte & PG_W) == 0)
2270					tpte = pte_load_clear(pte);
2271				pmap_pte_release(pte);
2272				if ((tpte & PG_W) != 0)
2273					continue;
2274				KASSERT(tpte != 0,
2275				    ("pmap_pv_reclaim: pmap %p va %x zero pte",
2276				    pmap, va));
2277				if ((tpte & PG_G) != 0)
2278					pmap_invalidate_page(pmap, va);
2279				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
2280				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2281					vm_page_dirty(m);
2282				if ((tpte & PG_A) != 0)
2283					vm_page_aflag_set(m, PGA_REFERENCED);
2284				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2285				if (TAILQ_EMPTY(&m->md.pv_list) &&
2286				    (m->flags & PG_FICTITIOUS) == 0) {
2287					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2288					if (TAILQ_EMPTY(&pvh->pv_list)) {
2289						vm_page_aflag_clear(m,
2290						    PGA_WRITEABLE);
2291					}
2292				}
2293				pc->pc_map[field] |= 1UL << bit;
2294				pmap_unuse_pt(pmap, va, &free);
2295				freed++;
2296			}
2297		}
2298		if (freed == 0) {
2299			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2300			continue;
2301		}
2302		/* Every freed mapping is for a 4 KB page. */
2303		pmap->pm_stats.resident_count -= freed;
2304		PV_STAT(pv_entry_frees += freed);
2305		PV_STAT(pv_entry_spare += freed);
2306		pv_entry_count -= freed;
2307		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2308		for (field = 0; field < _NPCM; field++)
2309			if (pc->pc_map[field] != pc_freemask[field]) {
2310				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2311				    pc_list);
2312				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2313
2314				/*
2315				 * One freed pv entry in locked_pmap is
2316				 * sufficient.
2317				 */
2318				if (pmap == locked_pmap)
2319					goto out;
2320				break;
2321			}
2322		if (field == _NPCM) {
2323			PV_STAT(pv_entry_spare -= _NPCPV);
2324			PV_STAT(pc_chunk_count--);
2325			PV_STAT(pc_chunk_frees++);
2326			/* Entire chunk is free; return it. */
2327			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2328			pmap_qremove((vm_offset_t)pc, 1);
2329			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2330			break;
2331		}
2332	}
2333out:
2334	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2335	if (pmap != NULL) {
2336		pmap_invalidate_all(pmap);
2337		if (pmap != locked_pmap)
2338			PMAP_UNLOCK(pmap);
2339	}
2340	if (m_pc == NULL && pv_vafree != 0 && free != NULL) {
2341		m_pc = free;
2342		free = m_pc->right;
2343		/* Recycle a freed page table page. */
2344		m_pc->wire_count = 1;
2345		atomic_add_int(&cnt.v_wire_count, 1);
2346	}
2347	pmap_free_zero_pages(free);
2348	return (m_pc);
2349}
2350
2351/*
2352 * free the pv_entry back to the free list
2353 */
2354static void
2355free_pv_entry(pmap_t pmap, pv_entry_t pv)
2356{
2357	struct pv_chunk *pc;
2358	int idx, field, bit;
2359
2360	rw_assert(&pvh_global_lock, RA_WLOCKED);
2361	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2362	PV_STAT(pv_entry_frees++);
2363	PV_STAT(pv_entry_spare++);
2364	pv_entry_count--;
2365	pc = pv_to_chunk(pv);
2366	idx = pv - &pc->pc_pventry[0];
2367	field = idx / 32;
2368	bit = idx % 32;
2369	pc->pc_map[field] |= 1ul << bit;
2370	for (idx = 0; idx < _NPCM; idx++)
2371		if (pc->pc_map[idx] != pc_freemask[idx]) {
2372			/*
2373			 * 98% of the time, pc is already at the head of the
2374			 * list.  If it isn't already, move it to the head.
2375			 */
2376			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2377			    pc)) {
2378				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2379				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2380				    pc_list);
2381			}
2382			return;
2383		}
2384	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2385	free_pv_chunk(pc);
2386}
2387
2388static void
2389free_pv_chunk(struct pv_chunk *pc)
2390{
2391	vm_page_t m;
2392
2393 	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2394	PV_STAT(pv_entry_spare -= _NPCPV);
2395	PV_STAT(pc_chunk_count--);
2396	PV_STAT(pc_chunk_frees++);
2397	/* entire chunk is free, return it */
2398	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2399	pmap_qremove((vm_offset_t)pc, 1);
2400	vm_page_unwire(m, 0);
2401	vm_page_free(m);
2402	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2403}
2404
2405/*
2406 * get a new pv_entry, allocating a block from the system
2407 * when needed.
2408 */
2409static pv_entry_t
2410get_pv_entry(pmap_t pmap, boolean_t try)
2411{
2412	static const struct timeval printinterval = { 60, 0 };
2413	static struct timeval lastprint;
2414	int bit, field;
2415	pv_entry_t pv;
2416	struct pv_chunk *pc;
2417	vm_page_t m;
2418
2419	rw_assert(&pvh_global_lock, RA_WLOCKED);
2420	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2421	PV_STAT(pv_entry_allocs++);
2422	pv_entry_count++;
2423	if (pv_entry_count > pv_entry_high_water)
2424		if (ratecheck(&lastprint, &printinterval))
2425			printf("Approaching the limit on PV entries, consider "
2426			    "increasing either the vm.pmap.shpgperproc or the "
2427			    "vm.pmap.pv_entry_max tunable.\n");
2428retry:
2429	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2430	if (pc != NULL) {
2431		for (field = 0; field < _NPCM; field++) {
2432			if (pc->pc_map[field]) {
2433				bit = bsfl(pc->pc_map[field]);
2434				break;
2435			}
2436		}
2437		if (field < _NPCM) {
2438			pv = &pc->pc_pventry[field * 32 + bit];
2439			pc->pc_map[field] &= ~(1ul << bit);
2440			/* If this was the last item, move it to tail */
2441			for (field = 0; field < _NPCM; field++)
2442				if (pc->pc_map[field] != 0) {
2443					PV_STAT(pv_entry_spare--);
2444					return (pv);	/* not full, return */
2445				}
2446			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2447			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2448			PV_STAT(pv_entry_spare--);
2449			return (pv);
2450		}
2451	}
2452	/*
2453	 * Access to the ptelist "pv_vafree" is synchronized by the pvh
2454	 * global lock.  If "pv_vafree" is currently non-empty, it will
2455	 * remain non-empty until pmap_ptelist_alloc() completes.
2456	 */
2457	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2458	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2459		if (try) {
2460			pv_entry_count--;
2461			PV_STAT(pc_chunk_tryfail++);
2462			return (NULL);
2463		}
2464		m = pmap_pv_reclaim(pmap);
2465		if (m == NULL)
2466			goto retry;
2467	}
2468	PV_STAT(pc_chunk_count++);
2469	PV_STAT(pc_chunk_allocs++);
2470	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2471	pmap_qenter((vm_offset_t)pc, &m, 1);
2472	pc->pc_pmap = pmap;
2473	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2474	for (field = 1; field < _NPCM; field++)
2475		pc->pc_map[field] = pc_freemask[field];
2476	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
2477	pv = &pc->pc_pventry[0];
2478	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2479	PV_STAT(pv_entry_spare += _NPCPV - 1);
2480	return (pv);
2481}
2482
2483static __inline pv_entry_t
2484pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2485{
2486	pv_entry_t pv;
2487
2488	rw_assert(&pvh_global_lock, RA_WLOCKED);
2489	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2490		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2491			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2492			break;
2493		}
2494	}
2495	return (pv);
2496}
2497
2498static void
2499pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2500{
2501	struct md_page *pvh;
2502	pv_entry_t pv;
2503	vm_offset_t va_last;
2504	vm_page_t m;
2505
2506	rw_assert(&pvh_global_lock, RA_WLOCKED);
2507	KASSERT((pa & PDRMASK) == 0,
2508	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2509
2510	/*
2511	 * Transfer the 4mpage's pv entry for this mapping to the first
2512	 * page's pv list.
2513	 */
2514	pvh = pa_to_pvh(pa);
2515	va = trunc_4mpage(va);
2516	pv = pmap_pvh_remove(pvh, pmap, va);
2517	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2518	m = PHYS_TO_VM_PAGE(pa);
2519	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2520	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2521	va_last = va + NBPDR - PAGE_SIZE;
2522	do {
2523		m++;
2524		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2525		    ("pmap_pv_demote_pde: page %p is not managed", m));
2526		va += PAGE_SIZE;
2527		pmap_insert_entry(pmap, va, m);
2528	} while (va < va_last);
2529}
2530
2531static void
2532pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2533{
2534	struct md_page *pvh;
2535	pv_entry_t pv;
2536	vm_offset_t va_last;
2537	vm_page_t m;
2538
2539	rw_assert(&pvh_global_lock, RA_WLOCKED);
2540	KASSERT((pa & PDRMASK) == 0,
2541	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2542
2543	/*
2544	 * Transfer the first page's pv entry for this mapping to the
2545	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2546	 * to get_pv_entry(), a transfer avoids the possibility that
2547	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2548	 * removes one of the mappings that is being promoted.
2549	 */
2550	m = PHYS_TO_VM_PAGE(pa);
2551	va = trunc_4mpage(va);
2552	pv = pmap_pvh_remove(&m->md, pmap, va);
2553	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2554	pvh = pa_to_pvh(pa);
2555	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2556	/* Free the remaining NPTEPG - 1 pv entries. */
2557	va_last = va + NBPDR - PAGE_SIZE;
2558	do {
2559		m++;
2560		va += PAGE_SIZE;
2561		pmap_pvh_free(&m->md, pmap, va);
2562	} while (va < va_last);
2563}
2564
2565static void
2566pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2567{
2568	pv_entry_t pv;
2569
2570	pv = pmap_pvh_remove(pvh, pmap, va);
2571	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2572	free_pv_entry(pmap, pv);
2573}
2574
2575static void
2576pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2577{
2578	struct md_page *pvh;
2579
2580	rw_assert(&pvh_global_lock, RA_WLOCKED);
2581	pmap_pvh_free(&m->md, pmap, va);
2582	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
2583		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2584		if (TAILQ_EMPTY(&pvh->pv_list))
2585			vm_page_aflag_clear(m, PGA_WRITEABLE);
2586	}
2587}
2588
2589/*
2590 * Create a pv entry for page at pa for
2591 * (pmap, va).
2592 */
2593static void
2594pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2595{
2596	pv_entry_t pv;
2597
2598	rw_assert(&pvh_global_lock, RA_WLOCKED);
2599	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2600	pv = get_pv_entry(pmap, FALSE);
2601	pv->pv_va = va;
2602	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2603}
2604
2605/*
2606 * Conditionally create a pv entry.
2607 */
2608static boolean_t
2609pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2610{
2611	pv_entry_t pv;
2612
2613	rw_assert(&pvh_global_lock, RA_WLOCKED);
2614	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2615	if (pv_entry_count < pv_entry_high_water &&
2616	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2617		pv->pv_va = va;
2618		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2619		return (TRUE);
2620	} else
2621		return (FALSE);
2622}
2623
2624/*
2625 * Create the pv entries for each of the pages within a superpage.
2626 */
2627static boolean_t
2628pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2629{
2630	struct md_page *pvh;
2631	pv_entry_t pv;
2632
2633	rw_assert(&pvh_global_lock, RA_WLOCKED);
2634	if (pv_entry_count < pv_entry_high_water &&
2635	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2636		pv->pv_va = va;
2637		pvh = pa_to_pvh(pa);
2638		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2639		return (TRUE);
2640	} else
2641		return (FALSE);
2642}
2643
2644/*
2645 * Fills a page table page with mappings to consecutive physical pages.
2646 */
2647static void
2648pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2649{
2650	pt_entry_t *pte;
2651
2652	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2653		*pte = newpte;
2654		newpte += PAGE_SIZE;
2655	}
2656}
2657
2658/*
2659 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2660 * 2- or 4MB page mapping is invalidated.
2661 */
2662static boolean_t
2663pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2664{
2665	pd_entry_t newpde, oldpde;
2666	pt_entry_t *firstpte, newpte;
2667	vm_paddr_t mptepa;
2668	vm_page_t free, mpte;
2669
2670	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2671	oldpde = *pde;
2672	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2673	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2674	mpte = pmap_lookup_pt_page(pmap, va);
2675	if (mpte != NULL)
2676		pmap_remove_pt_page(pmap, mpte);
2677	else {
2678		KASSERT((oldpde & PG_W) == 0,
2679		    ("pmap_demote_pde: page table page for a wired mapping"
2680		    " is missing"));
2681
2682		/*
2683		 * Invalidate the 2- or 4MB page mapping and return
2684		 * "failure" if the mapping was never accessed or the
2685		 * allocation of the new page table page fails.
2686		 */
2687		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2688		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2689		    VM_ALLOC_WIRED)) == NULL) {
2690			free = NULL;
2691			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2692			pmap_invalidate_page(pmap, trunc_4mpage(va));
2693			pmap_free_zero_pages(free);
2694			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2695			    " in pmap %p", va, pmap);
2696			return (FALSE);
2697		}
2698		if (va < VM_MAXUSER_ADDRESS)
2699			pmap->pm_stats.resident_count++;
2700	}
2701	mptepa = VM_PAGE_TO_PHYS(mpte);
2702
2703	/*
2704	 * If the page mapping is in the kernel's address space, then the
2705	 * KPTmap can provide access to the page table page.  Otherwise,
2706	 * temporarily map the page table page (mpte) into the kernel's
2707	 * address space at either PADDR1 or PADDR2.
2708	 */
2709	if (va >= KERNBASE)
2710		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2711	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
2712		if ((*PMAP1 & PG_FRAME) != mptepa) {
2713			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2714#ifdef SMP
2715			PMAP1cpu = PCPU_GET(cpuid);
2716#endif
2717			invlcaddr(PADDR1);
2718			PMAP1changed++;
2719		} else
2720#ifdef SMP
2721		if (PMAP1cpu != PCPU_GET(cpuid)) {
2722			PMAP1cpu = PCPU_GET(cpuid);
2723			invlcaddr(PADDR1);
2724			PMAP1changedcpu++;
2725		} else
2726#endif
2727			PMAP1unchanged++;
2728		firstpte = PADDR1;
2729	} else {
2730		mtx_lock(&PMAP2mutex);
2731		if ((*PMAP2 & PG_FRAME) != mptepa) {
2732			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2733			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2734		}
2735		firstpte = PADDR2;
2736	}
2737	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2738	KASSERT((oldpde & PG_A) != 0,
2739	    ("pmap_demote_pde: oldpde is missing PG_A"));
2740	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2741	    ("pmap_demote_pde: oldpde is missing PG_M"));
2742	newpte = oldpde & ~PG_PS;
2743	if ((newpte & PG_PDE_PAT) != 0)
2744		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2745
2746	/*
2747	 * If the page table page is new, initialize it.
2748	 */
2749	if (mpte->wire_count == 1) {
2750		mpte->wire_count = NPTEPG;
2751		pmap_fill_ptp(firstpte, newpte);
2752	}
2753	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2754	    ("pmap_demote_pde: firstpte and newpte map different physical"
2755	    " addresses"));
2756
2757	/*
2758	 * If the mapping has changed attributes, update the page table
2759	 * entries.
2760	 */
2761	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2762		pmap_fill_ptp(firstpte, newpte);
2763
2764	/*
2765	 * Demote the mapping.  This pmap is locked.  The old PDE has
2766	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2767	 * set.  Thus, there is no danger of a race with another
2768	 * processor changing the setting of PG_A and/or PG_M between
2769	 * the read above and the store below.
2770	 */
2771	if (workaround_erratum383)
2772		pmap_update_pde(pmap, va, pde, newpde);
2773	else if (pmap == kernel_pmap)
2774		pmap_kenter_pde(va, newpde);
2775	else
2776		pde_store(pde, newpde);
2777	if (firstpte == PADDR2)
2778		mtx_unlock(&PMAP2mutex);
2779
2780	/*
2781	 * Invalidate the recursive mapping of the page table page.
2782	 */
2783	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2784
2785	/*
2786	 * Demote the pv entry.  This depends on the earlier demotion
2787	 * of the mapping.  Specifically, the (re)creation of a per-
2788	 * page pv entry might trigger the execution of pmap_collect(),
2789	 * which might reclaim a newly (re)created per-page pv entry
2790	 * and destroy the associated mapping.  In order to destroy
2791	 * the mapping, the PDE must have already changed from mapping
2792	 * the 2mpage to referencing the page table page.
2793	 */
2794	if ((oldpde & PG_MANAGED) != 0)
2795		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2796
2797	pmap_pde_demotions++;
2798	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2799	    " in pmap %p", va, pmap);
2800	return (TRUE);
2801}
2802
2803/*
2804 * pmap_remove_pde: do the things to unmap a superpage in a process
2805 */
2806static void
2807pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2808    vm_page_t *free)
2809{
2810	struct md_page *pvh;
2811	pd_entry_t oldpde;
2812	vm_offset_t eva, va;
2813	vm_page_t m, mpte;
2814
2815	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2816	KASSERT((sva & PDRMASK) == 0,
2817	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2818	oldpde = pte_load_clear(pdq);
2819	if (oldpde & PG_W)
2820		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2821
2822	/*
2823	 * Machines that don't support invlpg, also don't support
2824	 * PG_G.
2825	 */
2826	if (oldpde & PG_G)
2827		pmap_invalidate_page(kernel_pmap, sva);
2828	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2829	if (oldpde & PG_MANAGED) {
2830		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2831		pmap_pvh_free(pvh, pmap, sva);
2832		eva = sva + NBPDR;
2833		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2834		    va < eva; va += PAGE_SIZE, m++) {
2835			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2836				vm_page_dirty(m);
2837			if (oldpde & PG_A)
2838				vm_page_aflag_set(m, PGA_REFERENCED);
2839			if (TAILQ_EMPTY(&m->md.pv_list) &&
2840			    TAILQ_EMPTY(&pvh->pv_list))
2841				vm_page_aflag_clear(m, PGA_WRITEABLE);
2842		}
2843	}
2844	if (pmap == kernel_pmap) {
2845		if (!pmap_demote_pde(pmap, pdq, sva))
2846			panic("pmap_remove_pde: failed demotion");
2847	} else {
2848		mpte = pmap_lookup_pt_page(pmap, sva);
2849		if (mpte != NULL) {
2850			pmap_remove_pt_page(pmap, mpte);
2851			pmap->pm_stats.resident_count--;
2852			KASSERT(mpte->wire_count == NPTEPG,
2853			    ("pmap_remove_pde: pte page wire count error"));
2854			mpte->wire_count = 0;
2855			pmap_add_delayed_free_list(mpte, free, FALSE);
2856			atomic_subtract_int(&cnt.v_wire_count, 1);
2857		}
2858	}
2859}
2860
2861/*
2862 * pmap_remove_pte: do the things to unmap a page in a process
2863 */
2864static int
2865pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2866{
2867	pt_entry_t oldpte;
2868	vm_page_t m;
2869
2870	rw_assert(&pvh_global_lock, RA_WLOCKED);
2871	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2872	oldpte = pte_load_clear(ptq);
2873	KASSERT(oldpte != 0,
2874	    ("pmap_remove_pte: pmap %p va %x zero pte", pmap, va));
2875	if (oldpte & PG_W)
2876		pmap->pm_stats.wired_count -= 1;
2877	/*
2878	 * Machines that don't support invlpg, also don't support
2879	 * PG_G.
2880	 */
2881	if (oldpte & PG_G)
2882		pmap_invalidate_page(kernel_pmap, va);
2883	pmap->pm_stats.resident_count -= 1;
2884	if (oldpte & PG_MANAGED) {
2885		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2886		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2887			vm_page_dirty(m);
2888		if (oldpte & PG_A)
2889			vm_page_aflag_set(m, PGA_REFERENCED);
2890		pmap_remove_entry(pmap, m, va);
2891	}
2892	return (pmap_unuse_pt(pmap, va, free));
2893}
2894
2895/*
2896 * Remove a single page from a process address space
2897 */
2898static void
2899pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2900{
2901	pt_entry_t *pte;
2902
2903	rw_assert(&pvh_global_lock, RA_WLOCKED);
2904	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2905	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2906	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2907		return;
2908	pmap_remove_pte(pmap, pte, va, free);
2909	pmap_invalidate_page(pmap, va);
2910}
2911
2912/*
2913 *	Remove the given range of addresses from the specified map.
2914 *
2915 *	It is assumed that the start and end are properly
2916 *	rounded to the page size.
2917 */
2918void
2919pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2920{
2921	vm_offset_t pdnxt;
2922	pd_entry_t ptpaddr;
2923	pt_entry_t *pte;
2924	vm_page_t free = NULL;
2925	int anyvalid;
2926
2927	/*
2928	 * Perform an unsynchronized read.  This is, however, safe.
2929	 */
2930	if (pmap->pm_stats.resident_count == 0)
2931		return;
2932
2933	anyvalid = 0;
2934
2935	rw_wlock(&pvh_global_lock);
2936	sched_pin();
2937	PMAP_LOCK(pmap);
2938
2939	/*
2940	 * special handling of removing one page.  a very
2941	 * common operation and easy to short circuit some
2942	 * code.
2943	 */
2944	if ((sva + PAGE_SIZE == eva) &&
2945	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2946		pmap_remove_page(pmap, sva, &free);
2947		goto out;
2948	}
2949
2950	for (; sva < eva; sva = pdnxt) {
2951		u_int pdirindex;
2952
2953		/*
2954		 * Calculate index for next page table.
2955		 */
2956		pdnxt = (sva + NBPDR) & ~PDRMASK;
2957		if (pdnxt < sva)
2958			pdnxt = eva;
2959		if (pmap->pm_stats.resident_count == 0)
2960			break;
2961
2962		pdirindex = sva >> PDRSHIFT;
2963		ptpaddr = pmap->pm_pdir[pdirindex];
2964
2965		/*
2966		 * Weed out invalid mappings. Note: we assume that the page
2967		 * directory table is always allocated, and in kernel virtual.
2968		 */
2969		if (ptpaddr == 0)
2970			continue;
2971
2972		/*
2973		 * Check for large page.
2974		 */
2975		if ((ptpaddr & PG_PS) != 0) {
2976			/*
2977			 * Are we removing the entire large page?  If not,
2978			 * demote the mapping and fall through.
2979			 */
2980			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2981				/*
2982				 * The TLB entry for a PG_G mapping is
2983				 * invalidated by pmap_remove_pde().
2984				 */
2985				if ((ptpaddr & PG_G) == 0)
2986					anyvalid = 1;
2987				pmap_remove_pde(pmap,
2988				    &pmap->pm_pdir[pdirindex], sva, &free);
2989				continue;
2990			} else if (!pmap_demote_pde(pmap,
2991			    &pmap->pm_pdir[pdirindex], sva)) {
2992				/* The large page mapping was destroyed. */
2993				continue;
2994			}
2995		}
2996
2997		/*
2998		 * Limit our scan to either the end of the va represented
2999		 * by the current page table page, or to the end of the
3000		 * range being removed.
3001		 */
3002		if (pdnxt > eva)
3003			pdnxt = eva;
3004
3005		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3006		    sva += PAGE_SIZE) {
3007			if (*pte == 0)
3008				continue;
3009
3010			/*
3011			 * The TLB entry for a PG_G mapping is invalidated
3012			 * by pmap_remove_pte().
3013			 */
3014			if ((*pte & PG_G) == 0)
3015				anyvalid = 1;
3016			if (pmap_remove_pte(pmap, pte, sva, &free))
3017				break;
3018		}
3019	}
3020out:
3021	sched_unpin();
3022	if (anyvalid)
3023		pmap_invalidate_all(pmap);
3024	rw_wunlock(&pvh_global_lock);
3025	PMAP_UNLOCK(pmap);
3026	pmap_free_zero_pages(free);
3027}
3028
3029/*
3030 *	Routine:	pmap_remove_all
3031 *	Function:
3032 *		Removes this physical page from
3033 *		all physical maps in which it resides.
3034 *		Reflects back modify bits to the pager.
3035 *
3036 *	Notes:
3037 *		Original versions of this routine were very
3038 *		inefficient because they iteratively called
3039 *		pmap_remove (slow...)
3040 */
3041
3042void
3043pmap_remove_all(vm_page_t m)
3044{
3045	struct md_page *pvh;
3046	pv_entry_t pv;
3047	pmap_t pmap;
3048	pt_entry_t *pte, tpte;
3049	pd_entry_t *pde;
3050	vm_offset_t va;
3051	vm_page_t free;
3052
3053	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3054	    ("pmap_remove_all: page %p is not managed", m));
3055	free = NULL;
3056	rw_wlock(&pvh_global_lock);
3057	sched_pin();
3058	if ((m->flags & PG_FICTITIOUS) != 0)
3059		goto small_mappings;
3060	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3061	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
3062		va = pv->pv_va;
3063		pmap = PV_PMAP(pv);
3064		PMAP_LOCK(pmap);
3065		pde = pmap_pde(pmap, va);
3066		(void)pmap_demote_pde(pmap, pde, va);
3067		PMAP_UNLOCK(pmap);
3068	}
3069small_mappings:
3070	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3071		pmap = PV_PMAP(pv);
3072		PMAP_LOCK(pmap);
3073		pmap->pm_stats.resident_count--;
3074		pde = pmap_pde(pmap, pv->pv_va);
3075		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
3076		    " a 4mpage in page %p's pv list", m));
3077		pte = pmap_pte_quick(pmap, pv->pv_va);
3078		tpte = pte_load_clear(pte);
3079		KASSERT(tpte != 0, ("pmap_remove_all: pmap %p va %x zero pte",
3080		    pmap, pv->pv_va));
3081		if (tpte & PG_W)
3082			pmap->pm_stats.wired_count--;
3083		if (tpte & PG_A)
3084			vm_page_aflag_set(m, PGA_REFERENCED);
3085
3086		/*
3087		 * Update the vm_page_t clean and reference bits.
3088		 */
3089		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
3090			vm_page_dirty(m);
3091		pmap_unuse_pt(pmap, pv->pv_va, &free);
3092		pmap_invalidate_page(pmap, pv->pv_va);
3093		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3094		free_pv_entry(pmap, pv);
3095		PMAP_UNLOCK(pmap);
3096	}
3097	vm_page_aflag_clear(m, PGA_WRITEABLE);
3098	sched_unpin();
3099	rw_wunlock(&pvh_global_lock);
3100	pmap_free_zero_pages(free);
3101}
3102
3103/*
3104 * pmap_protect_pde: do the things to protect a 4mpage in a process
3105 */
3106static boolean_t
3107pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
3108{
3109	pd_entry_t newpde, oldpde;
3110	vm_offset_t eva, va;
3111	vm_page_t m;
3112	boolean_t anychanged;
3113
3114	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3115	KASSERT((sva & PDRMASK) == 0,
3116	    ("pmap_protect_pde: sva is not 4mpage aligned"));
3117	anychanged = FALSE;
3118retry:
3119	oldpde = newpde = *pde;
3120	if (oldpde & PG_MANAGED) {
3121		eva = sva + NBPDR;
3122		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
3123		    va < eva; va += PAGE_SIZE, m++)
3124			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
3125				vm_page_dirty(m);
3126	}
3127	if ((prot & VM_PROT_WRITE) == 0)
3128		newpde &= ~(PG_RW | PG_M);
3129#ifdef PAE
3130	if ((prot & VM_PROT_EXECUTE) == 0)
3131		newpde |= pg_nx;
3132#endif
3133	if (newpde != oldpde) {
3134		if (!pde_cmpset(pde, oldpde, newpde))
3135			goto retry;
3136		if (oldpde & PG_G)
3137			pmap_invalidate_page(pmap, sva);
3138		else
3139			anychanged = TRUE;
3140	}
3141	return (anychanged);
3142}
3143
3144/*
3145 *	Set the physical protection on the
3146 *	specified range of this map as requested.
3147 */
3148void
3149pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
3150{
3151	vm_offset_t pdnxt;
3152	pd_entry_t ptpaddr;
3153	pt_entry_t *pte;
3154	boolean_t anychanged, pv_lists_locked;
3155
3156	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3157		pmap_remove(pmap, sva, eva);
3158		return;
3159	}
3160
3161#ifdef PAE
3162	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3163	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3164		return;
3165#else
3166	if (prot & VM_PROT_WRITE)
3167		return;
3168#endif
3169
3170	if (pmap_is_current(pmap))
3171		pv_lists_locked = FALSE;
3172	else {
3173		pv_lists_locked = TRUE;
3174resume:
3175		rw_wlock(&pvh_global_lock);
3176		sched_pin();
3177	}
3178	anychanged = FALSE;
3179
3180	PMAP_LOCK(pmap);
3181	for (; sva < eva; sva = pdnxt) {
3182		pt_entry_t obits, pbits;
3183		u_int pdirindex;
3184
3185		pdnxt = (sva + NBPDR) & ~PDRMASK;
3186		if (pdnxt < sva)
3187			pdnxt = eva;
3188
3189		pdirindex = sva >> PDRSHIFT;
3190		ptpaddr = pmap->pm_pdir[pdirindex];
3191
3192		/*
3193		 * Weed out invalid mappings. Note: we assume that the page
3194		 * directory table is always allocated, and in kernel virtual.
3195		 */
3196		if (ptpaddr == 0)
3197			continue;
3198
3199		/*
3200		 * Check for large page.
3201		 */
3202		if ((ptpaddr & PG_PS) != 0) {
3203			/*
3204			 * Are we protecting the entire large page?  If not,
3205			 * demote the mapping and fall through.
3206			 */
3207			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3208				/*
3209				 * The TLB entry for a PG_G mapping is
3210				 * invalidated by pmap_protect_pde().
3211				 */
3212				if (pmap_protect_pde(pmap,
3213				    &pmap->pm_pdir[pdirindex], sva, prot))
3214					anychanged = TRUE;
3215				continue;
3216			} else {
3217				if (!pv_lists_locked) {
3218					pv_lists_locked = TRUE;
3219					if (!rw_try_wlock(&pvh_global_lock)) {
3220						if (anychanged)
3221							pmap_invalidate_all(
3222							    pmap);
3223						PMAP_UNLOCK(pmap);
3224						goto resume;
3225					}
3226					sched_pin();
3227				}
3228				if (!pmap_demote_pde(pmap,
3229				    &pmap->pm_pdir[pdirindex], sva)) {
3230					/*
3231					 * The large page mapping was
3232					 * destroyed.
3233					 */
3234					continue;
3235				}
3236			}
3237		}
3238
3239		if (pdnxt > eva)
3240			pdnxt = eva;
3241
3242		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3243		    sva += PAGE_SIZE) {
3244			vm_page_t m;
3245
3246retry:
3247			/*
3248			 * Regardless of whether a pte is 32 or 64 bits in
3249			 * size, PG_RW, PG_A, and PG_M are among the least
3250			 * significant 32 bits.
3251			 */
3252			obits = pbits = *pte;
3253			if ((pbits & PG_V) == 0)
3254				continue;
3255
3256			if ((prot & VM_PROT_WRITE) == 0) {
3257				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3258				    (PG_MANAGED | PG_M | PG_RW)) {
3259					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3260					vm_page_dirty(m);
3261				}
3262				pbits &= ~(PG_RW | PG_M);
3263			}
3264#ifdef PAE
3265			if ((prot & VM_PROT_EXECUTE) == 0)
3266				pbits |= pg_nx;
3267#endif
3268
3269			if (pbits != obits) {
3270#ifdef PAE
3271				if (!atomic_cmpset_64(pte, obits, pbits))
3272					goto retry;
3273#else
3274				if (!atomic_cmpset_int((u_int *)pte, obits,
3275				    pbits))
3276					goto retry;
3277#endif
3278				if (obits & PG_G)
3279					pmap_invalidate_page(pmap, sva);
3280				else
3281					anychanged = TRUE;
3282			}
3283		}
3284	}
3285	if (anychanged)
3286		pmap_invalidate_all(pmap);
3287	if (pv_lists_locked) {
3288		sched_unpin();
3289		rw_wunlock(&pvh_global_lock);
3290	}
3291	PMAP_UNLOCK(pmap);
3292}
3293
3294/*
3295 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3296 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3297 * For promotion to occur, two conditions must be met: (1) the 4KB page
3298 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3299 * mappings must have identical characteristics.
3300 *
3301 * Managed (PG_MANAGED) mappings within the kernel address space are not
3302 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3303 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3304 * pmap.
3305 */
3306static void
3307pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3308{
3309	pd_entry_t newpde;
3310	pt_entry_t *firstpte, oldpte, pa, *pte;
3311	vm_offset_t oldpteva;
3312	vm_page_t mpte;
3313
3314	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3315
3316	/*
3317	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3318	 * either invalid, unused, or does not map the first 4KB physical page
3319	 * within a 2- or 4MB page.
3320	 */
3321	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3322setpde:
3323	newpde = *firstpte;
3324	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3325		pmap_pde_p_failures++;
3326		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3327		    " in pmap %p", va, pmap);
3328		return;
3329	}
3330	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3331		pmap_pde_p_failures++;
3332		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3333		    " in pmap %p", va, pmap);
3334		return;
3335	}
3336	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3337		/*
3338		 * When PG_M is already clear, PG_RW can be cleared without
3339		 * a TLB invalidation.
3340		 */
3341		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3342		    ~PG_RW))
3343			goto setpde;
3344		newpde &= ~PG_RW;
3345	}
3346
3347	/*
3348	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3349	 * PTE maps an unexpected 4KB physical page or does not have identical
3350	 * characteristics to the first PTE.
3351	 */
3352	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3353	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3354setpte:
3355		oldpte = *pte;
3356		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3357			pmap_pde_p_failures++;
3358			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3359			    " in pmap %p", va, pmap);
3360			return;
3361		}
3362		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3363			/*
3364			 * When PG_M is already clear, PG_RW can be cleared
3365			 * without a TLB invalidation.
3366			 */
3367			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3368			    oldpte & ~PG_RW))
3369				goto setpte;
3370			oldpte &= ~PG_RW;
3371			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3372			    (va & ~PDRMASK);
3373			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3374			    " in pmap %p", oldpteva, pmap);
3375		}
3376		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3377			pmap_pde_p_failures++;
3378			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3379			    " in pmap %p", va, pmap);
3380			return;
3381		}
3382		pa -= PAGE_SIZE;
3383	}
3384
3385	/*
3386	 * Save the page table page in its current state until the PDE
3387	 * mapping the superpage is demoted by pmap_demote_pde() or
3388	 * destroyed by pmap_remove_pde().
3389	 */
3390	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3391	KASSERT(mpte >= vm_page_array &&
3392	    mpte < &vm_page_array[vm_page_array_size],
3393	    ("pmap_promote_pde: page table page is out of range"));
3394	KASSERT(mpte->pindex == va >> PDRSHIFT,
3395	    ("pmap_promote_pde: page table page's pindex is wrong"));
3396	pmap_insert_pt_page(pmap, mpte);
3397
3398	/*
3399	 * Promote the pv entries.
3400	 */
3401	if ((newpde & PG_MANAGED) != 0)
3402		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3403
3404	/*
3405	 * Propagate the PAT index to its proper position.
3406	 */
3407	if ((newpde & PG_PTE_PAT) != 0)
3408		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3409
3410	/*
3411	 * Map the superpage.
3412	 */
3413	if (workaround_erratum383)
3414		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3415	else if (pmap == kernel_pmap)
3416		pmap_kenter_pde(va, PG_PS | newpde);
3417	else
3418		pde_store(pde, PG_PS | newpde);
3419
3420	pmap_pde_promotions++;
3421	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3422	    " in pmap %p", va, pmap);
3423}
3424
3425/*
3426 *	Insert the given physical page (p) at
3427 *	the specified virtual address (v) in the
3428 *	target physical map with the protection requested.
3429 *
3430 *	If specified, the page will be wired down, meaning
3431 *	that the related pte can not be reclaimed.
3432 *
3433 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3434 *	or lose information.  That is, this routine must actually
3435 *	insert this page into the given map NOW.
3436 */
3437void
3438pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3439    vm_prot_t prot, boolean_t wired)
3440{
3441	pd_entry_t *pde;
3442	pt_entry_t *pte;
3443	pt_entry_t newpte, origpte;
3444	pv_entry_t pv;
3445	vm_paddr_t opa, pa;
3446	vm_page_t mpte, om;
3447	boolean_t invlva;
3448
3449	va = trunc_page(va);
3450	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3451	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3452	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3453	    va));
3454	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
3455	    VM_OBJECT_LOCKED(m->object),
3456	    ("pmap_enter: page %p is not busy", m));
3457
3458	mpte = NULL;
3459
3460	rw_wlock(&pvh_global_lock);
3461	PMAP_LOCK(pmap);
3462	sched_pin();
3463
3464	/*
3465	 * In the case that a page table page is not
3466	 * resident, we are creating it here.
3467	 */
3468	if (va < VM_MAXUSER_ADDRESS) {
3469		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3470	}
3471
3472	pde = pmap_pde(pmap, va);
3473	if ((*pde & PG_PS) != 0)
3474		panic("pmap_enter: attempted pmap_enter on 4MB page");
3475	pte = pmap_pte_quick(pmap, va);
3476
3477	/*
3478	 * Page Directory table entry not valid, we need a new PT page
3479	 */
3480	if (pte == NULL) {
3481		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3482			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3483	}
3484
3485	pa = VM_PAGE_TO_PHYS(m);
3486	om = NULL;
3487	origpte = *pte;
3488	opa = origpte & PG_FRAME;
3489
3490	/*
3491	 * Mapping has not changed, must be protection or wiring change.
3492	 */
3493	if (origpte && (opa == pa)) {
3494		/*
3495		 * Wiring change, just update stats. We don't worry about
3496		 * wiring PT pages as they remain resident as long as there
3497		 * are valid mappings in them. Hence, if a user page is wired,
3498		 * the PT page will be also.
3499		 */
3500		if (wired && ((origpte & PG_W) == 0))
3501			pmap->pm_stats.wired_count++;
3502		else if (!wired && (origpte & PG_W))
3503			pmap->pm_stats.wired_count--;
3504
3505		/*
3506		 * Remove extra pte reference
3507		 */
3508		if (mpte)
3509			mpte->wire_count--;
3510
3511		if (origpte & PG_MANAGED) {
3512			om = m;
3513			pa |= PG_MANAGED;
3514		}
3515		goto validate;
3516	}
3517
3518	pv = NULL;
3519
3520	/*
3521	 * Mapping has changed, invalidate old range and fall through to
3522	 * handle validating new mapping.
3523	 */
3524	if (opa) {
3525		if (origpte & PG_W)
3526			pmap->pm_stats.wired_count--;
3527		if (origpte & PG_MANAGED) {
3528			om = PHYS_TO_VM_PAGE(opa);
3529			pv = pmap_pvh_remove(&om->md, pmap, va);
3530		}
3531		if (mpte != NULL) {
3532			mpte->wire_count--;
3533			KASSERT(mpte->wire_count > 0,
3534			    ("pmap_enter: missing reference to page table page,"
3535			     " va: 0x%x", va));
3536		}
3537	} else
3538		pmap->pm_stats.resident_count++;
3539
3540	/*
3541	 * Enter on the PV list if part of our managed memory.
3542	 */
3543	if ((m->oflags & VPO_UNMANAGED) == 0) {
3544		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3545		    ("pmap_enter: managed mapping within the clean submap"));
3546		if (pv == NULL)
3547			pv = get_pv_entry(pmap, FALSE);
3548		pv->pv_va = va;
3549		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3550		pa |= PG_MANAGED;
3551	} else if (pv != NULL)
3552		free_pv_entry(pmap, pv);
3553
3554	/*
3555	 * Increment counters
3556	 */
3557	if (wired)
3558		pmap->pm_stats.wired_count++;
3559
3560validate:
3561	/*
3562	 * Now validate mapping with desired protection/wiring.
3563	 */
3564	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3565	if ((prot & VM_PROT_WRITE) != 0) {
3566		newpte |= PG_RW;
3567		if ((newpte & PG_MANAGED) != 0)
3568			vm_page_aflag_set(m, PGA_WRITEABLE);
3569	}
3570#ifdef PAE
3571	if ((prot & VM_PROT_EXECUTE) == 0)
3572		newpte |= pg_nx;
3573#endif
3574	if (wired)
3575		newpte |= PG_W;
3576	if (va < VM_MAXUSER_ADDRESS)
3577		newpte |= PG_U;
3578	if (pmap == kernel_pmap)
3579		newpte |= pgeflag;
3580
3581	/*
3582	 * if the mapping or permission bits are different, we need
3583	 * to update the pte.
3584	 */
3585	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3586		newpte |= PG_A;
3587		if ((access & VM_PROT_WRITE) != 0)
3588			newpte |= PG_M;
3589		if (origpte & PG_V) {
3590			invlva = FALSE;
3591			origpte = pte_load_store(pte, newpte);
3592			if (origpte & PG_A) {
3593				if (origpte & PG_MANAGED)
3594					vm_page_aflag_set(om, PGA_REFERENCED);
3595				if (opa != VM_PAGE_TO_PHYS(m))
3596					invlva = TRUE;
3597#ifdef PAE
3598				if ((origpte & PG_NX) == 0 &&
3599				    (newpte & PG_NX) != 0)
3600					invlva = TRUE;
3601#endif
3602			}
3603			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3604				if ((origpte & PG_MANAGED) != 0)
3605					vm_page_dirty(om);
3606				if ((prot & VM_PROT_WRITE) == 0)
3607					invlva = TRUE;
3608			}
3609			if ((origpte & PG_MANAGED) != 0 &&
3610			    TAILQ_EMPTY(&om->md.pv_list) &&
3611			    ((om->flags & PG_FICTITIOUS) != 0 ||
3612			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
3613				vm_page_aflag_clear(om, PGA_WRITEABLE);
3614			if (invlva)
3615				pmap_invalidate_page(pmap, va);
3616		} else
3617			pte_store(pte, newpte);
3618	}
3619
3620	/*
3621	 * If both the page table page and the reservation are fully
3622	 * populated, then attempt promotion.
3623	 */
3624	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3625	    pg_ps_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
3626	    vm_reserv_level_iffullpop(m) == 0)
3627		pmap_promote_pde(pmap, pde, va);
3628
3629	sched_unpin();
3630	rw_wunlock(&pvh_global_lock);
3631	PMAP_UNLOCK(pmap);
3632}
3633
3634/*
3635 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3636 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3637 * blocking, (2) a mapping already exists at the specified virtual address, or
3638 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3639 */
3640static boolean_t
3641pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3642{
3643	pd_entry_t *pde, newpde;
3644
3645	rw_assert(&pvh_global_lock, RA_WLOCKED);
3646	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3647	pde = pmap_pde(pmap, va);
3648	if (*pde != 0) {
3649		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3650		    " in pmap %p", va, pmap);
3651		return (FALSE);
3652	}
3653	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3654	    PG_PS | PG_V;
3655	if ((m->oflags & VPO_UNMANAGED) == 0) {
3656		newpde |= PG_MANAGED;
3657
3658		/*
3659		 * Abort this mapping if its PV entry could not be created.
3660		 */
3661		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3662			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3663			    " in pmap %p", va, pmap);
3664			return (FALSE);
3665		}
3666	}
3667#ifdef PAE
3668	if ((prot & VM_PROT_EXECUTE) == 0)
3669		newpde |= pg_nx;
3670#endif
3671	if (va < VM_MAXUSER_ADDRESS)
3672		newpde |= PG_U;
3673
3674	/*
3675	 * Increment counters.
3676	 */
3677	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3678
3679	/*
3680	 * Map the superpage.
3681	 */
3682	pde_store(pde, newpde);
3683
3684	pmap_pde_mappings++;
3685	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3686	    " in pmap %p", va, pmap);
3687	return (TRUE);
3688}
3689
3690/*
3691 * Maps a sequence of resident pages belonging to the same object.
3692 * The sequence begins with the given page m_start.  This page is
3693 * mapped at the given virtual address start.  Each subsequent page is
3694 * mapped at a virtual address that is offset from start by the same
3695 * amount as the page is offset from m_start within the object.  The
3696 * last page in the sequence is the page with the largest offset from
3697 * m_start that can be mapped at a virtual address less than the given
3698 * virtual address end.  Not every virtual page between start and end
3699 * is mapped; only those for which a resident page exists with the
3700 * corresponding offset from m_start are mapped.
3701 */
3702void
3703pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3704    vm_page_t m_start, vm_prot_t prot)
3705{
3706	vm_offset_t va;
3707	vm_page_t m, mpte;
3708	vm_pindex_t diff, psize;
3709
3710	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3711	psize = atop(end - start);
3712	mpte = NULL;
3713	m = m_start;
3714	rw_wlock(&pvh_global_lock);
3715	PMAP_LOCK(pmap);
3716	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3717		va = start + ptoa(diff);
3718		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3719		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3720		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3721		    pmap_enter_pde(pmap, va, m, prot))
3722			m = &m[NBPDR / PAGE_SIZE - 1];
3723		else
3724			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3725			    mpte);
3726		m = TAILQ_NEXT(m, listq);
3727	}
3728	rw_wunlock(&pvh_global_lock);
3729	PMAP_UNLOCK(pmap);
3730}
3731
3732/*
3733 * this code makes some *MAJOR* assumptions:
3734 * 1. Current pmap & pmap exists.
3735 * 2. Not wired.
3736 * 3. Read access.
3737 * 4. No page table pages.
3738 * but is *MUCH* faster than pmap_enter...
3739 */
3740
3741void
3742pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3743{
3744
3745	rw_wlock(&pvh_global_lock);
3746	PMAP_LOCK(pmap);
3747	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3748	rw_wunlock(&pvh_global_lock);
3749	PMAP_UNLOCK(pmap);
3750}
3751
3752static vm_page_t
3753pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3754    vm_prot_t prot, vm_page_t mpte)
3755{
3756	pt_entry_t *pte;
3757	vm_paddr_t pa;
3758	vm_page_t free;
3759
3760	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3761	    (m->oflags & VPO_UNMANAGED) != 0,
3762	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3763	rw_assert(&pvh_global_lock, RA_WLOCKED);
3764	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3765
3766	/*
3767	 * In the case that a page table page is not
3768	 * resident, we are creating it here.
3769	 */
3770	if (va < VM_MAXUSER_ADDRESS) {
3771		u_int ptepindex;
3772		pd_entry_t ptepa;
3773
3774		/*
3775		 * Calculate pagetable page index
3776		 */
3777		ptepindex = va >> PDRSHIFT;
3778		if (mpte && (mpte->pindex == ptepindex)) {
3779			mpte->wire_count++;
3780		} else {
3781			/*
3782			 * Get the page directory entry
3783			 */
3784			ptepa = pmap->pm_pdir[ptepindex];
3785
3786			/*
3787			 * If the page table page is mapped, we just increment
3788			 * the hold count, and activate it.
3789			 */
3790			if (ptepa) {
3791				if (ptepa & PG_PS)
3792					return (NULL);
3793				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3794				mpte->wire_count++;
3795			} else {
3796				mpte = _pmap_allocpte(pmap, ptepindex,
3797				    M_NOWAIT);
3798				if (mpte == NULL)
3799					return (mpte);
3800			}
3801		}
3802	} else {
3803		mpte = NULL;
3804	}
3805
3806	/*
3807	 * This call to vtopte makes the assumption that we are
3808	 * entering the page into the current pmap.  In order to support
3809	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3810	 * But that isn't as quick as vtopte.
3811	 */
3812	pte = vtopte(va);
3813	if (*pte) {
3814		if (mpte != NULL) {
3815			mpte->wire_count--;
3816			mpte = NULL;
3817		}
3818		return (mpte);
3819	}
3820
3821	/*
3822	 * Enter on the PV list if part of our managed memory.
3823	 */
3824	if ((m->oflags & VPO_UNMANAGED) == 0 &&
3825	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3826		if (mpte != NULL) {
3827			free = NULL;
3828			if (pmap_unwire_ptp(pmap, mpte, &free)) {
3829				pmap_invalidate_page(pmap, va);
3830				pmap_free_zero_pages(free);
3831			}
3832
3833			mpte = NULL;
3834		}
3835		return (mpte);
3836	}
3837
3838	/*
3839	 * Increment counters
3840	 */
3841	pmap->pm_stats.resident_count++;
3842
3843	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3844#ifdef PAE
3845	if ((prot & VM_PROT_EXECUTE) == 0)
3846		pa |= pg_nx;
3847#endif
3848
3849	/*
3850	 * Now validate mapping with RO protection
3851	 */
3852	if ((m->oflags & VPO_UNMANAGED) != 0)
3853		pte_store(pte, pa | PG_V | PG_U);
3854	else
3855		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3856	return (mpte);
3857}
3858
3859/*
3860 * Make a temporary mapping for a physical address.  This is only intended
3861 * to be used for panic dumps.
3862 */
3863void *
3864pmap_kenter_temporary(vm_paddr_t pa, int i)
3865{
3866	vm_offset_t va;
3867
3868	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3869	pmap_kenter(va, pa);
3870	invlpg(va);
3871	return ((void *)crashdumpmap);
3872}
3873
3874/*
3875 * This code maps large physical mmap regions into the
3876 * processor address space.  Note that some shortcuts
3877 * are taken, but the code works.
3878 */
3879void
3880pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3881    vm_pindex_t pindex, vm_size_t size)
3882{
3883	pd_entry_t *pde;
3884	vm_paddr_t pa, ptepa;
3885	vm_page_t p;
3886	int pat_mode;
3887
3888	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3889	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3890	    ("pmap_object_init_pt: non-device object"));
3891	if (pseflag &&
3892	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3893		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3894			return;
3895		p = vm_page_lookup(object, pindex);
3896		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3897		    ("pmap_object_init_pt: invalid page %p", p));
3898		pat_mode = p->md.pat_mode;
3899
3900		/*
3901		 * Abort the mapping if the first page is not physically
3902		 * aligned to a 2/4MB page boundary.
3903		 */
3904		ptepa = VM_PAGE_TO_PHYS(p);
3905		if (ptepa & (NBPDR - 1))
3906			return;
3907
3908		/*
3909		 * Skip the first page.  Abort the mapping if the rest of
3910		 * the pages are not physically contiguous or have differing
3911		 * memory attributes.
3912		 */
3913		p = TAILQ_NEXT(p, listq);
3914		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3915		    pa += PAGE_SIZE) {
3916			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3917			    ("pmap_object_init_pt: invalid page %p", p));
3918			if (pa != VM_PAGE_TO_PHYS(p) ||
3919			    pat_mode != p->md.pat_mode)
3920				return;
3921			p = TAILQ_NEXT(p, listq);
3922		}
3923
3924		/*
3925		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3926		 * "size" is a multiple of 2/4M, adding the PAT setting to
3927		 * "pa" will not affect the termination of this loop.
3928		 */
3929		PMAP_LOCK(pmap);
3930		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3931		    size; pa += NBPDR) {
3932			pde = pmap_pde(pmap, addr);
3933			if (*pde == 0) {
3934				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3935				    PG_U | PG_RW | PG_V);
3936				pmap->pm_stats.resident_count += NBPDR /
3937				    PAGE_SIZE;
3938				pmap_pde_mappings++;
3939			}
3940			/* Else continue on if the PDE is already valid. */
3941			addr += NBPDR;
3942		}
3943		PMAP_UNLOCK(pmap);
3944	}
3945}
3946
3947/*
3948 *	Routine:	pmap_change_wiring
3949 *	Function:	Change the wiring attribute for a map/virtual-address
3950 *			pair.
3951 *	In/out conditions:
3952 *			The mapping must already exist in the pmap.
3953 */
3954void
3955pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3956{
3957	pd_entry_t *pde;
3958	pt_entry_t *pte;
3959	boolean_t are_queues_locked;
3960
3961	are_queues_locked = FALSE;
3962retry:
3963	PMAP_LOCK(pmap);
3964	pde = pmap_pde(pmap, va);
3965	if ((*pde & PG_PS) != 0) {
3966		if (!wired != ((*pde & PG_W) == 0)) {
3967			if (!are_queues_locked) {
3968				are_queues_locked = TRUE;
3969				if (!rw_try_wlock(&pvh_global_lock)) {
3970					PMAP_UNLOCK(pmap);
3971					rw_wlock(&pvh_global_lock);
3972					goto retry;
3973				}
3974			}
3975			if (!pmap_demote_pde(pmap, pde, va))
3976				panic("pmap_change_wiring: demotion failed");
3977		} else
3978			goto out;
3979	}
3980	pte = pmap_pte(pmap, va);
3981
3982	if (wired && !pmap_pte_w(pte))
3983		pmap->pm_stats.wired_count++;
3984	else if (!wired && pmap_pte_w(pte))
3985		pmap->pm_stats.wired_count--;
3986
3987	/*
3988	 * Wiring is not a hardware characteristic so there is no need to
3989	 * invalidate TLB.
3990	 */
3991	pmap_pte_set_w(pte, wired);
3992	pmap_pte_release(pte);
3993out:
3994	if (are_queues_locked)
3995		rw_wunlock(&pvh_global_lock);
3996	PMAP_UNLOCK(pmap);
3997}
3998
3999
4000
4001/*
4002 *	Copy the range specified by src_addr/len
4003 *	from the source map to the range dst_addr/len
4004 *	in the destination map.
4005 *
4006 *	This routine is only advisory and need not do anything.
4007 */
4008
4009void
4010pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
4011    vm_offset_t src_addr)
4012{
4013	vm_page_t   free;
4014	vm_offset_t addr;
4015	vm_offset_t end_addr = src_addr + len;
4016	vm_offset_t pdnxt;
4017
4018	if (dst_addr != src_addr)
4019		return;
4020
4021	if (!pmap_is_current(src_pmap))
4022		return;
4023
4024	rw_wlock(&pvh_global_lock);
4025	if (dst_pmap < src_pmap) {
4026		PMAP_LOCK(dst_pmap);
4027		PMAP_LOCK(src_pmap);
4028	} else {
4029		PMAP_LOCK(src_pmap);
4030		PMAP_LOCK(dst_pmap);
4031	}
4032	sched_pin();
4033	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
4034		pt_entry_t *src_pte, *dst_pte;
4035		vm_page_t dstmpte, srcmpte;
4036		pd_entry_t srcptepaddr;
4037		u_int ptepindex;
4038
4039		KASSERT(addr < UPT_MIN_ADDRESS,
4040		    ("pmap_copy: invalid to pmap_copy page tables"));
4041
4042		pdnxt = (addr + NBPDR) & ~PDRMASK;
4043		if (pdnxt < addr)
4044			pdnxt = end_addr;
4045		ptepindex = addr >> PDRSHIFT;
4046
4047		srcptepaddr = src_pmap->pm_pdir[ptepindex];
4048		if (srcptepaddr == 0)
4049			continue;
4050
4051		if (srcptepaddr & PG_PS) {
4052			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
4053			    ((srcptepaddr & PG_MANAGED) == 0 ||
4054			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
4055			    PG_PS_FRAME))) {
4056				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
4057				    ~PG_W;
4058				dst_pmap->pm_stats.resident_count +=
4059				    NBPDR / PAGE_SIZE;
4060			}
4061			continue;
4062		}
4063
4064		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
4065		KASSERT(srcmpte->wire_count > 0,
4066		    ("pmap_copy: source page table page is unused"));
4067
4068		if (pdnxt > end_addr)
4069			pdnxt = end_addr;
4070
4071		src_pte = vtopte(addr);
4072		while (addr < pdnxt) {
4073			pt_entry_t ptetemp;
4074			ptetemp = *src_pte;
4075			/*
4076			 * we only virtual copy managed pages
4077			 */
4078			if ((ptetemp & PG_MANAGED) != 0) {
4079				dstmpte = pmap_allocpte(dst_pmap, addr,
4080				    M_NOWAIT);
4081				if (dstmpte == NULL)
4082					goto out;
4083				dst_pte = pmap_pte_quick(dst_pmap, addr);
4084				if (*dst_pte == 0 &&
4085				    pmap_try_insert_pv_entry(dst_pmap, addr,
4086				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
4087					/*
4088					 * Clear the wired, modified, and
4089					 * accessed (referenced) bits
4090					 * during the copy.
4091					 */
4092					*dst_pte = ptetemp & ~(PG_W | PG_M |
4093					    PG_A);
4094					dst_pmap->pm_stats.resident_count++;
4095	 			} else {
4096					free = NULL;
4097					if (pmap_unwire_ptp(dst_pmap, dstmpte,
4098					    &free)) {
4099						pmap_invalidate_page(dst_pmap,
4100						    addr);
4101						pmap_free_zero_pages(free);
4102					}
4103					goto out;
4104				}
4105				if (dstmpte->wire_count >= srcmpte->wire_count)
4106					break;
4107			}
4108			addr += PAGE_SIZE;
4109			src_pte++;
4110		}
4111	}
4112out:
4113	sched_unpin();
4114	rw_wunlock(&pvh_global_lock);
4115	PMAP_UNLOCK(src_pmap);
4116	PMAP_UNLOCK(dst_pmap);
4117}
4118
4119static __inline void
4120pagezero(void *page)
4121{
4122#if defined(I686_CPU)
4123	if (cpu_class == CPUCLASS_686) {
4124#if defined(CPU_ENABLE_SSE)
4125		if (cpu_feature & CPUID_SSE2)
4126			sse2_pagezero(page);
4127		else
4128#endif
4129			i686_pagezero(page);
4130	} else
4131#endif
4132		bzero(page, PAGE_SIZE);
4133}
4134
4135/*
4136 *	pmap_zero_page zeros the specified hardware page by mapping
4137 *	the page into KVM and using bzero to clear its contents.
4138 */
4139void
4140pmap_zero_page(vm_page_t m)
4141{
4142	struct sysmaps *sysmaps;
4143
4144	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4145	mtx_lock(&sysmaps->lock);
4146	if (*sysmaps->CMAP2)
4147		panic("pmap_zero_page: CMAP2 busy");
4148	sched_pin();
4149	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4150	    pmap_cache_bits(m->md.pat_mode, 0);
4151	invlcaddr(sysmaps->CADDR2);
4152	pagezero(sysmaps->CADDR2);
4153	*sysmaps->CMAP2 = 0;
4154	sched_unpin();
4155	mtx_unlock(&sysmaps->lock);
4156}
4157
4158/*
4159 *	pmap_zero_page_area zeros the specified hardware page by mapping
4160 *	the page into KVM and using bzero to clear its contents.
4161 *
4162 *	off and size may not cover an area beyond a single hardware page.
4163 */
4164void
4165pmap_zero_page_area(vm_page_t m, int off, int size)
4166{
4167	struct sysmaps *sysmaps;
4168
4169	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4170	mtx_lock(&sysmaps->lock);
4171	if (*sysmaps->CMAP2)
4172		panic("pmap_zero_page_area: CMAP2 busy");
4173	sched_pin();
4174	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4175	    pmap_cache_bits(m->md.pat_mode, 0);
4176	invlcaddr(sysmaps->CADDR2);
4177	if (off == 0 && size == PAGE_SIZE)
4178		pagezero(sysmaps->CADDR2);
4179	else
4180		bzero((char *)sysmaps->CADDR2 + off, size);
4181	*sysmaps->CMAP2 = 0;
4182	sched_unpin();
4183	mtx_unlock(&sysmaps->lock);
4184}
4185
4186/*
4187 *	pmap_zero_page_idle zeros the specified hardware page by mapping
4188 *	the page into KVM and using bzero to clear its contents.  This
4189 *	is intended to be called from the vm_pagezero process only and
4190 *	outside of Giant.
4191 */
4192void
4193pmap_zero_page_idle(vm_page_t m)
4194{
4195
4196	if (*CMAP3)
4197		panic("pmap_zero_page_idle: CMAP3 busy");
4198	sched_pin();
4199	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4200	    pmap_cache_bits(m->md.pat_mode, 0);
4201	invlcaddr(CADDR3);
4202	pagezero(CADDR3);
4203	*CMAP3 = 0;
4204	sched_unpin();
4205}
4206
4207/*
4208 *	pmap_copy_page copies the specified (machine independent)
4209 *	page by mapping the page into virtual memory and using
4210 *	bcopy to copy the page, one machine dependent page at a
4211 *	time.
4212 */
4213void
4214pmap_copy_page(vm_page_t src, vm_page_t dst)
4215{
4216	struct sysmaps *sysmaps;
4217
4218	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4219	mtx_lock(&sysmaps->lock);
4220	if (*sysmaps->CMAP1)
4221		panic("pmap_copy_page: CMAP1 busy");
4222	if (*sysmaps->CMAP2)
4223		panic("pmap_copy_page: CMAP2 busy");
4224	sched_pin();
4225	invlpg((u_int)sysmaps->CADDR1);
4226	invlpg((u_int)sysmaps->CADDR2);
4227	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4228	    pmap_cache_bits(src->md.pat_mode, 0);
4229	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4230	    pmap_cache_bits(dst->md.pat_mode, 0);
4231	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4232	*sysmaps->CMAP1 = 0;
4233	*sysmaps->CMAP2 = 0;
4234	sched_unpin();
4235	mtx_unlock(&sysmaps->lock);
4236}
4237
4238/*
4239 * Returns true if the pmap's pv is one of the first
4240 * 16 pvs linked to from this page.  This count may
4241 * be changed upwards or downwards in the future; it
4242 * is only necessary that true be returned for a small
4243 * subset of pmaps for proper page aging.
4244 */
4245boolean_t
4246pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4247{
4248	struct md_page *pvh;
4249	pv_entry_t pv;
4250	int loops = 0;
4251	boolean_t rv;
4252
4253	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4254	    ("pmap_page_exists_quick: page %p is not managed", m));
4255	rv = FALSE;
4256	rw_wlock(&pvh_global_lock);
4257	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4258		if (PV_PMAP(pv) == pmap) {
4259			rv = TRUE;
4260			break;
4261		}
4262		loops++;
4263		if (loops >= 16)
4264			break;
4265	}
4266	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
4267		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4268		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4269			if (PV_PMAP(pv) == pmap) {
4270				rv = TRUE;
4271				break;
4272			}
4273			loops++;
4274			if (loops >= 16)
4275				break;
4276		}
4277	}
4278	rw_wunlock(&pvh_global_lock);
4279	return (rv);
4280}
4281
4282/*
4283 *	pmap_page_wired_mappings:
4284 *
4285 *	Return the number of managed mappings to the given physical page
4286 *	that are wired.
4287 */
4288int
4289pmap_page_wired_mappings(vm_page_t m)
4290{
4291	int count;
4292
4293	count = 0;
4294	if ((m->oflags & VPO_UNMANAGED) != 0)
4295		return (count);
4296	rw_wlock(&pvh_global_lock);
4297	count = pmap_pvh_wired_mappings(&m->md, count);
4298	if ((m->flags & PG_FICTITIOUS) == 0) {
4299	    count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
4300	        count);
4301	}
4302	rw_wunlock(&pvh_global_lock);
4303	return (count);
4304}
4305
4306/*
4307 *	pmap_pvh_wired_mappings:
4308 *
4309 *	Return the updated number "count" of managed mappings that are wired.
4310 */
4311static int
4312pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4313{
4314	pmap_t pmap;
4315	pt_entry_t *pte;
4316	pv_entry_t pv;
4317
4318	rw_assert(&pvh_global_lock, RA_WLOCKED);
4319	sched_pin();
4320	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4321		pmap = PV_PMAP(pv);
4322		PMAP_LOCK(pmap);
4323		pte = pmap_pte_quick(pmap, pv->pv_va);
4324		if ((*pte & PG_W) != 0)
4325			count++;
4326		PMAP_UNLOCK(pmap);
4327	}
4328	sched_unpin();
4329	return (count);
4330}
4331
4332/*
4333 * Returns TRUE if the given page is mapped individually or as part of
4334 * a 4mpage.  Otherwise, returns FALSE.
4335 */
4336boolean_t
4337pmap_page_is_mapped(vm_page_t m)
4338{
4339	boolean_t rv;
4340
4341	if ((m->oflags & VPO_UNMANAGED) != 0)
4342		return (FALSE);
4343	rw_wlock(&pvh_global_lock);
4344	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4345	    ((m->flags & PG_FICTITIOUS) == 0 &&
4346	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
4347	rw_wunlock(&pvh_global_lock);
4348	return (rv);
4349}
4350
4351/*
4352 * Remove all pages from specified address space
4353 * this aids process exit speeds.  Also, this code
4354 * is special cased for current process only, but
4355 * can have the more generic (and slightly slower)
4356 * mode enabled.  This is much faster than pmap_remove
4357 * in the case of running down an entire address space.
4358 */
4359void
4360pmap_remove_pages(pmap_t pmap)
4361{
4362	pt_entry_t *pte, tpte;
4363	vm_page_t free = NULL;
4364	vm_page_t m, mpte, mt;
4365	pv_entry_t pv;
4366	struct md_page *pvh;
4367	struct pv_chunk *pc, *npc;
4368	int field, idx;
4369	int32_t bit;
4370	uint32_t inuse, bitmask;
4371	int allfree;
4372
4373	if (pmap != PCPU_GET(curpmap)) {
4374		printf("warning: pmap_remove_pages called with non-current pmap\n");
4375		return;
4376	}
4377	rw_wlock(&pvh_global_lock);
4378	PMAP_LOCK(pmap);
4379	sched_pin();
4380	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4381		KASSERT(pc->pc_pmap == pmap, ("Wrong pmap %p %p", pmap,
4382		    pc->pc_pmap));
4383		allfree = 1;
4384		for (field = 0; field < _NPCM; field++) {
4385			inuse = ~pc->pc_map[field] & pc_freemask[field];
4386			while (inuse != 0) {
4387				bit = bsfl(inuse);
4388				bitmask = 1UL << bit;
4389				idx = field * 32 + bit;
4390				pv = &pc->pc_pventry[idx];
4391				inuse &= ~bitmask;
4392
4393				pte = pmap_pde(pmap, pv->pv_va);
4394				tpte = *pte;
4395				if ((tpte & PG_PS) == 0) {
4396					pte = vtopte(pv->pv_va);
4397					tpte = *pte & ~PG_PTE_PAT;
4398				}
4399
4400				if (tpte == 0) {
4401					printf(
4402					    "TPTE at %p  IS ZERO @ VA %08x\n",
4403					    pte, pv->pv_va);
4404					panic("bad pte");
4405				}
4406
4407/*
4408 * We cannot remove wired pages from a process' mapping at this time
4409 */
4410				if (tpte & PG_W) {
4411					allfree = 0;
4412					continue;
4413				}
4414
4415				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4416				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4417				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4418				    m, (uintmax_t)m->phys_addr,
4419				    (uintmax_t)tpte));
4420
4421				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4422				    m < &vm_page_array[vm_page_array_size],
4423				    ("pmap_remove_pages: bad tpte %#jx",
4424				    (uintmax_t)tpte));
4425
4426				pte_clear(pte);
4427
4428				/*
4429				 * Update the vm_page_t clean/reference bits.
4430				 */
4431				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4432					if ((tpte & PG_PS) != 0) {
4433						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4434							vm_page_dirty(mt);
4435					} else
4436						vm_page_dirty(m);
4437				}
4438
4439				/* Mark free */
4440				PV_STAT(pv_entry_frees++);
4441				PV_STAT(pv_entry_spare++);
4442				pv_entry_count--;
4443				pc->pc_map[field] |= bitmask;
4444				if ((tpte & PG_PS) != 0) {
4445					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4446					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4447					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4448					if (TAILQ_EMPTY(&pvh->pv_list)) {
4449						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4450							if (TAILQ_EMPTY(&mt->md.pv_list))
4451								vm_page_aflag_clear(mt, PGA_WRITEABLE);
4452					}
4453					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4454					if (mpte != NULL) {
4455						pmap_remove_pt_page(pmap, mpte);
4456						pmap->pm_stats.resident_count--;
4457						KASSERT(mpte->wire_count == NPTEPG,
4458						    ("pmap_remove_pages: pte page wire count error"));
4459						mpte->wire_count = 0;
4460						pmap_add_delayed_free_list(mpte, &free, FALSE);
4461						atomic_subtract_int(&cnt.v_wire_count, 1);
4462					}
4463				} else {
4464					pmap->pm_stats.resident_count--;
4465					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4466					if (TAILQ_EMPTY(&m->md.pv_list) &&
4467					    (m->flags & PG_FICTITIOUS) == 0) {
4468						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4469						if (TAILQ_EMPTY(&pvh->pv_list))
4470							vm_page_aflag_clear(m, PGA_WRITEABLE);
4471					}
4472					pmap_unuse_pt(pmap, pv->pv_va, &free);
4473				}
4474			}
4475		}
4476		if (allfree) {
4477			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4478			free_pv_chunk(pc);
4479		}
4480	}
4481	sched_unpin();
4482	pmap_invalidate_all(pmap);
4483	rw_wunlock(&pvh_global_lock);
4484	PMAP_UNLOCK(pmap);
4485	pmap_free_zero_pages(free);
4486}
4487
4488/*
4489 *	pmap_is_modified:
4490 *
4491 *	Return whether or not the specified physical page was modified
4492 *	in any physical maps.
4493 */
4494boolean_t
4495pmap_is_modified(vm_page_t m)
4496{
4497	boolean_t rv;
4498
4499	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4500	    ("pmap_is_modified: page %p is not managed", m));
4501
4502	/*
4503	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
4504	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
4505	 * is clear, no PTEs can have PG_M set.
4506	 */
4507	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4508	if ((m->oflags & VPO_BUSY) == 0 &&
4509	    (m->aflags & PGA_WRITEABLE) == 0)
4510		return (FALSE);
4511	rw_wlock(&pvh_global_lock);
4512	rv = pmap_is_modified_pvh(&m->md) ||
4513	    ((m->flags & PG_FICTITIOUS) == 0 &&
4514	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4515	rw_wunlock(&pvh_global_lock);
4516	return (rv);
4517}
4518
4519/*
4520 * Returns TRUE if any of the given mappings were used to modify
4521 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4522 * mappings are supported.
4523 */
4524static boolean_t
4525pmap_is_modified_pvh(struct md_page *pvh)
4526{
4527	pv_entry_t pv;
4528	pt_entry_t *pte;
4529	pmap_t pmap;
4530	boolean_t rv;
4531
4532	rw_assert(&pvh_global_lock, RA_WLOCKED);
4533	rv = FALSE;
4534	sched_pin();
4535	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4536		pmap = PV_PMAP(pv);
4537		PMAP_LOCK(pmap);
4538		pte = pmap_pte_quick(pmap, pv->pv_va);
4539		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4540		PMAP_UNLOCK(pmap);
4541		if (rv)
4542			break;
4543	}
4544	sched_unpin();
4545	return (rv);
4546}
4547
4548/*
4549 *	pmap_is_prefaultable:
4550 *
4551 *	Return whether or not the specified virtual address is elgible
4552 *	for prefault.
4553 */
4554boolean_t
4555pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4556{
4557	pd_entry_t *pde;
4558	pt_entry_t *pte;
4559	boolean_t rv;
4560
4561	rv = FALSE;
4562	PMAP_LOCK(pmap);
4563	pde = pmap_pde(pmap, addr);
4564	if (*pde != 0 && (*pde & PG_PS) == 0) {
4565		pte = vtopte(addr);
4566		rv = *pte == 0;
4567	}
4568	PMAP_UNLOCK(pmap);
4569	return (rv);
4570}
4571
4572/*
4573 *	pmap_is_referenced:
4574 *
4575 *	Return whether or not the specified physical page was referenced
4576 *	in any physical maps.
4577 */
4578boolean_t
4579pmap_is_referenced(vm_page_t m)
4580{
4581	boolean_t rv;
4582
4583	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4584	    ("pmap_is_referenced: page %p is not managed", m));
4585	rw_wlock(&pvh_global_lock);
4586	rv = pmap_is_referenced_pvh(&m->md) ||
4587	    ((m->flags & PG_FICTITIOUS) == 0 &&
4588	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4589	rw_wunlock(&pvh_global_lock);
4590	return (rv);
4591}
4592
4593/*
4594 * Returns TRUE if any of the given mappings were referenced and FALSE
4595 * otherwise.  Both page and 4mpage mappings are supported.
4596 */
4597static boolean_t
4598pmap_is_referenced_pvh(struct md_page *pvh)
4599{
4600	pv_entry_t pv;
4601	pt_entry_t *pte;
4602	pmap_t pmap;
4603	boolean_t rv;
4604
4605	rw_assert(&pvh_global_lock, RA_WLOCKED);
4606	rv = FALSE;
4607	sched_pin();
4608	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4609		pmap = PV_PMAP(pv);
4610		PMAP_LOCK(pmap);
4611		pte = pmap_pte_quick(pmap, pv->pv_va);
4612		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4613		PMAP_UNLOCK(pmap);
4614		if (rv)
4615			break;
4616	}
4617	sched_unpin();
4618	return (rv);
4619}
4620
4621/*
4622 * Clear the write and modified bits in each of the given page's mappings.
4623 */
4624void
4625pmap_remove_write(vm_page_t m)
4626{
4627	struct md_page *pvh;
4628	pv_entry_t next_pv, pv;
4629	pmap_t pmap;
4630	pd_entry_t *pde;
4631	pt_entry_t oldpte, *pte;
4632	vm_offset_t va;
4633
4634	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4635	    ("pmap_remove_write: page %p is not managed", m));
4636
4637	/*
4638	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
4639	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
4640	 * is clear, no page table entries need updating.
4641	 */
4642	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4643	if ((m->oflags & VPO_BUSY) == 0 &&
4644	    (m->aflags & PGA_WRITEABLE) == 0)
4645		return;
4646	rw_wlock(&pvh_global_lock);
4647	sched_pin();
4648	if ((m->flags & PG_FICTITIOUS) != 0)
4649		goto small_mappings;
4650	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4651	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4652		va = pv->pv_va;
4653		pmap = PV_PMAP(pv);
4654		PMAP_LOCK(pmap);
4655		pde = pmap_pde(pmap, va);
4656		if ((*pde & PG_RW) != 0)
4657			(void)pmap_demote_pde(pmap, pde, va);
4658		PMAP_UNLOCK(pmap);
4659	}
4660small_mappings:
4661	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4662		pmap = PV_PMAP(pv);
4663		PMAP_LOCK(pmap);
4664		pde = pmap_pde(pmap, pv->pv_va);
4665		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4666		    " a 4mpage in page %p's pv list", m));
4667		pte = pmap_pte_quick(pmap, pv->pv_va);
4668retry:
4669		oldpte = *pte;
4670		if ((oldpte & PG_RW) != 0) {
4671			/*
4672			 * Regardless of whether a pte is 32 or 64 bits
4673			 * in size, PG_RW and PG_M are among the least
4674			 * significant 32 bits.
4675			 */
4676			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4677			    oldpte & ~(PG_RW | PG_M)))
4678				goto retry;
4679			if ((oldpte & PG_M) != 0)
4680				vm_page_dirty(m);
4681			pmap_invalidate_page(pmap, pv->pv_va);
4682		}
4683		PMAP_UNLOCK(pmap);
4684	}
4685	vm_page_aflag_clear(m, PGA_WRITEABLE);
4686	sched_unpin();
4687	rw_wunlock(&pvh_global_lock);
4688}
4689
4690/*
4691 *	pmap_ts_referenced:
4692 *
4693 *	Return a count of reference bits for a page, clearing those bits.
4694 *	It is not necessary for every reference bit to be cleared, but it
4695 *	is necessary that 0 only be returned when there are truly no
4696 *	reference bits set.
4697 *
4698 *	XXX: The exact number of bits to check and clear is a matter that
4699 *	should be tested and standardized at some point in the future for
4700 *	optimal aging of shared pages.
4701 */
4702int
4703pmap_ts_referenced(vm_page_t m)
4704{
4705	struct md_page *pvh;
4706	pv_entry_t pv, pvf, pvn;
4707	pmap_t pmap;
4708	pd_entry_t oldpde, *pde;
4709	pt_entry_t *pte;
4710	vm_offset_t va;
4711	int rtval = 0;
4712
4713	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4714	    ("pmap_ts_referenced: page %p is not managed", m));
4715	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4716	rw_wlock(&pvh_global_lock);
4717	sched_pin();
4718	if ((m->flags & PG_FICTITIOUS) != 0)
4719		goto small_mappings;
4720	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4721		va = pv->pv_va;
4722		pmap = PV_PMAP(pv);
4723		PMAP_LOCK(pmap);
4724		pde = pmap_pde(pmap, va);
4725		oldpde = *pde;
4726		if ((oldpde & PG_A) != 0) {
4727			if (pmap_demote_pde(pmap, pde, va)) {
4728				if ((oldpde & PG_W) == 0) {
4729					/*
4730					 * Remove the mapping to a single page
4731					 * so that a subsequent access may
4732					 * repromote.  Since the underlying
4733					 * page table page is fully populated,
4734					 * this removal never frees a page
4735					 * table page.
4736					 */
4737					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4738					    PG_PS_FRAME);
4739					pmap_remove_page(pmap, va, NULL);
4740					rtval++;
4741					if (rtval > 4) {
4742						PMAP_UNLOCK(pmap);
4743						goto out;
4744					}
4745				}
4746			}
4747		}
4748		PMAP_UNLOCK(pmap);
4749	}
4750small_mappings:
4751	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4752		pvf = pv;
4753		do {
4754			pvn = TAILQ_NEXT(pv, pv_list);
4755			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4756			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4757			pmap = PV_PMAP(pv);
4758			PMAP_LOCK(pmap);
4759			pde = pmap_pde(pmap, pv->pv_va);
4760			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4761			    " found a 4mpage in page %p's pv list", m));
4762			pte = pmap_pte_quick(pmap, pv->pv_va);
4763			if ((*pte & PG_A) != 0) {
4764				atomic_clear_int((u_int *)pte, PG_A);
4765				pmap_invalidate_page(pmap, pv->pv_va);
4766				rtval++;
4767				if (rtval > 4)
4768					pvn = NULL;
4769			}
4770			PMAP_UNLOCK(pmap);
4771		} while ((pv = pvn) != NULL && pv != pvf);
4772	}
4773out:
4774	sched_unpin();
4775	rw_wunlock(&pvh_global_lock);
4776	return (rtval);
4777}
4778
4779/*
4780 *	Clear the modify bits on the specified physical page.
4781 */
4782void
4783pmap_clear_modify(vm_page_t m)
4784{
4785	struct md_page *pvh;
4786	pv_entry_t next_pv, pv;
4787	pmap_t pmap;
4788	pd_entry_t oldpde, *pde;
4789	pt_entry_t oldpte, *pte;
4790	vm_offset_t va;
4791
4792	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4793	    ("pmap_clear_modify: page %p is not managed", m));
4794	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4795	KASSERT((m->oflags & VPO_BUSY) == 0,
4796	    ("pmap_clear_modify: page %p is busy", m));
4797
4798	/*
4799	 * If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
4800	 * If the object containing the page is locked and the page is not
4801	 * VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
4802	 */
4803	if ((m->aflags & PGA_WRITEABLE) == 0)
4804		return;
4805	rw_wlock(&pvh_global_lock);
4806	sched_pin();
4807	if ((m->flags & PG_FICTITIOUS) != 0)
4808		goto small_mappings;
4809	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4810	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4811		va = pv->pv_va;
4812		pmap = PV_PMAP(pv);
4813		PMAP_LOCK(pmap);
4814		pde = pmap_pde(pmap, va);
4815		oldpde = *pde;
4816		if ((oldpde & PG_RW) != 0) {
4817			if (pmap_demote_pde(pmap, pde, va)) {
4818				if ((oldpde & PG_W) == 0) {
4819					/*
4820					 * Write protect the mapping to a
4821					 * single page so that a subsequent
4822					 * write access may repromote.
4823					 */
4824					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4825					    PG_PS_FRAME);
4826					pte = pmap_pte_quick(pmap, va);
4827					oldpte = *pte;
4828					if ((oldpte & PG_V) != 0) {
4829						/*
4830						 * Regardless of whether a pte is 32 or 64 bits
4831						 * in size, PG_RW and PG_M are among the least
4832						 * significant 32 bits.
4833						 */
4834						while (!atomic_cmpset_int((u_int *)pte,
4835						    oldpte,
4836						    oldpte & ~(PG_M | PG_RW)))
4837							oldpte = *pte;
4838						vm_page_dirty(m);
4839						pmap_invalidate_page(pmap, va);
4840					}
4841				}
4842			}
4843		}
4844		PMAP_UNLOCK(pmap);
4845	}
4846small_mappings:
4847	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4848		pmap = PV_PMAP(pv);
4849		PMAP_LOCK(pmap);
4850		pde = pmap_pde(pmap, pv->pv_va);
4851		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4852		    " a 4mpage in page %p's pv list", m));
4853		pte = pmap_pte_quick(pmap, pv->pv_va);
4854		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4855			/*
4856			 * Regardless of whether a pte is 32 or 64 bits
4857			 * in size, PG_M is among the least significant
4858			 * 32 bits.
4859			 */
4860			atomic_clear_int((u_int *)pte, PG_M);
4861			pmap_invalidate_page(pmap, pv->pv_va);
4862		}
4863		PMAP_UNLOCK(pmap);
4864	}
4865	sched_unpin();
4866	rw_wunlock(&pvh_global_lock);
4867}
4868
4869/*
4870 *	pmap_clear_reference:
4871 *
4872 *	Clear the reference bit on the specified physical page.
4873 */
4874void
4875pmap_clear_reference(vm_page_t m)
4876{
4877	struct md_page *pvh;
4878	pv_entry_t next_pv, pv;
4879	pmap_t pmap;
4880	pd_entry_t oldpde, *pde;
4881	pt_entry_t *pte;
4882	vm_offset_t va;
4883
4884	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4885	    ("pmap_clear_reference: page %p is not managed", m));
4886	rw_wlock(&pvh_global_lock);
4887	sched_pin();
4888	if ((m->flags & PG_FICTITIOUS) != 0)
4889		goto small_mappings;
4890	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4891	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4892		va = pv->pv_va;
4893		pmap = PV_PMAP(pv);
4894		PMAP_LOCK(pmap);
4895		pde = pmap_pde(pmap, va);
4896		oldpde = *pde;
4897		if ((oldpde & PG_A) != 0) {
4898			if (pmap_demote_pde(pmap, pde, va)) {
4899				/*
4900				 * Remove the mapping to a single page so
4901				 * that a subsequent access may repromote.
4902				 * Since the underlying page table page is
4903				 * fully populated, this removal never frees
4904				 * a page table page.
4905				 */
4906				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4907				    PG_PS_FRAME);
4908				pmap_remove_page(pmap, va, NULL);
4909			}
4910		}
4911		PMAP_UNLOCK(pmap);
4912	}
4913small_mappings:
4914	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4915		pmap = PV_PMAP(pv);
4916		PMAP_LOCK(pmap);
4917		pde = pmap_pde(pmap, pv->pv_va);
4918		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4919		    " a 4mpage in page %p's pv list", m));
4920		pte = pmap_pte_quick(pmap, pv->pv_va);
4921		if ((*pte & PG_A) != 0) {
4922			/*
4923			 * Regardless of whether a pte is 32 or 64 bits
4924			 * in size, PG_A is among the least significant
4925			 * 32 bits.
4926			 */
4927			atomic_clear_int((u_int *)pte, PG_A);
4928			pmap_invalidate_page(pmap, pv->pv_va);
4929		}
4930		PMAP_UNLOCK(pmap);
4931	}
4932	sched_unpin();
4933	rw_wunlock(&pvh_global_lock);
4934}
4935
4936/*
4937 * Miscellaneous support routines follow
4938 */
4939
4940/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4941static __inline void
4942pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4943{
4944	u_int opte, npte;
4945
4946	/*
4947	 * The cache mode bits are all in the low 32-bits of the
4948	 * PTE, so we can just spin on updating the low 32-bits.
4949	 */
4950	do {
4951		opte = *(u_int *)pte;
4952		npte = opte & ~PG_PTE_CACHE;
4953		npte |= cache_bits;
4954	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4955}
4956
4957/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4958static __inline void
4959pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4960{
4961	u_int opde, npde;
4962
4963	/*
4964	 * The cache mode bits are all in the low 32-bits of the
4965	 * PDE, so we can just spin on updating the low 32-bits.
4966	 */
4967	do {
4968		opde = *(u_int *)pde;
4969		npde = opde & ~PG_PDE_CACHE;
4970		npde |= cache_bits;
4971	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4972}
4973
4974/*
4975 * Map a set of physical memory pages into the kernel virtual
4976 * address space. Return a pointer to where it is mapped. This
4977 * routine is intended to be used for mapping device memory,
4978 * NOT real memory.
4979 */
4980void *
4981pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4982{
4983	vm_offset_t va, offset;
4984	vm_size_t tmpsize;
4985
4986	offset = pa & PAGE_MASK;
4987	size = roundup(offset + size, PAGE_SIZE);
4988	pa = pa & PG_FRAME;
4989
4990	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4991		va = KERNBASE + pa;
4992	else
4993		va = kmem_alloc_nofault(kernel_map, size);
4994	if (!va)
4995		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4996
4997	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4998		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4999	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
5000	pmap_invalidate_cache_range(va, va + size);
5001	return ((void *)(va + offset));
5002}
5003
5004void *
5005pmap_mapdev(vm_paddr_t pa, vm_size_t size)
5006{
5007
5008	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
5009}
5010
5011void *
5012pmap_mapbios(vm_paddr_t pa, vm_size_t size)
5013{
5014
5015	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
5016}
5017
5018void
5019pmap_unmapdev(vm_offset_t va, vm_size_t size)
5020{
5021	vm_offset_t base, offset;
5022
5023	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
5024		return;
5025	base = trunc_page(va);
5026	offset = va & PAGE_MASK;
5027	size = roundup(offset + size, PAGE_SIZE);
5028	kmem_free(kernel_map, base, size);
5029}
5030
5031/*
5032 * Sets the memory attribute for the specified page.
5033 */
5034void
5035pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5036{
5037
5038	m->md.pat_mode = ma;
5039	if ((m->flags & PG_FICTITIOUS) != 0)
5040		return;
5041
5042	/*
5043	 * If "m" is a normal page, flush it from the cache.
5044	 * See pmap_invalidate_cache_range().
5045	 *
5046	 * First, try to find an existing mapping of the page by sf
5047	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5048	 * flushes the cache.
5049	 */
5050	if (sf_buf_invalidate_cache(m))
5051		return;
5052
5053	/*
5054	 * If page is not mapped by sf buffer, but CPU does not
5055	 * support self snoop, map the page transient and do
5056	 * invalidation. In the worst case, whole cache is flushed by
5057	 * pmap_invalidate_cache_range().
5058	 */
5059	if ((cpu_feature & CPUID_SS) == 0)
5060		pmap_flush_page(m);
5061}
5062
5063static void
5064pmap_flush_page(vm_page_t m)
5065{
5066	struct sysmaps *sysmaps;
5067	vm_offset_t sva, eva;
5068
5069	if ((cpu_feature & CPUID_CLFSH) != 0) {
5070		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
5071		mtx_lock(&sysmaps->lock);
5072		if (*sysmaps->CMAP2)
5073			panic("pmap_flush_page: CMAP2 busy");
5074		sched_pin();
5075		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
5076		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
5077		invlcaddr(sysmaps->CADDR2);
5078		sva = (vm_offset_t)sysmaps->CADDR2;
5079		eva = sva + PAGE_SIZE;
5080
5081		/*
5082		 * Use mfence despite the ordering implied by
5083		 * mtx_{un,}lock() because clflush is not guaranteed
5084		 * to be ordered by any other instruction.
5085		 */
5086		mfence();
5087		for (; sva < eva; sva += cpu_clflush_line_size)
5088			clflush(sva);
5089		mfence();
5090		*sysmaps->CMAP2 = 0;
5091		sched_unpin();
5092		mtx_unlock(&sysmaps->lock);
5093	} else
5094		pmap_invalidate_cache();
5095}
5096
5097/*
5098 * Changes the specified virtual address range's memory type to that given by
5099 * the parameter "mode".  The specified virtual address range must be
5100 * completely contained within either the kernel map.
5101 *
5102 * Returns zero if the change completed successfully, and either EINVAL or
5103 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
5104 * of the virtual address range was not mapped, and ENOMEM is returned if
5105 * there was insufficient memory available to complete the change.
5106 */
5107int
5108pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
5109{
5110	vm_offset_t base, offset, tmpva;
5111	pd_entry_t *pde;
5112	pt_entry_t *pte;
5113	int cache_bits_pte, cache_bits_pde;
5114	boolean_t changed;
5115
5116	base = trunc_page(va);
5117	offset = va & PAGE_MASK;
5118	size = roundup(offset + size, PAGE_SIZE);
5119
5120	/*
5121	 * Only supported on kernel virtual addresses above the recursive map.
5122	 */
5123	if (base < VM_MIN_KERNEL_ADDRESS)
5124		return (EINVAL);
5125
5126	cache_bits_pde = pmap_cache_bits(mode, 1);
5127	cache_bits_pte = pmap_cache_bits(mode, 0);
5128	changed = FALSE;
5129
5130	/*
5131	 * Pages that aren't mapped aren't supported.  Also break down
5132	 * 2/4MB pages into 4KB pages if required.
5133	 */
5134	PMAP_LOCK(kernel_pmap);
5135	for (tmpva = base; tmpva < base + size; ) {
5136		pde = pmap_pde(kernel_pmap, tmpva);
5137		if (*pde == 0) {
5138			PMAP_UNLOCK(kernel_pmap);
5139			return (EINVAL);
5140		}
5141		if (*pde & PG_PS) {
5142			/*
5143			 * If the current 2/4MB page already has
5144			 * the required memory type, then we need not
5145			 * demote this page.  Just increment tmpva to
5146			 * the next 2/4MB page frame.
5147			 */
5148			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
5149				tmpva = trunc_4mpage(tmpva) + NBPDR;
5150				continue;
5151			}
5152
5153			/*
5154			 * If the current offset aligns with a 2/4MB
5155			 * page frame and there is at least 2/4MB left
5156			 * within the range, then we need not break
5157			 * down this page into 4KB pages.
5158			 */
5159			if ((tmpva & PDRMASK) == 0 &&
5160			    tmpva + PDRMASK < base + size) {
5161				tmpva += NBPDR;
5162				continue;
5163			}
5164			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
5165				PMAP_UNLOCK(kernel_pmap);
5166				return (ENOMEM);
5167			}
5168		}
5169		pte = vtopte(tmpva);
5170		if (*pte == 0) {
5171			PMAP_UNLOCK(kernel_pmap);
5172			return (EINVAL);
5173		}
5174		tmpva += PAGE_SIZE;
5175	}
5176	PMAP_UNLOCK(kernel_pmap);
5177
5178	/*
5179	 * Ok, all the pages exist, so run through them updating their
5180	 * cache mode if required.
5181	 */
5182	for (tmpva = base; tmpva < base + size; ) {
5183		pde = pmap_pde(kernel_pmap, tmpva);
5184		if (*pde & PG_PS) {
5185			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
5186				pmap_pde_attr(pde, cache_bits_pde);
5187				changed = TRUE;
5188			}
5189			tmpva = trunc_4mpage(tmpva) + NBPDR;
5190		} else {
5191			pte = vtopte(tmpva);
5192			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
5193				pmap_pte_attr(pte, cache_bits_pte);
5194				changed = TRUE;
5195			}
5196			tmpva += PAGE_SIZE;
5197		}
5198	}
5199
5200	/*
5201	 * Flush CPU caches to make sure any data isn't cached that
5202	 * shouldn't be, etc.
5203	 */
5204	if (changed) {
5205		pmap_invalidate_range(kernel_pmap, base, tmpva);
5206		pmap_invalidate_cache_range(base, tmpva);
5207	}
5208	return (0);
5209}
5210
5211/*
5212 * perform the pmap work for mincore
5213 */
5214int
5215pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
5216{
5217	pd_entry_t *pdep;
5218	pt_entry_t *ptep, pte;
5219	vm_paddr_t pa;
5220	int val;
5221
5222	PMAP_LOCK(pmap);
5223retry:
5224	pdep = pmap_pde(pmap, addr);
5225	if (*pdep != 0) {
5226		if (*pdep & PG_PS) {
5227			pte = *pdep;
5228			/* Compute the physical address of the 4KB page. */
5229			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
5230			    PG_FRAME;
5231			val = MINCORE_SUPER;
5232		} else {
5233			ptep = pmap_pte(pmap, addr);
5234			pte = *ptep;
5235			pmap_pte_release(ptep);
5236			pa = pte & PG_FRAME;
5237			val = 0;
5238		}
5239	} else {
5240		pte = 0;
5241		pa = 0;
5242		val = 0;
5243	}
5244	if ((pte & PG_V) != 0) {
5245		val |= MINCORE_INCORE;
5246		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
5247			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
5248		if ((pte & PG_A) != 0)
5249			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
5250	}
5251	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
5252	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
5253	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
5254		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
5255		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
5256			goto retry;
5257	} else
5258		PA_UNLOCK_COND(*locked_pa);
5259	PMAP_UNLOCK(pmap);
5260	return (val);
5261}
5262
5263void
5264pmap_activate(struct thread *td)
5265{
5266	pmap_t	pmap, oldpmap;
5267	u_int	cpuid;
5268	u_int32_t  cr3;
5269
5270	critical_enter();
5271	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5272	oldpmap = PCPU_GET(curpmap);
5273	cpuid = PCPU_GET(cpuid);
5274#if defined(SMP)
5275	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
5276	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
5277#else
5278	CPU_CLR(cpuid, &oldpmap->pm_active);
5279	CPU_SET(cpuid, &pmap->pm_active);
5280#endif
5281#ifdef PAE
5282	cr3 = vtophys(pmap->pm_pdpt);
5283#else
5284	cr3 = vtophys(pmap->pm_pdir);
5285#endif
5286	/*
5287	 * pmap_activate is for the current thread on the current cpu
5288	 */
5289	td->td_pcb->pcb_cr3 = cr3;
5290	load_cr3(cr3);
5291	PCPU_SET(curpmap, pmap);
5292	critical_exit();
5293}
5294
5295void
5296pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5297{
5298}
5299
5300/*
5301 *	Increase the starting virtual address of the given mapping if a
5302 *	different alignment might result in more superpage mappings.
5303 */
5304void
5305pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5306    vm_offset_t *addr, vm_size_t size)
5307{
5308	vm_offset_t superpage_offset;
5309
5310	if (size < NBPDR)
5311		return;
5312	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5313		offset += ptoa(object->pg_color);
5314	superpage_offset = offset & PDRMASK;
5315	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5316	    (*addr & PDRMASK) == superpage_offset)
5317		return;
5318	if ((*addr & PDRMASK) < superpage_offset)
5319		*addr = (*addr & ~PDRMASK) + superpage_offset;
5320	else
5321		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5322}
5323
5324
5325#if defined(PMAP_DEBUG)
5326pmap_pid_dump(int pid)
5327{
5328	pmap_t pmap;
5329	struct proc *p;
5330	int npte = 0;
5331	int index;
5332
5333	sx_slock(&allproc_lock);
5334	FOREACH_PROC_IN_SYSTEM(p) {
5335		if (p->p_pid != pid)
5336			continue;
5337
5338		if (p->p_vmspace) {
5339			int i,j;
5340			index = 0;
5341			pmap = vmspace_pmap(p->p_vmspace);
5342			for (i = 0; i < NPDEPTD; i++) {
5343				pd_entry_t *pde;
5344				pt_entry_t *pte;
5345				vm_offset_t base = i << PDRSHIFT;
5346
5347				pde = &pmap->pm_pdir[i];
5348				if (pde && pmap_pde_v(pde)) {
5349					for (j = 0; j < NPTEPG; j++) {
5350						vm_offset_t va = base + (j << PAGE_SHIFT);
5351						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5352							if (index) {
5353								index = 0;
5354								printf("\n");
5355							}
5356							sx_sunlock(&allproc_lock);
5357							return (npte);
5358						}
5359						pte = pmap_pte(pmap, va);
5360						if (pte && pmap_pte_v(pte)) {
5361							pt_entry_t pa;
5362							vm_page_t m;
5363							pa = *pte;
5364							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5365							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5366								va, pa, m->hold_count, m->wire_count, m->flags);
5367							npte++;
5368							index++;
5369							if (index >= 2) {
5370								index = 0;
5371								printf("\n");
5372							} else {
5373								printf(" ");
5374							}
5375						}
5376					}
5377				}
5378			}
5379		}
5380	}
5381	sx_sunlock(&allproc_lock);
5382	return (npte);
5383}
5384#endif
5385
5386#if defined(DEBUG)
5387
5388static void	pads(pmap_t pm);
5389void		pmap_pvdump(vm_paddr_t pa);
5390
5391/* print address space of pmap*/
5392static void
5393pads(pmap_t pm)
5394{
5395	int i, j;
5396	vm_paddr_t va;
5397	pt_entry_t *ptep;
5398
5399	if (pm == kernel_pmap)
5400		return;
5401	for (i = 0; i < NPDEPTD; i++)
5402		if (pm->pm_pdir[i])
5403			for (j = 0; j < NPTEPG; j++) {
5404				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5405				if (pm == kernel_pmap && va < KERNBASE)
5406					continue;
5407				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5408					continue;
5409				ptep = pmap_pte(pm, va);
5410				if (pmap_pte_v(ptep))
5411					printf("%x:%x ", va, *ptep);
5412			};
5413
5414}
5415
5416void
5417pmap_pvdump(vm_paddr_t pa)
5418{
5419	pv_entry_t pv;
5420	pmap_t pmap;
5421	vm_page_t m;
5422
5423	printf("pa %x", pa);
5424	m = PHYS_TO_VM_PAGE(pa);
5425	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5426		pmap = PV_PMAP(pv);
5427		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5428		pads(pmap);
5429	}
5430	printf(" ");
5431}
5432#endif
5433