pmap.c revision 208175
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 208175 2010-05-16 23:45:10Z alc $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/ktr.h>
116#include <sys/lock.h>
117#include <sys/malloc.h>
118#include <sys/mman.h>
119#include <sys/msgbuf.h>
120#include <sys/mutex.h>
121#include <sys/proc.h>
122#include <sys/sf_buf.h>
123#include <sys/sx.h>
124#include <sys/vmmeter.h>
125#include <sys/sched.h>
126#include <sys/sysctl.h>
127#ifdef SMP
128#include <sys/smp.h>
129#endif
130
131#include <vm/vm.h>
132#include <vm/vm_param.h>
133#include <vm/vm_kern.h>
134#include <vm/vm_page.h>
135#include <vm/vm_map.h>
136#include <vm/vm_object.h>
137#include <vm/vm_extern.h>
138#include <vm/vm_pageout.h>
139#include <vm/vm_pager.h>
140#include <vm/vm_reserv.h>
141#include <vm/uma.h>
142
143#include <machine/cpu.h>
144#include <machine/cputypes.h>
145#include <machine/md_var.h>
146#include <machine/pcb.h>
147#include <machine/specialreg.h>
148#ifdef SMP
149#include <machine/smp.h>
150#endif
151
152#ifdef XBOX
153#include <machine/xbox.h>
154#endif
155
156#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
157#define CPU_ENABLE_SSE
158#endif
159
160#ifndef PMAP_SHPGPERPROC
161#define PMAP_SHPGPERPROC 200
162#endif
163
164#if !defined(DIAGNOSTIC)
165#ifdef __GNUC_GNU_INLINE__
166#define PMAP_INLINE	__attribute__((__gnu_inline__)) inline
167#else
168#define PMAP_INLINE	extern inline
169#endif
170#else
171#define PMAP_INLINE
172#endif
173
174#define PV_STATS
175#ifdef PV_STATS
176#define PV_STAT(x)	do { x ; } while (0)
177#else
178#define PV_STAT(x)	do { } while (0)
179#endif
180
181#define	pa_index(pa)	((pa) >> PDRSHIFT)
182#define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
183
184/*
185 * Get PDEs and PTEs for user/kernel address space
186 */
187#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
188#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
189
190#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
191#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
192#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
193#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
194#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
195
196#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
197    atomic_clear_int((u_int *)(pte), PG_W))
198#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
199
200struct pmap kernel_pmap_store;
201LIST_HEAD(pmaplist, pmap);
202static struct pmaplist allpmaps;
203static struct mtx allpmaps_lock;
204
205vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
206vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
207int pgeflag = 0;		/* PG_G or-in */
208int pseflag = 0;		/* PG_PS or-in */
209
210static int nkpt = NKPT;
211vm_offset_t kernel_vm_end = KERNBASE + NKPT * NBPDR;
212extern u_int32_t KERNend;
213extern u_int32_t KPTphys;
214
215#ifdef PAE
216pt_entry_t pg_nx;
217static uma_zone_t pdptzone;
218#endif
219
220static int pat_works = 0;		/* Is page attribute table sane? */
221
222SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
223
224static int pg_ps_enabled = 1;
225SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN, &pg_ps_enabled, 0,
226    "Are large page mappings enabled?");
227
228/*
229 * Data for the pv entry allocation mechanism
230 */
231static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
232static struct md_page *pv_table;
233static int shpgperproc = PMAP_SHPGPERPROC;
234
235struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
236int pv_maxchunks;			/* How many chunks we have KVA for */
237vm_offset_t pv_vafree;			/* freelist stored in the PTE */
238
239/*
240 * All those kernel PT submaps that BSD is so fond of
241 */
242struct sysmaps {
243	struct	mtx lock;
244	pt_entry_t *CMAP1;
245	pt_entry_t *CMAP2;
246	caddr_t	CADDR1;
247	caddr_t	CADDR2;
248};
249static struct sysmaps sysmaps_pcpu[MAXCPU];
250pt_entry_t *CMAP1 = 0, *KPTmap;
251static pt_entry_t *CMAP3;
252static pd_entry_t *KPTD;
253caddr_t CADDR1 = 0, ptvmmap = 0;
254static caddr_t CADDR3;
255struct msgbuf *msgbufp = 0;
256
257/*
258 * Crashdump maps.
259 */
260static caddr_t crashdumpmap;
261
262static pt_entry_t *PMAP1 = 0, *PMAP2;
263static pt_entry_t *PADDR1 = 0, *PADDR2;
264#ifdef SMP
265static int PMAP1cpu;
266static int PMAP1changedcpu;
267SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
268	   &PMAP1changedcpu, 0,
269	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
270#endif
271static int PMAP1changed;
272SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
273	   &PMAP1changed, 0,
274	   "Number of times pmap_pte_quick changed PMAP1");
275static int PMAP1unchanged;
276SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
277	   &PMAP1unchanged, 0,
278	   "Number of times pmap_pte_quick didn't change PMAP1");
279static struct mtx PMAP2mutex;
280
281static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
282static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
283static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
284static boolean_t pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
285static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa);
286static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
287static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
288		    vm_offset_t va);
289static int	pmap_pvh_wired_mappings(struct md_page *pvh, int count);
290
291static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
292static boolean_t pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m,
293    vm_prot_t prot);
294static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
295    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
296static void pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
297static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
298static boolean_t pmap_is_modified_pvh(struct md_page *pvh);
299static boolean_t pmap_is_referenced_pvh(struct md_page *pvh);
300static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
301static void pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde);
302static vm_page_t pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va);
303static void pmap_pde_attr(pd_entry_t *pde, int cache_bits);
304static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
305static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
306    vm_prot_t prot);
307static void pmap_pte_attr(pt_entry_t *pte, int cache_bits);
308static void pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
309    vm_page_t *free);
310static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
311    vm_page_t *free);
312static void pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte);
313static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
314    vm_page_t *free);
315static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
316					vm_offset_t va);
317static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
318static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
319    vm_page_t m);
320static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
321    pd_entry_t newpde);
322static void pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde);
323
324static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
325
326static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
327static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
328static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
329static void pmap_pte_release(pt_entry_t *pte);
330static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
331#ifdef PAE
332static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
333#endif
334static void pmap_set_pg(void);
335
336CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
337CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
338
339/*
340 * If you get an error here, then you set KVA_PAGES wrong! See the
341 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
342 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
343 */
344CTASSERT(KERNBASE % (1 << 24) == 0);
345
346/*
347 *	Bootstrap the system enough to run with virtual memory.
348 *
349 *	On the i386 this is called after mapping has already been enabled
350 *	and just syncs the pmap module with what has already been done.
351 *	[We can't call it easily with mapping off since the kernel is not
352 *	mapped with PA == VA, hence we would have to relocate every address
353 *	from the linked base (virtual) address "KERNBASE" to the actual
354 *	(physical) address starting relative to 0]
355 */
356void
357pmap_bootstrap(vm_paddr_t firstaddr)
358{
359	vm_offset_t va;
360	pt_entry_t *pte, *unused;
361	struct sysmaps *sysmaps;
362	int i;
363
364	/*
365	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
366	 * large. It should instead be correctly calculated in locore.s and
367	 * not based on 'first' (which is a physical address, not a virtual
368	 * address, for the start of unused physical memory). The kernel
369	 * page tables are NOT double mapped and thus should not be included
370	 * in this calculation.
371	 */
372	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
373
374	virtual_end = VM_MAX_KERNEL_ADDRESS;
375
376	/*
377	 * Initialize the kernel pmap (which is statically allocated).
378	 */
379	PMAP_LOCK_INIT(kernel_pmap);
380	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
381#ifdef PAE
382	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
383#endif
384	kernel_pmap->pm_root = NULL;
385	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
386	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
387	LIST_INIT(&allpmaps);
388
389	/*
390	 * Request a spin mutex so that changes to allpmaps cannot be
391	 * preempted by smp_rendezvous_cpus().  Otherwise,
392	 * pmap_update_pde_kernel() could access allpmaps while it is
393	 * being changed.
394	 */
395	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
396	mtx_lock_spin(&allpmaps_lock);
397	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
398	mtx_unlock_spin(&allpmaps_lock);
399
400	/*
401	 * Reserve some special page table entries/VA space for temporary
402	 * mapping of pages.
403	 */
404#define	SYSMAP(c, p, v, n)	\
405	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
406
407	va = virtual_avail;
408	pte = vtopte(va);
409
410	/*
411	 * CMAP1/CMAP2 are used for zeroing and copying pages.
412	 * CMAP3 is used for the idle process page zeroing.
413	 */
414	for (i = 0; i < MAXCPU; i++) {
415		sysmaps = &sysmaps_pcpu[i];
416		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
417		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
418		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
419	}
420	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
421	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
422
423	/*
424	 * Crashdump maps.
425	 */
426	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
427
428	/*
429	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
430	 */
431	SYSMAP(caddr_t, unused, ptvmmap, 1)
432
433	/*
434	 * msgbufp is used to map the system message buffer.
435	 */
436	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
437
438	/*
439	 * KPTmap is used by pmap_kextract().
440	 */
441	SYSMAP(pt_entry_t *, KPTD, KPTmap, KVA_PAGES)
442
443	for (i = 0; i < NKPT; i++)
444		KPTD[i] = (KPTphys + (i << PAGE_SHIFT)) | pgeflag | PG_RW | PG_V;
445
446	/*
447	 * Adjust the start of the KPTD and KPTmap so that the implementation
448	 * of pmap_kextract() and pmap_growkernel() can be made simpler.
449	 */
450	KPTD -= KPTDI;
451	KPTmap -= i386_btop(KPTDI << PDRSHIFT);
452
453	/*
454	 * ptemap is used for pmap_pte_quick
455	 */
456	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1)
457	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1)
458
459	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
460
461	virtual_avail = va;
462
463	/*
464	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
465	 * physical memory region that is used by the ACPI wakeup code.  This
466	 * mapping must not have PG_G set.
467	 */
468#ifdef XBOX
469	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
470	 * an early stadium, we cannot yet neatly map video memory ... :-(
471	 * Better fixes are very welcome! */
472	if (!arch_i386_is_xbox)
473#endif
474	for (i = 1; i < NKPT; i++)
475		PTD[i] = 0;
476
477	/* Initialize the PAT MSR if present. */
478	pmap_init_pat();
479
480	/* Turn on PG_G on kernel page(s) */
481	pmap_set_pg();
482}
483
484/*
485 * Setup the PAT MSR.
486 */
487void
488pmap_init_pat(void)
489{
490	uint64_t pat_msr;
491	char *sysenv;
492	static int pat_tested = 0;
493
494	/* Bail if this CPU doesn't implement PAT. */
495	if (!(cpu_feature & CPUID_PAT))
496		return;
497
498	/*
499	 * Due to some Intel errata, we can only safely use the lower 4
500	 * PAT entries.
501	 *
502	 *   Intel Pentium III Processor Specification Update
503	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
504	 * or Mode C Paging)
505	 *
506	 *   Intel Pentium IV  Processor Specification Update
507	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
508	 *
509	 * Some Apple Macs based on nVidia chipsets cannot enter ACPI mode
510	 * via SMI# when we use upper 4 PAT entries for unknown reason.
511	 */
512	if (!pat_tested) {
513		if (cpu_vendor_id != CPU_VENDOR_INTEL ||
514		    (CPUID_TO_FAMILY(cpu_id) == 6 &&
515		    CPUID_TO_MODEL(cpu_id) >= 0xe)) {
516			pat_works = 1;
517			sysenv = getenv("smbios.system.product");
518			if (sysenv != NULL) {
519				if (strncmp(sysenv, "MacBook5,1", 10) == 0 ||
520				    strncmp(sysenv, "MacBookPro5,5", 13) == 0 ||
521				    strncmp(sysenv, "Macmini3,1", 10) == 0)
522					pat_works = 0;
523				freeenv(sysenv);
524			}
525		}
526		pat_tested = 1;
527	}
528
529	/* Initialize default PAT entries. */
530	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
531	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
532	    PAT_VALUE(2, PAT_UNCACHED) |
533	    PAT_VALUE(3, PAT_UNCACHEABLE) |
534	    PAT_VALUE(4, PAT_WRITE_BACK) |
535	    PAT_VALUE(5, PAT_WRITE_THROUGH) |
536	    PAT_VALUE(6, PAT_UNCACHED) |
537	    PAT_VALUE(7, PAT_UNCACHEABLE);
538
539	if (pat_works) {
540		/*
541		 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
542		 * Program 4 and 5 as WP and WC.
543		 * Leave 6 and 7 as UC- and UC.
544		 */
545		pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
546		pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
547		    PAT_VALUE(5, PAT_WRITE_COMBINING);
548	} else {
549		/*
550		 * Just replace PAT Index 2 with WC instead of UC-.
551		 */
552		pat_msr &= ~PAT_MASK(2);
553		pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
554	}
555	wrmsr(MSR_PAT, pat_msr);
556}
557
558/*
559 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
560 */
561static void
562pmap_set_pg(void)
563{
564	pt_entry_t *pte;
565	vm_offset_t va, endva;
566
567	if (pgeflag == 0)
568		return;
569
570	endva = KERNBASE + KERNend;
571
572	if (pseflag) {
573		va = KERNBASE + KERNLOAD;
574		while (va  < endva) {
575			pdir_pde(PTD, va) |= pgeflag;
576			invltlb();	/* Play it safe, invltlb() every time */
577			va += NBPDR;
578		}
579	} else {
580		va = (vm_offset_t)btext;
581		while (va < endva) {
582			pte = vtopte(va);
583			if (*pte)
584				*pte |= pgeflag;
585			invltlb();	/* Play it safe, invltlb() every time */
586			va += PAGE_SIZE;
587		}
588	}
589}
590
591/*
592 * Initialize a vm_page's machine-dependent fields.
593 */
594void
595pmap_page_init(vm_page_t m)
596{
597
598	TAILQ_INIT(&m->md.pv_list);
599	m->md.pat_mode = PAT_WRITE_BACK;
600}
601
602#ifdef PAE
603static void *
604pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
605{
606
607	/* Inform UMA that this allocator uses kernel_map/object. */
608	*flags = UMA_SLAB_KERNEL;
609	return ((void *)kmem_alloc_contig(kernel_map, bytes, wait, 0x0ULL,
610	    0xffffffffULL, 1, 0, VM_MEMATTR_DEFAULT));
611}
612#endif
613
614/*
615 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
616 * Requirements:
617 *  - Must deal with pages in order to ensure that none of the PG_* bits
618 *    are ever set, PG_V in particular.
619 *  - Assumes we can write to ptes without pte_store() atomic ops, even
620 *    on PAE systems.  This should be ok.
621 *  - Assumes nothing will ever test these addresses for 0 to indicate
622 *    no mapping instead of correctly checking PG_V.
623 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
624 * Because PG_V is never set, there can be no mappings to invalidate.
625 */
626static vm_offset_t
627pmap_ptelist_alloc(vm_offset_t *head)
628{
629	pt_entry_t *pte;
630	vm_offset_t va;
631
632	va = *head;
633	if (va == 0)
634		return (va);	/* Out of memory */
635	pte = vtopte(va);
636	*head = *pte;
637	if (*head & PG_V)
638		panic("pmap_ptelist_alloc: va with PG_V set!");
639	*pte = 0;
640	return (va);
641}
642
643static void
644pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
645{
646	pt_entry_t *pte;
647
648	if (va & PG_V)
649		panic("pmap_ptelist_free: freeing va with PG_V set!");
650	pte = vtopte(va);
651	*pte = *head;		/* virtual! PG_V is 0 though */
652	*head = va;
653}
654
655static void
656pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
657{
658	int i;
659	vm_offset_t va;
660
661	*head = 0;
662	for (i = npages - 1; i >= 0; i--) {
663		va = (vm_offset_t)base + i * PAGE_SIZE;
664		pmap_ptelist_free(head, va);
665	}
666}
667
668
669/*
670 *	Initialize the pmap module.
671 *	Called by vm_init, to initialize any structures that the pmap
672 *	system needs to map virtual memory.
673 */
674void
675pmap_init(void)
676{
677	vm_page_t mpte;
678	vm_size_t s;
679	int i, pv_npg;
680
681	/*
682	 * Initialize the vm page array entries for the kernel pmap's
683	 * page table pages.
684	 */
685	for (i = 0; i < NKPT; i++) {
686		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
687		KASSERT(mpte >= vm_page_array &&
688		    mpte < &vm_page_array[vm_page_array_size],
689		    ("pmap_init: page table page is out of range"));
690		mpte->pindex = i + KPTDI;
691		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
692	}
693
694	/*
695	 * Initialize the address space (zone) for the pv entries.  Set a
696	 * high water mark so that the system can recover from excessive
697	 * numbers of pv entries.
698	 */
699	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
700	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
701	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
702	pv_entry_max = roundup(pv_entry_max, _NPCPV);
703	pv_entry_high_water = 9 * (pv_entry_max / 10);
704
705	/*
706	 * If the kernel is running in a virtual machine on an AMD Family 10h
707	 * processor, then it must assume that MCA is enabled by the virtual
708	 * machine monitor.
709	 */
710	if (vm_guest == VM_GUEST_VM && cpu_vendor_id == CPU_VENDOR_AMD &&
711	    CPUID_TO_FAMILY(cpu_id) == 0x10)
712		workaround_erratum383 = 1;
713
714	/*
715	 * Are large page mappings supported and enabled?
716	 */
717	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
718	if (pseflag == 0)
719		pg_ps_enabled = 0;
720	else if (pg_ps_enabled) {
721		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
722		    ("pmap_init: can't assign to pagesizes[1]"));
723		pagesizes[1] = NBPDR;
724	}
725
726	/*
727	 * Calculate the size of the pv head table for superpages.
728	 */
729	for (i = 0; phys_avail[i + 1]; i += 2);
730	pv_npg = round_4mpage(phys_avail[(i - 2) + 1]) / NBPDR;
731
732	/*
733	 * Allocate memory for the pv head table for superpages.
734	 */
735	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
736	s = round_page(s);
737	pv_table = (struct md_page *)kmem_alloc(kernel_map, s);
738	for (i = 0; i < pv_npg; i++)
739		TAILQ_INIT(&pv_table[i].pv_list);
740
741	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
742	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
743	    PAGE_SIZE * pv_maxchunks);
744	if (pv_chunkbase == NULL)
745		panic("pmap_init: not enough kvm for pv chunks");
746	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
747#ifdef PAE
748	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
749	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
750	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
751	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
752#endif
753}
754
755
756SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
757	"Max number of PV entries");
758SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
759	"Page share factor per proc");
760
761SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
762    "2/4MB page mapping counters");
763
764static u_long pmap_pde_demotions;
765SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
766    &pmap_pde_demotions, 0, "2/4MB page demotions");
767
768static u_long pmap_pde_mappings;
769SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
770    &pmap_pde_mappings, 0, "2/4MB page mappings");
771
772static u_long pmap_pde_p_failures;
773SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
774    &pmap_pde_p_failures, 0, "2/4MB page promotion failures");
775
776static u_long pmap_pde_promotions;
777SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
778    &pmap_pde_promotions, 0, "2/4MB page promotions");
779
780/***************************************************
781 * Low level helper routines.....
782 ***************************************************/
783
784/*
785 * Determine the appropriate bits to set in a PTE or PDE for a specified
786 * caching mode.
787 */
788int
789pmap_cache_bits(int mode, boolean_t is_pde)
790{
791	int pat_flag, pat_index, cache_bits;
792
793	/* The PAT bit is different for PTE's and PDE's. */
794	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
795
796	/* If we don't support PAT, map extended modes to older ones. */
797	if (!(cpu_feature & CPUID_PAT)) {
798		switch (mode) {
799		case PAT_UNCACHEABLE:
800		case PAT_WRITE_THROUGH:
801		case PAT_WRITE_BACK:
802			break;
803		case PAT_UNCACHED:
804		case PAT_WRITE_COMBINING:
805		case PAT_WRITE_PROTECTED:
806			mode = PAT_UNCACHEABLE;
807			break;
808		}
809	}
810
811	/* Map the caching mode to a PAT index. */
812	if (pat_works) {
813		switch (mode) {
814		case PAT_UNCACHEABLE:
815			pat_index = 3;
816			break;
817		case PAT_WRITE_THROUGH:
818			pat_index = 1;
819			break;
820		case PAT_WRITE_BACK:
821			pat_index = 0;
822			break;
823		case PAT_UNCACHED:
824			pat_index = 2;
825			break;
826		case PAT_WRITE_COMBINING:
827			pat_index = 5;
828			break;
829		case PAT_WRITE_PROTECTED:
830			pat_index = 4;
831			break;
832		default:
833			panic("Unknown caching mode %d\n", mode);
834		}
835	} else {
836		switch (mode) {
837		case PAT_UNCACHED:
838		case PAT_UNCACHEABLE:
839		case PAT_WRITE_PROTECTED:
840			pat_index = 3;
841			break;
842		case PAT_WRITE_THROUGH:
843			pat_index = 1;
844			break;
845		case PAT_WRITE_BACK:
846			pat_index = 0;
847			break;
848		case PAT_WRITE_COMBINING:
849			pat_index = 2;
850			break;
851		default:
852			panic("Unknown caching mode %d\n", mode);
853		}
854	}
855
856	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
857	cache_bits = 0;
858	if (pat_index & 0x4)
859		cache_bits |= pat_flag;
860	if (pat_index & 0x2)
861		cache_bits |= PG_NC_PCD;
862	if (pat_index & 0x1)
863		cache_bits |= PG_NC_PWT;
864	return (cache_bits);
865}
866
867/*
868 * The caller is responsible for maintaining TLB consistency.
869 */
870static void
871pmap_kenter_pde(vm_offset_t va, pd_entry_t newpde)
872{
873	pd_entry_t *pde;
874	pmap_t pmap;
875	boolean_t PTD_updated;
876
877	PTD_updated = FALSE;
878	mtx_lock_spin(&allpmaps_lock);
879	LIST_FOREACH(pmap, &allpmaps, pm_list) {
880		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] &
881		    PG_FRAME))
882			PTD_updated = TRUE;
883		pde = pmap_pde(pmap, va);
884		pde_store(pde, newpde);
885	}
886	mtx_unlock_spin(&allpmaps_lock);
887	KASSERT(PTD_updated,
888	    ("pmap_kenter_pde: current page table is not in allpmaps"));
889}
890
891/*
892 * After changing the page size for the specified virtual address in the page
893 * table, flush the corresponding entries from the processor's TLB.  Only the
894 * calling processor's TLB is affected.
895 *
896 * The calling thread must be pinned to a processor.
897 */
898static void
899pmap_update_pde_invalidate(vm_offset_t va, pd_entry_t newpde)
900{
901	u_long cr4;
902
903	if ((newpde & PG_PS) == 0)
904		/* Demotion: flush a specific 2MB page mapping. */
905		invlpg(va);
906	else if ((newpde & PG_G) == 0)
907		/*
908		 * Promotion: flush every 4KB page mapping from the TLB
909		 * because there are too many to flush individually.
910		 */
911		invltlb();
912	else {
913		/*
914		 * Promotion: flush every 4KB page mapping from the TLB,
915		 * including any global (PG_G) mappings.
916		 */
917		cr4 = rcr4();
918		load_cr4(cr4 & ~CR4_PGE);
919		/*
920		 * Although preemption at this point could be detrimental to
921		 * performance, it would not lead to an error.  PG_G is simply
922		 * ignored if CR4.PGE is clear.  Moreover, in case this block
923		 * is re-entered, the load_cr4() either above or below will
924		 * modify CR4.PGE flushing the TLB.
925		 */
926		load_cr4(cr4 | CR4_PGE);
927	}
928}
929#ifdef SMP
930/*
931 * For SMP, these functions have to use the IPI mechanism for coherence.
932 *
933 * N.B.: Before calling any of the following TLB invalidation functions,
934 * the calling processor must ensure that all stores updating a non-
935 * kernel page table are globally performed.  Otherwise, another
936 * processor could cache an old, pre-update entry without being
937 * invalidated.  This can happen one of two ways: (1) The pmap becomes
938 * active on another processor after its pm_active field is checked by
939 * one of the following functions but before a store updating the page
940 * table is globally performed. (2) The pmap becomes active on another
941 * processor before its pm_active field is checked but due to
942 * speculative loads one of the following functions stills reads the
943 * pmap as inactive on the other processor.
944 *
945 * The kernel page table is exempt because its pm_active field is
946 * immutable.  The kernel page table is always active on every
947 * processor.
948 */
949void
950pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
951{
952	u_int cpumask;
953	u_int other_cpus;
954
955	sched_pin();
956	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
957		invlpg(va);
958		smp_invlpg(va);
959	} else {
960		cpumask = PCPU_GET(cpumask);
961		other_cpus = PCPU_GET(other_cpus);
962		if (pmap->pm_active & cpumask)
963			invlpg(va);
964		if (pmap->pm_active & other_cpus)
965			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
966	}
967	sched_unpin();
968}
969
970void
971pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
972{
973	u_int cpumask;
974	u_int other_cpus;
975	vm_offset_t addr;
976
977	sched_pin();
978	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
979		for (addr = sva; addr < eva; addr += PAGE_SIZE)
980			invlpg(addr);
981		smp_invlpg_range(sva, eva);
982	} else {
983		cpumask = PCPU_GET(cpumask);
984		other_cpus = PCPU_GET(other_cpus);
985		if (pmap->pm_active & cpumask)
986			for (addr = sva; addr < eva; addr += PAGE_SIZE)
987				invlpg(addr);
988		if (pmap->pm_active & other_cpus)
989			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
990			    sva, eva);
991	}
992	sched_unpin();
993}
994
995void
996pmap_invalidate_all(pmap_t pmap)
997{
998	u_int cpumask;
999	u_int other_cpus;
1000
1001	sched_pin();
1002	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
1003		invltlb();
1004		smp_invltlb();
1005	} else {
1006		cpumask = PCPU_GET(cpumask);
1007		other_cpus = PCPU_GET(other_cpus);
1008		if (pmap->pm_active & cpumask)
1009			invltlb();
1010		if (pmap->pm_active & other_cpus)
1011			smp_masked_invltlb(pmap->pm_active & other_cpus);
1012	}
1013	sched_unpin();
1014}
1015
1016void
1017pmap_invalidate_cache(void)
1018{
1019
1020	sched_pin();
1021	wbinvd();
1022	smp_cache_flush();
1023	sched_unpin();
1024}
1025
1026struct pde_action {
1027	cpumask_t store;	/* processor that updates the PDE */
1028	cpumask_t invalidate;	/* processors that invalidate their TLB */
1029	vm_offset_t va;
1030	pd_entry_t *pde;
1031	pd_entry_t newpde;
1032};
1033
1034static void
1035pmap_update_pde_kernel(void *arg)
1036{
1037	struct pde_action *act = arg;
1038	pd_entry_t *pde;
1039	pmap_t pmap;
1040
1041	if (act->store == PCPU_GET(cpumask))
1042		/*
1043		 * Elsewhere, this operation requires allpmaps_lock for
1044		 * synchronization.  Here, it does not because it is being
1045		 * performed in the context of an all_cpus rendezvous.
1046		 */
1047		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1048			pde = pmap_pde(pmap, act->va);
1049			pde_store(pde, act->newpde);
1050		}
1051}
1052
1053static void
1054pmap_update_pde_user(void *arg)
1055{
1056	struct pde_action *act = arg;
1057
1058	if (act->store == PCPU_GET(cpumask))
1059		pde_store(act->pde, act->newpde);
1060}
1061
1062static void
1063pmap_update_pde_teardown(void *arg)
1064{
1065	struct pde_action *act = arg;
1066
1067	if ((act->invalidate & PCPU_GET(cpumask)) != 0)
1068		pmap_update_pde_invalidate(act->va, act->newpde);
1069}
1070
1071/*
1072 * Change the page size for the specified virtual address in a way that
1073 * prevents any possibility of the TLB ever having two entries that map the
1074 * same virtual address using different page sizes.  This is the recommended
1075 * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
1076 * machine check exception for a TLB state that is improperly diagnosed as a
1077 * hardware error.
1078 */
1079static void
1080pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1081{
1082	struct pde_action act;
1083	cpumask_t active, cpumask;
1084
1085	sched_pin();
1086	cpumask = PCPU_GET(cpumask);
1087	if (pmap == kernel_pmap)
1088		active = all_cpus;
1089	else
1090		active = pmap->pm_active;
1091	if ((active & PCPU_GET(other_cpus)) != 0) {
1092		act.store = cpumask;
1093		act.invalidate = active;
1094		act.va = va;
1095		act.pde = pde;
1096		act.newpde = newpde;
1097		smp_rendezvous_cpus(cpumask | active,
1098		    smp_no_rendevous_barrier, pmap == kernel_pmap ?
1099		    pmap_update_pde_kernel : pmap_update_pde_user,
1100		    pmap_update_pde_teardown, &act);
1101	} else {
1102		if (pmap == kernel_pmap)
1103			pmap_kenter_pde(va, newpde);
1104		else
1105			pde_store(pde, newpde);
1106		if ((active & cpumask) != 0)
1107			pmap_update_pde_invalidate(va, newpde);
1108	}
1109	sched_unpin();
1110}
1111#else /* !SMP */
1112/*
1113 * Normal, non-SMP, 486+ invalidation functions.
1114 * We inline these within pmap.c for speed.
1115 */
1116PMAP_INLINE void
1117pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
1118{
1119
1120	if (pmap == kernel_pmap || pmap->pm_active)
1121		invlpg(va);
1122}
1123
1124PMAP_INLINE void
1125pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1126{
1127	vm_offset_t addr;
1128
1129	if (pmap == kernel_pmap || pmap->pm_active)
1130		for (addr = sva; addr < eva; addr += PAGE_SIZE)
1131			invlpg(addr);
1132}
1133
1134PMAP_INLINE void
1135pmap_invalidate_all(pmap_t pmap)
1136{
1137
1138	if (pmap == kernel_pmap || pmap->pm_active)
1139		invltlb();
1140}
1141
1142PMAP_INLINE void
1143pmap_invalidate_cache(void)
1144{
1145
1146	wbinvd();
1147}
1148
1149static void
1150pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
1151{
1152
1153	if (pmap == kernel_pmap)
1154		pmap_kenter_pde(va, newpde);
1155	else
1156		pde_store(pde, newpde);
1157	if (pmap == kernel_pmap || pmap->pm_active)
1158		pmap_update_pde_invalidate(va, newpde);
1159}
1160#endif /* !SMP */
1161
1162void
1163pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
1164{
1165
1166	KASSERT((sva & PAGE_MASK) == 0,
1167	    ("pmap_invalidate_cache_range: sva not page-aligned"));
1168	KASSERT((eva & PAGE_MASK) == 0,
1169	    ("pmap_invalidate_cache_range: eva not page-aligned"));
1170
1171	if (cpu_feature & CPUID_SS)
1172		; /* If "Self Snoop" is supported, do nothing. */
1173	else if ((cpu_feature & CPUID_CLFSH) != 0 &&
1174		 eva - sva < 2 * 1024 * 1024) {
1175
1176		/*
1177		 * Otherwise, do per-cache line flush.  Use the mfence
1178		 * instruction to insure that previous stores are
1179		 * included in the write-back.  The processor
1180		 * propagates flush to other processors in the cache
1181		 * coherence domain.
1182		 */
1183		mfence();
1184		for (; sva < eva; sva += cpu_clflush_line_size)
1185			clflush(sva);
1186		mfence();
1187	} else {
1188
1189		/*
1190		 * No targeted cache flush methods are supported by CPU,
1191		 * or the supplied range is bigger than 2MB.
1192		 * Globally invalidate cache.
1193		 */
1194		pmap_invalidate_cache();
1195	}
1196}
1197
1198/*
1199 * Are we current address space or kernel?  N.B. We return FALSE when
1200 * a pmap's page table is in use because a kernel thread is borrowing
1201 * it.  The borrowed page table can change spontaneously, making any
1202 * dependence on its continued use subject to a race condition.
1203 */
1204static __inline int
1205pmap_is_current(pmap_t pmap)
1206{
1207
1208	return (pmap == kernel_pmap ||
1209		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
1210	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
1211}
1212
1213/*
1214 * If the given pmap is not the current or kernel pmap, the returned pte must
1215 * be released by passing it to pmap_pte_release().
1216 */
1217pt_entry_t *
1218pmap_pte(pmap_t pmap, vm_offset_t va)
1219{
1220	pd_entry_t newpf;
1221	pd_entry_t *pde;
1222
1223	pde = pmap_pde(pmap, va);
1224	if (*pde & PG_PS)
1225		return (pde);
1226	if (*pde != 0) {
1227		/* are we current address space or kernel? */
1228		if (pmap_is_current(pmap))
1229			return (vtopte(va));
1230		mtx_lock(&PMAP2mutex);
1231		newpf = *pde & PG_FRAME;
1232		if ((*PMAP2 & PG_FRAME) != newpf) {
1233			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
1234			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
1235		}
1236		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
1237	}
1238	return (0);
1239}
1240
1241/*
1242 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
1243 * being NULL.
1244 */
1245static __inline void
1246pmap_pte_release(pt_entry_t *pte)
1247{
1248
1249	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
1250		mtx_unlock(&PMAP2mutex);
1251}
1252
1253static __inline void
1254invlcaddr(void *caddr)
1255{
1256
1257	invlpg((u_int)caddr);
1258}
1259
1260/*
1261 * Super fast pmap_pte routine best used when scanning
1262 * the pv lists.  This eliminates many coarse-grained
1263 * invltlb calls.  Note that many of the pv list
1264 * scans are across different pmaps.  It is very wasteful
1265 * to do an entire invltlb for checking a single mapping.
1266 *
1267 * If the given pmap is not the current pmap, vm_page_queue_mtx
1268 * must be held and curthread pinned to a CPU.
1269 */
1270static pt_entry_t *
1271pmap_pte_quick(pmap_t pmap, vm_offset_t va)
1272{
1273	pd_entry_t newpf;
1274	pd_entry_t *pde;
1275
1276	pde = pmap_pde(pmap, va);
1277	if (*pde & PG_PS)
1278		return (pde);
1279	if (*pde != 0) {
1280		/* are we current address space or kernel? */
1281		if (pmap_is_current(pmap))
1282			return (vtopte(va));
1283		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1284		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1285		newpf = *pde & PG_FRAME;
1286		if ((*PMAP1 & PG_FRAME) != newpf) {
1287			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
1288#ifdef SMP
1289			PMAP1cpu = PCPU_GET(cpuid);
1290#endif
1291			invlcaddr(PADDR1);
1292			PMAP1changed++;
1293		} else
1294#ifdef SMP
1295		if (PMAP1cpu != PCPU_GET(cpuid)) {
1296			PMAP1cpu = PCPU_GET(cpuid);
1297			invlcaddr(PADDR1);
1298			PMAP1changedcpu++;
1299		} else
1300#endif
1301			PMAP1unchanged++;
1302		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
1303	}
1304	return (0);
1305}
1306
1307/*
1308 *	Routine:	pmap_extract
1309 *	Function:
1310 *		Extract the physical page address associated
1311 *		with the given map/virtual_address pair.
1312 */
1313vm_paddr_t
1314pmap_extract(pmap_t pmap, vm_offset_t va)
1315{
1316	vm_paddr_t rtval;
1317	pt_entry_t *pte;
1318	pd_entry_t pde;
1319
1320	rtval = 0;
1321	PMAP_LOCK(pmap);
1322	pde = pmap->pm_pdir[va >> PDRSHIFT];
1323	if (pde != 0) {
1324		if ((pde & PG_PS) != 0)
1325			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
1326		else {
1327			pte = pmap_pte(pmap, va);
1328			rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
1329			pmap_pte_release(pte);
1330		}
1331	}
1332	PMAP_UNLOCK(pmap);
1333	return (rtval);
1334}
1335
1336/*
1337 *	Routine:	pmap_extract_and_hold
1338 *	Function:
1339 *		Atomically extract and hold the physical page
1340 *		with the given pmap and virtual address pair
1341 *		if that mapping permits the given protection.
1342 */
1343vm_page_t
1344pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1345{
1346	pd_entry_t pde;
1347	pt_entry_t pte;
1348	vm_page_t m;
1349	vm_paddr_t pa;
1350
1351	pa = 0;
1352	m = NULL;
1353	PMAP_LOCK(pmap);
1354retry:
1355	pde = *pmap_pde(pmap, va);
1356	if (pde != 0) {
1357		if (pde & PG_PS) {
1358			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1359				if (vm_page_pa_tryrelock(pmap, (pde & PG_PS_FRAME) |
1360				       (va & PDRMASK), &pa))
1361					goto retry;
1362				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1363				    (va & PDRMASK));
1364				vm_page_hold(m);
1365			}
1366		} else {
1367			sched_pin();
1368			pte = *pmap_pte_quick(pmap, va);
1369			if (pte != 0 &&
1370			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1371				if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME, &pa))
1372					goto retry;
1373				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1374				vm_page_hold(m);
1375			}
1376			sched_unpin();
1377		}
1378	}
1379	PA_UNLOCK_COND(pa);
1380	PMAP_UNLOCK(pmap);
1381	return (m);
1382}
1383
1384/***************************************************
1385 * Low level mapping routines.....
1386 ***************************************************/
1387
1388/*
1389 * Add a wired page to the kva.
1390 * Note: not SMP coherent.
1391 */
1392PMAP_INLINE void
1393pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1394{
1395	pt_entry_t *pte;
1396
1397	pte = vtopte(va);
1398	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1399}
1400
1401static __inline void
1402pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1403{
1404	pt_entry_t *pte;
1405
1406	pte = vtopte(va);
1407	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1408}
1409
1410/*
1411 * Remove a page from the kernel pagetables.
1412 * Note: not SMP coherent.
1413 */
1414PMAP_INLINE void
1415pmap_kremove(vm_offset_t va)
1416{
1417	pt_entry_t *pte;
1418
1419	pte = vtopte(va);
1420	pte_clear(pte);
1421}
1422
1423/*
1424 *	Used to map a range of physical addresses into kernel
1425 *	virtual address space.
1426 *
1427 *	The value passed in '*virt' is a suggested virtual address for
1428 *	the mapping. Architectures which can support a direct-mapped
1429 *	physical to virtual region can return the appropriate address
1430 *	within that region, leaving '*virt' unchanged. Other
1431 *	architectures should map the pages starting at '*virt' and
1432 *	update '*virt' with the first usable address after the mapped
1433 *	region.
1434 */
1435vm_offset_t
1436pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1437{
1438	vm_offset_t va, sva;
1439
1440	va = sva = *virt;
1441	while (start < end) {
1442		pmap_kenter(va, start);
1443		va += PAGE_SIZE;
1444		start += PAGE_SIZE;
1445	}
1446	pmap_invalidate_range(kernel_pmap, sva, va);
1447	*virt = va;
1448	return (sva);
1449}
1450
1451
1452/*
1453 * Add a list of wired pages to the kva
1454 * this routine is only used for temporary
1455 * kernel mappings that do not need to have
1456 * page modification or references recorded.
1457 * Note that old mappings are simply written
1458 * over.  The page *must* be wired.
1459 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1460 */
1461void
1462pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1463{
1464	pt_entry_t *endpte, oldpte, *pte;
1465
1466	oldpte = 0;
1467	pte = vtopte(sva);
1468	endpte = pte + count;
1469	while (pte < endpte) {
1470		oldpte |= *pte;
1471		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag |
1472		    pmap_cache_bits((*ma)->md.pat_mode, 0) | PG_RW | PG_V);
1473		pte++;
1474		ma++;
1475	}
1476	if ((oldpte & PG_V) != 0)
1477		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1478		    PAGE_SIZE);
1479}
1480
1481/*
1482 * This routine tears out page mappings from the
1483 * kernel -- it is meant only for temporary mappings.
1484 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1485 */
1486void
1487pmap_qremove(vm_offset_t sva, int count)
1488{
1489	vm_offset_t va;
1490
1491	va = sva;
1492	while (count-- > 0) {
1493		pmap_kremove(va);
1494		va += PAGE_SIZE;
1495	}
1496	pmap_invalidate_range(kernel_pmap, sva, va);
1497}
1498
1499/***************************************************
1500 * Page table page management routines.....
1501 ***************************************************/
1502static __inline void
1503pmap_free_zero_pages(vm_page_t free)
1504{
1505	vm_page_t m;
1506
1507	while (free != NULL) {
1508		m = free;
1509		free = m->right;
1510		/* Preserve the page's PG_ZERO setting. */
1511		vm_page_free_toq(m);
1512	}
1513}
1514
1515/*
1516 * Schedule the specified unused page table page to be freed.  Specifically,
1517 * add the page to the specified list of pages that will be released to the
1518 * physical memory manager after the TLB has been updated.
1519 */
1520static __inline void
1521pmap_add_delayed_free_list(vm_page_t m, vm_page_t *free, boolean_t set_PG_ZERO)
1522{
1523
1524	if (set_PG_ZERO)
1525		m->flags |= PG_ZERO;
1526	else
1527		m->flags &= ~PG_ZERO;
1528	m->right = *free;
1529	*free = m;
1530}
1531
1532/*
1533 * Inserts the specified page table page into the specified pmap's collection
1534 * of idle page table pages.  Each of a pmap's page table pages is responsible
1535 * for mapping a distinct range of virtual addresses.  The pmap's collection is
1536 * ordered by this virtual address range.
1537 */
1538static void
1539pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
1540{
1541	vm_page_t root;
1542
1543	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1544	root = pmap->pm_root;
1545	if (root == NULL) {
1546		mpte->left = NULL;
1547		mpte->right = NULL;
1548	} else {
1549		root = vm_page_splay(mpte->pindex, root);
1550		if (mpte->pindex < root->pindex) {
1551			mpte->left = root->left;
1552			mpte->right = root;
1553			root->left = NULL;
1554		} else if (mpte->pindex == root->pindex)
1555			panic("pmap_insert_pt_page: pindex already inserted");
1556		else {
1557			mpte->right = root->right;
1558			mpte->left = root;
1559			root->right = NULL;
1560		}
1561	}
1562	pmap->pm_root = mpte;
1563}
1564
1565/*
1566 * Looks for a page table page mapping the specified virtual address in the
1567 * specified pmap's collection of idle page table pages.  Returns NULL if there
1568 * is no page table page corresponding to the specified virtual address.
1569 */
1570static vm_page_t
1571pmap_lookup_pt_page(pmap_t pmap, vm_offset_t va)
1572{
1573	vm_page_t mpte;
1574	vm_pindex_t pindex = va >> PDRSHIFT;
1575
1576	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1577	if ((mpte = pmap->pm_root) != NULL && mpte->pindex != pindex) {
1578		mpte = vm_page_splay(pindex, mpte);
1579		if ((pmap->pm_root = mpte)->pindex != pindex)
1580			mpte = NULL;
1581	}
1582	return (mpte);
1583}
1584
1585/*
1586 * Removes the specified page table page from the specified pmap's collection
1587 * of idle page table pages.  The specified page table page must be a member of
1588 * the pmap's collection.
1589 */
1590static void
1591pmap_remove_pt_page(pmap_t pmap, vm_page_t mpte)
1592{
1593	vm_page_t root;
1594
1595	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1596	if (mpte != pmap->pm_root)
1597		vm_page_splay(mpte->pindex, pmap->pm_root);
1598	if (mpte->left == NULL)
1599		root = mpte->right;
1600	else {
1601		root = vm_page_splay(mpte->pindex, mpte->left);
1602		root->right = mpte->right;
1603	}
1604	pmap->pm_root = root;
1605}
1606
1607/*
1608 * This routine unholds page table pages, and if the hold count
1609 * drops to zero, then it decrements the wire count.
1610 */
1611static __inline int
1612pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1613{
1614
1615	--m->wire_count;
1616	if (m->wire_count == 0)
1617		return (_pmap_unwire_pte_hold(pmap, m, free));
1618	else
1619		return (0);
1620}
1621
1622static int
1623_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1624{
1625	vm_offset_t pteva;
1626
1627	/*
1628	 * unmap the page table page
1629	 */
1630	pmap->pm_pdir[m->pindex] = 0;
1631	--pmap->pm_stats.resident_count;
1632
1633	/*
1634	 * This is a release store so that the ordinary store unmapping
1635	 * the page table page is globally performed before TLB shoot-
1636	 * down is begun.
1637	 */
1638	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1639
1640	/*
1641	 * Do an invltlb to make the invalidated mapping
1642	 * take effect immediately.
1643	 */
1644	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1645	pmap_invalidate_page(pmap, pteva);
1646
1647	/*
1648	 * Put page on a list so that it is released after
1649	 * *ALL* TLB shootdown is done
1650	 */
1651	pmap_add_delayed_free_list(m, free, TRUE);
1652
1653	return (1);
1654}
1655
1656/*
1657 * After removing a page table entry, this routine is used to
1658 * conditionally free the page, and manage the hold/wire counts.
1659 */
1660static int
1661pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1662{
1663	pd_entry_t ptepde;
1664	vm_page_t mpte;
1665
1666	if (va >= VM_MAXUSER_ADDRESS)
1667		return (0);
1668	ptepde = *pmap_pde(pmap, va);
1669	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1670	return (pmap_unwire_pte_hold(pmap, mpte, free));
1671}
1672
1673void
1674pmap_pinit0(pmap_t pmap)
1675{
1676
1677	PMAP_LOCK_INIT(pmap);
1678	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1679#ifdef PAE
1680	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1681#endif
1682	pmap->pm_root = NULL;
1683	pmap->pm_active = 0;
1684	PCPU_SET(curpmap, pmap);
1685	TAILQ_INIT(&pmap->pm_pvchunk);
1686	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1687	mtx_lock_spin(&allpmaps_lock);
1688	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1689	mtx_unlock_spin(&allpmaps_lock);
1690}
1691
1692/*
1693 * Initialize a preallocated and zeroed pmap structure,
1694 * such as one in a vmspace structure.
1695 */
1696int
1697pmap_pinit(pmap_t pmap)
1698{
1699	vm_page_t m, ptdpg[NPGPTD];
1700	vm_paddr_t pa;
1701	static int color;
1702	int i;
1703
1704	PMAP_LOCK_INIT(pmap);
1705
1706	/*
1707	 * No need to allocate page table space yet but we do need a valid
1708	 * page directory table.
1709	 */
1710	if (pmap->pm_pdir == NULL) {
1711		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1712		    NBPTD);
1713
1714		if (pmap->pm_pdir == NULL) {
1715			PMAP_LOCK_DESTROY(pmap);
1716			return (0);
1717		}
1718#ifdef PAE
1719		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1720		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1721		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1722		    ("pmap_pinit: pdpt misaligned"));
1723		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1724		    ("pmap_pinit: pdpt above 4g"));
1725#endif
1726		pmap->pm_root = NULL;
1727	}
1728	KASSERT(pmap->pm_root == NULL,
1729	    ("pmap_pinit: pmap has reserved page table page(s)"));
1730
1731	/*
1732	 * allocate the page directory page(s)
1733	 */
1734	for (i = 0; i < NPGPTD;) {
1735		m = vm_page_alloc(NULL, color++,
1736		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1737		    VM_ALLOC_ZERO);
1738		if (m == NULL)
1739			VM_WAIT;
1740		else {
1741			ptdpg[i++] = m;
1742		}
1743	}
1744
1745	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1746
1747	for (i = 0; i < NPGPTD; i++) {
1748		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1749			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1750	}
1751
1752	mtx_lock_spin(&allpmaps_lock);
1753	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1754	mtx_unlock_spin(&allpmaps_lock);
1755	/* Wire in kernel global address entries. */
1756	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1757
1758	/* install self-referential address mapping entry(s) */
1759	for (i = 0; i < NPGPTD; i++) {
1760		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1761		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1762#ifdef PAE
1763		pmap->pm_pdpt[i] = pa | PG_V;
1764#endif
1765	}
1766
1767	pmap->pm_active = 0;
1768	TAILQ_INIT(&pmap->pm_pvchunk);
1769	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1770
1771	return (1);
1772}
1773
1774/*
1775 * this routine is called if the page table page is not
1776 * mapped correctly.
1777 */
1778static vm_page_t
1779_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1780{
1781	vm_paddr_t ptepa;
1782	vm_page_t m;
1783
1784	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1785	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1786	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1787
1788	/*
1789	 * Allocate a page table page.
1790	 */
1791	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1792	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1793		if (flags & M_WAITOK) {
1794			PMAP_UNLOCK(pmap);
1795			vm_page_unlock_queues();
1796			VM_WAIT;
1797			vm_page_lock_queues();
1798			PMAP_LOCK(pmap);
1799		}
1800
1801		/*
1802		 * Indicate the need to retry.  While waiting, the page table
1803		 * page may have been allocated.
1804		 */
1805		return (NULL);
1806	}
1807	if ((m->flags & PG_ZERO) == 0)
1808		pmap_zero_page(m);
1809
1810	/*
1811	 * Map the pagetable page into the process address space, if
1812	 * it isn't already there.
1813	 */
1814
1815	pmap->pm_stats.resident_count++;
1816
1817	ptepa = VM_PAGE_TO_PHYS(m);
1818	pmap->pm_pdir[ptepindex] =
1819		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1820
1821	return (m);
1822}
1823
1824static vm_page_t
1825pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1826{
1827	unsigned ptepindex;
1828	pd_entry_t ptepa;
1829	vm_page_t m;
1830
1831	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1832	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1833	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1834
1835	/*
1836	 * Calculate pagetable page index
1837	 */
1838	ptepindex = va >> PDRSHIFT;
1839retry:
1840	/*
1841	 * Get the page directory entry
1842	 */
1843	ptepa = pmap->pm_pdir[ptepindex];
1844
1845	/*
1846	 * This supports switching from a 4MB page to a
1847	 * normal 4K page.
1848	 */
1849	if (ptepa & PG_PS) {
1850		(void)pmap_demote_pde(pmap, &pmap->pm_pdir[ptepindex], va);
1851		ptepa = pmap->pm_pdir[ptepindex];
1852	}
1853
1854	/*
1855	 * If the page table page is mapped, we just increment the
1856	 * hold count, and activate it.
1857	 */
1858	if (ptepa) {
1859		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1860		m->wire_count++;
1861	} else {
1862		/*
1863		 * Here if the pte page isn't mapped, or if it has
1864		 * been deallocated.
1865		 */
1866		m = _pmap_allocpte(pmap, ptepindex, flags);
1867		if (m == NULL && (flags & M_WAITOK))
1868			goto retry;
1869	}
1870	return (m);
1871}
1872
1873
1874/***************************************************
1875* Pmap allocation/deallocation routines.
1876 ***************************************************/
1877
1878#ifdef SMP
1879/*
1880 * Deal with a SMP shootdown of other users of the pmap that we are
1881 * trying to dispose of.  This can be a bit hairy.
1882 */
1883static cpumask_t *lazymask;
1884static u_int lazyptd;
1885static volatile u_int lazywait;
1886
1887void pmap_lazyfix_action(void);
1888
1889void
1890pmap_lazyfix_action(void)
1891{
1892	cpumask_t mymask = PCPU_GET(cpumask);
1893
1894#ifdef COUNT_IPIS
1895	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1896#endif
1897	if (rcr3() == lazyptd)
1898		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1899	atomic_clear_int(lazymask, mymask);
1900	atomic_store_rel_int(&lazywait, 1);
1901}
1902
1903static void
1904pmap_lazyfix_self(cpumask_t mymask)
1905{
1906
1907	if (rcr3() == lazyptd)
1908		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1909	atomic_clear_int(lazymask, mymask);
1910}
1911
1912
1913static void
1914pmap_lazyfix(pmap_t pmap)
1915{
1916	cpumask_t mymask, mask;
1917	u_int spins;
1918
1919	while ((mask = pmap->pm_active) != 0) {
1920		spins = 50000000;
1921		mask = mask & -mask;	/* Find least significant set bit */
1922		mtx_lock_spin(&smp_ipi_mtx);
1923#ifdef PAE
1924		lazyptd = vtophys(pmap->pm_pdpt);
1925#else
1926		lazyptd = vtophys(pmap->pm_pdir);
1927#endif
1928		mymask = PCPU_GET(cpumask);
1929		if (mask == mymask) {
1930			lazymask = &pmap->pm_active;
1931			pmap_lazyfix_self(mymask);
1932		} else {
1933			atomic_store_rel_int((u_int *)&lazymask,
1934			    (u_int)&pmap->pm_active);
1935			atomic_store_rel_int(&lazywait, 0);
1936			ipi_selected(mask, IPI_LAZYPMAP);
1937			while (lazywait == 0) {
1938				ia32_pause();
1939				if (--spins == 0)
1940					break;
1941			}
1942		}
1943		mtx_unlock_spin(&smp_ipi_mtx);
1944		if (spins == 0)
1945			printf("pmap_lazyfix: spun for 50000000\n");
1946	}
1947}
1948
1949#else	/* SMP */
1950
1951/*
1952 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1953 * unlikely to have to even execute this code, including the fact
1954 * that the cleanup is deferred until the parent does a wait(2), which
1955 * means that another userland process has run.
1956 */
1957static void
1958pmap_lazyfix(pmap_t pmap)
1959{
1960	u_int cr3;
1961
1962	cr3 = vtophys(pmap->pm_pdir);
1963	if (cr3 == rcr3()) {
1964		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1965		pmap->pm_active &= ~(PCPU_GET(cpumask));
1966	}
1967}
1968#endif	/* SMP */
1969
1970/*
1971 * Release any resources held by the given physical map.
1972 * Called when a pmap initialized by pmap_pinit is being released.
1973 * Should only be called if the map contains no valid mappings.
1974 */
1975void
1976pmap_release(pmap_t pmap)
1977{
1978	vm_page_t m, ptdpg[NPGPTD];
1979	int i;
1980
1981	KASSERT(pmap->pm_stats.resident_count == 0,
1982	    ("pmap_release: pmap resident count %ld != 0",
1983	    pmap->pm_stats.resident_count));
1984	KASSERT(pmap->pm_root == NULL,
1985	    ("pmap_release: pmap has reserved page table page(s)"));
1986
1987	pmap_lazyfix(pmap);
1988	mtx_lock_spin(&allpmaps_lock);
1989	LIST_REMOVE(pmap, pm_list);
1990	mtx_unlock_spin(&allpmaps_lock);
1991
1992	for (i = 0; i < NPGPTD; i++)
1993		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1994		    PG_FRAME);
1995
1996	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1997	    sizeof(*pmap->pm_pdir));
1998
1999	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
2000
2001	for (i = 0; i < NPGPTD; i++) {
2002		m = ptdpg[i];
2003#ifdef PAE
2004		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
2005		    ("pmap_release: got wrong ptd page"));
2006#endif
2007		m->wire_count--;
2008		atomic_subtract_int(&cnt.v_wire_count, 1);
2009		vm_page_free_zero(m);
2010	}
2011	PMAP_LOCK_DESTROY(pmap);
2012}
2013
2014static int
2015kvm_size(SYSCTL_HANDLER_ARGS)
2016{
2017	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
2018
2019	return (sysctl_handle_long(oidp, &ksize, 0, req));
2020}
2021SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2022    0, 0, kvm_size, "IU", "Size of KVM");
2023
2024static int
2025kvm_free(SYSCTL_HANDLER_ARGS)
2026{
2027	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
2028
2029	return (sysctl_handle_long(oidp, &kfree, 0, req));
2030}
2031SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2032    0, 0, kvm_free, "IU", "Amount of KVM free");
2033
2034/*
2035 * grow the number of kernel page table entries, if needed
2036 */
2037void
2038pmap_growkernel(vm_offset_t addr)
2039{
2040	vm_paddr_t ptppaddr;
2041	vm_page_t nkpg;
2042	pd_entry_t newpdir;
2043
2044	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2045	addr = roundup2(addr, NBPDR);
2046	if (addr - 1 >= kernel_map->max_offset)
2047		addr = kernel_map->max_offset;
2048	while (kernel_vm_end < addr) {
2049		if (pdir_pde(PTD, kernel_vm_end)) {
2050			kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2051			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2052				kernel_vm_end = kernel_map->max_offset;
2053				break;
2054			}
2055			continue;
2056		}
2057
2058		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
2059		    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
2060		    VM_ALLOC_ZERO);
2061		if (nkpg == NULL)
2062			panic("pmap_growkernel: no memory to grow kernel");
2063
2064		nkpt++;
2065
2066		if ((nkpg->flags & PG_ZERO) == 0)
2067			pmap_zero_page(nkpg);
2068		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2069		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2070		pdir_pde(KPTD, kernel_vm_end) = pgeflag | newpdir;
2071
2072		pmap_kenter_pde(kernel_vm_end, newpdir);
2073		kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
2074		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2075			kernel_vm_end = kernel_map->max_offset;
2076			break;
2077		}
2078	}
2079}
2080
2081
2082/***************************************************
2083 * page management routines.
2084 ***************************************************/
2085
2086CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2087CTASSERT(_NPCM == 11);
2088
2089static __inline struct pv_chunk *
2090pv_to_chunk(pv_entry_t pv)
2091{
2092
2093	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2094}
2095
2096#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2097
2098#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2099#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2100
2101static uint32_t pc_freemask[11] = {
2102	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2103	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2104	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2105	PC_FREE0_9, PC_FREE10
2106};
2107
2108SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2109	"Current number of pv entries");
2110
2111#ifdef PV_STATS
2112static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2113
2114SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2115	"Current number of pv entry chunks");
2116SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2117	"Current number of pv entry chunks allocated");
2118SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2119	"Current number of pv entry chunks frees");
2120SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
2121	"Number of times tried to get a chunk page but failed.");
2122
2123static long pv_entry_frees, pv_entry_allocs;
2124static int pv_entry_spare;
2125
2126SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2127	"Current number of pv entry frees");
2128SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
2129	"Current number of pv entry allocs");
2130SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2131	"Current number of spare pv entries");
2132
2133static int pmap_collect_inactive, pmap_collect_active;
2134
2135SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
2136	"Current number times pmap_collect called on inactive queue");
2137SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
2138	"Current number times pmap_collect called on active queue");
2139#endif
2140
2141/*
2142 * We are in a serious low memory condition.  Resort to
2143 * drastic measures to free some pages so we can allocate
2144 * another pv entry chunk.  This is normally called to
2145 * unmap inactive pages, and if necessary, active pages.
2146 */
2147static void
2148pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
2149{
2150	struct md_page *pvh;
2151	pd_entry_t *pde;
2152	pmap_t pmap;
2153	pt_entry_t *pte, tpte;
2154	pv_entry_t next_pv, pv;
2155	vm_offset_t va;
2156	vm_page_t m, free;
2157
2158	sched_pin();
2159	TAILQ_FOREACH(m, &vpq->pl, pageq) {
2160		if (m->hold_count || m->busy)
2161			continue;
2162		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
2163			va = pv->pv_va;
2164			pmap = PV_PMAP(pv);
2165			/* Avoid deadlock and lock recursion. */
2166			if (pmap > locked_pmap)
2167				PMAP_LOCK(pmap);
2168			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
2169				continue;
2170			pmap->pm_stats.resident_count--;
2171			pde = pmap_pde(pmap, va);
2172			KASSERT((*pde & PG_PS) == 0, ("pmap_collect: found"
2173			    " a 4mpage in page %p's pv list", m));
2174			pte = pmap_pte_quick(pmap, va);
2175			tpte = pte_load_clear(pte);
2176			KASSERT((tpte & PG_W) == 0,
2177			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
2178			if (tpte & PG_A)
2179				vm_page_flag_set(m, PG_REFERENCED);
2180			if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2181				vm_page_dirty(m);
2182			free = NULL;
2183			pmap_unuse_pt(pmap, va, &free);
2184			pmap_invalidate_page(pmap, va);
2185			pmap_free_zero_pages(free);
2186			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2187			if (TAILQ_EMPTY(&m->md.pv_list)) {
2188				pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2189				if (TAILQ_EMPTY(&pvh->pv_list))
2190					vm_page_flag_clear(m, PG_WRITEABLE);
2191			}
2192			free_pv_entry(pmap, pv);
2193			if (pmap != locked_pmap)
2194				PMAP_UNLOCK(pmap);
2195		}
2196	}
2197	sched_unpin();
2198}
2199
2200
2201/*
2202 * free the pv_entry back to the free list
2203 */
2204static void
2205free_pv_entry(pmap_t pmap, pv_entry_t pv)
2206{
2207	vm_page_t m;
2208	struct pv_chunk *pc;
2209	int idx, field, bit;
2210
2211	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2212	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2213	PV_STAT(pv_entry_frees++);
2214	PV_STAT(pv_entry_spare++);
2215	pv_entry_count--;
2216	pc = pv_to_chunk(pv);
2217	idx = pv - &pc->pc_pventry[0];
2218	field = idx / 32;
2219	bit = idx % 32;
2220	pc->pc_map[field] |= 1ul << bit;
2221	/* move to head of list */
2222	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2223	for (idx = 0; idx < _NPCM; idx++)
2224		if (pc->pc_map[idx] != pc_freemask[idx]) {
2225			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2226			return;
2227		}
2228	PV_STAT(pv_entry_spare -= _NPCPV);
2229	PV_STAT(pc_chunk_count--);
2230	PV_STAT(pc_chunk_frees++);
2231	/* entire chunk is free, return it */
2232	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2233	pmap_qremove((vm_offset_t)pc, 1);
2234	vm_page_unwire(m, 0);
2235	vm_page_free(m);
2236	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
2237}
2238
2239/*
2240 * get a new pv_entry, allocating a block from the system
2241 * when needed.
2242 */
2243static pv_entry_t
2244get_pv_entry(pmap_t pmap, int try)
2245{
2246	static const struct timeval printinterval = { 60, 0 };
2247	static struct timeval lastprint;
2248	static vm_pindex_t colour;
2249	struct vpgqueues *pq;
2250	int bit, field;
2251	pv_entry_t pv;
2252	struct pv_chunk *pc;
2253	vm_page_t m;
2254
2255	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2256	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2257	PV_STAT(pv_entry_allocs++);
2258	pv_entry_count++;
2259	if (pv_entry_count > pv_entry_high_water)
2260		if (ratecheck(&lastprint, &printinterval))
2261			printf("Approaching the limit on PV entries, consider "
2262			    "increasing either the vm.pmap.shpgperproc or the "
2263			    "vm.pmap.pv_entry_max tunable.\n");
2264	pq = NULL;
2265retry:
2266	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
2267	if (pc != NULL) {
2268		for (field = 0; field < _NPCM; field++) {
2269			if (pc->pc_map[field]) {
2270				bit = bsfl(pc->pc_map[field]);
2271				break;
2272			}
2273		}
2274		if (field < _NPCM) {
2275			pv = &pc->pc_pventry[field * 32 + bit];
2276			pc->pc_map[field] &= ~(1ul << bit);
2277			/* If this was the last item, move it to tail */
2278			for (field = 0; field < _NPCM; field++)
2279				if (pc->pc_map[field] != 0) {
2280					PV_STAT(pv_entry_spare--);
2281					return (pv);	/* not full, return */
2282				}
2283			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2284			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
2285			PV_STAT(pv_entry_spare--);
2286			return (pv);
2287		}
2288	}
2289	/*
2290	 * Access to the ptelist "pv_vafree" is synchronized by the page
2291	 * queues lock.  If "pv_vafree" is currently non-empty, it will
2292	 * remain non-empty until pmap_ptelist_alloc() completes.
2293	 */
2294	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
2295	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
2296	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
2297		if (try) {
2298			pv_entry_count--;
2299			PV_STAT(pc_chunk_tryfail++);
2300			return (NULL);
2301		}
2302		/*
2303		 * Reclaim pv entries: At first, destroy mappings to
2304		 * inactive pages.  After that, if a pv chunk entry
2305		 * is still needed, destroy mappings to active pages.
2306		 */
2307		if (pq == NULL) {
2308			PV_STAT(pmap_collect_inactive++);
2309			pq = &vm_page_queues[PQ_INACTIVE];
2310		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
2311			PV_STAT(pmap_collect_active++);
2312			pq = &vm_page_queues[PQ_ACTIVE];
2313		} else
2314			panic("get_pv_entry: increase vm.pmap.shpgperproc");
2315		pmap_collect(pmap, pq);
2316		goto retry;
2317	}
2318	PV_STAT(pc_chunk_count++);
2319	PV_STAT(pc_chunk_allocs++);
2320	colour++;
2321	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
2322	pmap_qenter((vm_offset_t)pc, &m, 1);
2323	pc->pc_pmap = pmap;
2324	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
2325	for (field = 1; field < _NPCM; field++)
2326		pc->pc_map[field] = pc_freemask[field];
2327	pv = &pc->pc_pventry[0];
2328	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
2329	PV_STAT(pv_entry_spare += _NPCPV - 1);
2330	return (pv);
2331}
2332
2333static __inline pv_entry_t
2334pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2335{
2336	pv_entry_t pv;
2337
2338	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2339	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
2340		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
2341			TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
2342			break;
2343		}
2344	}
2345	return (pv);
2346}
2347
2348static void
2349pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2350{
2351	struct md_page *pvh;
2352	pv_entry_t pv;
2353	vm_offset_t va_last;
2354	vm_page_t m;
2355
2356	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2357	KASSERT((pa & PDRMASK) == 0,
2358	    ("pmap_pv_demote_pde: pa is not 4mpage aligned"));
2359
2360	/*
2361	 * Transfer the 4mpage's pv entry for this mapping to the first
2362	 * page's pv list.
2363	 */
2364	pvh = pa_to_pvh(pa);
2365	va = trunc_4mpage(va);
2366	pv = pmap_pvh_remove(pvh, pmap, va);
2367	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
2368	m = PHYS_TO_VM_PAGE(pa);
2369	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2370	/* Instantiate the remaining NPTEPG - 1 pv entries. */
2371	va_last = va + NBPDR - PAGE_SIZE;
2372	do {
2373		m++;
2374		KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
2375		    ("pmap_pv_demote_pde: page %p is not managed", m));
2376		va += PAGE_SIZE;
2377		pmap_insert_entry(pmap, va, m);
2378	} while (va < va_last);
2379}
2380
2381static void
2382pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2383{
2384	struct md_page *pvh;
2385	pv_entry_t pv;
2386	vm_offset_t va_last;
2387	vm_page_t m;
2388
2389	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2390	KASSERT((pa & PDRMASK) == 0,
2391	    ("pmap_pv_promote_pde: pa is not 4mpage aligned"));
2392
2393	/*
2394	 * Transfer the first page's pv entry for this mapping to the
2395	 * 4mpage's pv list.  Aside from avoiding the cost of a call
2396	 * to get_pv_entry(), a transfer avoids the possibility that
2397	 * get_pv_entry() calls pmap_collect() and that pmap_collect()
2398	 * removes one of the mappings that is being promoted.
2399	 */
2400	m = PHYS_TO_VM_PAGE(pa);
2401	va = trunc_4mpage(va);
2402	pv = pmap_pvh_remove(&m->md, pmap, va);
2403	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
2404	pvh = pa_to_pvh(pa);
2405	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2406	/* Free the remaining NPTEPG - 1 pv entries. */
2407	va_last = va + NBPDR - PAGE_SIZE;
2408	do {
2409		m++;
2410		va += PAGE_SIZE;
2411		pmap_pvh_free(&m->md, pmap, va);
2412	} while (va < va_last);
2413}
2414
2415static void
2416pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
2417{
2418	pv_entry_t pv;
2419
2420	pv = pmap_pvh_remove(pvh, pmap, va);
2421	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
2422	free_pv_entry(pmap, pv);
2423}
2424
2425static void
2426pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
2427{
2428	struct md_page *pvh;
2429
2430	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2431	pmap_pvh_free(&m->md, pmap, va);
2432	if (TAILQ_EMPTY(&m->md.pv_list)) {
2433		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2434		if (TAILQ_EMPTY(&pvh->pv_list))
2435			vm_page_flag_clear(m, PG_WRITEABLE);
2436	}
2437}
2438
2439/*
2440 * Create a pv entry for page at pa for
2441 * (pmap, va).
2442 */
2443static void
2444pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2445{
2446	pv_entry_t pv;
2447
2448	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2449	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2450	pv = get_pv_entry(pmap, FALSE);
2451	pv->pv_va = va;
2452	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2453}
2454
2455/*
2456 * Conditionally create a pv entry.
2457 */
2458static boolean_t
2459pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
2460{
2461	pv_entry_t pv;
2462
2463	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2464	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2465	if (pv_entry_count < pv_entry_high_water &&
2466	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2467		pv->pv_va = va;
2468		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2469		return (TRUE);
2470	} else
2471		return (FALSE);
2472}
2473
2474/*
2475 * Create the pv entries for each of the pages within a superpage.
2476 */
2477static boolean_t
2478pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
2479{
2480	struct md_page *pvh;
2481	pv_entry_t pv;
2482
2483	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2484	if (pv_entry_count < pv_entry_high_water &&
2485	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
2486		pv->pv_va = va;
2487		pvh = pa_to_pvh(pa);
2488		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_list);
2489		return (TRUE);
2490	} else
2491		return (FALSE);
2492}
2493
2494/*
2495 * Fills a page table page with mappings to consecutive physical pages.
2496 */
2497static void
2498pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
2499{
2500	pt_entry_t *pte;
2501
2502	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
2503		*pte = newpte;
2504		newpte += PAGE_SIZE;
2505	}
2506}
2507
2508/*
2509 * Tries to demote a 2- or 4MB page mapping.  If demotion fails, the
2510 * 2- or 4MB page mapping is invalidated.
2511 */
2512static boolean_t
2513pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
2514{
2515	pd_entry_t newpde, oldpde;
2516	pt_entry_t *firstpte, newpte;
2517	vm_paddr_t mptepa;
2518	vm_page_t free, mpte;
2519
2520	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2521	oldpde = *pde;
2522	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
2523	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
2524	mpte = pmap_lookup_pt_page(pmap, va);
2525	if (mpte != NULL)
2526		pmap_remove_pt_page(pmap, mpte);
2527	else {
2528		KASSERT((oldpde & PG_W) == 0,
2529		    ("pmap_demote_pde: page table page for a wired mapping"
2530		    " is missing"));
2531
2532		/*
2533		 * Invalidate the 2- or 4MB page mapping and return
2534		 * "failure" if the mapping was never accessed or the
2535		 * allocation of the new page table page fails.
2536		 */
2537		if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
2538		    va >> PDRSHIFT, VM_ALLOC_NOOBJ | VM_ALLOC_NORMAL |
2539		    VM_ALLOC_WIRED)) == NULL) {
2540			free = NULL;
2541			pmap_remove_pde(pmap, pde, trunc_4mpage(va), &free);
2542			pmap_invalidate_page(pmap, trunc_4mpage(va));
2543			pmap_free_zero_pages(free);
2544			CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#x"
2545			    " in pmap %p", va, pmap);
2546			return (FALSE);
2547		}
2548		if (va < VM_MAXUSER_ADDRESS)
2549			pmap->pm_stats.resident_count++;
2550	}
2551	mptepa = VM_PAGE_TO_PHYS(mpte);
2552
2553	/*
2554	 * If the page mapping is in the kernel's address space, then the
2555	 * KPTmap can provide access to the page table page.  Otherwise,
2556	 * temporarily map the page table page (mpte) into the kernel's
2557	 * address space at either PADDR1 or PADDR2.
2558	 */
2559	if (va >= KERNBASE)
2560		firstpte = &KPTmap[i386_btop(trunc_4mpage(va))];
2561	else if (curthread->td_pinned > 0 && mtx_owned(&vm_page_queue_mtx)) {
2562		if ((*PMAP1 & PG_FRAME) != mptepa) {
2563			*PMAP1 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2564#ifdef SMP
2565			PMAP1cpu = PCPU_GET(cpuid);
2566#endif
2567			invlcaddr(PADDR1);
2568			PMAP1changed++;
2569		} else
2570#ifdef SMP
2571		if (PMAP1cpu != PCPU_GET(cpuid)) {
2572			PMAP1cpu = PCPU_GET(cpuid);
2573			invlcaddr(PADDR1);
2574			PMAP1changedcpu++;
2575		} else
2576#endif
2577			PMAP1unchanged++;
2578		firstpte = PADDR1;
2579	} else {
2580		mtx_lock(&PMAP2mutex);
2581		if ((*PMAP2 & PG_FRAME) != mptepa) {
2582			*PMAP2 = mptepa | PG_RW | PG_V | PG_A | PG_M;
2583			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
2584		}
2585		firstpte = PADDR2;
2586	}
2587	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
2588	KASSERT((oldpde & PG_A) != 0,
2589	    ("pmap_demote_pde: oldpde is missing PG_A"));
2590	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
2591	    ("pmap_demote_pde: oldpde is missing PG_M"));
2592	newpte = oldpde & ~PG_PS;
2593	if ((newpte & PG_PDE_PAT) != 0)
2594		newpte ^= PG_PDE_PAT | PG_PTE_PAT;
2595
2596	/*
2597	 * If the page table page is new, initialize it.
2598	 */
2599	if (mpte->wire_count == 1) {
2600		mpte->wire_count = NPTEPG;
2601		pmap_fill_ptp(firstpte, newpte);
2602	}
2603	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
2604	    ("pmap_demote_pde: firstpte and newpte map different physical"
2605	    " addresses"));
2606
2607	/*
2608	 * If the mapping has changed attributes, update the page table
2609	 * entries.
2610	 */
2611	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
2612		pmap_fill_ptp(firstpte, newpte);
2613
2614	/*
2615	 * Demote the mapping.  This pmap is locked.  The old PDE has
2616	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
2617	 * set.  Thus, there is no danger of a race with another
2618	 * processor changing the setting of PG_A and/or PG_M between
2619	 * the read above and the store below.
2620	 */
2621	if (workaround_erratum383)
2622		pmap_update_pde(pmap, va, pde, newpde);
2623	else if (pmap == kernel_pmap)
2624		pmap_kenter_pde(va, newpde);
2625	else
2626		pde_store(pde, newpde);
2627	if (firstpte == PADDR2)
2628		mtx_unlock(&PMAP2mutex);
2629
2630	/*
2631	 * Invalidate the recursive mapping of the page table page.
2632	 */
2633	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
2634
2635	/*
2636	 * Demote the pv entry.  This depends on the earlier demotion
2637	 * of the mapping.  Specifically, the (re)creation of a per-
2638	 * page pv entry might trigger the execution of pmap_collect(),
2639	 * which might reclaim a newly (re)created per-page pv entry
2640	 * and destroy the associated mapping.  In order to destroy
2641	 * the mapping, the PDE must have already changed from mapping
2642	 * the 2mpage to referencing the page table page.
2643	 */
2644	if ((oldpde & PG_MANAGED) != 0)
2645		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME);
2646
2647	pmap_pde_demotions++;
2648	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#x"
2649	    " in pmap %p", va, pmap);
2650	return (TRUE);
2651}
2652
2653/*
2654 * pmap_remove_pde: do the things to unmap a superpage in a process
2655 */
2656static void
2657pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
2658    vm_page_t *free)
2659{
2660	struct md_page *pvh;
2661	pd_entry_t oldpde;
2662	vm_offset_t eva, va;
2663	vm_page_t m, mpte;
2664
2665	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2666	KASSERT((sva & PDRMASK) == 0,
2667	    ("pmap_remove_pde: sva is not 4mpage aligned"));
2668	oldpde = pte_load_clear(pdq);
2669	if (oldpde & PG_W)
2670		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
2671
2672	/*
2673	 * Machines that don't support invlpg, also don't support
2674	 * PG_G.
2675	 */
2676	if (oldpde & PG_G)
2677		pmap_invalidate_page(kernel_pmap, sva);
2678	pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2679	if (oldpde & PG_MANAGED) {
2680		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
2681		pmap_pvh_free(pvh, pmap, sva);
2682		eva = sva + NBPDR;
2683		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2684		    va < eva; va += PAGE_SIZE, m++) {
2685			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2686				vm_page_dirty(m);
2687			if (oldpde & PG_A)
2688				vm_page_flag_set(m, PG_REFERENCED);
2689			if (TAILQ_EMPTY(&m->md.pv_list) &&
2690			    TAILQ_EMPTY(&pvh->pv_list))
2691				vm_page_flag_clear(m, PG_WRITEABLE);
2692		}
2693	}
2694	if (pmap == kernel_pmap) {
2695		if (!pmap_demote_pde(pmap, pdq, sva))
2696			panic("pmap_remove_pde: failed demotion");
2697	} else {
2698		mpte = pmap_lookup_pt_page(pmap, sva);
2699		if (mpte != NULL) {
2700			pmap_remove_pt_page(pmap, mpte);
2701			pmap->pm_stats.resident_count--;
2702			KASSERT(mpte->wire_count == NPTEPG,
2703			    ("pmap_remove_pde: pte page wire count error"));
2704			mpte->wire_count = 0;
2705			pmap_add_delayed_free_list(mpte, free, FALSE);
2706			atomic_subtract_int(&cnt.v_wire_count, 1);
2707		}
2708	}
2709}
2710
2711/*
2712 * pmap_remove_pte: do the things to unmap a page in a process
2713 */
2714static int
2715pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
2716{
2717	pt_entry_t oldpte;
2718	vm_page_t m;
2719
2720	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2721	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2722	oldpte = pte_load_clear(ptq);
2723	if (oldpte & PG_W)
2724		pmap->pm_stats.wired_count -= 1;
2725	/*
2726	 * Machines that don't support invlpg, also don't support
2727	 * PG_G.
2728	 */
2729	if (oldpte & PG_G)
2730		pmap_invalidate_page(kernel_pmap, va);
2731	pmap->pm_stats.resident_count -= 1;
2732	if (oldpte & PG_MANAGED) {
2733		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
2734		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2735			vm_page_dirty(m);
2736		if (oldpte & PG_A)
2737			vm_page_flag_set(m, PG_REFERENCED);
2738		pmap_remove_entry(pmap, m, va);
2739	}
2740	return (pmap_unuse_pt(pmap, va, free));
2741}
2742
2743/*
2744 * Remove a single page from a process address space
2745 */
2746static void
2747pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
2748{
2749	pt_entry_t *pte;
2750
2751	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2752	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
2753	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2754	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
2755		return;
2756	pmap_remove_pte(pmap, pte, va, free);
2757	pmap_invalidate_page(pmap, va);
2758}
2759
2760/*
2761 *	Remove the given range of addresses from the specified map.
2762 *
2763 *	It is assumed that the start and end are properly
2764 *	rounded to the page size.
2765 */
2766void
2767pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2768{
2769	vm_offset_t pdnxt;
2770	pd_entry_t ptpaddr;
2771	pt_entry_t *pte;
2772	vm_page_t free = NULL;
2773	int anyvalid;
2774
2775	/*
2776	 * Perform an unsynchronized read.  This is, however, safe.
2777	 */
2778	if (pmap->pm_stats.resident_count == 0)
2779		return;
2780
2781	anyvalid = 0;
2782
2783	vm_page_lock_queues();
2784	sched_pin();
2785	PMAP_LOCK(pmap);
2786
2787	/*
2788	 * special handling of removing one page.  a very
2789	 * common operation and easy to short circuit some
2790	 * code.
2791	 */
2792	if ((sva + PAGE_SIZE == eva) &&
2793	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2794		pmap_remove_page(pmap, sva, &free);
2795		goto out;
2796	}
2797
2798	for (; sva < eva; sva = pdnxt) {
2799		unsigned pdirindex;
2800
2801		/*
2802		 * Calculate index for next page table.
2803		 */
2804		pdnxt = (sva + NBPDR) & ~PDRMASK;
2805		if (pdnxt < sva)
2806			pdnxt = eva;
2807		if (pmap->pm_stats.resident_count == 0)
2808			break;
2809
2810		pdirindex = sva >> PDRSHIFT;
2811		ptpaddr = pmap->pm_pdir[pdirindex];
2812
2813		/*
2814		 * Weed out invalid mappings. Note: we assume that the page
2815		 * directory table is always allocated, and in kernel virtual.
2816		 */
2817		if (ptpaddr == 0)
2818			continue;
2819
2820		/*
2821		 * Check for large page.
2822		 */
2823		if ((ptpaddr & PG_PS) != 0) {
2824			/*
2825			 * Are we removing the entire large page?  If not,
2826			 * demote the mapping and fall through.
2827			 */
2828			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
2829				/*
2830				 * The TLB entry for a PG_G mapping is
2831				 * invalidated by pmap_remove_pde().
2832				 */
2833				if ((ptpaddr & PG_G) == 0)
2834					anyvalid = 1;
2835				pmap_remove_pde(pmap,
2836				    &pmap->pm_pdir[pdirindex], sva, &free);
2837				continue;
2838			} else if (!pmap_demote_pde(pmap,
2839			    &pmap->pm_pdir[pdirindex], sva)) {
2840				/* The large page mapping was destroyed. */
2841				continue;
2842			}
2843		}
2844
2845		/*
2846		 * Limit our scan to either the end of the va represented
2847		 * by the current page table page, or to the end of the
2848		 * range being removed.
2849		 */
2850		if (pdnxt > eva)
2851			pdnxt = eva;
2852
2853		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2854		    sva += PAGE_SIZE) {
2855			if (*pte == 0)
2856				continue;
2857
2858			/*
2859			 * The TLB entry for a PG_G mapping is invalidated
2860			 * by pmap_remove_pte().
2861			 */
2862			if ((*pte & PG_G) == 0)
2863				anyvalid = 1;
2864			if (pmap_remove_pte(pmap, pte, sva, &free))
2865				break;
2866		}
2867	}
2868out:
2869	sched_unpin();
2870	if (anyvalid)
2871		pmap_invalidate_all(pmap);
2872	vm_page_unlock_queues();
2873	PMAP_UNLOCK(pmap);
2874	pmap_free_zero_pages(free);
2875}
2876
2877/*
2878 *	Routine:	pmap_remove_all
2879 *	Function:
2880 *		Removes this physical page from
2881 *		all physical maps in which it resides.
2882 *		Reflects back modify bits to the pager.
2883 *
2884 *	Notes:
2885 *		Original versions of this routine were very
2886 *		inefficient because they iteratively called
2887 *		pmap_remove (slow...)
2888 */
2889
2890void
2891pmap_remove_all(vm_page_t m)
2892{
2893	struct md_page *pvh;
2894	pv_entry_t pv;
2895	pmap_t pmap;
2896	pt_entry_t *pte, tpte;
2897	pd_entry_t *pde;
2898	vm_offset_t va;
2899	vm_page_t free;
2900
2901	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2902	    ("pmap_remove_all: page %p is fictitious", m));
2903	vm_page_lock_queues();
2904	sched_pin();
2905	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2906	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
2907		va = pv->pv_va;
2908		pmap = PV_PMAP(pv);
2909		PMAP_LOCK(pmap);
2910		pde = pmap_pde(pmap, va);
2911		(void)pmap_demote_pde(pmap, pde, va);
2912		PMAP_UNLOCK(pmap);
2913	}
2914	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2915		pmap = PV_PMAP(pv);
2916		PMAP_LOCK(pmap);
2917		pmap->pm_stats.resident_count--;
2918		pde = pmap_pde(pmap, pv->pv_va);
2919		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
2920		    " a 4mpage in page %p's pv list", m));
2921		pte = pmap_pte_quick(pmap, pv->pv_va);
2922		tpte = pte_load_clear(pte);
2923		if (tpte & PG_W)
2924			pmap->pm_stats.wired_count--;
2925		if (tpte & PG_A)
2926			vm_page_flag_set(m, PG_REFERENCED);
2927
2928		/*
2929		 * Update the vm_page_t clean and reference bits.
2930		 */
2931		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
2932			vm_page_dirty(m);
2933		free = NULL;
2934		pmap_unuse_pt(pmap, pv->pv_va, &free);
2935		pmap_invalidate_page(pmap, pv->pv_va);
2936		pmap_free_zero_pages(free);
2937		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2938		free_pv_entry(pmap, pv);
2939		PMAP_UNLOCK(pmap);
2940	}
2941	vm_page_flag_clear(m, PG_WRITEABLE);
2942	sched_unpin();
2943	vm_page_unlock_queues();
2944}
2945
2946/*
2947 * pmap_protect_pde: do the things to protect a 4mpage in a process
2948 */
2949static boolean_t
2950pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
2951{
2952	pd_entry_t newpde, oldpde;
2953	vm_offset_t eva, va;
2954	vm_page_t m;
2955	boolean_t anychanged;
2956
2957	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2958	KASSERT((sva & PDRMASK) == 0,
2959	    ("pmap_protect_pde: sva is not 4mpage aligned"));
2960	anychanged = FALSE;
2961retry:
2962	oldpde = newpde = *pde;
2963	if (oldpde & PG_MANAGED) {
2964		eva = sva + NBPDR;
2965		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
2966		    va < eva; va += PAGE_SIZE, m++)
2967			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
2968				vm_page_dirty(m);
2969	}
2970	if ((prot & VM_PROT_WRITE) == 0)
2971		newpde &= ~(PG_RW | PG_M);
2972#ifdef PAE
2973	if ((prot & VM_PROT_EXECUTE) == 0)
2974		newpde |= pg_nx;
2975#endif
2976	if (newpde != oldpde) {
2977		if (!pde_cmpset(pde, oldpde, newpde))
2978			goto retry;
2979		if (oldpde & PG_G)
2980			pmap_invalidate_page(pmap, sva);
2981		else
2982			anychanged = TRUE;
2983	}
2984	return (anychanged);
2985}
2986
2987/*
2988 *	Set the physical protection on the
2989 *	specified range of this map as requested.
2990 */
2991void
2992pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2993{
2994	vm_offset_t pdnxt;
2995	pd_entry_t ptpaddr;
2996	pt_entry_t *pte;
2997	int anychanged;
2998
2999	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
3000		pmap_remove(pmap, sva, eva);
3001		return;
3002	}
3003
3004#ifdef PAE
3005	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
3006	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
3007		return;
3008#else
3009	if (prot & VM_PROT_WRITE)
3010		return;
3011#endif
3012
3013	anychanged = 0;
3014
3015	vm_page_lock_queues();
3016	sched_pin();
3017	PMAP_LOCK(pmap);
3018	for (; sva < eva; sva = pdnxt) {
3019		pt_entry_t obits, pbits;
3020		unsigned pdirindex;
3021
3022		pdnxt = (sva + NBPDR) & ~PDRMASK;
3023		if (pdnxt < sva)
3024			pdnxt = eva;
3025
3026		pdirindex = sva >> PDRSHIFT;
3027		ptpaddr = pmap->pm_pdir[pdirindex];
3028
3029		/*
3030		 * Weed out invalid mappings. Note: we assume that the page
3031		 * directory table is always allocated, and in kernel virtual.
3032		 */
3033		if (ptpaddr == 0)
3034			continue;
3035
3036		/*
3037		 * Check for large page.
3038		 */
3039		if ((ptpaddr & PG_PS) != 0) {
3040			/*
3041			 * Are we protecting the entire large page?  If not,
3042			 * demote the mapping and fall through.
3043			 */
3044			if (sva + NBPDR == pdnxt && eva >= pdnxt) {
3045				/*
3046				 * The TLB entry for a PG_G mapping is
3047				 * invalidated by pmap_protect_pde().
3048				 */
3049				if (pmap_protect_pde(pmap,
3050				    &pmap->pm_pdir[pdirindex], sva, prot))
3051					anychanged = 1;
3052				continue;
3053			} else if (!pmap_demote_pde(pmap,
3054			    &pmap->pm_pdir[pdirindex], sva)) {
3055				/* The large page mapping was destroyed. */
3056				continue;
3057			}
3058		}
3059
3060		if (pdnxt > eva)
3061			pdnxt = eva;
3062
3063		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
3064		    sva += PAGE_SIZE) {
3065			vm_page_t m;
3066
3067retry:
3068			/*
3069			 * Regardless of whether a pte is 32 or 64 bits in
3070			 * size, PG_RW, PG_A, and PG_M are among the least
3071			 * significant 32 bits.
3072			 */
3073			obits = pbits = *pte;
3074			if ((pbits & PG_V) == 0)
3075				continue;
3076
3077			if ((prot & VM_PROT_WRITE) == 0) {
3078				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
3079				    (PG_MANAGED | PG_M | PG_RW)) {
3080					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
3081					vm_page_dirty(m);
3082				}
3083				pbits &= ~(PG_RW | PG_M);
3084			}
3085#ifdef PAE
3086			if ((prot & VM_PROT_EXECUTE) == 0)
3087				pbits |= pg_nx;
3088#endif
3089
3090			if (pbits != obits) {
3091#ifdef PAE
3092				if (!atomic_cmpset_64(pte, obits, pbits))
3093					goto retry;
3094#else
3095				if (!atomic_cmpset_int((u_int *)pte, obits,
3096				    pbits))
3097					goto retry;
3098#endif
3099				if (obits & PG_G)
3100					pmap_invalidate_page(pmap, sva);
3101				else
3102					anychanged = 1;
3103			}
3104		}
3105	}
3106	sched_unpin();
3107	if (anychanged)
3108		pmap_invalidate_all(pmap);
3109	vm_page_unlock_queues();
3110	PMAP_UNLOCK(pmap);
3111}
3112
3113/*
3114 * Tries to promote the 512 or 1024, contiguous 4KB page mappings that are
3115 * within a single page table page (PTP) to a single 2- or 4MB page mapping.
3116 * For promotion to occur, two conditions must be met: (1) the 4KB page
3117 * mappings must map aligned, contiguous physical memory and (2) the 4KB page
3118 * mappings must have identical characteristics.
3119 *
3120 * Managed (PG_MANAGED) mappings within the kernel address space are not
3121 * promoted.  The reason is that kernel PDEs are replicated in each pmap but
3122 * pmap_clear_ptes() and pmap_ts_referenced() only read the PDE from the kernel
3123 * pmap.
3124 */
3125static void
3126pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
3127{
3128	pd_entry_t newpde;
3129	pt_entry_t *firstpte, oldpte, pa, *pte;
3130	vm_offset_t oldpteva;
3131	vm_page_t mpte;
3132
3133	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3134
3135	/*
3136	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
3137	 * either invalid, unused, or does not map the first 4KB physical page
3138	 * within a 2- or 4MB page.
3139	 */
3140	firstpte = pmap_pte_quick(pmap, trunc_4mpage(va));
3141setpde:
3142	newpde = *firstpte;
3143	if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
3144		pmap_pde_p_failures++;
3145		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3146		    " in pmap %p", va, pmap);
3147		return;
3148	}
3149	if ((*firstpte & PG_MANAGED) != 0 && pmap == kernel_pmap) {
3150		pmap_pde_p_failures++;
3151		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3152		    " in pmap %p", va, pmap);
3153		return;
3154	}
3155	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
3156		/*
3157		 * When PG_M is already clear, PG_RW can be cleared without
3158		 * a TLB invalidation.
3159		 */
3160		if (!atomic_cmpset_int((u_int *)firstpte, newpde, newpde &
3161		    ~PG_RW))
3162			goto setpde;
3163		newpde &= ~PG_RW;
3164	}
3165
3166	/*
3167	 * Examine each of the other PTEs in the specified PTP.  Abort if this
3168	 * PTE maps an unexpected 4KB physical page or does not have identical
3169	 * characteristics to the first PTE.
3170	 */
3171	pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
3172	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
3173setpte:
3174		oldpte = *pte;
3175		if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
3176			pmap_pde_p_failures++;
3177			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3178			    " in pmap %p", va, pmap);
3179			return;
3180		}
3181		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
3182			/*
3183			 * When PG_M is already clear, PG_RW can be cleared
3184			 * without a TLB invalidation.
3185			 */
3186			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3187			    oldpte & ~PG_RW))
3188				goto setpte;
3189			oldpte &= ~PG_RW;
3190			oldpteva = (oldpte & PG_FRAME & PDRMASK) |
3191			    (va & ~PDRMASK);
3192			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#x"
3193			    " in pmap %p", oldpteva, pmap);
3194		}
3195		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
3196			pmap_pde_p_failures++;
3197			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#x"
3198			    " in pmap %p", va, pmap);
3199			return;
3200		}
3201		pa -= PAGE_SIZE;
3202	}
3203
3204	/*
3205	 * Save the page table page in its current state until the PDE
3206	 * mapping the superpage is demoted by pmap_demote_pde() or
3207	 * destroyed by pmap_remove_pde().
3208	 */
3209	mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
3210	KASSERT(mpte >= vm_page_array &&
3211	    mpte < &vm_page_array[vm_page_array_size],
3212	    ("pmap_promote_pde: page table page is out of range"));
3213	KASSERT(mpte->pindex == va >> PDRSHIFT,
3214	    ("pmap_promote_pde: page table page's pindex is wrong"));
3215	pmap_insert_pt_page(pmap, mpte);
3216
3217	/*
3218	 * Promote the pv entries.
3219	 */
3220	if ((newpde & PG_MANAGED) != 0)
3221		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME);
3222
3223	/*
3224	 * Propagate the PAT index to its proper position.
3225	 */
3226	if ((newpde & PG_PTE_PAT) != 0)
3227		newpde ^= PG_PDE_PAT | PG_PTE_PAT;
3228
3229	/*
3230	 * Map the superpage.
3231	 */
3232	if (workaround_erratum383)
3233		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
3234	else if (pmap == kernel_pmap)
3235		pmap_kenter_pde(va, PG_PS | newpde);
3236	else
3237		pde_store(pde, PG_PS | newpde);
3238
3239	pmap_pde_promotions++;
3240	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#x"
3241	    " in pmap %p", va, pmap);
3242}
3243
3244/*
3245 *	Insert the given physical page (p) at
3246 *	the specified virtual address (v) in the
3247 *	target physical map with the protection requested.
3248 *
3249 *	If specified, the page will be wired down, meaning
3250 *	that the related pte can not be reclaimed.
3251 *
3252 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3253 *	or lose information.  That is, this routine must actually
3254 *	insert this page into the given map NOW.
3255 */
3256void
3257pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
3258    vm_prot_t prot, boolean_t wired)
3259{
3260	vm_paddr_t pa;
3261	pd_entry_t *pde;
3262	pt_entry_t *pte;
3263	vm_paddr_t opa;
3264	pt_entry_t origpte, newpte;
3265	vm_page_t mpte, om;
3266	boolean_t invlva;
3267
3268	va = trunc_page(va);
3269	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
3270	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
3271	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)",
3272	    va));
3273	KASSERT((m->oflags & VPO_BUSY) != 0,
3274	    ("pmap_enter: page %p is not busy", m));
3275
3276	mpte = NULL;
3277
3278	vm_page_lock_queues();
3279	PMAP_LOCK(pmap);
3280	sched_pin();
3281
3282	/*
3283	 * In the case that a page table page is not
3284	 * resident, we are creating it here.
3285	 */
3286	if (va < VM_MAXUSER_ADDRESS) {
3287		mpte = pmap_allocpte(pmap, va, M_WAITOK);
3288	}
3289
3290	pde = pmap_pde(pmap, va);
3291	if ((*pde & PG_PS) != 0)
3292		panic("pmap_enter: attempted pmap_enter on 4MB page");
3293	pte = pmap_pte_quick(pmap, va);
3294
3295	/*
3296	 * Page Directory table entry not valid, we need a new PT page
3297	 */
3298	if (pte == NULL) {
3299		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
3300			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
3301	}
3302
3303	pa = VM_PAGE_TO_PHYS(m);
3304	om = NULL;
3305	origpte = *pte;
3306	opa = origpte & PG_FRAME;
3307
3308	/*
3309	 * Mapping has not changed, must be protection or wiring change.
3310	 */
3311	if (origpte && (opa == pa)) {
3312		/*
3313		 * Wiring change, just update stats. We don't worry about
3314		 * wiring PT pages as they remain resident as long as there
3315		 * are valid mappings in them. Hence, if a user page is wired,
3316		 * the PT page will be also.
3317		 */
3318		if (wired && ((origpte & PG_W) == 0))
3319			pmap->pm_stats.wired_count++;
3320		else if (!wired && (origpte & PG_W))
3321			pmap->pm_stats.wired_count--;
3322
3323		/*
3324		 * Remove extra pte reference
3325		 */
3326		if (mpte)
3327			mpte->wire_count--;
3328
3329		/*
3330		 * We might be turning off write access to the page,
3331		 * so we go ahead and sense modify status.
3332		 */
3333		if (origpte & PG_MANAGED) {
3334			om = m;
3335			pa |= PG_MANAGED;
3336		}
3337		goto validate;
3338	}
3339	/*
3340	 * Mapping has changed, invalidate old range and fall through to
3341	 * handle validating new mapping.
3342	 */
3343	if (opa) {
3344		if (origpte & PG_W)
3345			pmap->pm_stats.wired_count--;
3346		if (origpte & PG_MANAGED) {
3347			om = PHYS_TO_VM_PAGE(opa);
3348			pmap_remove_entry(pmap, om, va);
3349		}
3350		if (mpte != NULL) {
3351			mpte->wire_count--;
3352			KASSERT(mpte->wire_count > 0,
3353			    ("pmap_enter: missing reference to page table page,"
3354			     " va: 0x%x", va));
3355		}
3356	} else
3357		pmap->pm_stats.resident_count++;
3358
3359	/*
3360	 * Enter on the PV list if part of our managed memory.
3361	 */
3362	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3363		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3364		    ("pmap_enter: managed mapping within the clean submap"));
3365		pmap_insert_entry(pmap, va, m);
3366		pa |= PG_MANAGED;
3367	}
3368
3369	/*
3370	 * Increment counters
3371	 */
3372	if (wired)
3373		pmap->pm_stats.wired_count++;
3374
3375validate:
3376	/*
3377	 * Now validate mapping with desired protection/wiring.
3378	 */
3379	newpte = (pt_entry_t)(pa | pmap_cache_bits(m->md.pat_mode, 0) | PG_V);
3380	if ((prot & VM_PROT_WRITE) != 0) {
3381		newpte |= PG_RW;
3382		vm_page_flag_set(m, PG_WRITEABLE);
3383	}
3384#ifdef PAE
3385	if ((prot & VM_PROT_EXECUTE) == 0)
3386		newpte |= pg_nx;
3387#endif
3388	if (wired)
3389		newpte |= PG_W;
3390	if (va < VM_MAXUSER_ADDRESS)
3391		newpte |= PG_U;
3392	if (pmap == kernel_pmap)
3393		newpte |= pgeflag;
3394
3395	/*
3396	 * if the mapping or permission bits are different, we need
3397	 * to update the pte.
3398	 */
3399	if ((origpte & ~(PG_M|PG_A)) != newpte) {
3400		newpte |= PG_A;
3401		if ((access & VM_PROT_WRITE) != 0)
3402			newpte |= PG_M;
3403		if (origpte & PG_V) {
3404			invlva = FALSE;
3405			origpte = pte_load_store(pte, newpte);
3406			if (origpte & PG_A) {
3407				if (origpte & PG_MANAGED)
3408					vm_page_flag_set(om, PG_REFERENCED);
3409				if (opa != VM_PAGE_TO_PHYS(m))
3410					invlva = TRUE;
3411#ifdef PAE
3412				if ((origpte & PG_NX) == 0 &&
3413				    (newpte & PG_NX) != 0)
3414					invlva = TRUE;
3415#endif
3416			}
3417			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
3418				if ((origpte & PG_MANAGED) != 0)
3419					vm_page_dirty(om);
3420				if ((prot & VM_PROT_WRITE) == 0)
3421					invlva = TRUE;
3422			}
3423			if (invlva)
3424				pmap_invalidate_page(pmap, va);
3425		} else
3426			pte_store(pte, newpte);
3427	}
3428
3429	/*
3430	 * If both the page table page and the reservation are fully
3431	 * populated, then attempt promotion.
3432	 */
3433	if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
3434	    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0)
3435		pmap_promote_pde(pmap, pde, va);
3436
3437	sched_unpin();
3438	vm_page_unlock_queues();
3439	PMAP_UNLOCK(pmap);
3440}
3441
3442/*
3443 * Tries to create a 2- or 4MB page mapping.  Returns TRUE if successful and
3444 * FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
3445 * blocking, (2) a mapping already exists at the specified virtual address, or
3446 * (3) a pv entry cannot be allocated without reclaiming another pv entry.
3447 */
3448static boolean_t
3449pmap_enter_pde(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3450{
3451	pd_entry_t *pde, newpde;
3452
3453	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3454	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3455	pde = pmap_pde(pmap, va);
3456	if (*pde != 0) {
3457		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3458		    " in pmap %p", va, pmap);
3459		return (FALSE);
3460	}
3461	newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 1) |
3462	    PG_PS | PG_V;
3463	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
3464		newpde |= PG_MANAGED;
3465
3466		/*
3467		 * Abort this mapping if its PV entry could not be created.
3468		 */
3469		if (!pmap_pv_insert_pde(pmap, va, VM_PAGE_TO_PHYS(m))) {
3470			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
3471			    " in pmap %p", va, pmap);
3472			return (FALSE);
3473		}
3474	}
3475#ifdef PAE
3476	if ((prot & VM_PROT_EXECUTE) == 0)
3477		newpde |= pg_nx;
3478#endif
3479	if (va < VM_MAXUSER_ADDRESS)
3480		newpde |= PG_U;
3481
3482	/*
3483	 * Increment counters.
3484	 */
3485	pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3486
3487	/*
3488	 * Map the superpage.
3489	 */
3490	pde_store(pde, newpde);
3491
3492	pmap_pde_mappings++;
3493	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
3494	    " in pmap %p", va, pmap);
3495	return (TRUE);
3496}
3497
3498/*
3499 * Maps a sequence of resident pages belonging to the same object.
3500 * The sequence begins with the given page m_start.  This page is
3501 * mapped at the given virtual address start.  Each subsequent page is
3502 * mapped at a virtual address that is offset from start by the same
3503 * amount as the page is offset from m_start within the object.  The
3504 * last page in the sequence is the page with the largest offset from
3505 * m_start that can be mapped at a virtual address less than the given
3506 * virtual address end.  Not every virtual page between start and end
3507 * is mapped; only those for which a resident page exists with the
3508 * corresponding offset from m_start are mapped.
3509 */
3510void
3511pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
3512    vm_page_t m_start, vm_prot_t prot)
3513{
3514	vm_offset_t va;
3515	vm_page_t m, mpte;
3516	vm_pindex_t diff, psize;
3517
3518	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
3519	psize = atop(end - start);
3520	mpte = NULL;
3521	m = m_start;
3522	PMAP_LOCK(pmap);
3523	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
3524		va = start + ptoa(diff);
3525		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
3526		    (VM_PAGE_TO_PHYS(m) & PDRMASK) == 0 &&
3527		    pg_ps_enabled && vm_reserv_level_iffullpop(m) == 0 &&
3528		    pmap_enter_pde(pmap, va, m, prot))
3529			m = &m[NBPDR / PAGE_SIZE - 1];
3530		else
3531			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
3532			    mpte);
3533		m = TAILQ_NEXT(m, listq);
3534	}
3535 	PMAP_UNLOCK(pmap);
3536}
3537
3538/*
3539 * this code makes some *MAJOR* assumptions:
3540 * 1. Current pmap & pmap exists.
3541 * 2. Not wired.
3542 * 3. Read access.
3543 * 4. No page table pages.
3544 * but is *MUCH* faster than pmap_enter...
3545 */
3546
3547void
3548pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
3549{
3550
3551	vm_page_lock_queues();
3552	PMAP_LOCK(pmap);
3553	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
3554	vm_page_unlock_queues();
3555	PMAP_UNLOCK(pmap);
3556}
3557
3558static vm_page_t
3559pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
3560    vm_prot_t prot, vm_page_t mpte)
3561{
3562	pt_entry_t *pte;
3563	vm_paddr_t pa;
3564	vm_page_t free;
3565
3566	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
3567	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
3568	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
3569	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3570	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3571
3572	/*
3573	 * In the case that a page table page is not
3574	 * resident, we are creating it here.
3575	 */
3576	if (va < VM_MAXUSER_ADDRESS) {
3577		unsigned ptepindex;
3578		pd_entry_t ptepa;
3579
3580		/*
3581		 * Calculate pagetable page index
3582		 */
3583		ptepindex = va >> PDRSHIFT;
3584		if (mpte && (mpte->pindex == ptepindex)) {
3585			mpte->wire_count++;
3586		} else {
3587			/*
3588			 * Get the page directory entry
3589			 */
3590			ptepa = pmap->pm_pdir[ptepindex];
3591
3592			/*
3593			 * If the page table page is mapped, we just increment
3594			 * the hold count, and activate it.
3595			 */
3596			if (ptepa) {
3597				if (ptepa & PG_PS)
3598					return (NULL);
3599				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
3600				mpte->wire_count++;
3601			} else {
3602				mpte = _pmap_allocpte(pmap, ptepindex,
3603				    M_NOWAIT);
3604				if (mpte == NULL)
3605					return (mpte);
3606			}
3607		}
3608	} else {
3609		mpte = NULL;
3610	}
3611
3612	/*
3613	 * This call to vtopte makes the assumption that we are
3614	 * entering the page into the current pmap.  In order to support
3615	 * quick entry into any pmap, one would likely use pmap_pte_quick.
3616	 * But that isn't as quick as vtopte.
3617	 */
3618	pte = vtopte(va);
3619	if (*pte) {
3620		if (mpte != NULL) {
3621			mpte->wire_count--;
3622			mpte = NULL;
3623		}
3624		return (mpte);
3625	}
3626
3627	/*
3628	 * Enter on the PV list if part of our managed memory.
3629	 */
3630	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
3631	    !pmap_try_insert_pv_entry(pmap, va, m)) {
3632		if (mpte != NULL) {
3633			free = NULL;
3634			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
3635				pmap_invalidate_page(pmap, va);
3636				pmap_free_zero_pages(free);
3637			}
3638
3639			mpte = NULL;
3640		}
3641		return (mpte);
3642	}
3643
3644	/*
3645	 * Increment counters
3646	 */
3647	pmap->pm_stats.resident_count++;
3648
3649	pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(m->md.pat_mode, 0);
3650#ifdef PAE
3651	if ((prot & VM_PROT_EXECUTE) == 0)
3652		pa |= pg_nx;
3653#endif
3654
3655	/*
3656	 * Now validate mapping with RO protection
3657	 */
3658	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
3659		pte_store(pte, pa | PG_V | PG_U);
3660	else
3661		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
3662	return (mpte);
3663}
3664
3665/*
3666 * Make a temporary mapping for a physical address.  This is only intended
3667 * to be used for panic dumps.
3668 */
3669void *
3670pmap_kenter_temporary(vm_paddr_t pa, int i)
3671{
3672	vm_offset_t va;
3673
3674	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
3675	pmap_kenter(va, pa);
3676	invlpg(va);
3677	return ((void *)crashdumpmap);
3678}
3679
3680/*
3681 * This code maps large physical mmap regions into the
3682 * processor address space.  Note that some shortcuts
3683 * are taken, but the code works.
3684 */
3685void
3686pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
3687    vm_pindex_t pindex, vm_size_t size)
3688{
3689	pd_entry_t *pde;
3690	vm_paddr_t pa, ptepa;
3691	vm_page_t p;
3692	int pat_mode;
3693
3694	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
3695	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
3696	    ("pmap_object_init_pt: non-device object"));
3697	if (pseflag &&
3698	    (addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
3699		if (!vm_object_populate(object, pindex, pindex + atop(size)))
3700			return;
3701		p = vm_page_lookup(object, pindex);
3702		KASSERT(p->valid == VM_PAGE_BITS_ALL,
3703		    ("pmap_object_init_pt: invalid page %p", p));
3704		pat_mode = p->md.pat_mode;
3705
3706		/*
3707		 * Abort the mapping if the first page is not physically
3708		 * aligned to a 2/4MB page boundary.
3709		 */
3710		ptepa = VM_PAGE_TO_PHYS(p);
3711		if (ptepa & (NBPDR - 1))
3712			return;
3713
3714		/*
3715		 * Skip the first page.  Abort the mapping if the rest of
3716		 * the pages are not physically contiguous or have differing
3717		 * memory attributes.
3718		 */
3719		p = TAILQ_NEXT(p, listq);
3720		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
3721		    pa += PAGE_SIZE) {
3722			KASSERT(p->valid == VM_PAGE_BITS_ALL,
3723			    ("pmap_object_init_pt: invalid page %p", p));
3724			if (pa != VM_PAGE_TO_PHYS(p) ||
3725			    pat_mode != p->md.pat_mode)
3726				return;
3727			p = TAILQ_NEXT(p, listq);
3728		}
3729
3730		/*
3731		 * Map using 2/4MB pages.  Since "ptepa" is 2/4M aligned and
3732		 * "size" is a multiple of 2/4M, adding the PAT setting to
3733		 * "pa" will not affect the termination of this loop.
3734		 */
3735		PMAP_LOCK(pmap);
3736		for (pa = ptepa | pmap_cache_bits(pat_mode, 1); pa < ptepa +
3737		    size; pa += NBPDR) {
3738			pde = pmap_pde(pmap, addr);
3739			if (*pde == 0) {
3740				pde_store(pde, pa | PG_PS | PG_M | PG_A |
3741				    PG_U | PG_RW | PG_V);
3742				pmap->pm_stats.resident_count += NBPDR /
3743				    PAGE_SIZE;
3744				pmap_pde_mappings++;
3745			}
3746			/* Else continue on if the PDE is already valid. */
3747			addr += NBPDR;
3748		}
3749		PMAP_UNLOCK(pmap);
3750	}
3751}
3752
3753/*
3754 *	Routine:	pmap_change_wiring
3755 *	Function:	Change the wiring attribute for a map/virtual-address
3756 *			pair.
3757 *	In/out conditions:
3758 *			The mapping must already exist in the pmap.
3759 */
3760void
3761pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3762{
3763	pd_entry_t *pde;
3764	pt_entry_t *pte;
3765	boolean_t are_queues_locked;
3766
3767	are_queues_locked = FALSE;
3768retry:
3769	PMAP_LOCK(pmap);
3770	pde = pmap_pde(pmap, va);
3771	if ((*pde & PG_PS) != 0) {
3772		if (!wired != ((*pde & PG_W) == 0)) {
3773			if (!are_queues_locked) {
3774				are_queues_locked = TRUE;
3775				if (!mtx_trylock(&vm_page_queue_mtx)) {
3776					PMAP_UNLOCK(pmap);
3777					vm_page_lock_queues();
3778					goto retry;
3779				}
3780			}
3781			if (!pmap_demote_pde(pmap, pde, va))
3782				panic("pmap_change_wiring: demotion failed");
3783		} else
3784			goto out;
3785	}
3786	pte = pmap_pte(pmap, va);
3787
3788	if (wired && !pmap_pte_w(pte))
3789		pmap->pm_stats.wired_count++;
3790	else if (!wired && pmap_pte_w(pte))
3791		pmap->pm_stats.wired_count--;
3792
3793	/*
3794	 * Wiring is not a hardware characteristic so there is no need to
3795	 * invalidate TLB.
3796	 */
3797	pmap_pte_set_w(pte, wired);
3798	pmap_pte_release(pte);
3799out:
3800	if (are_queues_locked)
3801		vm_page_unlock_queues();
3802	PMAP_UNLOCK(pmap);
3803}
3804
3805
3806
3807/*
3808 *	Copy the range specified by src_addr/len
3809 *	from the source map to the range dst_addr/len
3810 *	in the destination map.
3811 *
3812 *	This routine is only advisory and need not do anything.
3813 */
3814
3815void
3816pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
3817    vm_offset_t src_addr)
3818{
3819	vm_page_t   free;
3820	vm_offset_t addr;
3821	vm_offset_t end_addr = src_addr + len;
3822	vm_offset_t pdnxt;
3823
3824	if (dst_addr != src_addr)
3825		return;
3826
3827	if (!pmap_is_current(src_pmap))
3828		return;
3829
3830	vm_page_lock_queues();
3831	if (dst_pmap < src_pmap) {
3832		PMAP_LOCK(dst_pmap);
3833		PMAP_LOCK(src_pmap);
3834	} else {
3835		PMAP_LOCK(src_pmap);
3836		PMAP_LOCK(dst_pmap);
3837	}
3838	sched_pin();
3839	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3840		pt_entry_t *src_pte, *dst_pte;
3841		vm_page_t dstmpte, srcmpte;
3842		pd_entry_t srcptepaddr;
3843		unsigned ptepindex;
3844
3845		KASSERT(addr < UPT_MIN_ADDRESS,
3846		    ("pmap_copy: invalid to pmap_copy page tables"));
3847
3848		pdnxt = (addr + NBPDR) & ~PDRMASK;
3849		if (pdnxt < addr)
3850			pdnxt = end_addr;
3851		ptepindex = addr >> PDRSHIFT;
3852
3853		srcptepaddr = src_pmap->pm_pdir[ptepindex];
3854		if (srcptepaddr == 0)
3855			continue;
3856
3857		if (srcptepaddr & PG_PS) {
3858			if (dst_pmap->pm_pdir[ptepindex] == 0 &&
3859			    ((srcptepaddr & PG_MANAGED) == 0 ||
3860			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr &
3861			    PG_PS_FRAME))) {
3862				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
3863				    ~PG_W;
3864				dst_pmap->pm_stats.resident_count +=
3865				    NBPDR / PAGE_SIZE;
3866			}
3867			continue;
3868		}
3869
3870		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
3871		KASSERT(srcmpte->wire_count > 0,
3872		    ("pmap_copy: source page table page is unused"));
3873
3874		if (pdnxt > end_addr)
3875			pdnxt = end_addr;
3876
3877		src_pte = vtopte(addr);
3878		while (addr < pdnxt) {
3879			pt_entry_t ptetemp;
3880			ptetemp = *src_pte;
3881			/*
3882			 * we only virtual copy managed pages
3883			 */
3884			if ((ptetemp & PG_MANAGED) != 0) {
3885				dstmpte = pmap_allocpte(dst_pmap, addr,
3886				    M_NOWAIT);
3887				if (dstmpte == NULL)
3888					goto out;
3889				dst_pte = pmap_pte_quick(dst_pmap, addr);
3890				if (*dst_pte == 0 &&
3891				    pmap_try_insert_pv_entry(dst_pmap, addr,
3892				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
3893					/*
3894					 * Clear the wired, modified, and
3895					 * accessed (referenced) bits
3896					 * during the copy.
3897					 */
3898					*dst_pte = ptetemp & ~(PG_W | PG_M |
3899					    PG_A);
3900					dst_pmap->pm_stats.resident_count++;
3901	 			} else {
3902					free = NULL;
3903					if (pmap_unwire_pte_hold(dst_pmap,
3904					    dstmpte, &free)) {
3905						pmap_invalidate_page(dst_pmap,
3906						    addr);
3907						pmap_free_zero_pages(free);
3908					}
3909					goto out;
3910				}
3911				if (dstmpte->wire_count >= srcmpte->wire_count)
3912					break;
3913			}
3914			addr += PAGE_SIZE;
3915			src_pte++;
3916		}
3917	}
3918out:
3919	sched_unpin();
3920	vm_page_unlock_queues();
3921	PMAP_UNLOCK(src_pmap);
3922	PMAP_UNLOCK(dst_pmap);
3923}
3924
3925static __inline void
3926pagezero(void *page)
3927{
3928#if defined(I686_CPU)
3929	if (cpu_class == CPUCLASS_686) {
3930#if defined(CPU_ENABLE_SSE)
3931		if (cpu_feature & CPUID_SSE2)
3932			sse2_pagezero(page);
3933		else
3934#endif
3935			i686_pagezero(page);
3936	} else
3937#endif
3938		bzero(page, PAGE_SIZE);
3939}
3940
3941/*
3942 *	pmap_zero_page zeros the specified hardware page by mapping
3943 *	the page into KVM and using bzero to clear its contents.
3944 */
3945void
3946pmap_zero_page(vm_page_t m)
3947{
3948	struct sysmaps *sysmaps;
3949
3950	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3951	mtx_lock(&sysmaps->lock);
3952	if (*sysmaps->CMAP2)
3953		panic("pmap_zero_page: CMAP2 busy");
3954	sched_pin();
3955	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3956	    pmap_cache_bits(m->md.pat_mode, 0);
3957	invlcaddr(sysmaps->CADDR2);
3958	pagezero(sysmaps->CADDR2);
3959	*sysmaps->CMAP2 = 0;
3960	sched_unpin();
3961	mtx_unlock(&sysmaps->lock);
3962}
3963
3964/*
3965 *	pmap_zero_page_area zeros the specified hardware page by mapping
3966 *	the page into KVM and using bzero to clear its contents.
3967 *
3968 *	off and size may not cover an area beyond a single hardware page.
3969 */
3970void
3971pmap_zero_page_area(vm_page_t m, int off, int size)
3972{
3973	struct sysmaps *sysmaps;
3974
3975	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
3976	mtx_lock(&sysmaps->lock);
3977	if (*sysmaps->CMAP2)
3978		panic("pmap_zero_page_area: CMAP2 busy");
3979	sched_pin();
3980	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
3981	    pmap_cache_bits(m->md.pat_mode, 0);
3982	invlcaddr(sysmaps->CADDR2);
3983	if (off == 0 && size == PAGE_SIZE)
3984		pagezero(sysmaps->CADDR2);
3985	else
3986		bzero((char *)sysmaps->CADDR2 + off, size);
3987	*sysmaps->CMAP2 = 0;
3988	sched_unpin();
3989	mtx_unlock(&sysmaps->lock);
3990}
3991
3992/*
3993 *	pmap_zero_page_idle zeros the specified hardware page by mapping
3994 *	the page into KVM and using bzero to clear its contents.  This
3995 *	is intended to be called from the vm_pagezero process only and
3996 *	outside of Giant.
3997 */
3998void
3999pmap_zero_page_idle(vm_page_t m)
4000{
4001
4002	if (*CMAP3)
4003		panic("pmap_zero_page_idle: CMAP3 busy");
4004	sched_pin();
4005	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M |
4006	    pmap_cache_bits(m->md.pat_mode, 0);
4007	invlcaddr(CADDR3);
4008	pagezero(CADDR3);
4009	*CMAP3 = 0;
4010	sched_unpin();
4011}
4012
4013/*
4014 *	pmap_copy_page copies the specified (machine independent)
4015 *	page by mapping the page into virtual memory and using
4016 *	bcopy to copy the page, one machine dependent page at a
4017 *	time.
4018 */
4019void
4020pmap_copy_page(vm_page_t src, vm_page_t dst)
4021{
4022	struct sysmaps *sysmaps;
4023
4024	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4025	mtx_lock(&sysmaps->lock);
4026	if (*sysmaps->CMAP1)
4027		panic("pmap_copy_page: CMAP1 busy");
4028	if (*sysmaps->CMAP2)
4029		panic("pmap_copy_page: CMAP2 busy");
4030	sched_pin();
4031	invlpg((u_int)sysmaps->CADDR1);
4032	invlpg((u_int)sysmaps->CADDR2);
4033	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A |
4034	    pmap_cache_bits(src->md.pat_mode, 0);
4035	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M |
4036	    pmap_cache_bits(dst->md.pat_mode, 0);
4037	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
4038	*sysmaps->CMAP1 = 0;
4039	*sysmaps->CMAP2 = 0;
4040	sched_unpin();
4041	mtx_unlock(&sysmaps->lock);
4042}
4043
4044/*
4045 * Returns true if the pmap's pv is one of the first
4046 * 16 pvs linked to from this page.  This count may
4047 * be changed upwards or downwards in the future; it
4048 * is only necessary that true be returned for a small
4049 * subset of pmaps for proper page aging.
4050 */
4051boolean_t
4052pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
4053{
4054	struct md_page *pvh;
4055	pv_entry_t pv;
4056	int loops = 0;
4057
4058	if (m->flags & PG_FICTITIOUS)
4059		return (FALSE);
4060
4061	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4062	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4063		if (PV_PMAP(pv) == pmap) {
4064			return (TRUE);
4065		}
4066		loops++;
4067		if (loops >= 16)
4068			break;
4069	}
4070	if (loops < 16) {
4071		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4072		TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4073			if (PV_PMAP(pv) == pmap)
4074				return (TRUE);
4075			loops++;
4076			if (loops >= 16)
4077				break;
4078		}
4079	}
4080	return (FALSE);
4081}
4082
4083/*
4084 *	pmap_page_wired_mappings:
4085 *
4086 *	Return the number of managed mappings to the given physical page
4087 *	that are wired.
4088 */
4089int
4090pmap_page_wired_mappings(vm_page_t m)
4091{
4092	int count;
4093
4094	count = 0;
4095	if ((m->flags & PG_FICTITIOUS) != 0)
4096		return (count);
4097	vm_page_lock_queues();
4098	count = pmap_pvh_wired_mappings(&m->md, count);
4099	count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)), count);
4100	vm_page_unlock_queues();
4101	return (count);
4102}
4103
4104/*
4105 *	pmap_pvh_wired_mappings:
4106 *
4107 *	Return the updated number "count" of managed mappings that are wired.
4108 */
4109static int
4110pmap_pvh_wired_mappings(struct md_page *pvh, int count)
4111{
4112	pmap_t pmap;
4113	pt_entry_t *pte;
4114	pv_entry_t pv;
4115
4116	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4117	sched_pin();
4118	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4119		pmap = PV_PMAP(pv);
4120		PMAP_LOCK(pmap);
4121		pte = pmap_pte_quick(pmap, pv->pv_va);
4122		if ((*pte & PG_W) != 0)
4123			count++;
4124		PMAP_UNLOCK(pmap);
4125	}
4126	sched_unpin();
4127	return (count);
4128}
4129
4130/*
4131 * Returns TRUE if the given page is mapped individually or as part of
4132 * a 4mpage.  Otherwise, returns FALSE.
4133 */
4134boolean_t
4135pmap_page_is_mapped(vm_page_t m)
4136{
4137	boolean_t rv;
4138
4139	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
4140		return (FALSE);
4141	vm_page_lock_queues();
4142	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
4143	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list);
4144	vm_page_unlock_queues();
4145	return (rv);
4146}
4147
4148/*
4149 * Remove all pages from specified address space
4150 * this aids process exit speeds.  Also, this code
4151 * is special cased for current process only, but
4152 * can have the more generic (and slightly slower)
4153 * mode enabled.  This is much faster than pmap_remove
4154 * in the case of running down an entire address space.
4155 */
4156void
4157pmap_remove_pages(pmap_t pmap)
4158{
4159	pt_entry_t *pte, tpte;
4160	vm_page_t free = NULL;
4161	vm_page_t m, mpte, mt;
4162	pv_entry_t pv;
4163	struct md_page *pvh;
4164	struct pv_chunk *pc, *npc;
4165	int field, idx;
4166	int32_t bit;
4167	uint32_t inuse, bitmask;
4168	int allfree;
4169
4170	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
4171		printf("warning: pmap_remove_pages called with non-current pmap\n");
4172		return;
4173	}
4174	vm_page_lock_queues();
4175	PMAP_LOCK(pmap);
4176	sched_pin();
4177	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4178		allfree = 1;
4179		for (field = 0; field < _NPCM; field++) {
4180			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4181			while (inuse != 0) {
4182				bit = bsfl(inuse);
4183				bitmask = 1UL << bit;
4184				idx = field * 32 + bit;
4185				pv = &pc->pc_pventry[idx];
4186				inuse &= ~bitmask;
4187
4188				pte = pmap_pde(pmap, pv->pv_va);
4189				tpte = *pte;
4190				if ((tpte & PG_PS) == 0) {
4191					pte = vtopte(pv->pv_va);
4192					tpte = *pte & ~PG_PTE_PAT;
4193				}
4194
4195				if (tpte == 0) {
4196					printf(
4197					    "TPTE at %p  IS ZERO @ VA %08x\n",
4198					    pte, pv->pv_va);
4199					panic("bad pte");
4200				}
4201
4202/*
4203 * We cannot remove wired pages from a process' mapping at this time
4204 */
4205				if (tpte & PG_W) {
4206					allfree = 0;
4207					continue;
4208				}
4209
4210				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
4211				KASSERT(m->phys_addr == (tpte & PG_FRAME),
4212				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
4213				    m, (uintmax_t)m->phys_addr,
4214				    (uintmax_t)tpte));
4215
4216				KASSERT(m < &vm_page_array[vm_page_array_size],
4217					("pmap_remove_pages: bad tpte %#jx",
4218					(uintmax_t)tpte));
4219
4220				pte_clear(pte);
4221
4222				/*
4223				 * Update the vm_page_t clean/reference bits.
4224				 */
4225				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4226					if ((tpte & PG_PS) != 0) {
4227						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4228							vm_page_dirty(mt);
4229					} else
4230						vm_page_dirty(m);
4231				}
4232
4233				/* Mark free */
4234				PV_STAT(pv_entry_frees++);
4235				PV_STAT(pv_entry_spare++);
4236				pv_entry_count--;
4237				pc->pc_map[field] |= bitmask;
4238				if ((tpte & PG_PS) != 0) {
4239					pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
4240					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
4241					TAILQ_REMOVE(&pvh->pv_list, pv, pv_list);
4242					if (TAILQ_EMPTY(&pvh->pv_list)) {
4243						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
4244							if (TAILQ_EMPTY(&mt->md.pv_list))
4245								vm_page_flag_clear(mt, PG_WRITEABLE);
4246					}
4247					mpte = pmap_lookup_pt_page(pmap, pv->pv_va);
4248					if (mpte != NULL) {
4249						pmap_remove_pt_page(pmap, mpte);
4250						pmap->pm_stats.resident_count--;
4251						KASSERT(mpte->wire_count == NPTEPG,
4252						    ("pmap_remove_pages: pte page wire count error"));
4253						mpte->wire_count = 0;
4254						pmap_add_delayed_free_list(mpte, &free, FALSE);
4255						atomic_subtract_int(&cnt.v_wire_count, 1);
4256					}
4257				} else {
4258					pmap->pm_stats.resident_count--;
4259					TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4260					if (TAILQ_EMPTY(&m->md.pv_list)) {
4261						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4262						if (TAILQ_EMPTY(&pvh->pv_list))
4263							vm_page_flag_clear(m, PG_WRITEABLE);
4264					}
4265					pmap_unuse_pt(pmap, pv->pv_va, &free);
4266				}
4267			}
4268		}
4269		if (allfree) {
4270			PV_STAT(pv_entry_spare -= _NPCPV);
4271			PV_STAT(pc_chunk_count--);
4272			PV_STAT(pc_chunk_frees++);
4273			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4274			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
4275			pmap_qremove((vm_offset_t)pc, 1);
4276			vm_page_unwire(m, 0);
4277			vm_page_free(m);
4278			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
4279		}
4280	}
4281	sched_unpin();
4282	pmap_invalidate_all(pmap);
4283	vm_page_unlock_queues();
4284	PMAP_UNLOCK(pmap);
4285	pmap_free_zero_pages(free);
4286}
4287
4288/*
4289 *	pmap_is_modified:
4290 *
4291 *	Return whether or not the specified physical page was modified
4292 *	in any physical maps.
4293 */
4294boolean_t
4295pmap_is_modified(vm_page_t m)
4296{
4297
4298	if (m->flags & PG_FICTITIOUS)
4299		return (FALSE);
4300	if (pmap_is_modified_pvh(&m->md))
4301		return (TRUE);
4302	return (pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4303}
4304
4305/*
4306 * Returns TRUE if any of the given mappings were used to modify
4307 * physical memory.  Otherwise, returns FALSE.  Both page and 2mpage
4308 * mappings are supported.
4309 */
4310static boolean_t
4311pmap_is_modified_pvh(struct md_page *pvh)
4312{
4313	pv_entry_t pv;
4314	pt_entry_t *pte;
4315	pmap_t pmap;
4316	boolean_t rv;
4317
4318	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4319	rv = FALSE;
4320	sched_pin();
4321	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4322		pmap = PV_PMAP(pv);
4323		PMAP_LOCK(pmap);
4324		pte = pmap_pte_quick(pmap, pv->pv_va);
4325		rv = (*pte & (PG_M | PG_RW)) == (PG_M | PG_RW);
4326		PMAP_UNLOCK(pmap);
4327		if (rv)
4328			break;
4329	}
4330	sched_unpin();
4331	return (rv);
4332}
4333
4334/*
4335 *	pmap_is_prefaultable:
4336 *
4337 *	Return whether or not the specified virtual address is elgible
4338 *	for prefault.
4339 */
4340boolean_t
4341pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
4342{
4343	pd_entry_t *pde;
4344	pt_entry_t *pte;
4345	boolean_t rv;
4346
4347	rv = FALSE;
4348	PMAP_LOCK(pmap);
4349	pde = pmap_pde(pmap, addr);
4350	if (*pde != 0 && (*pde & PG_PS) == 0) {
4351		pte = vtopte(addr);
4352		rv = *pte == 0;
4353	}
4354	PMAP_UNLOCK(pmap);
4355	return (rv);
4356}
4357
4358/*
4359 *	pmap_is_referenced:
4360 *
4361 *	Return whether or not the specified physical page was referenced
4362 *	in any physical maps.
4363 */
4364boolean_t
4365pmap_is_referenced(vm_page_t m)
4366{
4367
4368	if (m->flags & PG_FICTITIOUS)
4369		return (FALSE);
4370	if (pmap_is_referenced_pvh(&m->md))
4371		return (TRUE);
4372	return (pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
4373}
4374
4375/*
4376 * Returns TRUE if any of the given mappings were referenced and FALSE
4377 * otherwise.  Both page and 4mpage mappings are supported.
4378 */
4379static boolean_t
4380pmap_is_referenced_pvh(struct md_page *pvh)
4381{
4382	pv_entry_t pv;
4383	pt_entry_t *pte;
4384	pmap_t pmap;
4385	boolean_t rv;
4386
4387	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4388	rv = FALSE;
4389	sched_pin();
4390	TAILQ_FOREACH(pv, &pvh->pv_list, pv_list) {
4391		pmap = PV_PMAP(pv);
4392		PMAP_LOCK(pmap);
4393		pte = pmap_pte_quick(pmap, pv->pv_va);
4394		rv = (*pte & (PG_A | PG_V)) == (PG_A | PG_V);
4395		PMAP_UNLOCK(pmap);
4396		if (rv)
4397			break;
4398	}
4399	sched_unpin();
4400	return (rv);
4401}
4402
4403/*
4404 * Clear the write and modified bits in each of the given page's mappings.
4405 */
4406void
4407pmap_remove_write(vm_page_t m)
4408{
4409	struct md_page *pvh;
4410	pv_entry_t next_pv, pv;
4411	pmap_t pmap;
4412	pd_entry_t *pde;
4413	pt_entry_t oldpte, *pte;
4414	vm_offset_t va;
4415
4416	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
4417	    ("pmap_remove_write: page %p is not managed", m));
4418
4419	/*
4420	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
4421	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
4422	 * is clear, no page table entries need updating.
4423	 */
4424	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
4425	if ((m->oflags & VPO_BUSY) == 0 &&
4426	    (m->flags & PG_WRITEABLE) == 0)
4427		return;
4428	vm_page_lock_queues();
4429	sched_pin();
4430	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4431	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4432		va = pv->pv_va;
4433		pmap = PV_PMAP(pv);
4434		PMAP_LOCK(pmap);
4435		pde = pmap_pde(pmap, va);
4436		if ((*pde & PG_RW) != 0)
4437			(void)pmap_demote_pde(pmap, pde, va);
4438		PMAP_UNLOCK(pmap);
4439	}
4440	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4441		pmap = PV_PMAP(pv);
4442		PMAP_LOCK(pmap);
4443		pde = pmap_pde(pmap, pv->pv_va);
4444		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_write: found"
4445		    " a 4mpage in page %p's pv list", m));
4446		pte = pmap_pte_quick(pmap, pv->pv_va);
4447retry:
4448		oldpte = *pte;
4449		if ((oldpte & PG_RW) != 0) {
4450			/*
4451			 * Regardless of whether a pte is 32 or 64 bits
4452			 * in size, PG_RW and PG_M are among the least
4453			 * significant 32 bits.
4454			 */
4455			if (!atomic_cmpset_int((u_int *)pte, oldpte,
4456			    oldpte & ~(PG_RW | PG_M)))
4457				goto retry;
4458			if ((oldpte & PG_M) != 0)
4459				vm_page_dirty(m);
4460			pmap_invalidate_page(pmap, pv->pv_va);
4461		}
4462		PMAP_UNLOCK(pmap);
4463	}
4464	vm_page_flag_clear(m, PG_WRITEABLE);
4465	sched_unpin();
4466	vm_page_unlock_queues();
4467}
4468
4469/*
4470 *	pmap_ts_referenced:
4471 *
4472 *	Return a count of reference bits for a page, clearing those bits.
4473 *	It is not necessary for every reference bit to be cleared, but it
4474 *	is necessary that 0 only be returned when there are truly no
4475 *	reference bits set.
4476 *
4477 *	XXX: The exact number of bits to check and clear is a matter that
4478 *	should be tested and standardized at some point in the future for
4479 *	optimal aging of shared pages.
4480 */
4481int
4482pmap_ts_referenced(vm_page_t m)
4483{
4484	struct md_page *pvh;
4485	pv_entry_t pv, pvf, pvn;
4486	pmap_t pmap;
4487	pd_entry_t oldpde, *pde;
4488	pt_entry_t *pte;
4489	vm_offset_t va;
4490	int rtval = 0;
4491
4492	if (m->flags & PG_FICTITIOUS)
4493		return (rtval);
4494	sched_pin();
4495	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4496	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4497	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, pvn) {
4498		va = pv->pv_va;
4499		pmap = PV_PMAP(pv);
4500		PMAP_LOCK(pmap);
4501		pde = pmap_pde(pmap, va);
4502		oldpde = *pde;
4503		if ((oldpde & PG_A) != 0) {
4504			if (pmap_demote_pde(pmap, pde, va)) {
4505				if ((oldpde & PG_W) == 0) {
4506					/*
4507					 * Remove the mapping to a single page
4508					 * so that a subsequent access may
4509					 * repromote.  Since the underlying
4510					 * page table page is fully populated,
4511					 * this removal never frees a page
4512					 * table page.
4513					 */
4514					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4515					    PG_PS_FRAME);
4516					pmap_remove_page(pmap, va, NULL);
4517					rtval++;
4518					if (rtval > 4) {
4519						PMAP_UNLOCK(pmap);
4520						return (rtval);
4521					}
4522				}
4523			}
4524		}
4525		PMAP_UNLOCK(pmap);
4526	}
4527	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4528		pvf = pv;
4529		do {
4530			pvn = TAILQ_NEXT(pv, pv_list);
4531			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
4532			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
4533			pmap = PV_PMAP(pv);
4534			PMAP_LOCK(pmap);
4535			pde = pmap_pde(pmap, pv->pv_va);
4536			KASSERT((*pde & PG_PS) == 0, ("pmap_ts_referenced:"
4537			    " found a 4mpage in page %p's pv list", m));
4538			pte = pmap_pte_quick(pmap, pv->pv_va);
4539			if ((*pte & PG_A) != 0) {
4540				atomic_clear_int((u_int *)pte, PG_A);
4541				pmap_invalidate_page(pmap, pv->pv_va);
4542				rtval++;
4543				if (rtval > 4)
4544					pvn = NULL;
4545			}
4546			PMAP_UNLOCK(pmap);
4547		} while ((pv = pvn) != NULL && pv != pvf);
4548	}
4549	sched_unpin();
4550	return (rtval);
4551}
4552
4553/*
4554 *	Clear the modify bits on the specified physical page.
4555 */
4556void
4557pmap_clear_modify(vm_page_t m)
4558{
4559	struct md_page *pvh;
4560	pv_entry_t next_pv, pv;
4561	pmap_t pmap;
4562	pd_entry_t oldpde, *pde;
4563	pt_entry_t oldpte, *pte;
4564	vm_offset_t va;
4565
4566	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4567	if ((m->flags & PG_FICTITIOUS) != 0)
4568		return;
4569	sched_pin();
4570	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4571	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4572		va = pv->pv_va;
4573		pmap = PV_PMAP(pv);
4574		PMAP_LOCK(pmap);
4575		pde = pmap_pde(pmap, va);
4576		oldpde = *pde;
4577		if ((oldpde & PG_RW) != 0) {
4578			if (pmap_demote_pde(pmap, pde, va)) {
4579				if ((oldpde & PG_W) == 0) {
4580					/*
4581					 * Write protect the mapping to a
4582					 * single page so that a subsequent
4583					 * write access may repromote.
4584					 */
4585					va += VM_PAGE_TO_PHYS(m) - (oldpde &
4586					    PG_PS_FRAME);
4587					pte = pmap_pte_quick(pmap, va);
4588					oldpte = *pte;
4589					if ((oldpte & PG_V) != 0) {
4590						/*
4591						 * Regardless of whether a pte is 32 or 64 bits
4592						 * in size, PG_RW and PG_M are among the least
4593						 * significant 32 bits.
4594						 */
4595						while (!atomic_cmpset_int((u_int *)pte,
4596						    oldpte,
4597						    oldpte & ~(PG_M | PG_RW)))
4598							oldpte = *pte;
4599						vm_page_dirty(m);
4600						pmap_invalidate_page(pmap, va);
4601					}
4602				}
4603			}
4604		}
4605		PMAP_UNLOCK(pmap);
4606	}
4607	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4608		pmap = PV_PMAP(pv);
4609		PMAP_LOCK(pmap);
4610		pde = pmap_pde(pmap, pv->pv_va);
4611		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
4612		    " a 4mpage in page %p's pv list", m));
4613		pte = pmap_pte_quick(pmap, pv->pv_va);
4614		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
4615			/*
4616			 * Regardless of whether a pte is 32 or 64 bits
4617			 * in size, PG_M is among the least significant
4618			 * 32 bits.
4619			 */
4620			atomic_clear_int((u_int *)pte, PG_M);
4621			pmap_invalidate_page(pmap, pv->pv_va);
4622		}
4623		PMAP_UNLOCK(pmap);
4624	}
4625	sched_unpin();
4626}
4627
4628/*
4629 *	pmap_clear_reference:
4630 *
4631 *	Clear the reference bit on the specified physical page.
4632 */
4633void
4634pmap_clear_reference(vm_page_t m)
4635{
4636	struct md_page *pvh;
4637	pv_entry_t next_pv, pv;
4638	pmap_t pmap;
4639	pd_entry_t oldpde, *pde;
4640	pt_entry_t *pte;
4641	vm_offset_t va;
4642
4643	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
4644	if ((m->flags & PG_FICTITIOUS) != 0)
4645		return;
4646	sched_pin();
4647	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4648	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_list, next_pv) {
4649		va = pv->pv_va;
4650		pmap = PV_PMAP(pv);
4651		PMAP_LOCK(pmap);
4652		pde = pmap_pde(pmap, va);
4653		oldpde = *pde;
4654		if ((oldpde & PG_A) != 0) {
4655			if (pmap_demote_pde(pmap, pde, va)) {
4656				/*
4657				 * Remove the mapping to a single page so
4658				 * that a subsequent access may repromote.
4659				 * Since the underlying page table page is
4660				 * fully populated, this removal never frees
4661				 * a page table page.
4662				 */
4663				va += VM_PAGE_TO_PHYS(m) - (oldpde &
4664				    PG_PS_FRAME);
4665				pmap_remove_page(pmap, va, NULL);
4666			}
4667		}
4668		PMAP_UNLOCK(pmap);
4669	}
4670	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
4671		pmap = PV_PMAP(pv);
4672		PMAP_LOCK(pmap);
4673		pde = pmap_pde(pmap, pv->pv_va);
4674		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_reference: found"
4675		    " a 4mpage in page %p's pv list", m));
4676		pte = pmap_pte_quick(pmap, pv->pv_va);
4677		if ((*pte & PG_A) != 0) {
4678			/*
4679			 * Regardless of whether a pte is 32 or 64 bits
4680			 * in size, PG_A is among the least significant
4681			 * 32 bits.
4682			 */
4683			atomic_clear_int((u_int *)pte, PG_A);
4684			pmap_invalidate_page(pmap, pv->pv_va);
4685		}
4686		PMAP_UNLOCK(pmap);
4687	}
4688	sched_unpin();
4689}
4690
4691/*
4692 * Miscellaneous support routines follow
4693 */
4694
4695/* Adjust the cache mode for a 4KB page mapped via a PTE. */
4696static __inline void
4697pmap_pte_attr(pt_entry_t *pte, int cache_bits)
4698{
4699	u_int opte, npte;
4700
4701	/*
4702	 * The cache mode bits are all in the low 32-bits of the
4703	 * PTE, so we can just spin on updating the low 32-bits.
4704	 */
4705	do {
4706		opte = *(u_int *)pte;
4707		npte = opte & ~PG_PTE_CACHE;
4708		npte |= cache_bits;
4709	} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
4710}
4711
4712/* Adjust the cache mode for a 2/4MB page mapped via a PDE. */
4713static __inline void
4714pmap_pde_attr(pd_entry_t *pde, int cache_bits)
4715{
4716	u_int opde, npde;
4717
4718	/*
4719	 * The cache mode bits are all in the low 32-bits of the
4720	 * PDE, so we can just spin on updating the low 32-bits.
4721	 */
4722	do {
4723		opde = *(u_int *)pde;
4724		npde = opde & ~PG_PDE_CACHE;
4725		npde |= cache_bits;
4726	} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
4727}
4728
4729/*
4730 * Map a set of physical memory pages into the kernel virtual
4731 * address space. Return a pointer to where it is mapped. This
4732 * routine is intended to be used for mapping device memory,
4733 * NOT real memory.
4734 */
4735void *
4736pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
4737{
4738	vm_offset_t va, offset;
4739	vm_size_t tmpsize;
4740
4741	offset = pa & PAGE_MASK;
4742	size = roundup(offset + size, PAGE_SIZE);
4743	pa = pa & PG_FRAME;
4744
4745	if (pa < KERNLOAD && pa + size <= KERNLOAD)
4746		va = KERNBASE + pa;
4747	else
4748		va = kmem_alloc_nofault(kernel_map, size);
4749	if (!va)
4750		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
4751
4752	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
4753		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
4754	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
4755	pmap_invalidate_cache_range(va, va + size);
4756	return ((void *)(va + offset));
4757}
4758
4759void *
4760pmap_mapdev(vm_paddr_t pa, vm_size_t size)
4761{
4762
4763	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
4764}
4765
4766void *
4767pmap_mapbios(vm_paddr_t pa, vm_size_t size)
4768{
4769
4770	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
4771}
4772
4773void
4774pmap_unmapdev(vm_offset_t va, vm_size_t size)
4775{
4776	vm_offset_t base, offset, tmpva;
4777
4778	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
4779		return;
4780	base = trunc_page(va);
4781	offset = va & PAGE_MASK;
4782	size = roundup(offset + size, PAGE_SIZE);
4783	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
4784		pmap_kremove(tmpva);
4785	pmap_invalidate_range(kernel_pmap, va, tmpva);
4786	kmem_free(kernel_map, base, size);
4787}
4788
4789/*
4790 * Sets the memory attribute for the specified page.
4791 */
4792void
4793pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
4794{
4795	struct sysmaps *sysmaps;
4796	vm_offset_t sva, eva;
4797
4798	m->md.pat_mode = ma;
4799	if ((m->flags & PG_FICTITIOUS) != 0)
4800		return;
4801
4802	/*
4803	 * If "m" is a normal page, flush it from the cache.
4804	 * See pmap_invalidate_cache_range().
4805	 *
4806	 * First, try to find an existing mapping of the page by sf
4807	 * buffer. sf_buf_invalidate_cache() modifies mapping and
4808	 * flushes the cache.
4809	 */
4810	if (sf_buf_invalidate_cache(m))
4811		return;
4812
4813	/*
4814	 * If page is not mapped by sf buffer, but CPU does not
4815	 * support self snoop, map the page transient and do
4816	 * invalidation. In the worst case, whole cache is flushed by
4817	 * pmap_invalidate_cache_range().
4818	 */
4819	if ((cpu_feature & (CPUID_SS|CPUID_CLFSH)) == CPUID_CLFSH) {
4820		sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
4821		mtx_lock(&sysmaps->lock);
4822		if (*sysmaps->CMAP2)
4823			panic("pmap_page_set_memattr: CMAP2 busy");
4824		sched_pin();
4825		*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) |
4826		    PG_A | PG_M | pmap_cache_bits(m->md.pat_mode, 0);
4827		invlcaddr(sysmaps->CADDR2);
4828		sva = (vm_offset_t)sysmaps->CADDR2;
4829		eva = sva + PAGE_SIZE;
4830	} else
4831		sva = eva = 0; /* gcc */
4832	pmap_invalidate_cache_range(sva, eva);
4833	if (sva != 0) {
4834		*sysmaps->CMAP2 = 0;
4835		sched_unpin();
4836		mtx_unlock(&sysmaps->lock);
4837	}
4838}
4839
4840/*
4841 * Changes the specified virtual address range's memory type to that given by
4842 * the parameter "mode".  The specified virtual address range must be
4843 * completely contained within either the kernel map.
4844 *
4845 * Returns zero if the change completed successfully, and either EINVAL or
4846 * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
4847 * of the virtual address range was not mapped, and ENOMEM is returned if
4848 * there was insufficient memory available to complete the change.
4849 */
4850int
4851pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
4852{
4853	vm_offset_t base, offset, tmpva;
4854	pd_entry_t *pde;
4855	pt_entry_t *pte;
4856	int cache_bits_pte, cache_bits_pde;
4857	boolean_t changed;
4858
4859	base = trunc_page(va);
4860	offset = va & PAGE_MASK;
4861	size = roundup(offset + size, PAGE_SIZE);
4862
4863	/*
4864	 * Only supported on kernel virtual addresses above the recursive map.
4865	 */
4866	if (base < VM_MIN_KERNEL_ADDRESS)
4867		return (EINVAL);
4868
4869	cache_bits_pde = pmap_cache_bits(mode, 1);
4870	cache_bits_pte = pmap_cache_bits(mode, 0);
4871	changed = FALSE;
4872
4873	/*
4874	 * Pages that aren't mapped aren't supported.  Also break down
4875	 * 2/4MB pages into 4KB pages if required.
4876	 */
4877	PMAP_LOCK(kernel_pmap);
4878	for (tmpva = base; tmpva < base + size; ) {
4879		pde = pmap_pde(kernel_pmap, tmpva);
4880		if (*pde == 0) {
4881			PMAP_UNLOCK(kernel_pmap);
4882			return (EINVAL);
4883		}
4884		if (*pde & PG_PS) {
4885			/*
4886			 * If the current 2/4MB page already has
4887			 * the required memory type, then we need not
4888			 * demote this page.  Just increment tmpva to
4889			 * the next 2/4MB page frame.
4890			 */
4891			if ((*pde & PG_PDE_CACHE) == cache_bits_pde) {
4892				tmpva = trunc_4mpage(tmpva) + NBPDR;
4893				continue;
4894			}
4895
4896			/*
4897			 * If the current offset aligns with a 2/4MB
4898			 * page frame and there is at least 2/4MB left
4899			 * within the range, then we need not break
4900			 * down this page into 4KB pages.
4901			 */
4902			if ((tmpva & PDRMASK) == 0 &&
4903			    tmpva + PDRMASK < base + size) {
4904				tmpva += NBPDR;
4905				continue;
4906			}
4907			if (!pmap_demote_pde(kernel_pmap, pde, tmpva)) {
4908				PMAP_UNLOCK(kernel_pmap);
4909				return (ENOMEM);
4910			}
4911		}
4912		pte = vtopte(tmpva);
4913		if (*pte == 0) {
4914			PMAP_UNLOCK(kernel_pmap);
4915			return (EINVAL);
4916		}
4917		tmpva += PAGE_SIZE;
4918	}
4919	PMAP_UNLOCK(kernel_pmap);
4920
4921	/*
4922	 * Ok, all the pages exist, so run through them updating their
4923	 * cache mode if required.
4924	 */
4925	for (tmpva = base; tmpva < base + size; ) {
4926		pde = pmap_pde(kernel_pmap, tmpva);
4927		if (*pde & PG_PS) {
4928			if ((*pde & PG_PDE_CACHE) != cache_bits_pde) {
4929				pmap_pde_attr(pde, cache_bits_pde);
4930				changed = TRUE;
4931			}
4932			tmpva = trunc_4mpage(tmpva) + NBPDR;
4933		} else {
4934			pte = vtopte(tmpva);
4935			if ((*pte & PG_PTE_CACHE) != cache_bits_pte) {
4936				pmap_pte_attr(pte, cache_bits_pte);
4937				changed = TRUE;
4938			}
4939			tmpva += PAGE_SIZE;
4940		}
4941	}
4942
4943	/*
4944	 * Flush CPU caches to make sure any data isn't cached that
4945	 * shouldn't be, etc.
4946	 */
4947	if (changed) {
4948		pmap_invalidate_range(kernel_pmap, base, tmpva);
4949		pmap_invalidate_cache_range(base, tmpva);
4950	}
4951	return (0);
4952}
4953
4954/*
4955 * perform the pmap work for mincore
4956 */
4957int
4958pmap_mincore(pmap_t pmap, vm_offset_t addr)
4959{
4960	pd_entry_t *pdep;
4961	pt_entry_t *ptep, pte;
4962	vm_paddr_t pa;
4963	vm_page_t m;
4964	int val = 0;
4965
4966	PMAP_LOCK(pmap);
4967	pdep = pmap_pde(pmap, addr);
4968	if (*pdep != 0) {
4969		if (*pdep & PG_PS) {
4970			pte = *pdep;
4971			val = MINCORE_SUPER;
4972			/* Compute the physical address of the 4KB page. */
4973			pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
4974			    PG_FRAME;
4975		} else {
4976			ptep = pmap_pte(pmap, addr);
4977			pte = *ptep;
4978			pmap_pte_release(ptep);
4979			pa = pte & PG_FRAME;
4980		}
4981	} else {
4982		pte = 0;
4983		pa = 0;
4984	}
4985	PMAP_UNLOCK(pmap);
4986
4987	if (pte != 0) {
4988		val |= MINCORE_INCORE;
4989		if ((pte & PG_MANAGED) == 0)
4990			return (val);
4991
4992		m = PHYS_TO_VM_PAGE(pa);
4993
4994		/*
4995		 * Modified by us
4996		 */
4997		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
4998			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
4999		else {
5000			/*
5001			 * Modified by someone else
5002			 */
5003			vm_page_lock_queues();
5004			if (m->dirty || pmap_is_modified(m))
5005				val |= MINCORE_MODIFIED_OTHER;
5006			vm_page_unlock_queues();
5007		}
5008		/*
5009		 * Referenced by us
5010		 */
5011		if (pte & PG_A)
5012			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
5013		else {
5014			/*
5015			 * Referenced by someone else
5016			 */
5017			vm_page_lock_queues();
5018			if ((m->flags & PG_REFERENCED) ||
5019			    pmap_is_referenced(m))
5020				val |= MINCORE_REFERENCED_OTHER;
5021			vm_page_unlock_queues();
5022		}
5023	}
5024	return (val);
5025}
5026
5027void
5028pmap_activate(struct thread *td)
5029{
5030	pmap_t	pmap, oldpmap;
5031	u_int32_t  cr3;
5032
5033	critical_enter();
5034	pmap = vmspace_pmap(td->td_proc->p_vmspace);
5035	oldpmap = PCPU_GET(curpmap);
5036#if defined(SMP)
5037	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
5038	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
5039#else
5040	oldpmap->pm_active &= ~1;
5041	pmap->pm_active |= 1;
5042#endif
5043#ifdef PAE
5044	cr3 = vtophys(pmap->pm_pdpt);
5045#else
5046	cr3 = vtophys(pmap->pm_pdir);
5047#endif
5048	/*
5049	 * pmap_activate is for the current thread on the current cpu
5050	 */
5051	td->td_pcb->pcb_cr3 = cr3;
5052	load_cr3(cr3);
5053	PCPU_SET(curpmap, pmap);
5054	critical_exit();
5055}
5056
5057void
5058pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
5059{
5060}
5061
5062/*
5063 *	Increase the starting virtual address of the given mapping if a
5064 *	different alignment might result in more superpage mappings.
5065 */
5066void
5067pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
5068    vm_offset_t *addr, vm_size_t size)
5069{
5070	vm_offset_t superpage_offset;
5071
5072	if (size < NBPDR)
5073		return;
5074	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
5075		offset += ptoa(object->pg_color);
5076	superpage_offset = offset & PDRMASK;
5077	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
5078	    (*addr & PDRMASK) == superpage_offset)
5079		return;
5080	if ((*addr & PDRMASK) < superpage_offset)
5081		*addr = (*addr & ~PDRMASK) + superpage_offset;
5082	else
5083		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
5084}
5085
5086
5087#if defined(PMAP_DEBUG)
5088pmap_pid_dump(int pid)
5089{
5090	pmap_t pmap;
5091	struct proc *p;
5092	int npte = 0;
5093	int index;
5094
5095	sx_slock(&allproc_lock);
5096	FOREACH_PROC_IN_SYSTEM(p) {
5097		if (p->p_pid != pid)
5098			continue;
5099
5100		if (p->p_vmspace) {
5101			int i,j;
5102			index = 0;
5103			pmap = vmspace_pmap(p->p_vmspace);
5104			for (i = 0; i < NPDEPTD; i++) {
5105				pd_entry_t *pde;
5106				pt_entry_t *pte;
5107				vm_offset_t base = i << PDRSHIFT;
5108
5109				pde = &pmap->pm_pdir[i];
5110				if (pde && pmap_pde_v(pde)) {
5111					for (j = 0; j < NPTEPG; j++) {
5112						vm_offset_t va = base + (j << PAGE_SHIFT);
5113						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
5114							if (index) {
5115								index = 0;
5116								printf("\n");
5117							}
5118							sx_sunlock(&allproc_lock);
5119							return (npte);
5120						}
5121						pte = pmap_pte(pmap, va);
5122						if (pte && pmap_pte_v(pte)) {
5123							pt_entry_t pa;
5124							vm_page_t m;
5125							pa = *pte;
5126							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
5127							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
5128								va, pa, m->hold_count, m->wire_count, m->flags);
5129							npte++;
5130							index++;
5131							if (index >= 2) {
5132								index = 0;
5133								printf("\n");
5134							} else {
5135								printf(" ");
5136							}
5137						}
5138					}
5139				}
5140			}
5141		}
5142	}
5143	sx_sunlock(&allproc_lock);
5144	return (npte);
5145}
5146#endif
5147
5148#if defined(DEBUG)
5149
5150static void	pads(pmap_t pm);
5151void		pmap_pvdump(vm_offset_t pa);
5152
5153/* print address space of pmap*/
5154static void
5155pads(pmap_t pm)
5156{
5157	int i, j;
5158	vm_paddr_t va;
5159	pt_entry_t *ptep;
5160
5161	if (pm == kernel_pmap)
5162		return;
5163	for (i = 0; i < NPDEPTD; i++)
5164		if (pm->pm_pdir[i])
5165			for (j = 0; j < NPTEPG; j++) {
5166				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
5167				if (pm == kernel_pmap && va < KERNBASE)
5168					continue;
5169				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
5170					continue;
5171				ptep = pmap_pte(pm, va);
5172				if (pmap_pte_v(ptep))
5173					printf("%x:%x ", va, *ptep);
5174			};
5175
5176}
5177
5178void
5179pmap_pvdump(vm_paddr_t pa)
5180{
5181	pv_entry_t pv;
5182	pmap_t pmap;
5183	vm_page_t m;
5184
5185	printf("pa %x", pa);
5186	m = PHYS_TO_VM_PAGE(pa);
5187	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
5188		pmap = PV_PMAP(pv);
5189		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
5190		pads(pmap);
5191	}
5192	printf(" ");
5193}
5194#endif
5195