pmap.c revision 177525
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 * Copyright (c) 2005 Alan L. Cox <alc@cs.rice.edu>
9 * All rights reserved.
10 *
11 * This code is derived from software contributed to Berkeley by
12 * the Systems Programming Group of the University of Utah Computer
13 * Science Department and William Jolitz of UUNET Technologies Inc.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 *    notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 *    notice, this list of conditions and the following disclaimer in the
22 *    documentation and/or other materials provided with the distribution.
23 * 3. All advertising materials mentioning features or use of this software
24 *    must display the following acknowledgement:
25 *	This product includes software developed by the University of
26 *	California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 *    may be used to endorse or promote products derived from this software
29 *    without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
44 */
45/*-
46 * Copyright (c) 2003 Networks Associates Technology, Inc.
47 * All rights reserved.
48 *
49 * This software was developed for the FreeBSD Project by Jake Burkholder,
50 * Safeport Network Services, and Network Associates Laboratories, the
51 * Security Research Division of Network Associates, Inc. under
52 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
53 * CHATS research program.
54 *
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
57 * are met:
58 * 1. Redistributions of source code must retain the above copyright
59 *    notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 *    notice, this list of conditions and the following disclaimer in the
62 *    documentation and/or other materials provided with the distribution.
63 *
64 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
65 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
66 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
67 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
68 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
69 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
70 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
71 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
72 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
73 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
74 * SUCH DAMAGE.
75 */
76
77#include <sys/cdefs.h>
78__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 177525 2008-03-23 07:07:27Z kib $");
79
80/*
81 *	Manages physical address maps.
82 *
83 *	In addition to hardware address maps, this
84 *	module is called upon to provide software-use-only
85 *	maps which may or may not be stored in the same
86 *	form as hardware maps.  These pseudo-maps are
87 *	used to store intermediate results from copy
88 *	operations to and from address spaces.
89 *
90 *	Since the information managed by this module is
91 *	also stored by the logical address mapping module,
92 *	this module may throw away valid virtual-to-physical
93 *	mappings at almost any time.  However, invalidations
94 *	of virtual-to-physical mappings must be done as
95 *	requested.
96 *
97 *	In order to cope with hardware architectures which
98 *	make virtual-to-physical map invalidates expensive,
99 *	this module may delay invalidate or reduced protection
100 *	operations until such time as they are actually
101 *	necessary.  This module is given full information as
102 *	to which processors are currently using which maps,
103 *	and to when physical maps must be made correct.
104 */
105
106#include "opt_cpu.h"
107#include "opt_pmap.h"
108#include "opt_msgbuf.h"
109#include "opt_smp.h"
110#include "opt_xbox.h"
111
112#include <sys/param.h>
113#include <sys/systm.h>
114#include <sys/kernel.h>
115#include <sys/lock.h>
116#include <sys/malloc.h>
117#include <sys/mman.h>
118#include <sys/msgbuf.h>
119#include <sys/mutex.h>
120#include <sys/proc.h>
121#include <sys/sx.h>
122#include <sys/vmmeter.h>
123#include <sys/sched.h>
124#include <sys/sysctl.h>
125#ifdef SMP
126#include <sys/smp.h>
127#endif
128
129#include <vm/vm.h>
130#include <vm/vm_param.h>
131#include <vm/vm_kern.h>
132#include <vm/vm_page.h>
133#include <vm/vm_map.h>
134#include <vm/vm_object.h>
135#include <vm/vm_extern.h>
136#include <vm/vm_pageout.h>
137#include <vm/vm_pager.h>
138#include <vm/uma.h>
139
140#include <machine/cpu.h>
141#include <machine/cputypes.h>
142#include <machine/md_var.h>
143#include <machine/pcb.h>
144#include <machine/specialreg.h>
145#ifdef SMP
146#include <machine/smp.h>
147#endif
148
149#ifdef XBOX
150#include <machine/xbox.h>
151#endif
152
153#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
154#define CPU_ENABLE_SSE
155#endif
156
157#ifndef PMAP_SHPGPERPROC
158#define PMAP_SHPGPERPROC 200
159#endif
160
161#if !defined(DIAGNOSTIC)
162#define PMAP_INLINE	__gnu89_inline
163#else
164#define PMAP_INLINE
165#endif
166
167#define PV_STATS
168#ifdef PV_STATS
169#define PV_STAT(x)	do { x ; } while (0)
170#else
171#define PV_STAT(x)	do { } while (0)
172#endif
173
174/*
175 * Get PDEs and PTEs for user/kernel address space
176 */
177#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
178#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
179
180#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
181#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
182#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
183#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
184#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
185
186#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
187    atomic_clear_int((u_int *)(pte), PG_W))
188#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
189
190struct pmap kernel_pmap_store;
191LIST_HEAD(pmaplist, pmap);
192static struct pmaplist allpmaps;
193static struct mtx allpmaps_lock;
194
195vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
196vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
197int pgeflag = 0;		/* PG_G or-in */
198int pseflag = 0;		/* PG_PS or-in */
199
200static int nkpt;
201vm_offset_t kernel_vm_end;
202extern u_int32_t KERNend;
203
204#ifdef PAE
205pt_entry_t pg_nx;
206static uma_zone_t pdptzone;
207#endif
208
209/*
210 * Data for the pv entry allocation mechanism
211 */
212static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
213static int shpgperproc = PMAP_SHPGPERPROC;
214
215struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
216int pv_maxchunks;			/* How many chunks we have KVA for */
217vm_offset_t pv_vafree;			/* freelist stored in the PTE */
218
219/*
220 * All those kernel PT submaps that BSD is so fond of
221 */
222struct sysmaps {
223	struct	mtx lock;
224	pt_entry_t *CMAP1;
225	pt_entry_t *CMAP2;
226	caddr_t	CADDR1;
227	caddr_t	CADDR2;
228};
229static struct sysmaps sysmaps_pcpu[MAXCPU];
230pt_entry_t *CMAP1 = 0;
231static pt_entry_t *CMAP3;
232caddr_t CADDR1 = 0, ptvmmap = 0;
233static caddr_t CADDR3;
234struct msgbuf *msgbufp = 0;
235
236/*
237 * Crashdump maps.
238 */
239static caddr_t crashdumpmap;
240
241static pt_entry_t *PMAP1 = 0, *PMAP2;
242static pt_entry_t *PADDR1 = 0, *PADDR2;
243#ifdef SMP
244static int PMAP1cpu;
245static int PMAP1changedcpu;
246SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
247	   &PMAP1changedcpu, 0,
248	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
249#endif
250static int PMAP1changed;
251SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
252	   &PMAP1changed, 0,
253	   "Number of times pmap_pte_quick changed PMAP1");
254static int PMAP1unchanged;
255SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
256	   &PMAP1unchanged, 0,
257	   "Number of times pmap_pte_quick didn't change PMAP1");
258static struct mtx PMAP2mutex;
259
260static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
261static pv_entry_t get_pv_entry(pmap_t locked_pmap, int try);
262
263static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
264    vm_page_t m, vm_prot_t prot, vm_page_t mpte);
265static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
266    vm_page_t *free);
267static void pmap_remove_page(struct pmap *pmap, vm_offset_t va,
268    vm_page_t *free);
269static void pmap_remove_entry(struct pmap *pmap, vm_page_t m,
270					vm_offset_t va);
271static void pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m);
272static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
273    vm_page_t m);
274
275static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags);
276
277static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags);
278static int _pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free);
279static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
280static void pmap_pte_release(pt_entry_t *pte);
281static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t *);
282static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
283#ifdef PAE
284static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
285#endif
286
287CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
288CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
289
290/*
291 * If you get an error here, then you set KVA_PAGES wrong! See the
292 * description of KVA_PAGES in sys/i386/include/pmap.h. It must be
293 * multiple of 4 for a normal kernel, or a multiple of 8 for a PAE.
294 */
295CTASSERT(KERNBASE % (1 << 24) == 0);
296
297/*
298 * Move the kernel virtual free pointer to the next
299 * 4MB.  This is used to help improve performance
300 * by using a large (4MB) page for much of the kernel
301 * (.text, .data, .bss)
302 */
303static vm_offset_t
304pmap_kmem_choose(vm_offset_t addr)
305{
306	vm_offset_t newaddr = addr;
307
308#ifndef DISABLE_PSE
309	if (cpu_feature & CPUID_PSE)
310		newaddr = (addr + PDRMASK) & ~PDRMASK;
311#endif
312	return newaddr;
313}
314
315/*
316 *	Bootstrap the system enough to run with virtual memory.
317 *
318 *	On the i386 this is called after mapping has already been enabled
319 *	and just syncs the pmap module with what has already been done.
320 *	[We can't call it easily with mapping off since the kernel is not
321 *	mapped with PA == VA, hence we would have to relocate every address
322 *	from the linked base (virtual) address "KERNBASE" to the actual
323 *	(physical) address starting relative to 0]
324 */
325void
326pmap_bootstrap(vm_paddr_t firstaddr)
327{
328	vm_offset_t va;
329	pt_entry_t *pte, *unused;
330	struct sysmaps *sysmaps;
331	int i;
332
333	/*
334	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
335	 * large. It should instead be correctly calculated in locore.s and
336	 * not based on 'first' (which is a physical address, not a virtual
337	 * address, for the start of unused physical memory). The kernel
338	 * page tables are NOT double mapped and thus should not be included
339	 * in this calculation.
340	 */
341	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
342	virtual_avail = pmap_kmem_choose(virtual_avail);
343
344	virtual_end = VM_MAX_KERNEL_ADDRESS;
345
346	/*
347	 * Initialize the kernel pmap (which is statically allocated).
348	 */
349	PMAP_LOCK_INIT(kernel_pmap);
350	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
351#ifdef PAE
352	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
353#endif
354	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
355	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
356	LIST_INIT(&allpmaps);
357	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
358	mtx_lock_spin(&allpmaps_lock);
359	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
360	mtx_unlock_spin(&allpmaps_lock);
361	nkpt = NKPT;
362
363	/*
364	 * Reserve some special page table entries/VA space for temporary
365	 * mapping of pages.
366	 */
367#define	SYSMAP(c, p, v, n)	\
368	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
369
370	va = virtual_avail;
371	pte = vtopte(va);
372
373	/*
374	 * CMAP1/CMAP2 are used for zeroing and copying pages.
375	 * CMAP3 is used for the idle process page zeroing.
376	 */
377	for (i = 0; i < MAXCPU; i++) {
378		sysmaps = &sysmaps_pcpu[i];
379		mtx_init(&sysmaps->lock, "SYSMAPS", NULL, MTX_DEF);
380		SYSMAP(caddr_t, sysmaps->CMAP1, sysmaps->CADDR1, 1)
381		SYSMAP(caddr_t, sysmaps->CMAP2, sysmaps->CADDR2, 1)
382	}
383	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
384	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
385	*CMAP3 = 0;
386
387	/*
388	 * Crashdump maps.
389	 */
390	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
391
392	/*
393	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
394	 */
395	SYSMAP(caddr_t, unused, ptvmmap, 1)
396
397	/*
398	 * msgbufp is used to map the system message buffer.
399	 */
400	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
401
402	/*
403	 * ptemap is used for pmap_pte_quick
404	 */
405	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
406	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
407
408	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
409
410	virtual_avail = va;
411
412	*CMAP1 = 0;
413
414	/*
415	 * Leave in place an identity mapping (virt == phys) for the low 1 MB
416	 * physical memory region that is used by the ACPI wakeup code.  This
417	 * mapping must not have PG_G set.
418	 */
419#ifdef XBOX
420	/* FIXME: This is gross, but needed for the XBOX. Since we are in such
421	 * an early stadium, we cannot yet neatly map video memory ... :-(
422	 * Better fixes are very welcome! */
423	if (!arch_i386_is_xbox)
424#endif
425	for (i = 1; i < NKPT; i++)
426		PTD[i] = 0;
427
428	/* Initialize the PAT MSR if present. */
429	pmap_init_pat();
430
431	/* Turn on PG_G on kernel page(s) */
432	pmap_set_pg();
433}
434
435/*
436 * Setup the PAT MSR.
437 */
438void
439pmap_init_pat(void)
440{
441	uint64_t pat_msr;
442
443	/* Bail if this CPU doesn't implement PAT. */
444	if (!(cpu_feature & CPUID_PAT))
445		return;
446
447#ifdef PAT_WORKS
448	/*
449	 * Leave the indices 0-3 at the default of WB, WT, UC, and UC-.
450	 * Program 4 and 5 as WP and WC.
451	 * Leave 6 and 7 as UC and UC-.
452	 */
453	pat_msr = rdmsr(MSR_PAT);
454	pat_msr &= ~(PAT_MASK(4) | PAT_MASK(5));
455	pat_msr |= PAT_VALUE(4, PAT_WRITE_PROTECTED) |
456	    PAT_VALUE(5, PAT_WRITE_COMBINING);
457#else
458	/*
459	 * Due to some Intel errata, we can only safely use the lower 4
460	 * PAT entries.  Thus, just replace PAT Index 2 with WC instead
461	 * of UC-.
462	 *
463	 *   Intel Pentium III Processor Specification Update
464	 * Errata E.27 (Upper Four PAT Entries Not Usable With Mode B
465	 * or Mode C Paging)
466	 *
467	 *   Intel Pentium IV  Processor Specification Update
468	 * Errata N46 (PAT Index MSB May Be Calculated Incorrectly)
469	 */
470	pat_msr = rdmsr(MSR_PAT);
471	pat_msr &= ~PAT_MASK(2);
472	pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
473#endif
474	wrmsr(MSR_PAT, pat_msr);
475}
476
477/*
478 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
479 */
480void
481pmap_set_pg(void)
482{
483	pd_entry_t pdir;
484	pt_entry_t *pte;
485	vm_offset_t va, endva;
486	int i;
487
488	if (pgeflag == 0)
489		return;
490
491	i = KERNLOAD/NBPDR;
492	endva = KERNBASE + KERNend;
493
494	if (pseflag) {
495		va = KERNBASE + KERNLOAD;
496		while (va  < endva) {
497			pdir = kernel_pmap->pm_pdir[KPTDI+i];
498			pdir |= pgeflag;
499			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
500			invltlb();	/* Play it safe, invltlb() every time */
501			i++;
502			va += NBPDR;
503		}
504	} else {
505		va = (vm_offset_t)btext;
506		while (va < endva) {
507			pte = vtopte(va);
508			if (*pte)
509				*pte |= pgeflag;
510			invltlb();	/* Play it safe, invltlb() every time */
511			va += PAGE_SIZE;
512		}
513	}
514}
515
516/*
517 * Initialize a vm_page's machine-dependent fields.
518 */
519void
520pmap_page_init(vm_page_t m)
521{
522
523	TAILQ_INIT(&m->md.pv_list);
524}
525
526#ifdef PAE
527
528static MALLOC_DEFINE(M_PMAPPDPT, "pmap", "pmap pdpt");
529
530static void *
531pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
532{
533	*flags = UMA_SLAB_PRIV;
534	return (contigmalloc(PAGE_SIZE, M_PMAPPDPT, 0, 0x0ULL, 0xffffffffULL,
535	    1, 0));
536}
537#endif
538
539/*
540 * ABuse the pte nodes for unmapped kva to thread a kva freelist through.
541 * Requirements:
542 *  - Must deal with pages in order to ensure that none of the PG_* bits
543 *    are ever set, PG_V in particular.
544 *  - Assumes we can write to ptes without pte_store() atomic ops, even
545 *    on PAE systems.  This should be ok.
546 *  - Assumes nothing will ever test these addresses for 0 to indicate
547 *    no mapping instead of correctly checking PG_V.
548 *  - Assumes a vm_offset_t will fit in a pte (true for i386).
549 * Because PG_V is never set, there can be no mappings to invalidate.
550 */
551static vm_offset_t
552pmap_ptelist_alloc(vm_offset_t *head)
553{
554	pt_entry_t *pte;
555	vm_offset_t va;
556
557	va = *head;
558	if (va == 0)
559		return (va);	/* Out of memory */
560	pte = vtopte(va);
561	*head = *pte;
562	if (*head & PG_V)
563		panic("pmap_ptelist_alloc: va with PG_V set!");
564	*pte = 0;
565	return (va);
566}
567
568static void
569pmap_ptelist_free(vm_offset_t *head, vm_offset_t va)
570{
571	pt_entry_t *pte;
572
573	if (va & PG_V)
574		panic("pmap_ptelist_free: freeing va with PG_V set!");
575	pte = vtopte(va);
576	*pte = *head;		/* virtual! PG_V is 0 though */
577	*head = va;
578}
579
580static void
581pmap_ptelist_init(vm_offset_t *head, void *base, int npages)
582{
583	int i;
584	vm_offset_t va;
585
586	*head = 0;
587	for (i = npages - 1; i >= 0; i--) {
588		va = (vm_offset_t)base + i * PAGE_SIZE;
589		pmap_ptelist_free(head, va);
590	}
591}
592
593
594/*
595 *	Initialize the pmap module.
596 *	Called by vm_init, to initialize any structures that the pmap
597 *	system needs to map virtual memory.
598 */
599void
600pmap_init(void)
601{
602
603	/*
604	 * Initialize the address space (zone) for the pv entries.  Set a
605	 * high water mark so that the system can recover from excessive
606	 * numbers of pv entries.
607	 */
608	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
609	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
610	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
611	pv_entry_max = roundup(pv_entry_max, _NPCPV);
612	pv_entry_high_water = 9 * (pv_entry_max / 10);
613
614	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
615	pv_chunkbase = (struct pv_chunk *)kmem_alloc_nofault(kernel_map,
616	    PAGE_SIZE * pv_maxchunks);
617	if (pv_chunkbase == NULL)
618		panic("pmap_init: not enough kvm for pv chunks");
619	pmap_ptelist_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
620#ifdef PAE
621	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
622	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
623	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
624	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
625#endif
626}
627
628
629SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
630SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
631	"Max number of PV entries");
632SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
633	"Page share factor per proc");
634
635/***************************************************
636 * Low level helper routines.....
637 ***************************************************/
638
639/*
640 * Determine the appropriate bits to set in a PTE or PDE for a specified
641 * caching mode.
642 */
643static int
644pmap_cache_bits(int mode, boolean_t is_pde)
645{
646	int pat_flag, pat_index, cache_bits;
647
648	/* The PAT bit is different for PTE's and PDE's. */
649	pat_flag = is_pde ? PG_PDE_PAT : PG_PTE_PAT;
650
651	/* If we don't support PAT, map extended modes to older ones. */
652	if (!(cpu_feature & CPUID_PAT)) {
653		switch (mode) {
654		case PAT_UNCACHEABLE:
655		case PAT_WRITE_THROUGH:
656		case PAT_WRITE_BACK:
657			break;
658		case PAT_UNCACHED:
659		case PAT_WRITE_COMBINING:
660		case PAT_WRITE_PROTECTED:
661			mode = PAT_UNCACHEABLE;
662			break;
663		}
664	}
665
666	/* Map the caching mode to a PAT index. */
667	switch (mode) {
668#ifdef PAT_WORKS
669	case PAT_UNCACHEABLE:
670		pat_index = 3;
671		break;
672	case PAT_WRITE_THROUGH:
673		pat_index = 1;
674		break;
675	case PAT_WRITE_BACK:
676		pat_index = 0;
677		break;
678	case PAT_UNCACHED:
679		pat_index = 2;
680		break;
681	case PAT_WRITE_COMBINING:
682		pat_index = 5;
683		break;
684	case PAT_WRITE_PROTECTED:
685		pat_index = 4;
686		break;
687#else
688	case PAT_UNCACHED:
689	case PAT_UNCACHEABLE:
690	case PAT_WRITE_PROTECTED:
691		pat_index = 3;
692		break;
693	case PAT_WRITE_THROUGH:
694		pat_index = 1;
695		break;
696	case PAT_WRITE_BACK:
697		pat_index = 0;
698		break;
699	case PAT_WRITE_COMBINING:
700		pat_index = 2;
701		break;
702#endif
703	default:
704		panic("Unknown caching mode %d\n", mode);
705	}
706
707	/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
708	cache_bits = 0;
709	if (pat_index & 0x4)
710		cache_bits |= pat_flag;
711	if (pat_index & 0x2)
712		cache_bits |= PG_NC_PCD;
713	if (pat_index & 0x1)
714		cache_bits |= PG_NC_PWT;
715	return (cache_bits);
716}
717#ifdef SMP
718/*
719 * For SMP, these functions have to use the IPI mechanism for coherence.
720 *
721 * N.B.: Before calling any of the following TLB invalidation functions,
722 * the calling processor must ensure that all stores updating a non-
723 * kernel page table are globally performed.  Otherwise, another
724 * processor could cache an old, pre-update entry without being
725 * invalidated.  This can happen one of two ways: (1) The pmap becomes
726 * active on another processor after its pm_active field is checked by
727 * one of the following functions but before a store updating the page
728 * table is globally performed. (2) The pmap becomes active on another
729 * processor before its pm_active field is checked but due to
730 * speculative loads one of the following functions stills reads the
731 * pmap as inactive on the other processor.
732 *
733 * The kernel page table is exempt because its pm_active field is
734 * immutable.  The kernel page table is always active on every
735 * processor.
736 */
737void
738pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
739{
740	u_int cpumask;
741	u_int other_cpus;
742
743	sched_pin();
744	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
745		invlpg(va);
746		smp_invlpg(va);
747	} else {
748		cpumask = PCPU_GET(cpumask);
749		other_cpus = PCPU_GET(other_cpus);
750		if (pmap->pm_active & cpumask)
751			invlpg(va);
752		if (pmap->pm_active & other_cpus)
753			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
754	}
755	sched_unpin();
756}
757
758void
759pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
760{
761	u_int cpumask;
762	u_int other_cpus;
763	vm_offset_t addr;
764
765	sched_pin();
766	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
767		for (addr = sva; addr < eva; addr += PAGE_SIZE)
768			invlpg(addr);
769		smp_invlpg_range(sva, eva);
770	} else {
771		cpumask = PCPU_GET(cpumask);
772		other_cpus = PCPU_GET(other_cpus);
773		if (pmap->pm_active & cpumask)
774			for (addr = sva; addr < eva; addr += PAGE_SIZE)
775				invlpg(addr);
776		if (pmap->pm_active & other_cpus)
777			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
778			    sva, eva);
779	}
780	sched_unpin();
781}
782
783void
784pmap_invalidate_all(pmap_t pmap)
785{
786	u_int cpumask;
787	u_int other_cpus;
788
789	sched_pin();
790	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
791		invltlb();
792		smp_invltlb();
793	} else {
794		cpumask = PCPU_GET(cpumask);
795		other_cpus = PCPU_GET(other_cpus);
796		if (pmap->pm_active & cpumask)
797			invltlb();
798		if (pmap->pm_active & other_cpus)
799			smp_masked_invltlb(pmap->pm_active & other_cpus);
800	}
801	sched_unpin();
802}
803
804void
805pmap_invalidate_cache(void)
806{
807
808	sched_pin();
809	wbinvd();
810	smp_cache_flush();
811	sched_unpin();
812}
813#else /* !SMP */
814/*
815 * Normal, non-SMP, 486+ invalidation functions.
816 * We inline these within pmap.c for speed.
817 */
818PMAP_INLINE void
819pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
820{
821
822	if (pmap == kernel_pmap || pmap->pm_active)
823		invlpg(va);
824}
825
826PMAP_INLINE void
827pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
828{
829	vm_offset_t addr;
830
831	if (pmap == kernel_pmap || pmap->pm_active)
832		for (addr = sva; addr < eva; addr += PAGE_SIZE)
833			invlpg(addr);
834}
835
836PMAP_INLINE void
837pmap_invalidate_all(pmap_t pmap)
838{
839
840	if (pmap == kernel_pmap || pmap->pm_active)
841		invltlb();
842}
843
844PMAP_INLINE void
845pmap_invalidate_cache(void)
846{
847
848	wbinvd();
849}
850#endif /* !SMP */
851
852/*
853 * Are we current address space or kernel?  N.B. We return FALSE when
854 * a pmap's page table is in use because a kernel thread is borrowing
855 * it.  The borrowed page table can change spontaneously, making any
856 * dependence on its continued use subject to a race condition.
857 */
858static __inline int
859pmap_is_current(pmap_t pmap)
860{
861
862	return (pmap == kernel_pmap ||
863		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
864	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
865}
866
867/*
868 * If the given pmap is not the current or kernel pmap, the returned pte must
869 * be released by passing it to pmap_pte_release().
870 */
871pt_entry_t *
872pmap_pte(pmap_t pmap, vm_offset_t va)
873{
874	pd_entry_t newpf;
875	pd_entry_t *pde;
876
877	pde = pmap_pde(pmap, va);
878	if (*pde & PG_PS)
879		return (pde);
880	if (*pde != 0) {
881		/* are we current address space or kernel? */
882		if (pmap_is_current(pmap))
883			return (vtopte(va));
884		mtx_lock(&PMAP2mutex);
885		newpf = *pde & PG_FRAME;
886		if ((*PMAP2 & PG_FRAME) != newpf) {
887			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
888			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
889		}
890		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
891	}
892	return (0);
893}
894
895/*
896 * Releases a pte that was obtained from pmap_pte().  Be prepared for the pte
897 * being NULL.
898 */
899static __inline void
900pmap_pte_release(pt_entry_t *pte)
901{
902
903	if ((pt_entry_t *)((vm_offset_t)pte & ~PAGE_MASK) == PADDR2)
904		mtx_unlock(&PMAP2mutex);
905}
906
907static __inline void
908invlcaddr(void *caddr)
909{
910
911	invlpg((u_int)caddr);
912}
913
914/*
915 * Super fast pmap_pte routine best used when scanning
916 * the pv lists.  This eliminates many coarse-grained
917 * invltlb calls.  Note that many of the pv list
918 * scans are across different pmaps.  It is very wasteful
919 * to do an entire invltlb for checking a single mapping.
920 *
921 * If the given pmap is not the current pmap, vm_page_queue_mtx
922 * must be held and curthread pinned to a CPU.
923 */
924static pt_entry_t *
925pmap_pte_quick(pmap_t pmap, vm_offset_t va)
926{
927	pd_entry_t newpf;
928	pd_entry_t *pde;
929
930	pde = pmap_pde(pmap, va);
931	if (*pde & PG_PS)
932		return (pde);
933	if (*pde != 0) {
934		/* are we current address space or kernel? */
935		if (pmap_is_current(pmap))
936			return (vtopte(va));
937		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
938		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
939		newpf = *pde & PG_FRAME;
940		if ((*PMAP1 & PG_FRAME) != newpf) {
941			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
942#ifdef SMP
943			PMAP1cpu = PCPU_GET(cpuid);
944#endif
945			invlcaddr(PADDR1);
946			PMAP1changed++;
947		} else
948#ifdef SMP
949		if (PMAP1cpu != PCPU_GET(cpuid)) {
950			PMAP1cpu = PCPU_GET(cpuid);
951			invlcaddr(PADDR1);
952			PMAP1changedcpu++;
953		} else
954#endif
955			PMAP1unchanged++;
956		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
957	}
958	return (0);
959}
960
961/*
962 *	Routine:	pmap_extract
963 *	Function:
964 *		Extract the physical page address associated
965 *		with the given map/virtual_address pair.
966 */
967vm_paddr_t
968pmap_extract(pmap_t pmap, vm_offset_t va)
969{
970	vm_paddr_t rtval;
971	pt_entry_t *pte;
972	pd_entry_t pde;
973
974	rtval = 0;
975	PMAP_LOCK(pmap);
976	pde = pmap->pm_pdir[va >> PDRSHIFT];
977	if (pde != 0) {
978		if ((pde & PG_PS) != 0) {
979			rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
980			PMAP_UNLOCK(pmap);
981			return rtval;
982		}
983		pte = pmap_pte(pmap, va);
984		rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
985		pmap_pte_release(pte);
986	}
987	PMAP_UNLOCK(pmap);
988	return (rtval);
989}
990
991/*
992 *	Routine:	pmap_extract_and_hold
993 *	Function:
994 *		Atomically extract and hold the physical page
995 *		with the given pmap and virtual address pair
996 *		if that mapping permits the given protection.
997 */
998vm_page_t
999pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1000{
1001	pd_entry_t pde;
1002	pt_entry_t pte;
1003	vm_page_t m;
1004
1005	m = NULL;
1006	vm_page_lock_queues();
1007	PMAP_LOCK(pmap);
1008	pde = *pmap_pde(pmap, va);
1009	if (pde != 0) {
1010		if (pde & PG_PS) {
1011			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
1012				m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
1013				    (va & PDRMASK));
1014				vm_page_hold(m);
1015			}
1016		} else {
1017			sched_pin();
1018			pte = *pmap_pte_quick(pmap, va);
1019			if (pte != 0 &&
1020			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
1021				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1022				vm_page_hold(m);
1023			}
1024			sched_unpin();
1025		}
1026	}
1027	vm_page_unlock_queues();
1028	PMAP_UNLOCK(pmap);
1029	return (m);
1030}
1031
1032/***************************************************
1033 * Low level mapping routines.....
1034 ***************************************************/
1035
1036/*
1037 * Add a wired page to the kva.
1038 * Note: not SMP coherent.
1039 */
1040PMAP_INLINE void
1041pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1042{
1043	pt_entry_t *pte;
1044
1045	pte = vtopte(va);
1046	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
1047}
1048
1049PMAP_INLINE void
1050pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
1051{
1052	pt_entry_t *pte;
1053
1054	pte = vtopte(va);
1055	pte_store(pte, pa | PG_RW | PG_V | pgeflag | pmap_cache_bits(mode, 0));
1056}
1057
1058/*
1059 * Remove a page from the kernel pagetables.
1060 * Note: not SMP coherent.
1061 */
1062PMAP_INLINE void
1063pmap_kremove(vm_offset_t va)
1064{
1065	pt_entry_t *pte;
1066
1067	pte = vtopte(va);
1068	pte_clear(pte);
1069}
1070
1071/*
1072 *	Used to map a range of physical addresses into kernel
1073 *	virtual address space.
1074 *
1075 *	The value passed in '*virt' is a suggested virtual address for
1076 *	the mapping. Architectures which can support a direct-mapped
1077 *	physical to virtual region can return the appropriate address
1078 *	within that region, leaving '*virt' unchanged. Other
1079 *	architectures should map the pages starting at '*virt' and
1080 *	update '*virt' with the first usable address after the mapped
1081 *	region.
1082 */
1083vm_offset_t
1084pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1085{
1086	vm_offset_t va, sva;
1087
1088	va = sva = *virt;
1089	while (start < end) {
1090		pmap_kenter(va, start);
1091		va += PAGE_SIZE;
1092		start += PAGE_SIZE;
1093	}
1094	pmap_invalidate_range(kernel_pmap, sva, va);
1095	*virt = va;
1096	return (sva);
1097}
1098
1099
1100/*
1101 * Add a list of wired pages to the kva
1102 * this routine is only used for temporary
1103 * kernel mappings that do not need to have
1104 * page modification or references recorded.
1105 * Note that old mappings are simply written
1106 * over.  The page *must* be wired.
1107 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1108 */
1109void
1110pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1111{
1112	pt_entry_t *endpte, oldpte, *pte;
1113
1114	oldpte = 0;
1115	pte = vtopte(sva);
1116	endpte = pte + count;
1117	while (pte < endpte) {
1118		oldpte |= *pte;
1119		pte_store(pte, VM_PAGE_TO_PHYS(*ma) | pgeflag | PG_RW | PG_V);
1120		pte++;
1121		ma++;
1122	}
1123	if ((oldpte & PG_V) != 0)
1124		pmap_invalidate_range(kernel_pmap, sva, sva + count *
1125		    PAGE_SIZE);
1126}
1127
1128/*
1129 * This routine tears out page mappings from the
1130 * kernel -- it is meant only for temporary mappings.
1131 * Note: SMP coherent.  Uses a ranged shootdown IPI.
1132 */
1133void
1134pmap_qremove(vm_offset_t sva, int count)
1135{
1136	vm_offset_t va;
1137
1138	va = sva;
1139	while (count-- > 0) {
1140		pmap_kremove(va);
1141		va += PAGE_SIZE;
1142	}
1143	pmap_invalidate_range(kernel_pmap, sva, va);
1144}
1145
1146/***************************************************
1147 * Page table page management routines.....
1148 ***************************************************/
1149static __inline void
1150pmap_free_zero_pages(vm_page_t free)
1151{
1152	vm_page_t m;
1153
1154	while (free != NULL) {
1155		m = free;
1156		free = m->right;
1157		vm_page_free_zero(m);
1158	}
1159}
1160
1161/*
1162 * This routine unholds page table pages, and if the hold count
1163 * drops to zero, then it decrements the wire count.
1164 */
1165static __inline int
1166pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1167{
1168
1169	--m->wire_count;
1170	if (m->wire_count == 0)
1171		return _pmap_unwire_pte_hold(pmap, m, free);
1172	else
1173		return 0;
1174}
1175
1176static int
1177_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m, vm_page_t *free)
1178{
1179	vm_offset_t pteva;
1180
1181	/*
1182	 * unmap the page table page
1183	 */
1184	pmap->pm_pdir[m->pindex] = 0;
1185	--pmap->pm_stats.resident_count;
1186
1187	/*
1188	 * This is a release store so that the ordinary store unmapping
1189	 * the page table page is globally performed before TLB shoot-
1190	 * down is begun.
1191	 */
1192	atomic_subtract_rel_int(&cnt.v_wire_count, 1);
1193
1194	/*
1195	 * Do an invltlb to make the invalidated mapping
1196	 * take effect immediately.
1197	 */
1198	pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1199	pmap_invalidate_page(pmap, pteva);
1200
1201	/*
1202	 * Put page on a list so that it is released after
1203	 * *ALL* TLB shootdown is done
1204	 */
1205	m->right = *free;
1206	*free = m;
1207
1208	return 1;
1209}
1210
1211/*
1212 * After removing a page table entry, this routine is used to
1213 * conditionally free the page, and manage the hold/wire counts.
1214 */
1215static int
1216pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1217{
1218	pd_entry_t ptepde;
1219	vm_page_t mpte;
1220
1221	if (va >= VM_MAXUSER_ADDRESS)
1222		return 0;
1223	ptepde = *pmap_pde(pmap, va);
1224	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
1225	return pmap_unwire_pte_hold(pmap, mpte, free);
1226}
1227
1228void
1229pmap_pinit0(pmap_t pmap)
1230{
1231
1232	PMAP_LOCK_INIT(pmap);
1233	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1234#ifdef PAE
1235	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1236#endif
1237	pmap->pm_active = 0;
1238	PCPU_SET(curpmap, pmap);
1239	TAILQ_INIT(&pmap->pm_pvchunk);
1240	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1241	mtx_lock_spin(&allpmaps_lock);
1242	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1243	mtx_unlock_spin(&allpmaps_lock);
1244}
1245
1246/*
1247 * Initialize a preallocated and zeroed pmap structure,
1248 * such as one in a vmspace structure.
1249 */
1250int
1251pmap_pinit(pmap_t pmap)
1252{
1253	vm_page_t m, ptdpg[NPGPTD];
1254	vm_paddr_t pa;
1255	static int color;
1256	int i;
1257
1258	PMAP_LOCK_INIT(pmap);
1259
1260	/*
1261	 * No need to allocate page table space yet but we do need a valid
1262	 * page directory table.
1263	 */
1264	if (pmap->pm_pdir == NULL) {
1265		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1266		    NBPTD);
1267
1268		if (pmap->pm_pdir == NULL) {
1269			PMAP_LOCK_DESTROY(pmap);
1270			return (0);
1271		}
1272#ifdef PAE
1273		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1274		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1275		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1276		    ("pmap_pinit: pdpt misaligned"));
1277		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1278		    ("pmap_pinit: pdpt above 4g"));
1279#endif
1280	}
1281
1282	/*
1283	 * allocate the page directory page(s)
1284	 */
1285	for (i = 0; i < NPGPTD;) {
1286		m = vm_page_alloc(NULL, color++,
1287		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1288		    VM_ALLOC_ZERO);
1289		if (m == NULL)
1290			VM_WAIT;
1291		else {
1292			ptdpg[i++] = m;
1293		}
1294	}
1295
1296	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1297
1298	for (i = 0; i < NPGPTD; i++) {
1299		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1300			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1301	}
1302
1303	mtx_lock_spin(&allpmaps_lock);
1304	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1305	mtx_unlock_spin(&allpmaps_lock);
1306	/* Wire in kernel global address entries. */
1307	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1308
1309	/* install self-referential address mapping entry(s) */
1310	for (i = 0; i < NPGPTD; i++) {
1311		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1312		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1313#ifdef PAE
1314		pmap->pm_pdpt[i] = pa | PG_V;
1315#endif
1316	}
1317
1318	pmap->pm_active = 0;
1319	TAILQ_INIT(&pmap->pm_pvchunk);
1320	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1321
1322	return (1);
1323}
1324
1325/*
1326 * this routine is called if the page table page is not
1327 * mapped correctly.
1328 */
1329static vm_page_t
1330_pmap_allocpte(pmap_t pmap, unsigned ptepindex, int flags)
1331{
1332	vm_paddr_t ptepa;
1333	vm_page_t m;
1334
1335	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1336	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1337	    ("_pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1338
1339	/*
1340	 * Allocate a page table page.
1341	 */
1342	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1343	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1344		if (flags & M_WAITOK) {
1345			PMAP_UNLOCK(pmap);
1346			vm_page_unlock_queues();
1347			VM_WAIT;
1348			vm_page_lock_queues();
1349			PMAP_LOCK(pmap);
1350		}
1351
1352		/*
1353		 * Indicate the need to retry.  While waiting, the page table
1354		 * page may have been allocated.
1355		 */
1356		return (NULL);
1357	}
1358	if ((m->flags & PG_ZERO) == 0)
1359		pmap_zero_page(m);
1360
1361	/*
1362	 * Map the pagetable page into the process address space, if
1363	 * it isn't already there.
1364	 */
1365
1366	pmap->pm_stats.resident_count++;
1367
1368	ptepa = VM_PAGE_TO_PHYS(m);
1369	pmap->pm_pdir[ptepindex] =
1370		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1371
1372	return m;
1373}
1374
1375static vm_page_t
1376pmap_allocpte(pmap_t pmap, vm_offset_t va, int flags)
1377{
1378	unsigned ptepindex;
1379	pd_entry_t ptepa;
1380	vm_page_t m;
1381
1382	KASSERT((flags & (M_NOWAIT | M_WAITOK)) == M_NOWAIT ||
1383	    (flags & (M_NOWAIT | M_WAITOK)) == M_WAITOK,
1384	    ("pmap_allocpte: flags is neither M_NOWAIT nor M_WAITOK"));
1385
1386	/*
1387	 * Calculate pagetable page index
1388	 */
1389	ptepindex = va >> PDRSHIFT;
1390retry:
1391	/*
1392	 * Get the page directory entry
1393	 */
1394	ptepa = pmap->pm_pdir[ptepindex];
1395
1396	/*
1397	 * This supports switching from a 4MB page to a
1398	 * normal 4K page.
1399	 */
1400	if (ptepa & PG_PS) {
1401		pmap->pm_pdir[ptepindex] = 0;
1402		ptepa = 0;
1403		pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1404		pmap_invalidate_all(kernel_pmap);
1405	}
1406
1407	/*
1408	 * If the page table page is mapped, we just increment the
1409	 * hold count, and activate it.
1410	 */
1411	if (ptepa) {
1412		m = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
1413		m->wire_count++;
1414	} else {
1415		/*
1416		 * Here if the pte page isn't mapped, or if it has
1417		 * been deallocated.
1418		 */
1419		m = _pmap_allocpte(pmap, ptepindex, flags);
1420		if (m == NULL && (flags & M_WAITOK))
1421			goto retry;
1422	}
1423	return (m);
1424}
1425
1426
1427/***************************************************
1428* Pmap allocation/deallocation routines.
1429 ***************************************************/
1430
1431#ifdef SMP
1432/*
1433 * Deal with a SMP shootdown of other users of the pmap that we are
1434 * trying to dispose of.  This can be a bit hairy.
1435 */
1436static u_int *lazymask;
1437static u_int lazyptd;
1438static volatile u_int lazywait;
1439
1440void pmap_lazyfix_action(void);
1441
1442void
1443pmap_lazyfix_action(void)
1444{
1445	u_int mymask = PCPU_GET(cpumask);
1446
1447#ifdef COUNT_IPIS
1448	(*ipi_lazypmap_counts[PCPU_GET(cpuid)])++;
1449#endif
1450	if (rcr3() == lazyptd)
1451		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1452	atomic_clear_int(lazymask, mymask);
1453	atomic_store_rel_int(&lazywait, 1);
1454}
1455
1456static void
1457pmap_lazyfix_self(u_int mymask)
1458{
1459
1460	if (rcr3() == lazyptd)
1461		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1462	atomic_clear_int(lazymask, mymask);
1463}
1464
1465
1466static void
1467pmap_lazyfix(pmap_t pmap)
1468{
1469	u_int mymask;
1470	u_int mask;
1471	u_int spins;
1472
1473	while ((mask = pmap->pm_active) != 0) {
1474		spins = 50000000;
1475		mask = mask & -mask;	/* Find least significant set bit */
1476		mtx_lock_spin(&smp_ipi_mtx);
1477#ifdef PAE
1478		lazyptd = vtophys(pmap->pm_pdpt);
1479#else
1480		lazyptd = vtophys(pmap->pm_pdir);
1481#endif
1482		mymask = PCPU_GET(cpumask);
1483		if (mask == mymask) {
1484			lazymask = &pmap->pm_active;
1485			pmap_lazyfix_self(mymask);
1486		} else {
1487			atomic_store_rel_int((u_int *)&lazymask,
1488			    (u_int)&pmap->pm_active);
1489			atomic_store_rel_int(&lazywait, 0);
1490			ipi_selected(mask, IPI_LAZYPMAP);
1491			while (lazywait == 0) {
1492				ia32_pause();
1493				if (--spins == 0)
1494					break;
1495			}
1496		}
1497		mtx_unlock_spin(&smp_ipi_mtx);
1498		if (spins == 0)
1499			printf("pmap_lazyfix: spun for 50000000\n");
1500	}
1501}
1502
1503#else	/* SMP */
1504
1505/*
1506 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1507 * unlikely to have to even execute this code, including the fact
1508 * that the cleanup is deferred until the parent does a wait(2), which
1509 * means that another userland process has run.
1510 */
1511static void
1512pmap_lazyfix(pmap_t pmap)
1513{
1514	u_int cr3;
1515
1516	cr3 = vtophys(pmap->pm_pdir);
1517	if (cr3 == rcr3()) {
1518		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1519		pmap->pm_active &= ~(PCPU_GET(cpumask));
1520	}
1521}
1522#endif	/* SMP */
1523
1524/*
1525 * Release any resources held by the given physical map.
1526 * Called when a pmap initialized by pmap_pinit is being released.
1527 * Should only be called if the map contains no valid mappings.
1528 */
1529void
1530pmap_release(pmap_t pmap)
1531{
1532	vm_page_t m, ptdpg[NPGPTD];
1533	int i;
1534
1535	KASSERT(pmap->pm_stats.resident_count == 0,
1536	    ("pmap_release: pmap resident count %ld != 0",
1537	    pmap->pm_stats.resident_count));
1538
1539	pmap_lazyfix(pmap);
1540	mtx_lock_spin(&allpmaps_lock);
1541	LIST_REMOVE(pmap, pm_list);
1542	mtx_unlock_spin(&allpmaps_lock);
1543
1544	for (i = 0; i < NPGPTD; i++)
1545		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i] &
1546		    PG_FRAME);
1547
1548	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1549	    sizeof(*pmap->pm_pdir));
1550
1551	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1552
1553	for (i = 0; i < NPGPTD; i++) {
1554		m = ptdpg[i];
1555#ifdef PAE
1556		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1557		    ("pmap_release: got wrong ptd page"));
1558#endif
1559		m->wire_count--;
1560		atomic_subtract_int(&cnt.v_wire_count, 1);
1561		vm_page_free_zero(m);
1562	}
1563	PMAP_LOCK_DESTROY(pmap);
1564}
1565
1566static int
1567kvm_size(SYSCTL_HANDLER_ARGS)
1568{
1569	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1570
1571	return sysctl_handle_long(oidp, &ksize, 0, req);
1572}
1573SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1574    0, 0, kvm_size, "IU", "Size of KVM");
1575
1576static int
1577kvm_free(SYSCTL_HANDLER_ARGS)
1578{
1579	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1580
1581	return sysctl_handle_long(oidp, &kfree, 0, req);
1582}
1583SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1584    0, 0, kvm_free, "IU", "Amount of KVM free");
1585
1586/*
1587 * grow the number of kernel page table entries, if needed
1588 */
1589void
1590pmap_growkernel(vm_offset_t addr)
1591{
1592	struct pmap *pmap;
1593	vm_paddr_t ptppaddr;
1594	vm_page_t nkpg;
1595	pd_entry_t newpdir;
1596	pt_entry_t *pde;
1597
1598	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1599	if (kernel_vm_end == 0) {
1600		kernel_vm_end = KERNBASE;
1601		nkpt = 0;
1602		while (pdir_pde(PTD, kernel_vm_end)) {
1603			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1604			nkpt++;
1605			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1606				kernel_vm_end = kernel_map->max_offset;
1607				break;
1608			}
1609		}
1610	}
1611	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1612	if (addr - 1 >= kernel_map->max_offset)
1613		addr = kernel_map->max_offset;
1614	while (kernel_vm_end < addr) {
1615		if (pdir_pde(PTD, kernel_vm_end)) {
1616			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1617			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1618				kernel_vm_end = kernel_map->max_offset;
1619				break;
1620			}
1621			continue;
1622		}
1623
1624		nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDRSHIFT,
1625		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1626		if (nkpg == NULL)
1627			panic("pmap_growkernel: no memory to grow kernel");
1628
1629		nkpt++;
1630
1631		pmap_zero_page(nkpg);
1632		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1633		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1634		pdir_pde(PTD, kernel_vm_end) = newpdir;
1635
1636		mtx_lock_spin(&allpmaps_lock);
1637		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1638			pde = pmap_pde(pmap, kernel_vm_end);
1639			pde_store(pde, newpdir);
1640		}
1641		mtx_unlock_spin(&allpmaps_lock);
1642		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1643		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
1644			kernel_vm_end = kernel_map->max_offset;
1645			break;
1646		}
1647	}
1648}
1649
1650
1651/***************************************************
1652 * page management routines.
1653 ***************************************************/
1654
1655CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
1656CTASSERT(_NPCM == 11);
1657
1658static __inline struct pv_chunk *
1659pv_to_chunk(pv_entry_t pv)
1660{
1661
1662	return (struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK);
1663}
1664
1665#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
1666
1667#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
1668#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
1669
1670static uint32_t pc_freemask[11] = {
1671	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1672	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1673	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
1674	PC_FREE0_9, PC_FREE10
1675};
1676
1677SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
1678	"Current number of pv entries");
1679
1680#ifdef PV_STATS
1681static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
1682
1683SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
1684	"Current number of pv entry chunks");
1685SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
1686	"Current number of pv entry chunks allocated");
1687SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
1688	"Current number of pv entry chunks frees");
1689SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
1690	"Number of times tried to get a chunk page but failed.");
1691
1692static long pv_entry_frees, pv_entry_allocs;
1693static int pv_entry_spare;
1694
1695SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
1696	"Current number of pv entry frees");
1697SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
1698	"Current number of pv entry allocs");
1699SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
1700	"Current number of spare pv entries");
1701
1702static int pmap_collect_inactive, pmap_collect_active;
1703
1704SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_inactive, CTLFLAG_RD, &pmap_collect_inactive, 0,
1705	"Current number times pmap_collect called on inactive queue");
1706SYSCTL_INT(_vm_pmap, OID_AUTO, pmap_collect_active, CTLFLAG_RD, &pmap_collect_active, 0,
1707	"Current number times pmap_collect called on active queue");
1708#endif
1709
1710/*
1711 * We are in a serious low memory condition.  Resort to
1712 * drastic measures to free some pages so we can allocate
1713 * another pv entry chunk.  This is normally called to
1714 * unmap inactive pages, and if necessary, active pages.
1715 */
1716static void
1717pmap_collect(pmap_t locked_pmap, struct vpgqueues *vpq)
1718{
1719	pmap_t pmap;
1720	pt_entry_t *pte, tpte;
1721	pv_entry_t next_pv, pv;
1722	vm_offset_t va;
1723	vm_page_t m, free;
1724
1725	sched_pin();
1726	TAILQ_FOREACH(m, &vpq->pl, pageq) {
1727		if (m->hold_count || m->busy)
1728			continue;
1729		TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_list, next_pv) {
1730			va = pv->pv_va;
1731			pmap = PV_PMAP(pv);
1732			/* Avoid deadlock and lock recursion. */
1733			if (pmap > locked_pmap)
1734				PMAP_LOCK(pmap);
1735			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap))
1736				continue;
1737			pmap->pm_stats.resident_count--;
1738			pte = pmap_pte_quick(pmap, va);
1739			tpte = pte_load_clear(pte);
1740			KASSERT((tpte & PG_W) == 0,
1741			    ("pmap_collect: wired pte %#jx", (uintmax_t)tpte));
1742			if (tpte & PG_A)
1743				vm_page_flag_set(m, PG_REFERENCED);
1744			if (tpte & PG_M) {
1745				KASSERT((tpte & PG_RW),
1746	("pmap_collect: modified page not writable: va: %#x, pte: %#jx",
1747				    va, (uintmax_t)tpte));
1748				vm_page_dirty(m);
1749			}
1750			free = NULL;
1751			pmap_unuse_pt(pmap, va, &free);
1752			pmap_invalidate_page(pmap, va);
1753			pmap_free_zero_pages(free);
1754			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1755			if (TAILQ_EMPTY(&m->md.pv_list))
1756				vm_page_flag_clear(m, PG_WRITEABLE);
1757			free_pv_entry(pmap, pv);
1758			if (pmap != locked_pmap)
1759				PMAP_UNLOCK(pmap);
1760		}
1761	}
1762	sched_unpin();
1763}
1764
1765
1766/*
1767 * free the pv_entry back to the free list
1768 */
1769static void
1770free_pv_entry(pmap_t pmap, pv_entry_t pv)
1771{
1772	vm_page_t m;
1773	struct pv_chunk *pc;
1774	int idx, field, bit;
1775
1776	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1777	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1778	PV_STAT(pv_entry_frees++);
1779	PV_STAT(pv_entry_spare++);
1780	pv_entry_count--;
1781	pc = pv_to_chunk(pv);
1782	idx = pv - &pc->pc_pventry[0];
1783	field = idx / 32;
1784	bit = idx % 32;
1785	pc->pc_map[field] |= 1ul << bit;
1786	/* move to head of list */
1787	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1788	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1789	for (idx = 0; idx < _NPCM; idx++)
1790		if (pc->pc_map[idx] != pc_freemask[idx])
1791			return;
1792	PV_STAT(pv_entry_spare -= _NPCPV);
1793	PV_STAT(pc_chunk_count--);
1794	PV_STAT(pc_chunk_frees++);
1795	/* entire chunk is free, return it */
1796	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1797	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
1798	pmap_qremove((vm_offset_t)pc, 1);
1799	vm_page_unwire(m, 0);
1800	vm_page_free(m);
1801	pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
1802}
1803
1804/*
1805 * get a new pv_entry, allocating a block from the system
1806 * when needed.
1807 */
1808static pv_entry_t
1809get_pv_entry(pmap_t pmap, int try)
1810{
1811	static const struct timeval printinterval = { 60, 0 };
1812	static struct timeval lastprint;
1813	static vm_pindex_t colour;
1814	struct vpgqueues *pq;
1815	int bit, field;
1816	pv_entry_t pv;
1817	struct pv_chunk *pc;
1818	vm_page_t m;
1819
1820	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1821	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1822	PV_STAT(pv_entry_allocs++);
1823	pv_entry_count++;
1824	if (pv_entry_count > pv_entry_high_water)
1825		if (ratecheck(&lastprint, &printinterval))
1826			printf("Approaching the limit on PV entries, consider "
1827			    "increasing either the vm.pmap.shpgperproc or the "
1828			    "vm.pmap.pv_entry_max tunable.\n");
1829	pq = NULL;
1830retry:
1831	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
1832	if (pc != NULL) {
1833		for (field = 0; field < _NPCM; field++) {
1834			if (pc->pc_map[field]) {
1835				bit = bsfl(pc->pc_map[field]);
1836				break;
1837			}
1838		}
1839		if (field < _NPCM) {
1840			pv = &pc->pc_pventry[field * 32 + bit];
1841			pc->pc_map[field] &= ~(1ul << bit);
1842			/* If this was the last item, move it to tail */
1843			for (field = 0; field < _NPCM; field++)
1844				if (pc->pc_map[field] != 0) {
1845					PV_STAT(pv_entry_spare--);
1846					return (pv);	/* not full, return */
1847				}
1848			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
1849			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
1850			PV_STAT(pv_entry_spare--);
1851			return (pv);
1852		}
1853	}
1854	/*
1855	 * Access to the ptelist "pv_vafree" is synchronized by the page
1856	 * queues lock.  If "pv_vafree" is currently non-empty, it will
1857	 * remain non-empty until pmap_ptelist_alloc() completes.
1858	 */
1859	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, colour, (pq ==
1860	    &vm_page_queues[PQ_ACTIVE] ? VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL) |
1861	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
1862		if (try) {
1863			pv_entry_count--;
1864			PV_STAT(pc_chunk_tryfail++);
1865			return (NULL);
1866		}
1867		/*
1868		 * Reclaim pv entries: At first, destroy mappings to
1869		 * inactive pages.  After that, if a pv chunk entry
1870		 * is still needed, destroy mappings to active pages.
1871		 */
1872		if (pq == NULL) {
1873			PV_STAT(pmap_collect_inactive++);
1874			pq = &vm_page_queues[PQ_INACTIVE];
1875		} else if (pq == &vm_page_queues[PQ_INACTIVE]) {
1876			PV_STAT(pmap_collect_active++);
1877			pq = &vm_page_queues[PQ_ACTIVE];
1878		} else
1879			panic("get_pv_entry: increase vm.pmap.shpgperproc");
1880		pmap_collect(pmap, pq);
1881		goto retry;
1882	}
1883	PV_STAT(pc_chunk_count++);
1884	PV_STAT(pc_chunk_allocs++);
1885	colour++;
1886	pc = (struct pv_chunk *)pmap_ptelist_alloc(&pv_vafree);
1887	pmap_qenter((vm_offset_t)pc, &m, 1);
1888	pc->pc_pmap = pmap;
1889	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
1890	for (field = 1; field < _NPCM; field++)
1891		pc->pc_map[field] = pc_freemask[field];
1892	pv = &pc->pc_pventry[0];
1893	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
1894	PV_STAT(pv_entry_spare += _NPCPV - 1);
1895	return (pv);
1896}
1897
1898static void
1899pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1900{
1901	pv_entry_t pv;
1902
1903	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1904	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1905	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1906		if (pmap == PV_PMAP(pv) && va == pv->pv_va)
1907			break;
1908	}
1909	KASSERT(pv != NULL, ("pmap_remove_entry: pv not found"));
1910	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1911	if (TAILQ_EMPTY(&m->md.pv_list))
1912		vm_page_flag_clear(m, PG_WRITEABLE);
1913	free_pv_entry(pmap, pv);
1914}
1915
1916/*
1917 * Create a pv entry for page at pa for
1918 * (pmap, va).
1919 */
1920static void
1921pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1922{
1923	pv_entry_t pv;
1924
1925	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1926	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1927	pv = get_pv_entry(pmap, FALSE);
1928	pv->pv_va = va;
1929	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1930}
1931
1932/*
1933 * Conditionally create a pv entry.
1934 */
1935static boolean_t
1936pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
1937{
1938	pv_entry_t pv;
1939
1940	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1941	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1942	if (pv_entry_count < pv_entry_high_water &&
1943	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
1944		pv->pv_va = va;
1945		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1946		return (TRUE);
1947	} else
1948		return (FALSE);
1949}
1950
1951/*
1952 * pmap_remove_pte: do the things to unmap a page in a process
1953 */
1954static int
1955pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, vm_page_t *free)
1956{
1957	pt_entry_t oldpte;
1958	vm_page_t m;
1959
1960	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1961	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1962	oldpte = pte_load_clear(ptq);
1963	if (oldpte & PG_W)
1964		pmap->pm_stats.wired_count -= 1;
1965	/*
1966	 * Machines that don't support invlpg, also don't support
1967	 * PG_G.
1968	 */
1969	if (oldpte & PG_G)
1970		pmap_invalidate_page(kernel_pmap, va);
1971	pmap->pm_stats.resident_count -= 1;
1972	if (oldpte & PG_MANAGED) {
1973		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
1974		if (oldpte & PG_M) {
1975			KASSERT((oldpte & PG_RW),
1976	("pmap_remove_pte: modified page not writable: va: %#x, pte: %#jx",
1977			    va, (uintmax_t)oldpte));
1978			vm_page_dirty(m);
1979		}
1980		if (oldpte & PG_A)
1981			vm_page_flag_set(m, PG_REFERENCED);
1982		pmap_remove_entry(pmap, m, va);
1983	}
1984	return (pmap_unuse_pt(pmap, va, free));
1985}
1986
1987/*
1988 * Remove a single page from a process address space
1989 */
1990static void
1991pmap_remove_page(pmap_t pmap, vm_offset_t va, vm_page_t *free)
1992{
1993	pt_entry_t *pte;
1994
1995	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1996	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
1997	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1998	if ((pte = pmap_pte_quick(pmap, va)) == NULL || *pte == 0)
1999		return;
2000	pmap_remove_pte(pmap, pte, va, free);
2001	pmap_invalidate_page(pmap, va);
2002}
2003
2004/*
2005 *	Remove the given range of addresses from the specified map.
2006 *
2007 *	It is assumed that the start and end are properly
2008 *	rounded to the page size.
2009 */
2010void
2011pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2012{
2013	vm_offset_t pdnxt;
2014	pd_entry_t ptpaddr;
2015	pt_entry_t *pte;
2016	vm_page_t free = NULL;
2017	int anyvalid;
2018
2019	/*
2020	 * Perform an unsynchronized read.  This is, however, safe.
2021	 */
2022	if (pmap->pm_stats.resident_count == 0)
2023		return;
2024
2025	anyvalid = 0;
2026
2027	vm_page_lock_queues();
2028	sched_pin();
2029	PMAP_LOCK(pmap);
2030
2031	/*
2032	 * special handling of removing one page.  a very
2033	 * common operation and easy to short circuit some
2034	 * code.
2035	 */
2036	if ((sva + PAGE_SIZE == eva) &&
2037	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
2038		pmap_remove_page(pmap, sva, &free);
2039		goto out;
2040	}
2041
2042	for (; sva < eva; sva = pdnxt) {
2043		unsigned pdirindex;
2044
2045		/*
2046		 * Calculate index for next page table.
2047		 */
2048		pdnxt = (sva + NBPDR) & ~PDRMASK;
2049		if (pdnxt < sva)
2050			pdnxt = eva;
2051		if (pmap->pm_stats.resident_count == 0)
2052			break;
2053
2054		pdirindex = sva >> PDRSHIFT;
2055		ptpaddr = pmap->pm_pdir[pdirindex];
2056
2057		/*
2058		 * Weed out invalid mappings. Note: we assume that the page
2059		 * directory table is always allocated, and in kernel virtual.
2060		 */
2061		if (ptpaddr == 0)
2062			continue;
2063
2064		/*
2065		 * Check for large page.
2066		 */
2067		if ((ptpaddr & PG_PS) != 0) {
2068			pmap->pm_pdir[pdirindex] = 0;
2069			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2070			anyvalid = 1;
2071			continue;
2072		}
2073
2074		/*
2075		 * Limit our scan to either the end of the va represented
2076		 * by the current page table page, or to the end of the
2077		 * range being removed.
2078		 */
2079		if (pdnxt > eva)
2080			pdnxt = eva;
2081
2082		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2083		    sva += PAGE_SIZE) {
2084			if (*pte == 0)
2085				continue;
2086
2087			/*
2088			 * The TLB entry for a PG_G mapping is invalidated
2089			 * by pmap_remove_pte().
2090			 */
2091			if ((*pte & PG_G) == 0)
2092				anyvalid = 1;
2093			if (pmap_remove_pte(pmap, pte, sva, &free))
2094				break;
2095		}
2096	}
2097out:
2098	sched_unpin();
2099	if (anyvalid)
2100		pmap_invalidate_all(pmap);
2101	vm_page_unlock_queues();
2102	PMAP_UNLOCK(pmap);
2103	pmap_free_zero_pages(free);
2104}
2105
2106/*
2107 *	Routine:	pmap_remove_all
2108 *	Function:
2109 *		Removes this physical page from
2110 *		all physical maps in which it resides.
2111 *		Reflects back modify bits to the pager.
2112 *
2113 *	Notes:
2114 *		Original versions of this routine were very
2115 *		inefficient because they iteratively called
2116 *		pmap_remove (slow...)
2117 */
2118
2119void
2120pmap_remove_all(vm_page_t m)
2121{
2122	pv_entry_t pv;
2123	pmap_t pmap;
2124	pt_entry_t *pte, tpte;
2125	vm_page_t free;
2126
2127	KASSERT((m->flags & PG_FICTITIOUS) == 0,
2128	    ("pmap_remove_all: page %p is fictitious", m));
2129	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2130	sched_pin();
2131	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2132		pmap = PV_PMAP(pv);
2133		PMAP_LOCK(pmap);
2134		pmap->pm_stats.resident_count--;
2135		pte = pmap_pte_quick(pmap, pv->pv_va);
2136		tpte = pte_load_clear(pte);
2137		if (tpte & PG_W)
2138			pmap->pm_stats.wired_count--;
2139		if (tpte & PG_A)
2140			vm_page_flag_set(m, PG_REFERENCED);
2141
2142		/*
2143		 * Update the vm_page_t clean and reference bits.
2144		 */
2145		if (tpte & PG_M) {
2146			KASSERT((tpte & PG_RW),
2147	("pmap_remove_all: modified page not writable: va: %#x, pte: %#jx",
2148			    pv->pv_va, (uintmax_t)tpte));
2149			vm_page_dirty(m);
2150		}
2151		free = NULL;
2152		pmap_unuse_pt(pmap, pv->pv_va, &free);
2153		pmap_invalidate_page(pmap, pv->pv_va);
2154		pmap_free_zero_pages(free);
2155		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2156		free_pv_entry(pmap, pv);
2157		PMAP_UNLOCK(pmap);
2158	}
2159	vm_page_flag_clear(m, PG_WRITEABLE);
2160	sched_unpin();
2161}
2162
2163/*
2164 *	Set the physical protection on the
2165 *	specified range of this map as requested.
2166 */
2167void
2168pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2169{
2170	vm_offset_t pdnxt;
2171	pd_entry_t ptpaddr;
2172	pt_entry_t *pte;
2173	int anychanged;
2174
2175	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2176		pmap_remove(pmap, sva, eva);
2177		return;
2178	}
2179
2180#ifdef PAE
2181	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
2182	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
2183		return;
2184#else
2185	if (prot & VM_PROT_WRITE)
2186		return;
2187#endif
2188
2189	anychanged = 0;
2190
2191	vm_page_lock_queues();
2192	sched_pin();
2193	PMAP_LOCK(pmap);
2194	for (; sva < eva; sva = pdnxt) {
2195		pt_entry_t obits, pbits;
2196		unsigned pdirindex;
2197
2198		pdnxt = (sva + NBPDR) & ~PDRMASK;
2199		if (pdnxt < sva)
2200			pdnxt = eva;
2201
2202		pdirindex = sva >> PDRSHIFT;
2203		ptpaddr = pmap->pm_pdir[pdirindex];
2204
2205		/*
2206		 * Weed out invalid mappings. Note: we assume that the page
2207		 * directory table is always allocated, and in kernel virtual.
2208		 */
2209		if (ptpaddr == 0)
2210			continue;
2211
2212		/*
2213		 * Check for large page.
2214		 */
2215		if ((ptpaddr & PG_PS) != 0) {
2216			if ((prot & VM_PROT_WRITE) == 0)
2217				pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
2218#ifdef PAE
2219			if ((prot & VM_PROT_EXECUTE) == 0)
2220				pmap->pm_pdir[pdirindex] |= pg_nx;
2221#endif
2222			anychanged = 1;
2223			continue;
2224		}
2225
2226		if (pdnxt > eva)
2227			pdnxt = eva;
2228
2229		for (pte = pmap_pte_quick(pmap, sva); sva != pdnxt; pte++,
2230		    sva += PAGE_SIZE) {
2231			vm_page_t m;
2232
2233retry:
2234			/*
2235			 * Regardless of whether a pte is 32 or 64 bits in
2236			 * size, PG_RW, PG_A, and PG_M are among the least
2237			 * significant 32 bits.
2238			 */
2239			obits = pbits = *pte;
2240			if ((pbits & PG_V) == 0)
2241				continue;
2242			if (pbits & PG_MANAGED) {
2243				m = NULL;
2244				if (pbits & PG_A) {
2245					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2246					vm_page_flag_set(m, PG_REFERENCED);
2247					pbits &= ~PG_A;
2248				}
2249				if ((pbits & PG_M) != 0) {
2250					if (m == NULL)
2251						m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2252					vm_page_dirty(m);
2253				}
2254			}
2255
2256			if ((prot & VM_PROT_WRITE) == 0)
2257				pbits &= ~(PG_RW | PG_M);
2258#ifdef PAE
2259			if ((prot & VM_PROT_EXECUTE) == 0)
2260				pbits |= pg_nx;
2261#endif
2262
2263			if (pbits != obits) {
2264#ifdef PAE
2265				if (!atomic_cmpset_64(pte, obits, pbits))
2266					goto retry;
2267#else
2268				if (!atomic_cmpset_int((u_int *)pte, obits,
2269				    pbits))
2270					goto retry;
2271#endif
2272				if (obits & PG_G)
2273					pmap_invalidate_page(pmap, sva);
2274				else
2275					anychanged = 1;
2276			}
2277		}
2278	}
2279	sched_unpin();
2280	if (anychanged)
2281		pmap_invalidate_all(pmap);
2282	vm_page_unlock_queues();
2283	PMAP_UNLOCK(pmap);
2284}
2285
2286/*
2287 *	Insert the given physical page (p) at
2288 *	the specified virtual address (v) in the
2289 *	target physical map with the protection requested.
2290 *
2291 *	If specified, the page will be wired down, meaning
2292 *	that the related pte can not be reclaimed.
2293 *
2294 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2295 *	or lose information.  That is, this routine must actually
2296 *	insert this page into the given map NOW.
2297 */
2298void
2299pmap_enter(pmap_t pmap, vm_offset_t va, vm_prot_t access, vm_page_t m,
2300    vm_prot_t prot, boolean_t wired)
2301{
2302	vm_paddr_t pa;
2303	pd_entry_t *pde;
2304	pt_entry_t *pte;
2305	vm_paddr_t opa;
2306	pt_entry_t origpte, newpte;
2307	vm_page_t mpte, om;
2308	boolean_t invlva;
2309
2310	va = trunc_page(va);
2311	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
2312	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
2313	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va));
2314
2315	mpte = NULL;
2316
2317	vm_page_lock_queues();
2318	PMAP_LOCK(pmap);
2319	sched_pin();
2320
2321	/*
2322	 * In the case that a page table page is not
2323	 * resident, we are creating it here.
2324	 */
2325	if (va < VM_MAXUSER_ADDRESS) {
2326		mpte = pmap_allocpte(pmap, va, M_WAITOK);
2327	}
2328
2329	pde = pmap_pde(pmap, va);
2330	if ((*pde & PG_PS) != 0)
2331		panic("pmap_enter: attempted pmap_enter on 4MB page");
2332	pte = pmap_pte_quick(pmap, va);
2333
2334	/*
2335	 * Page Directory table entry not valid, we need a new PT page
2336	 */
2337	if (pte == NULL) {
2338		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x",
2339			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
2340	}
2341
2342	pa = VM_PAGE_TO_PHYS(m);
2343	om = NULL;
2344	origpte = *pte;
2345	opa = origpte & PG_FRAME;
2346
2347	/*
2348	 * Mapping has not changed, must be protection or wiring change.
2349	 */
2350	if (origpte && (opa == pa)) {
2351		/*
2352		 * Wiring change, just update stats. We don't worry about
2353		 * wiring PT pages as they remain resident as long as there
2354		 * are valid mappings in them. Hence, if a user page is wired,
2355		 * the PT page will be also.
2356		 */
2357		if (wired && ((origpte & PG_W) == 0))
2358			pmap->pm_stats.wired_count++;
2359		else if (!wired && (origpte & PG_W))
2360			pmap->pm_stats.wired_count--;
2361
2362		/*
2363		 * Remove extra pte reference
2364		 */
2365		if (mpte)
2366			mpte->wire_count--;
2367
2368		/*
2369		 * We might be turning off write access to the page,
2370		 * so we go ahead and sense modify status.
2371		 */
2372		if (origpte & PG_MANAGED) {
2373			om = m;
2374			pa |= PG_MANAGED;
2375		}
2376		goto validate;
2377	}
2378	/*
2379	 * Mapping has changed, invalidate old range and fall through to
2380	 * handle validating new mapping.
2381	 */
2382	if (opa) {
2383		if (origpte & PG_W)
2384			pmap->pm_stats.wired_count--;
2385		if (origpte & PG_MANAGED) {
2386			om = PHYS_TO_VM_PAGE(opa);
2387			pmap_remove_entry(pmap, om, va);
2388		}
2389		if (mpte != NULL) {
2390			mpte->wire_count--;
2391			KASSERT(mpte->wire_count > 0,
2392			    ("pmap_enter: missing reference to page table page,"
2393			     " va: 0x%x", va));
2394		}
2395	} else
2396		pmap->pm_stats.resident_count++;
2397
2398	/*
2399	 * Enter on the PV list if part of our managed memory.
2400	 */
2401	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0) {
2402		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
2403		    ("pmap_enter: managed mapping within the clean submap"));
2404		pmap_insert_entry(pmap, va, m);
2405		pa |= PG_MANAGED;
2406	}
2407
2408	/*
2409	 * Increment counters
2410	 */
2411	if (wired)
2412		pmap->pm_stats.wired_count++;
2413
2414validate:
2415	/*
2416	 * Now validate mapping with desired protection/wiring.
2417	 */
2418	newpte = (pt_entry_t)(pa | PG_V);
2419	if ((prot & VM_PROT_WRITE) != 0) {
2420		newpte |= PG_RW;
2421		vm_page_flag_set(m, PG_WRITEABLE);
2422	}
2423#ifdef PAE
2424	if ((prot & VM_PROT_EXECUTE) == 0)
2425		newpte |= pg_nx;
2426#endif
2427	if (wired)
2428		newpte |= PG_W;
2429	if (va < VM_MAXUSER_ADDRESS)
2430		newpte |= PG_U;
2431	if (pmap == kernel_pmap)
2432		newpte |= pgeflag;
2433
2434	/*
2435	 * if the mapping or permission bits are different, we need
2436	 * to update the pte.
2437	 */
2438	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2439		if (origpte & PG_V) {
2440			invlva = FALSE;
2441			origpte = pte_load_store(pte, newpte | PG_A);
2442			if (origpte & PG_A) {
2443				if (origpte & PG_MANAGED)
2444					vm_page_flag_set(om, PG_REFERENCED);
2445				if (opa != VM_PAGE_TO_PHYS(m))
2446					invlva = TRUE;
2447#ifdef PAE
2448				if ((origpte & PG_NX) == 0 &&
2449				    (newpte & PG_NX) != 0)
2450					invlva = TRUE;
2451#endif
2452			}
2453			if (origpte & PG_M) {
2454				KASSERT((origpte & PG_RW),
2455	("pmap_enter: modified page not writable: va: %#x, pte: %#jx",
2456				    va, (uintmax_t)origpte));
2457				if ((origpte & PG_MANAGED) != 0)
2458					vm_page_dirty(om);
2459				if ((prot & VM_PROT_WRITE) == 0)
2460					invlva = TRUE;
2461			}
2462			if (invlva)
2463				pmap_invalidate_page(pmap, va);
2464		} else
2465			pte_store(pte, newpte | PG_A);
2466	}
2467	sched_unpin();
2468	vm_page_unlock_queues();
2469	PMAP_UNLOCK(pmap);
2470}
2471
2472/*
2473 * Maps a sequence of resident pages belonging to the same object.
2474 * The sequence begins with the given page m_start.  This page is
2475 * mapped at the given virtual address start.  Each subsequent page is
2476 * mapped at a virtual address that is offset from start by the same
2477 * amount as the page is offset from m_start within the object.  The
2478 * last page in the sequence is the page with the largest offset from
2479 * m_start that can be mapped at a virtual address less than the given
2480 * virtual address end.  Not every virtual page between start and end
2481 * is mapped; only those for which a resident page exists with the
2482 * corresponding offset from m_start are mapped.
2483 */
2484void
2485pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
2486    vm_page_t m_start, vm_prot_t prot)
2487{
2488	vm_page_t m, mpte;
2489	vm_pindex_t diff, psize;
2490
2491	VM_OBJECT_LOCK_ASSERT(m_start->object, MA_OWNED);
2492	psize = atop(end - start);
2493	mpte = NULL;
2494	m = m_start;
2495	PMAP_LOCK(pmap);
2496	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
2497		mpte = pmap_enter_quick_locked(pmap, start + ptoa(diff), m,
2498		    prot, mpte);
2499		m = TAILQ_NEXT(m, listq);
2500	}
2501 	PMAP_UNLOCK(pmap);
2502}
2503
2504/*
2505 * this code makes some *MAJOR* assumptions:
2506 * 1. Current pmap & pmap exists.
2507 * 2. Not wired.
2508 * 3. Read access.
2509 * 4. No page table pages.
2510 * but is *MUCH* faster than pmap_enter...
2511 */
2512
2513void
2514pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
2515{
2516
2517	PMAP_LOCK(pmap);
2518	(void) pmap_enter_quick_locked(pmap, va, m, prot, NULL);
2519	PMAP_UNLOCK(pmap);
2520}
2521
2522static vm_page_t
2523pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
2524    vm_prot_t prot, vm_page_t mpte)
2525{
2526	pt_entry_t *pte;
2527	vm_paddr_t pa;
2528	vm_page_t free;
2529
2530	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
2531	    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0,
2532	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
2533	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2534	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2535
2536	/*
2537	 * In the case that a page table page is not
2538	 * resident, we are creating it here.
2539	 */
2540	if (va < VM_MAXUSER_ADDRESS) {
2541		unsigned ptepindex;
2542		pd_entry_t ptepa;
2543
2544		/*
2545		 * Calculate pagetable page index
2546		 */
2547		ptepindex = va >> PDRSHIFT;
2548		if (mpte && (mpte->pindex == ptepindex)) {
2549			mpte->wire_count++;
2550		} else {
2551			/*
2552			 * Get the page directory entry
2553			 */
2554			ptepa = pmap->pm_pdir[ptepindex];
2555
2556			/*
2557			 * If the page table page is mapped, we just increment
2558			 * the hold count, and activate it.
2559			 */
2560			if (ptepa) {
2561				if (ptepa & PG_PS)
2562					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2563				mpte = PHYS_TO_VM_PAGE(ptepa & PG_FRAME);
2564				mpte->wire_count++;
2565			} else {
2566				mpte = _pmap_allocpte(pmap, ptepindex,
2567				    M_NOWAIT);
2568				if (mpte == NULL)
2569					return (mpte);
2570			}
2571		}
2572	} else {
2573		mpte = NULL;
2574	}
2575
2576	/*
2577	 * This call to vtopte makes the assumption that we are
2578	 * entering the page into the current pmap.  In order to support
2579	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2580	 * But that isn't as quick as vtopte.
2581	 */
2582	pte = vtopte(va);
2583	if (*pte) {
2584		if (mpte != NULL) {
2585			mpte->wire_count--;
2586			mpte = NULL;
2587		}
2588		return (mpte);
2589	}
2590
2591	/*
2592	 * Enter on the PV list if part of our managed memory.
2593	 */
2594	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0 &&
2595	    !pmap_try_insert_pv_entry(pmap, va, m)) {
2596		if (mpte != NULL) {
2597			free = NULL;
2598			if (pmap_unwire_pte_hold(pmap, mpte, &free)) {
2599				pmap_invalidate_page(pmap, va);
2600				pmap_free_zero_pages(free);
2601			}
2602
2603			mpte = NULL;
2604		}
2605		return (mpte);
2606	}
2607
2608	/*
2609	 * Increment counters
2610	 */
2611	pmap->pm_stats.resident_count++;
2612
2613	pa = VM_PAGE_TO_PHYS(m);
2614#ifdef PAE
2615	if ((prot & VM_PROT_EXECUTE) == 0)
2616		pa |= pg_nx;
2617#endif
2618
2619	/*
2620	 * Now validate mapping with RO protection
2621	 */
2622	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2623		pte_store(pte, pa | PG_V | PG_U);
2624	else
2625		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2626	return mpte;
2627}
2628
2629/*
2630 * Make a temporary mapping for a physical address.  This is only intended
2631 * to be used for panic dumps.
2632 */
2633void *
2634pmap_kenter_temporary(vm_paddr_t pa, int i)
2635{
2636	vm_offset_t va;
2637
2638	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2639	pmap_kenter(va, pa);
2640	invlpg(va);
2641	return ((void *)crashdumpmap);
2642}
2643
2644/*
2645 * This code maps large physical mmap regions into the
2646 * processor address space.  Note that some shortcuts
2647 * are taken, but the code works.
2648 */
2649void
2650pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2651		    vm_object_t object, vm_pindex_t pindex,
2652		    vm_size_t size)
2653{
2654	vm_page_t p;
2655
2656	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2657	KASSERT(object->type == OBJT_DEVICE,
2658	    ("pmap_object_init_pt: non-device object"));
2659	if (pseflag &&
2660	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2661		int i;
2662		vm_page_t m[1];
2663		unsigned int ptepindex;
2664		int npdes;
2665		pd_entry_t ptepa;
2666
2667		PMAP_LOCK(pmap);
2668		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2669			goto out;
2670		PMAP_UNLOCK(pmap);
2671retry:
2672		p = vm_page_lookup(object, pindex);
2673		if (p != NULL) {
2674			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2675				goto retry;
2676		} else {
2677			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2678			if (p == NULL)
2679				return;
2680			m[0] = p;
2681
2682			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2683				vm_page_lock_queues();
2684				vm_page_free(p);
2685				vm_page_unlock_queues();
2686				return;
2687			}
2688
2689			p = vm_page_lookup(object, pindex);
2690			vm_page_lock_queues();
2691			vm_page_wakeup(p);
2692			vm_page_unlock_queues();
2693		}
2694
2695		ptepa = VM_PAGE_TO_PHYS(p);
2696		if (ptepa & (NBPDR - 1))
2697			return;
2698
2699		p->valid = VM_PAGE_BITS_ALL;
2700
2701		PMAP_LOCK(pmap);
2702		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2703		npdes = size >> PDRSHIFT;
2704		for(i = 0; i < npdes; i++) {
2705			pde_store(&pmap->pm_pdir[ptepindex],
2706			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2707			ptepa += NBPDR;
2708			ptepindex += 1;
2709		}
2710		pmap_invalidate_all(pmap);
2711out:
2712		PMAP_UNLOCK(pmap);
2713	}
2714}
2715
2716/*
2717 *	Routine:	pmap_change_wiring
2718 *	Function:	Change the wiring attribute for a map/virtual-address
2719 *			pair.
2720 *	In/out conditions:
2721 *			The mapping must already exist in the pmap.
2722 */
2723void
2724pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2725{
2726	pt_entry_t *pte;
2727
2728	PMAP_LOCK(pmap);
2729	pte = pmap_pte(pmap, va);
2730
2731	if (wired && !pmap_pte_w(pte))
2732		pmap->pm_stats.wired_count++;
2733	else if (!wired && pmap_pte_w(pte))
2734		pmap->pm_stats.wired_count--;
2735
2736	/*
2737	 * Wiring is not a hardware characteristic so there is no need to
2738	 * invalidate TLB.
2739	 */
2740	pmap_pte_set_w(pte, wired);
2741	pmap_pte_release(pte);
2742	PMAP_UNLOCK(pmap);
2743}
2744
2745
2746
2747/*
2748 *	Copy the range specified by src_addr/len
2749 *	from the source map to the range dst_addr/len
2750 *	in the destination map.
2751 *
2752 *	This routine is only advisory and need not do anything.
2753 */
2754
2755void
2756pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2757	  vm_offset_t src_addr)
2758{
2759	vm_page_t   free;
2760	vm_offset_t addr;
2761	vm_offset_t end_addr = src_addr + len;
2762	vm_offset_t pdnxt;
2763
2764	if (dst_addr != src_addr)
2765		return;
2766
2767	if (!pmap_is_current(src_pmap))
2768		return;
2769
2770	vm_page_lock_queues();
2771	if (dst_pmap < src_pmap) {
2772		PMAP_LOCK(dst_pmap);
2773		PMAP_LOCK(src_pmap);
2774	} else {
2775		PMAP_LOCK(src_pmap);
2776		PMAP_LOCK(dst_pmap);
2777	}
2778	sched_pin();
2779	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2780		pt_entry_t *src_pte, *dst_pte;
2781		vm_page_t dstmpte, srcmpte;
2782		pd_entry_t srcptepaddr;
2783		unsigned ptepindex;
2784
2785		KASSERT(addr < UPT_MIN_ADDRESS,
2786		    ("pmap_copy: invalid to pmap_copy page tables"));
2787
2788		pdnxt = (addr + NBPDR) & ~PDRMASK;
2789		if (pdnxt < addr)
2790			pdnxt = end_addr;
2791		ptepindex = addr >> PDRSHIFT;
2792
2793		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2794		if (srcptepaddr == 0)
2795			continue;
2796
2797		if (srcptepaddr & PG_PS) {
2798			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2799				dst_pmap->pm_pdir[ptepindex] = srcptepaddr &
2800				    ~PG_W;
2801				dst_pmap->pm_stats.resident_count +=
2802				    NBPDR / PAGE_SIZE;
2803			}
2804			continue;
2805		}
2806
2807		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr & PG_FRAME);
2808		KASSERT(srcmpte->wire_count > 0,
2809		    ("pmap_copy: source page table page is unused"));
2810
2811		if (pdnxt > end_addr)
2812			pdnxt = end_addr;
2813
2814		src_pte = vtopte(addr);
2815		while (addr < pdnxt) {
2816			pt_entry_t ptetemp;
2817			ptetemp = *src_pte;
2818			/*
2819			 * we only virtual copy managed pages
2820			 */
2821			if ((ptetemp & PG_MANAGED) != 0) {
2822				dstmpte = pmap_allocpte(dst_pmap, addr,
2823				    M_NOWAIT);
2824				if (dstmpte == NULL)
2825					break;
2826				dst_pte = pmap_pte_quick(dst_pmap, addr);
2827				if (*dst_pte == 0 &&
2828				    pmap_try_insert_pv_entry(dst_pmap, addr,
2829				    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME))) {
2830					/*
2831					 * Clear the wired, modified, and
2832					 * accessed (referenced) bits
2833					 * during the copy.
2834					 */
2835					*dst_pte = ptetemp & ~(PG_W | PG_M |
2836					    PG_A);
2837					dst_pmap->pm_stats.resident_count++;
2838	 			} else {
2839					free = NULL;
2840					if (pmap_unwire_pte_hold( dst_pmap,
2841					    dstmpte, &free)) {
2842						pmap_invalidate_page(dst_pmap,
2843						    addr);
2844						pmap_free_zero_pages(free);
2845					}
2846				}
2847				if (dstmpte->wire_count >= srcmpte->wire_count)
2848					break;
2849			}
2850			addr += PAGE_SIZE;
2851			src_pte++;
2852		}
2853	}
2854	sched_unpin();
2855	vm_page_unlock_queues();
2856	PMAP_UNLOCK(src_pmap);
2857	PMAP_UNLOCK(dst_pmap);
2858}
2859
2860static __inline void
2861pagezero(void *page)
2862{
2863#if defined(I686_CPU)
2864	if (cpu_class == CPUCLASS_686) {
2865#if defined(CPU_ENABLE_SSE)
2866		if (cpu_feature & CPUID_SSE2)
2867			sse2_pagezero(page);
2868		else
2869#endif
2870			i686_pagezero(page);
2871	} else
2872#endif
2873		bzero(page, PAGE_SIZE);
2874}
2875
2876/*
2877 *	pmap_zero_page zeros the specified hardware page by mapping
2878 *	the page into KVM and using bzero to clear its contents.
2879 */
2880void
2881pmap_zero_page(vm_page_t m)
2882{
2883	struct sysmaps *sysmaps;
2884
2885	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2886	mtx_lock(&sysmaps->lock);
2887	if (*sysmaps->CMAP2)
2888		panic("pmap_zero_page: CMAP2 busy");
2889	sched_pin();
2890	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2891	invlcaddr(sysmaps->CADDR2);
2892	pagezero(sysmaps->CADDR2);
2893	*sysmaps->CMAP2 = 0;
2894	sched_unpin();
2895	mtx_unlock(&sysmaps->lock);
2896}
2897
2898/*
2899 *	pmap_zero_page_area zeros the specified hardware page by mapping
2900 *	the page into KVM and using bzero to clear its contents.
2901 *
2902 *	off and size may not cover an area beyond a single hardware page.
2903 */
2904void
2905pmap_zero_page_area(vm_page_t m, int off, int size)
2906{
2907	struct sysmaps *sysmaps;
2908
2909	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2910	mtx_lock(&sysmaps->lock);
2911	if (*sysmaps->CMAP2)
2912		panic("pmap_zero_page: CMAP2 busy");
2913	sched_pin();
2914	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2915	invlcaddr(sysmaps->CADDR2);
2916	if (off == 0 && size == PAGE_SIZE)
2917		pagezero(sysmaps->CADDR2);
2918	else
2919		bzero((char *)sysmaps->CADDR2 + off, size);
2920	*sysmaps->CMAP2 = 0;
2921	sched_unpin();
2922	mtx_unlock(&sysmaps->lock);
2923}
2924
2925/*
2926 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2927 *	the page into KVM and using bzero to clear its contents.  This
2928 *	is intended to be called from the vm_pagezero process only and
2929 *	outside of Giant.
2930 */
2931void
2932pmap_zero_page_idle(vm_page_t m)
2933{
2934
2935	if (*CMAP3)
2936		panic("pmap_zero_page: CMAP3 busy");
2937	sched_pin();
2938	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2939	invlcaddr(CADDR3);
2940	pagezero(CADDR3);
2941	*CMAP3 = 0;
2942	sched_unpin();
2943}
2944
2945/*
2946 *	pmap_copy_page copies the specified (machine independent)
2947 *	page by mapping the page into virtual memory and using
2948 *	bcopy to copy the page, one machine dependent page at a
2949 *	time.
2950 */
2951void
2952pmap_copy_page(vm_page_t src, vm_page_t dst)
2953{
2954	struct sysmaps *sysmaps;
2955
2956	sysmaps = &sysmaps_pcpu[PCPU_GET(cpuid)];
2957	mtx_lock(&sysmaps->lock);
2958	if (*sysmaps->CMAP1)
2959		panic("pmap_copy_page: CMAP1 busy");
2960	if (*sysmaps->CMAP2)
2961		panic("pmap_copy_page: CMAP2 busy");
2962	sched_pin();
2963	invlpg((u_int)sysmaps->CADDR1);
2964	invlpg((u_int)sysmaps->CADDR2);
2965	*sysmaps->CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2966	*sysmaps->CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2967	bcopy(sysmaps->CADDR1, sysmaps->CADDR2, PAGE_SIZE);
2968	*sysmaps->CMAP1 = 0;
2969	*sysmaps->CMAP2 = 0;
2970	sched_unpin();
2971	mtx_unlock(&sysmaps->lock);
2972}
2973
2974/*
2975 * Returns true if the pmap's pv is one of the first
2976 * 16 pvs linked to from this page.  This count may
2977 * be changed upwards or downwards in the future; it
2978 * is only necessary that true be returned for a small
2979 * subset of pmaps for proper page aging.
2980 */
2981boolean_t
2982pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2983{
2984	pv_entry_t pv;
2985	int loops = 0;
2986
2987	if (m->flags & PG_FICTITIOUS)
2988		return FALSE;
2989
2990	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2991	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2992		if (PV_PMAP(pv) == pmap) {
2993			return TRUE;
2994		}
2995		loops++;
2996		if (loops >= 16)
2997			break;
2998	}
2999	return (FALSE);
3000}
3001
3002/*
3003 *	pmap_page_wired_mappings:
3004 *
3005 *	Return the number of managed mappings to the given physical page
3006 *	that are wired.
3007 */
3008int
3009pmap_page_wired_mappings(vm_page_t m)
3010{
3011	pv_entry_t pv;
3012	pt_entry_t *pte;
3013	pmap_t pmap;
3014	int count;
3015
3016	count = 0;
3017	if ((m->flags & PG_FICTITIOUS) != 0)
3018		return (count);
3019	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3020	sched_pin();
3021	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3022		pmap = PV_PMAP(pv);
3023		PMAP_LOCK(pmap);
3024		pte = pmap_pte_quick(pmap, pv->pv_va);
3025		if ((*pte & PG_W) != 0)
3026			count++;
3027		PMAP_UNLOCK(pmap);
3028	}
3029	sched_unpin();
3030	return (count);
3031}
3032
3033/*
3034 * Remove all pages from specified address space
3035 * this aids process exit speeds.  Also, this code
3036 * is special cased for current process only, but
3037 * can have the more generic (and slightly slower)
3038 * mode enabled.  This is much faster than pmap_remove
3039 * in the case of running down an entire address space.
3040 */
3041void
3042pmap_remove_pages(pmap_t pmap)
3043{
3044	pt_entry_t *pte, tpte;
3045	vm_page_t m, free = NULL;
3046	pv_entry_t pv;
3047	struct pv_chunk *pc, *npc;
3048	int field, idx;
3049	int32_t bit;
3050	uint32_t inuse, bitmask;
3051	int allfree;
3052
3053	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) {
3054		printf("warning: pmap_remove_pages called with non-current pmap\n");
3055		return;
3056	}
3057	vm_page_lock_queues();
3058	PMAP_LOCK(pmap);
3059	sched_pin();
3060	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
3061		allfree = 1;
3062		for (field = 0; field < _NPCM; field++) {
3063			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
3064			while (inuse != 0) {
3065				bit = bsfl(inuse);
3066				bitmask = 1UL << bit;
3067				idx = field * 32 + bit;
3068				pv = &pc->pc_pventry[idx];
3069				inuse &= ~bitmask;
3070
3071				pte = vtopte(pv->pv_va);
3072				tpte = *pte;
3073
3074				if (tpte == 0) {
3075					printf(
3076					    "TPTE at %p  IS ZERO @ VA %08x\n",
3077					    pte, pv->pv_va);
3078					panic("bad pte");
3079				}
3080
3081/*
3082 * We cannot remove wired pages from a process' mapping at this time
3083 */
3084				if (tpte & PG_W) {
3085					allfree = 0;
3086					continue;
3087				}
3088
3089				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3090				KASSERT(m->phys_addr == (tpte & PG_FRAME),
3091				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
3092				    m, (uintmax_t)m->phys_addr,
3093				    (uintmax_t)tpte));
3094
3095				KASSERT(m < &vm_page_array[vm_page_array_size],
3096					("pmap_remove_pages: bad tpte %#jx",
3097					(uintmax_t)tpte));
3098
3099				pmap->pm_stats.resident_count--;
3100
3101				pte_clear(pte);
3102
3103				/*
3104				 * Update the vm_page_t clean/reference bits.
3105				 */
3106				if (tpte & PG_M)
3107					vm_page_dirty(m);
3108
3109				/* Mark free */
3110				PV_STAT(pv_entry_frees++);
3111				PV_STAT(pv_entry_spare++);
3112				pv_entry_count--;
3113				pc->pc_map[field] |= bitmask;
3114				TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3115				if (TAILQ_EMPTY(&m->md.pv_list))
3116					vm_page_flag_clear(m, PG_WRITEABLE);
3117
3118				pmap_unuse_pt(pmap, pv->pv_va, &free);
3119			}
3120		}
3121		if (allfree) {
3122			PV_STAT(pv_entry_spare -= _NPCPV);
3123			PV_STAT(pc_chunk_count--);
3124			PV_STAT(pc_chunk_frees++);
3125			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3126			m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
3127			pmap_qremove((vm_offset_t)pc, 1);
3128			vm_page_unwire(m, 0);
3129			vm_page_free(m);
3130			pmap_ptelist_free(&pv_vafree, (vm_offset_t)pc);
3131		}
3132	}
3133	sched_unpin();
3134	pmap_invalidate_all(pmap);
3135	vm_page_unlock_queues();
3136	PMAP_UNLOCK(pmap);
3137	pmap_free_zero_pages(free);
3138}
3139
3140/*
3141 *	pmap_is_modified:
3142 *
3143 *	Return whether or not the specified physical page was modified
3144 *	in any physical maps.
3145 */
3146boolean_t
3147pmap_is_modified(vm_page_t m)
3148{
3149	pv_entry_t pv;
3150	pt_entry_t *pte;
3151	pmap_t pmap;
3152	boolean_t rv;
3153
3154	rv = FALSE;
3155	if (m->flags & PG_FICTITIOUS)
3156		return (rv);
3157
3158	sched_pin();
3159	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3160	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3161		pmap = PV_PMAP(pv);
3162		PMAP_LOCK(pmap);
3163		pte = pmap_pte_quick(pmap, pv->pv_va);
3164		rv = (*pte & PG_M) != 0;
3165		PMAP_UNLOCK(pmap);
3166		if (rv)
3167			break;
3168	}
3169	sched_unpin();
3170	return (rv);
3171}
3172
3173/*
3174 *	pmap_is_prefaultable:
3175 *
3176 *	Return whether or not the specified virtual address is elgible
3177 *	for prefault.
3178 */
3179boolean_t
3180pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
3181{
3182	pt_entry_t *pte;
3183	boolean_t rv;
3184
3185	rv = FALSE;
3186	PMAP_LOCK(pmap);
3187	if (*pmap_pde(pmap, addr)) {
3188		pte = vtopte(addr);
3189		rv = *pte == 0;
3190	}
3191	PMAP_UNLOCK(pmap);
3192	return (rv);
3193}
3194
3195/*
3196 * Clear the write and modified bits in each of the given page's mappings.
3197 */
3198void
3199pmap_remove_write(vm_page_t m)
3200{
3201	pv_entry_t pv;
3202	pmap_t pmap;
3203	pt_entry_t oldpte, *pte;
3204
3205	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3206	if ((m->flags & PG_FICTITIOUS) != 0 ||
3207	    (m->flags & PG_WRITEABLE) == 0)
3208		return;
3209	sched_pin();
3210	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3211		pmap = PV_PMAP(pv);
3212		PMAP_LOCK(pmap);
3213		pte = pmap_pte_quick(pmap, pv->pv_va);
3214retry:
3215		oldpte = *pte;
3216		if ((oldpte & PG_RW) != 0) {
3217			/*
3218			 * Regardless of whether a pte is 32 or 64 bits
3219			 * in size, PG_RW and PG_M are among the least
3220			 * significant 32 bits.
3221			 */
3222			if (!atomic_cmpset_int((u_int *)pte, oldpte,
3223			    oldpte & ~(PG_RW | PG_M)))
3224				goto retry;
3225			if ((oldpte & PG_M) != 0)
3226				vm_page_dirty(m);
3227			pmap_invalidate_page(pmap, pv->pv_va);
3228		}
3229		PMAP_UNLOCK(pmap);
3230	}
3231	vm_page_flag_clear(m, PG_WRITEABLE);
3232	sched_unpin();
3233}
3234
3235/*
3236 *	pmap_ts_referenced:
3237 *
3238 *	Return a count of reference bits for a page, clearing those bits.
3239 *	It is not necessary for every reference bit to be cleared, but it
3240 *	is necessary that 0 only be returned when there are truly no
3241 *	reference bits set.
3242 *
3243 *	XXX: The exact number of bits to check and clear is a matter that
3244 *	should be tested and standardized at some point in the future for
3245 *	optimal aging of shared pages.
3246 */
3247int
3248pmap_ts_referenced(vm_page_t m)
3249{
3250	pv_entry_t pv, pvf, pvn;
3251	pmap_t pmap;
3252	pt_entry_t *pte;
3253	int rtval = 0;
3254
3255	if (m->flags & PG_FICTITIOUS)
3256		return (rtval);
3257	sched_pin();
3258	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3259	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3260		pvf = pv;
3261		do {
3262			pvn = TAILQ_NEXT(pv, pv_list);
3263			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3264			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3265			pmap = PV_PMAP(pv);
3266			PMAP_LOCK(pmap);
3267			pte = pmap_pte_quick(pmap, pv->pv_va);
3268			if ((*pte & PG_A) != 0) {
3269				atomic_clear_int((u_int *)pte, PG_A);
3270				pmap_invalidate_page(pmap, pv->pv_va);
3271				rtval++;
3272				if (rtval > 4)
3273					pvn = NULL;
3274			}
3275			PMAP_UNLOCK(pmap);
3276		} while ((pv = pvn) != NULL && pv != pvf);
3277	}
3278	sched_unpin();
3279	return (rtval);
3280}
3281
3282/*
3283 *	Clear the modify bits on the specified physical page.
3284 */
3285void
3286pmap_clear_modify(vm_page_t m)
3287{
3288	pv_entry_t pv;
3289	pmap_t pmap;
3290	pt_entry_t *pte;
3291
3292	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3293	if ((m->flags & PG_FICTITIOUS) != 0)
3294		return;
3295	sched_pin();
3296	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3297		pmap = PV_PMAP(pv);
3298		PMAP_LOCK(pmap);
3299		pte = pmap_pte_quick(pmap, pv->pv_va);
3300		if ((*pte & PG_M) != 0) {
3301			/*
3302			 * Regardless of whether a pte is 32 or 64 bits
3303			 * in size, PG_M is among the least significant
3304			 * 32 bits.
3305			 */
3306			atomic_clear_int((u_int *)pte, PG_M);
3307			pmap_invalidate_page(pmap, pv->pv_va);
3308		}
3309		PMAP_UNLOCK(pmap);
3310	}
3311	sched_unpin();
3312}
3313
3314/*
3315 *	pmap_clear_reference:
3316 *
3317 *	Clear the reference bit on the specified physical page.
3318 */
3319void
3320pmap_clear_reference(vm_page_t m)
3321{
3322	pv_entry_t pv;
3323	pmap_t pmap;
3324	pt_entry_t *pte;
3325
3326	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3327	if ((m->flags & PG_FICTITIOUS) != 0)
3328		return;
3329	sched_pin();
3330	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3331		pmap = PV_PMAP(pv);
3332		PMAP_LOCK(pmap);
3333		pte = pmap_pte_quick(pmap, pv->pv_va);
3334		if ((*pte & PG_A) != 0) {
3335			/*
3336			 * Regardless of whether a pte is 32 or 64 bits
3337			 * in size, PG_A is among the least significant
3338			 * 32 bits.
3339			 */
3340			atomic_clear_int((u_int *)pte, PG_A);
3341			pmap_invalidate_page(pmap, pv->pv_va);
3342		}
3343		PMAP_UNLOCK(pmap);
3344	}
3345	sched_unpin();
3346}
3347
3348/*
3349 * Miscellaneous support routines follow
3350 */
3351
3352/*
3353 * Map a set of physical memory pages into the kernel virtual
3354 * address space. Return a pointer to where it is mapped. This
3355 * routine is intended to be used for mapping device memory,
3356 * NOT real memory.
3357 */
3358void *
3359pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
3360{
3361	vm_offset_t va, tmpva, offset;
3362
3363	offset = pa & PAGE_MASK;
3364	size = roundup(offset + size, PAGE_SIZE);
3365	pa = pa & PG_FRAME;
3366
3367	if (pa < KERNLOAD && pa + size <= KERNLOAD)
3368		va = KERNBASE + pa;
3369	else
3370		va = kmem_alloc_nofault(kernel_map, size);
3371	if (!va)
3372		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3373
3374	for (tmpva = va; size > 0; ) {
3375		pmap_kenter_attr(tmpva, pa, mode);
3376		size -= PAGE_SIZE;
3377		tmpva += PAGE_SIZE;
3378		pa += PAGE_SIZE;
3379	}
3380	pmap_invalidate_range(kernel_pmap, va, tmpva);
3381	pmap_invalidate_cache();
3382	return ((void *)(va + offset));
3383}
3384
3385void *
3386pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3387{
3388
3389	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
3390}
3391
3392void *
3393pmap_mapbios(vm_paddr_t pa, vm_size_t size)
3394{
3395
3396	return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
3397}
3398
3399void
3400pmap_unmapdev(vm_offset_t va, vm_size_t size)
3401{
3402	vm_offset_t base, offset, tmpva;
3403
3404	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
3405		return;
3406	base = trunc_page(va);
3407	offset = va & PAGE_MASK;
3408	size = roundup(offset + size, PAGE_SIZE);
3409	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
3410		pmap_kremove(tmpva);
3411	pmap_invalidate_range(kernel_pmap, va, tmpva);
3412	kmem_free(kernel_map, base, size);
3413}
3414
3415int
3416pmap_change_attr(va, size, mode)
3417	vm_offset_t va;
3418	vm_size_t size;
3419	int mode;
3420{
3421	vm_offset_t base, offset, tmpva;
3422	pt_entry_t *pte;
3423	u_int opte, npte;
3424	pd_entry_t *pde;
3425
3426	base = trunc_page(va);
3427	offset = va & PAGE_MASK;
3428	size = roundup(offset + size, PAGE_SIZE);
3429
3430	/* Only supported on kernel virtual addresses. */
3431	if (base <= VM_MAXUSER_ADDRESS)
3432		return (EINVAL);
3433
3434	/* 4MB pages and pages that aren't mapped aren't supported. */
3435	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3436		pde = pmap_pde(kernel_pmap, tmpva);
3437		if (*pde & PG_PS)
3438			return (EINVAL);
3439		if (*pde == 0)
3440			return (EINVAL);
3441		pte = vtopte(va);
3442		if (*pte == 0)
3443			return (EINVAL);
3444	}
3445
3446	/*
3447	 * Ok, all the pages exist and are 4k, so run through them updating
3448	 * their cache mode.
3449	 */
3450	for (tmpva = base; size > 0; ) {
3451		pte = vtopte(tmpva);
3452
3453		/*
3454		 * The cache mode bits are all in the low 32-bits of the
3455		 * PTE, so we can just spin on updating the low 32-bits.
3456		 */
3457		do {
3458			opte = *(u_int *)pte;
3459			npte = opte & ~(PG_PTE_PAT | PG_NC_PCD | PG_NC_PWT);
3460			npte |= pmap_cache_bits(mode, 0);
3461		} while (npte != opte &&
3462		    !atomic_cmpset_int((u_int *)pte, opte, npte));
3463		tmpva += PAGE_SIZE;
3464		size -= PAGE_SIZE;
3465	}
3466
3467	/*
3468	 * Flush CPU caches to make sure any data isn't cached that shouldn't
3469	 * be, etc.
3470	 */
3471	pmap_invalidate_range(kernel_pmap, base, tmpva);
3472	pmap_invalidate_cache();
3473	return (0);
3474}
3475
3476/*
3477 * perform the pmap work for mincore
3478 */
3479int
3480pmap_mincore(pmap_t pmap, vm_offset_t addr)
3481{
3482	pt_entry_t *ptep, pte;
3483	vm_page_t m;
3484	int val = 0;
3485
3486	PMAP_LOCK(pmap);
3487	ptep = pmap_pte(pmap, addr);
3488	pte = (ptep != NULL) ? *ptep : 0;
3489	pmap_pte_release(ptep);
3490	PMAP_UNLOCK(pmap);
3491
3492	if (pte != 0) {
3493		vm_paddr_t pa;
3494
3495		val = MINCORE_INCORE;
3496		if ((pte & PG_MANAGED) == 0)
3497			return val;
3498
3499		pa = pte & PG_FRAME;
3500
3501		m = PHYS_TO_VM_PAGE(pa);
3502
3503		/*
3504		 * Modified by us
3505		 */
3506		if (pte & PG_M)
3507			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3508		else {
3509			/*
3510			 * Modified by someone else
3511			 */
3512			vm_page_lock_queues();
3513			if (m->dirty || pmap_is_modified(m))
3514				val |= MINCORE_MODIFIED_OTHER;
3515			vm_page_unlock_queues();
3516		}
3517		/*
3518		 * Referenced by us
3519		 */
3520		if (pte & PG_A)
3521			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3522		else {
3523			/*
3524			 * Referenced by someone else
3525			 */
3526			vm_page_lock_queues();
3527			if ((m->flags & PG_REFERENCED) ||
3528			    pmap_ts_referenced(m)) {
3529				val |= MINCORE_REFERENCED_OTHER;
3530				vm_page_flag_set(m, PG_REFERENCED);
3531			}
3532			vm_page_unlock_queues();
3533		}
3534	}
3535	return val;
3536}
3537
3538void
3539pmap_activate(struct thread *td)
3540{
3541	pmap_t	pmap, oldpmap;
3542	u_int32_t  cr3;
3543
3544	critical_enter();
3545	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3546	oldpmap = PCPU_GET(curpmap);
3547#if defined(SMP)
3548	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
3549	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
3550#else
3551	oldpmap->pm_active &= ~1;
3552	pmap->pm_active |= 1;
3553#endif
3554#ifdef PAE
3555	cr3 = vtophys(pmap->pm_pdpt);
3556#else
3557	cr3 = vtophys(pmap->pm_pdir);
3558#endif
3559	/*
3560	 * pmap_activate is for the current thread on the current cpu
3561	 */
3562	td->td_pcb->pcb_cr3 = cr3;
3563	load_cr3(cr3);
3564	PCPU_SET(curpmap, pmap);
3565	critical_exit();
3566}
3567
3568vm_offset_t
3569pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3570{
3571
3572	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3573		return addr;
3574	}
3575
3576	addr = (addr + PDRMASK) & ~PDRMASK;
3577	return addr;
3578}
3579
3580
3581#if defined(PMAP_DEBUG)
3582pmap_pid_dump(int pid)
3583{
3584	pmap_t pmap;
3585	struct proc *p;
3586	int npte = 0;
3587	int index;
3588
3589	sx_slock(&allproc_lock);
3590	FOREACH_PROC_IN_SYSTEM(p) {
3591		if (p->p_pid != pid)
3592			continue;
3593
3594		if (p->p_vmspace) {
3595			int i,j;
3596			index = 0;
3597			pmap = vmspace_pmap(p->p_vmspace);
3598			for (i = 0; i < NPDEPTD; i++) {
3599				pd_entry_t *pde;
3600				pt_entry_t *pte;
3601				vm_offset_t base = i << PDRSHIFT;
3602
3603				pde = &pmap->pm_pdir[i];
3604				if (pde && pmap_pde_v(pde)) {
3605					for (j = 0; j < NPTEPG; j++) {
3606						vm_offset_t va = base + (j << PAGE_SHIFT);
3607						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3608							if (index) {
3609								index = 0;
3610								printf("\n");
3611							}
3612							sx_sunlock(&allproc_lock);
3613							return npte;
3614						}
3615						pte = pmap_pte(pmap, va);
3616						if (pte && pmap_pte_v(pte)) {
3617							pt_entry_t pa;
3618							vm_page_t m;
3619							pa = *pte;
3620							m = PHYS_TO_VM_PAGE(pa & PG_FRAME);
3621							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3622								va, pa, m->hold_count, m->wire_count, m->flags);
3623							npte++;
3624							index++;
3625							if (index >= 2) {
3626								index = 0;
3627								printf("\n");
3628							} else {
3629								printf(" ");
3630							}
3631						}
3632					}
3633				}
3634			}
3635		}
3636	}
3637	sx_sunlock(&allproc_lock);
3638	return npte;
3639}
3640#endif
3641
3642#if defined(DEBUG)
3643
3644static void	pads(pmap_t pm);
3645void		pmap_pvdump(vm_offset_t pa);
3646
3647/* print address space of pmap*/
3648static void
3649pads(pmap_t pm)
3650{
3651	int i, j;
3652	vm_paddr_t va;
3653	pt_entry_t *ptep;
3654
3655	if (pm == kernel_pmap)
3656		return;
3657	for (i = 0; i < NPDEPTD; i++)
3658		if (pm->pm_pdir[i])
3659			for (j = 0; j < NPTEPG; j++) {
3660				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3661				if (pm == kernel_pmap && va < KERNBASE)
3662					continue;
3663				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3664					continue;
3665				ptep = pmap_pte(pm, va);
3666				if (pmap_pte_v(ptep))
3667					printf("%x:%x ", va, *ptep);
3668			};
3669
3670}
3671
3672void
3673pmap_pvdump(vm_paddr_t pa)
3674{
3675	pv_entry_t pv;
3676	pmap_t pmap;
3677	vm_page_t m;
3678
3679	printf("pa %x", pa);
3680	m = PHYS_TO_VM_PAGE(pa);
3681	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3682		pmap = PV_PMAP(pv);
3683		printf(" -> pmap %p, va %x", (void *)pmap, pv->pv_va);
3684		pads(pmap);
3685	}
3686	printf(" ");
3687}
3688#endif
3689