pmap.c revision 16122
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 *	$Id: pmap.c,v 1.98 1996/06/02 22:28:53 dyson Exp $
43 */
44
45/*
46 * Derived from hp300 version by Mike Hibler, this version by William
47 * Jolitz uses a recursive map [a pde points to the page directory] to
48 * map the page tables using the pagetables themselves. This is done to
49 * reduce the impact on kernel virtual memory for lots of sparse address
50 * space, and to reduce the cost of memory to each process.
51 *
52 *	Derived from: hp300/@(#)pmap.c	7.1 (Berkeley) 12/5/90
53 */
54
55/*
56 *	Manages physical address maps.
57 *
58 *	In addition to hardware address maps, this
59 *	module is called upon to provide software-use-only
60 *	maps which may or may not be stored in the same
61 *	form as hardware maps.  These pseudo-maps are
62 *	used to store intermediate results from copy
63 *	operations to and from address spaces.
64 *
65 *	Since the information managed by this module is
66 *	also stored by the logical address mapping module,
67 *	this module may throw away valid virtual-to-physical
68 *	mappings at almost any time.  However, invalidations
69 *	of virtual-to-physical mappings must be done as
70 *	requested.
71 *
72 *	In order to cope with hardware architectures which
73 *	make virtual-to-physical map invalidates expensive,
74 *	this module may delay invalidate or reduced protection
75 *	operations until such time as they are actually
76 *	necessary.  This module is given full information as
77 *	to which processors are currently using which maps,
78 *	and to when physical maps must be made correct.
79 */
80
81#include <sys/param.h>
82#include <sys/systm.h>
83#include <sys/proc.h>
84#include <sys/malloc.h>
85#include <sys/msgbuf.h>
86#include <sys/queue.h>
87#include <sys/vmmeter.h>
88#include <sys/mman.h>
89
90#include <vm/vm.h>
91#include <vm/vm_param.h>
92#include <vm/vm_prot.h>
93#include <vm/lock.h>
94#include <vm/vm_kern.h>
95#include <vm/vm_page.h>
96#include <vm/vm_map.h>
97#include <vm/vm_object.h>
98#include <vm/vm_extern.h>
99#include <vm/vm_pageout.h>
100
101#include <machine/pcb.h>
102#include <machine/cputypes.h>
103#include <machine/md_var.h>
104
105#include <i386/isa/isa.h>
106
107#define PMAP_KEEP_PDIRS
108
109#if defined(DIAGNOSTIC)
110#define PMAP_DIAGNOSTIC
111#endif
112
113static void	init_pv_entries __P((int));
114
115/*
116 * Get PDEs and PTEs for user/kernel address space
117 */
118#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
119#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
120
121#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
122#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
123#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
124#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
125#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
126
127#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
128#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
129
130/*
131 * Given a map and a machine independent protection code,
132 * convert to a vax protection code.
133 */
134#define pte_prot(m, p)	(protection_codes[p])
135static int protection_codes[8];
136
137static struct pmap kernel_pmap_store;
138pmap_t kernel_pmap;
139
140vm_offset_t avail_start;	/* PA of first available physical page */
141vm_offset_t avail_end;		/* PA of last available physical page */
142vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
143vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
144static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
145static vm_offset_t vm_first_phys;
146
147static int nkpt;
148static vm_page_t nkpg;
149vm_offset_t kernel_vm_end;
150
151extern vm_offset_t clean_sva, clean_eva;
152extern int cpu_class;
153
154#define PV_FREELIST_MIN ((PAGE_SIZE / sizeof (struct pv_entry)) / 2)
155
156/*
157 * Data for the pv entry allocation mechanism
158 */
159static int pv_freelistcnt;
160static pv_entry_t pv_freelist;
161static vm_offset_t pvva;
162static int npvvapg;
163
164/*
165 * All those kernel PT submaps that BSD is so fond of
166 */
167pt_entry_t *CMAP1;
168static pt_entry_t *CMAP2, *ptmmap;
169static pv_entry_t *pv_table;
170caddr_t CADDR1, ptvmmap;
171static caddr_t CADDR2;
172static pt_entry_t *msgbufmap;
173struct msgbuf *msgbufp;
174
175static void	free_pv_entry __P((pv_entry_t pv));
176static __inline unsigned * get_ptbase __P((pmap_t pmap));
177static pv_entry_t get_pv_entry __P((void));
178static void	i386_protection_init __P((void));
179static void	pmap_alloc_pv_entry __P((void));
180static void	pmap_changebit __P((vm_offset_t pa, int bit, boolean_t setem));
181static void	pmap_enter_quick __P((pmap_t pmap, vm_offset_t va,
182				      vm_offset_t pa));
183static int	pmap_is_managed __P((vm_offset_t pa));
184static void	pmap_remove_all __P((vm_offset_t pa));
185static void pmap_remove_page __P((struct pmap *pmap, vm_offset_t va));
186static __inline int pmap_remove_entry __P((struct pmap *pmap, pv_entry_t *pv,
187					vm_offset_t va));
188static int pmap_remove_pte __P((struct pmap *pmap, unsigned *ptq,
189					vm_offset_t sva));
190static boolean_t
191		pmap_testbit __P((vm_offset_t pa, int bit));
192static __inline void pmap_insert_entry __P((pmap_t pmap, vm_offset_t va,
193		vm_page_t mpte, vm_offset_t pa));
194
195static __inline vm_page_t pmap_allocpte __P((pmap_t pmap, vm_offset_t va));
196static void pmap_remove_pte_mapping __P((vm_offset_t pa));
197static __inline int pmap_release_free_page __P((pmap_t pmap, vm_page_t p));
198static vm_page_t _pmap_allocpte __P((pmap_t pmap, vm_offset_t va, int ptepindex));
199
200#define PDSTACKMAX 16
201static vm_offset_t pdstack[PDSTACKMAX];
202static int pdstackptr;
203
204#if defined(PMAP_DIAGNOSTIC)
205
206/*
207 * This code checks for non-writeable/modified pages.
208 * This should be an invalid condition.
209 */
210static int
211pmap_nw_modified(pt_entry_t ptea) {
212	int pte;
213
214	pte = (int) ptea;
215
216	if ((pte & (PG_M|PG_RW)) == PG_M)
217		return 1;
218	else
219		return 0;
220}
221#endif
222
223/*
224 * The below are finer grained pmap_update routines.  These eliminate
225 * the gratuitious tlb flushes on non-i386 architectures.
226 */
227static __inline void
228pmap_update_1pg( vm_offset_t va) {
229#if defined(I386_CPU)
230	if (cpu_class == CPUCLASS_386)
231		pmap_update();
232	else
233#endif
234		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va));
235}
236
237static __inline void
238pmap_update_2pg( vm_offset_t va1, vm_offset_t va2) {
239#if defined(I386_CPU)
240	if (cpu_class == CPUCLASS_386) {
241		pmap_update();
242	} else
243#endif
244	{
245		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va1));
246		__asm __volatile(".byte 0xf,0x1,0x38": :"a" (va2));
247	}
248}
249
250static __inline __pure unsigned *
251get_ptbase(pmap)
252	pmap_t pmap;
253{
254	unsigned frame = (unsigned) pmap->pm_pdir[PTDPTDI] & PG_FRAME;
255
256	/* are we current address space or kernel? */
257	if (pmap == kernel_pmap || frame == (((unsigned) PTDpde) & PG_FRAME)) {
258		return (unsigned *) PTmap;
259	}
260	/* otherwise, we are alternate address space */
261	if (frame != (((unsigned) APTDpde) & PG_FRAME)) {
262		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
263		pmap_update();
264	}
265	return (unsigned *) APTmap;
266}
267
268/*
269 *	Routine:	pmap_pte
270 *	Function:
271 *		Extract the page table entry associated
272 *		with the given map/virtual_address pair.
273 */
274
275__inline unsigned * __pure
276pmap_pte(pmap, va)
277	register pmap_t pmap;
278	vm_offset_t va;
279{
280	if (pmap && *pmap_pde(pmap, va)) {
281		return get_ptbase(pmap) + i386_btop(va);
282	}
283	return (0);
284}
285
286/*
287 *	Routine:	pmap_extract
288 *	Function:
289 *		Extract the physical page address associated
290 *		with the given map/virtual_address pair.
291 */
292vm_offset_t __pure
293pmap_extract(pmap, va)
294	register pmap_t pmap;
295	vm_offset_t va;
296{
297	if (pmap && *pmap_pde(pmap, va)) {
298		unsigned *pte;
299		pte = get_ptbase(pmap) + i386_btop(va);
300		return ((*pte & PG_FRAME) | (va & PAGE_MASK));
301	}
302	return 0;
303
304}
305
306/*
307 * Add a list of wired pages to the kva
308 * this routine is only used for temporary
309 * kernel mappings that do not need to have
310 * page modification or references recorded.
311 * Note that old mappings are simply written
312 * over.  The page *must* be wired.
313 */
314void
315pmap_qenter(va, m, count)
316	vm_offset_t va;
317	vm_page_t *m;
318	int count;
319{
320	int i;
321	register unsigned *pte;
322
323	for (i = 0; i < count; i++) {
324		vm_offset_t tva = va + i * PAGE_SIZE;
325		unsigned npte = VM_PAGE_TO_PHYS(m[i]) | PG_RW | PG_V;
326		unsigned opte;
327		pte = (unsigned *)vtopte(tva);
328		opte = *pte;
329		*pte = npte;
330		if (opte)
331			pmap_update_1pg(tva);
332	}
333}
334/*
335 * this routine jerks page mappings from the
336 * kernel -- it is meant only for temporary mappings.
337 */
338void
339pmap_qremove(va, count)
340	vm_offset_t va;
341	int count;
342{
343	int i;
344	register unsigned *pte;
345
346	for (i = 0; i < count; i++) {
347		pte = (unsigned *)vtopte(va);
348		*pte = 0;
349		pmap_update_1pg(va);
350		va += PAGE_SIZE;
351	}
352}
353
354/*
355 * add a wired page to the kva
356 * note that in order for the mapping to take effect -- you
357 * should do a pmap_update after doing the pmap_kenter...
358 */
359__inline void
360pmap_kenter(va, pa)
361	vm_offset_t va;
362	register vm_offset_t pa;
363{
364	register unsigned *pte;
365	unsigned npte, opte;
366
367	npte = pa | PG_RW | PG_V;
368	pte = (unsigned *)vtopte(va);
369	opte = *pte;
370	*pte = npte;
371	if (opte)
372		pmap_update_1pg(va);
373}
374
375/*
376 * remove a page from the kernel pagetables
377 */
378__inline void
379pmap_kremove(va)
380	vm_offset_t va;
381{
382	register unsigned *pte;
383
384	pte = (unsigned *)vtopte(va);
385	*pte = 0;
386	pmap_update_1pg(va);
387}
388
389/*
390 * determine if a page is managed (memory vs. device)
391 */
392static __inline __pure int
393pmap_is_managed(pa)
394	vm_offset_t pa;
395{
396	int i;
397
398	if (!pmap_initialized)
399		return 0;
400
401	for (i = 0; phys_avail[i + 1]; i += 2) {
402		if (pa < phys_avail[i + 1] && pa >= phys_avail[i])
403			return 1;
404	}
405	return 0;
406}
407
408/*
409 * This routine unholds page table pages, and if the hold count
410 * drops to zero, then it decrements the wire count.
411 */
412static __inline int
413pmap_unwire_pte_hold(vm_page_t m) {
414	vm_page_unhold(m);
415	if (m->hold_count == 0) {
416		--m->wire_count;
417		if (m->wire_count == 0) {
418			--cnt.v_wire_count;
419			m->dirty = 0;
420			vm_page_deactivate(m);
421		}
422		return 1;
423	}
424	return 0;
425}
426
427#if !defined(PMAP_DIAGNOSTIC)
428__inline
429#endif
430int
431pmap_unuse_pt(pmap, va, mpte)
432	pmap_t pmap;
433	vm_offset_t va;
434	vm_page_t mpte;
435{
436	if (va >= UPT_MIN_ADDRESS)
437		return 0;
438
439	if (mpte == NULL) {
440		vm_offset_t ptepa;
441		ptepa = ((vm_offset_t) *pmap_pde(pmap, va)) /* & PG_FRAME */;
442#if defined(PMAP_DIAGNOSTIC)
443		if (!ptepa)
444			panic("pmap_unuse_pt: pagetable page missing, va: 0x%x", va);
445#endif
446		mpte = PHYS_TO_VM_PAGE(ptepa);
447	}
448
449#if defined(PMAP_DIAGNOSTIC)
450	if (mpte->hold_count == 0) {
451		panic("pmap_unuse_pt: hold count < 0, va: 0x%x", va);
452	}
453#endif
454
455/*
456 * We don't free page-table-pages anymore because it can have a negative
457 * impact on perf at times.  Now we just deactivate, and it'll get cleaned
458 * up if needed...  Also, if the page ends up getting used, it will be
459 * brought back into the process address space by pmap_allocpte and be
460 * reactivated.
461 */
462	return pmap_unwire_pte_hold(mpte);
463}
464
465/*
466 *	Bootstrap the system enough to run with virtual memory.
467 *
468 *	On the i386 this is called after mapping has already been enabled
469 *	and just syncs the pmap module with what has already been done.
470 *	[We can't call it easily with mapping off since the kernel is not
471 *	mapped with PA == VA, hence we would have to relocate every address
472 *	from the linked base (virtual) address "KERNBASE" to the actual
473 *	(physical) address starting relative to 0]
474 */
475void
476pmap_bootstrap(firstaddr, loadaddr)
477	vm_offset_t firstaddr;
478	vm_offset_t loadaddr;
479{
480	vm_offset_t va;
481	pt_entry_t *pte;
482
483	avail_start = firstaddr;
484
485	/*
486	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
487	 * large. It should instead be correctly calculated in locore.s and
488	 * not based on 'first' (which is a physical address, not a virtual
489	 * address, for the start of unused physical memory). The kernel
490	 * page tables are NOT double mapped and thus should not be included
491	 * in this calculation.
492	 */
493	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
494	virtual_end = VM_MAX_KERNEL_ADDRESS;
495
496	/*
497	 * Initialize protection array.
498	 */
499	i386_protection_init();
500
501	/*
502	 * The kernel's pmap is statically allocated so we don't have to use
503	 * pmap_create, which is unlikely to work correctly at this part of
504	 * the boot sequence (XXX and which no longer exists).
505	 */
506	kernel_pmap = &kernel_pmap_store;
507
508	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + IdlePTD);
509
510	kernel_pmap->pm_count = 1;
511	nkpt = NKPT;
512
513	/*
514	 * Reserve some special page table entries/VA space for temporary
515	 * mapping of pages.
516	 */
517#define	SYSMAP(c, p, v, n)	\
518	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
519
520	va = virtual_avail;
521	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
522
523	/*
524	 * CMAP1/CMAP2 are used for zeroing and copying pages.
525	 */
526	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
527	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
528
529	/*
530	 * ptmmap is used for reading arbitrary physical pages via /dev/mem.
531	 */
532	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
533
534	/*
535	 * msgbufmap is used to map the system message buffer.
536	 */
537	SYSMAP(struct msgbuf *, msgbufmap, msgbufp, 1)
538
539	virtual_avail = va;
540
541	*(int *) CMAP1 = *(int *) CMAP2 = *(int *) PTD = 0;
542	pmap_update();
543
544}
545
546/*
547 *	Initialize the pmap module.
548 *	Called by vm_init, to initialize any structures that the pmap
549 *	system needs to map virtual memory.
550 *	pmap_init has been enhanced to support in a fairly consistant
551 *	way, discontiguous physical memory.
552 */
553void
554pmap_init(phys_start, phys_end)
555	vm_offset_t phys_start, phys_end;
556{
557	vm_offset_t addr;
558	vm_size_t npg, s;
559	int i;
560
561	/*
562	 * calculate the number of pv_entries needed
563	 */
564	vm_first_phys = phys_avail[0];
565	for (i = 0; phys_avail[i + 1]; i += 2);
566	npg = (phys_avail[(i - 2) + 1] - vm_first_phys) / PAGE_SIZE;
567
568	/*
569	 * Allocate memory for random pmap data structures.  Includes the
570	 * pv_head_table.
571	 */
572	s = (vm_size_t) (sizeof(struct pv_entry *) * npg);
573	s = round_page(s);
574	addr = (vm_offset_t) kmem_alloc(kernel_map, s);
575	pv_table = (pv_entry_t *) addr;
576
577	/*
578	 * init the pv free list
579	 */
580	init_pv_entries(npg);
581	/*
582	 * Now it is safe to enable pv_table recording.
583	 */
584	pmap_initialized = TRUE;
585}
586
587/*
588 *	Used to map a range of physical addresses into kernel
589 *	virtual address space.
590 *
591 *	For now, VM is already on, we only need to map the
592 *	specified memory.
593 */
594vm_offset_t
595pmap_map(virt, start, end, prot)
596	vm_offset_t virt;
597	vm_offset_t start;
598	vm_offset_t end;
599	int prot;
600{
601	while (start < end) {
602		pmap_enter(kernel_pmap, virt, start, prot, FALSE);
603		virt += PAGE_SIZE;
604		start += PAGE_SIZE;
605	}
606	return (virt);
607}
608
609/*
610 * Initialize a preallocated and zeroed pmap structure,
611 * such as one in a vmspace structure.
612 */
613void
614pmap_pinit(pmap)
615	register struct pmap *pmap;
616{
617	vm_page_t ptdpg;
618	/*
619	 * No need to allocate page table space yet but we do need a valid
620	 * page directory table.
621	 */
622
623	if (pdstackptr > 0) {
624		--pdstackptr;
625		pmap->pm_pdir =
626			(pd_entry_t *)pdstack[pdstackptr];
627	} else {
628		pmap->pm_pdir =
629			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
630	}
631
632	/*
633	 * allocate object for the ptes
634	 */
635	pmap->pm_pteobj = vm_object_allocate( OBJT_DEFAULT, PTDPTDI + 1);
636
637	/*
638	 * allocate the page directory page
639	 */
640retry:
641	ptdpg = vm_page_alloc( pmap->pm_pteobj, PTDPTDI, VM_ALLOC_ZERO);
642	if (ptdpg == NULL) {
643		VM_WAIT;
644		goto retry;
645	}
646	vm_page_wire(ptdpg);
647	ptdpg->flags &= ~(PG_MAPPED|PG_BUSY);	/* not mapped normally */
648	ptdpg->valid = VM_PAGE_BITS_ALL;
649
650	pmap_kenter((vm_offset_t) pmap->pm_pdir, VM_PAGE_TO_PHYS(ptdpg));
651	if ((ptdpg->flags & PG_ZERO) == 0)
652		bzero(pmap->pm_pdir, PAGE_SIZE);
653
654	/* wire in kernel global address entries */
655	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
656
657	/* install self-referential address mapping entry */
658	*(unsigned *) (pmap->pm_pdir + PTDPTDI) =
659		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW;
660
661	pmap->pm_count = 1;
662}
663
664static int
665pmap_release_free_page(pmap, p)
666	struct pmap *pmap;
667	vm_page_t p;
668{
669	int s;
670	/*
671	 * This code optimizes the case of freeing non-busy
672	 * page-table pages.  Those pages are zero now, and
673	 * might as well be placed directly into the zero queue.
674	 */
675	s = splvm();
676	if (p->flags & PG_BUSY) {
677		p->flags |= PG_WANTED;
678		tsleep(p, PVM, "pmaprl", 0);
679		splx(s);
680		return 0;
681	}
682
683	pmap_remove_pte_mapping(VM_PAGE_TO_PHYS(p));
684
685	if (p->hold_count)  {
686#if defined(PMAP_DIAGNOSTIC)
687		panic("pmap_release: freeing held page table page");
688#endif
689		/*
690		 * HACK ALERT!!!
691		 * If this failure happens, we must clear the page, because
692		 * there is likely a mapping still valid.  This condition
693		 * is an error, but at least this zero operation will mitigate
694		 * some Sig-11's or crashes, because this page is thought
695		 * to be zero.  This is a robustness fix, and not meant to
696		 * be a long term work-around.
697		 */
698		pmap_zero_page(VM_PAGE_TO_PHYS(p));
699	}
700	/*
701	 * Page directory pages need to have the kernel
702	 * stuff cleared, so they can go into the zero queue also.
703	 */
704	if (p->pindex == PTDPTDI) {
705		unsigned *pde = (unsigned *) pmap->pm_pdir;
706		bzero(pde + KPTDI, nkpt * PTESIZE);
707		pde[APTDPTDI] = 0;
708		pde[PTDPTDI] = 0;
709		pmap_kremove((vm_offset_t) pmap->pm_pdir);
710	}
711
712	vm_page_free_zero(p);
713	splx(s);
714	return 1;
715}
716
717/*
718 * Release any resources held by the given physical map.
719 * Called when a pmap initialized by pmap_pinit is being released.
720 * Should only be called if the map contains no valid mappings.
721 */
722void
723pmap_release(pmap)
724	register struct pmap *pmap;
725{
726	vm_page_t p,n,ptdpg;
727	vm_object_t object = pmap->pm_pteobj;
728	int s;
729
730	if (object->ref_count != 1)
731		panic("pmap_release: pteobj reference count != 1");
732
733	/*
734	 * Wait until any (bogus) paging activity on this object is
735	 * complete.
736	 */
737	s = splvm();
738	while (object->paging_in_progress) {
739		object->flags |= OBJ_PIPWNT;
740		tsleep(object,PVM,"pmrlob",0);
741	}
742	splx(s);
743
744	ptdpg = NULL;
745retry:
746	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
747		n = TAILQ_NEXT(p, listq);
748		if (p->pindex == PTDPTDI) {
749			ptdpg = p;
750			continue;
751		}
752		if ((p->flags & PG_BUSY) || p->busy)
753			continue;
754		if (!pmap_release_free_page(pmap, p))
755			goto retry;
756	}
757	if (ptdpg == NULL)
758		panic("pmap_release: missing page table directory page");
759
760	pmap_release_free_page(pmap, ptdpg);
761
762	vm_object_deallocate(object);
763	if (pdstackptr < PDSTACKMAX) {
764		pdstack[pdstackptr] = (vm_offset_t) pmap->pm_pdir;
765		++pdstackptr;
766	} else {
767		kmem_free(kernel_map, (vm_offset_t) pmap->pm_pdir, PAGE_SIZE);
768	}
769}
770
771/*
772 * grow the number of kernel page table entries, if needed
773 */
774
775void
776pmap_growkernel(vm_offset_t addr)
777{
778	struct proc *p;
779	struct pmap *pmap;
780	int s;
781
782	s = splhigh();
783	if (kernel_vm_end == 0) {
784		kernel_vm_end = KERNBASE;
785		nkpt = 0;
786		while (pdir_pde(PTD, kernel_vm_end)) {
787			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
788			++nkpt;
789		}
790	}
791	addr = (addr + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
792	while (kernel_vm_end < addr) {
793		if (pdir_pde(PTD, kernel_vm_end)) {
794			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
795			continue;
796		}
797		++nkpt;
798		if (!nkpg) {
799			nkpg = vm_page_alloc(kernel_object, 0, VM_ALLOC_SYSTEM);
800			if (!nkpg)
801				panic("pmap_growkernel: no memory to grow kernel");
802			vm_page_wire(nkpg);
803			vm_page_remove(nkpg);
804			pmap_zero_page(VM_PAGE_TO_PHYS(nkpg));
805		}
806		pdir_pde(PTD, kernel_vm_end) = (pd_entry_t) (VM_PAGE_TO_PHYS(nkpg) | PG_V | PG_RW);
807		nkpg = NULL;
808
809		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
810			if (p->p_vmspace) {
811				pmap = &p->p_vmspace->vm_pmap;
812				*pmap_pde(pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
813			}
814		}
815		*pmap_pde(kernel_pmap, kernel_vm_end) = pdir_pde(PTD, kernel_vm_end);
816		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
817	}
818	splx(s);
819}
820
821/*
822 *	Retire the given physical map from service.
823 *	Should only be called if the map contains
824 *	no valid mappings.
825 */
826void
827pmap_destroy(pmap)
828	register pmap_t pmap;
829{
830	int count;
831
832	if (pmap == NULL)
833		return;
834
835	count = --pmap->pm_count;
836	if (count == 0) {
837		pmap_release(pmap);
838		free((caddr_t) pmap, M_VMPMAP);
839	}
840}
841
842/*
843 *	Add a reference to the specified pmap.
844 */
845void
846pmap_reference(pmap)
847	pmap_t pmap;
848{
849	if (pmap != NULL) {
850		pmap->pm_count++;
851	}
852}
853
854/*
855 * free the pv_entry back to the free list
856 */
857static __inline void
858free_pv_entry(pv)
859	pv_entry_t pv;
860{
861	++pv_freelistcnt;
862	pv->pv_next = pv_freelist;
863	pv_freelist = pv;
864}
865
866/*
867 * get a new pv_entry, allocating a block from the system
868 * when needed.
869 * the memory allocation is performed bypassing the malloc code
870 * because of the possibility of allocations at interrupt time.
871 */
872static __inline pv_entry_t
873get_pv_entry()
874{
875	pv_entry_t tmp;
876
877	/*
878	 * get more pv_entry pages if needed
879	 */
880	if (pv_freelistcnt < PV_FREELIST_MIN || pv_freelist == 0) {
881		pmap_alloc_pv_entry();
882	}
883	/*
884	 * get a pv_entry off of the free list
885	 */
886	--pv_freelistcnt;
887	tmp = pv_freelist;
888	pv_freelist = tmp->pv_next;
889	return tmp;
890}
891
892/*
893 * This *strange* allocation routine eliminates the possibility of a malloc
894 * failure (*FATAL*) for a pv_entry_t data structure.
895 * also -- this code is MUCH MUCH faster than the malloc equiv...
896 * We really need to do the slab allocator thingie here.
897 */
898static void
899pmap_alloc_pv_entry()
900{
901	/*
902	 * do we have any pre-allocated map-pages left?
903	 */
904	if (npvvapg) {
905		vm_page_t m;
906
907		/*
908		 * allocate a physical page out of the vm system
909		 */
910		m = vm_page_alloc(kernel_object,
911		    OFF_TO_IDX(pvva - vm_map_min(kernel_map)),
912		    VM_ALLOC_INTERRUPT);
913		if (m) {
914			int newentries;
915			int i;
916			pv_entry_t entry;
917
918			newentries = (PAGE_SIZE / sizeof(struct pv_entry));
919			/*
920			 * wire the page
921			 */
922			vm_page_wire(m);
923			m->flags &= ~PG_BUSY;
924			/*
925			 * let the kernel see it
926			 */
927			pmap_kenter(pvva, VM_PAGE_TO_PHYS(m));
928
929			entry = (pv_entry_t) pvva;
930			/*
931			 * update the allocation pointers
932			 */
933			pvva += PAGE_SIZE;
934			--npvvapg;
935
936			/*
937			 * free the entries into the free list
938			 */
939			for (i = 0; i < newentries; i++) {
940				free_pv_entry(entry);
941				entry++;
942			}
943		}
944	}
945	if (!pv_freelist)
946		panic("get_pv_entry: cannot get a pv_entry_t");
947}
948
949/*
950 * init the pv_entry allocation system
951 */
952#define PVSPERPAGE 64
953void
954init_pv_entries(npg)
955	int npg;
956{
957	/*
958	 * allocate enough kvm space for PVSPERPAGE entries per page (lots)
959	 * kvm space is fairly cheap, be generous!!!  (the system can panic if
960	 * this is too small.)
961	 */
962	npvvapg = ((npg * PVSPERPAGE) * sizeof(struct pv_entry)
963		+ PAGE_SIZE - 1) / PAGE_SIZE;
964	pvva = kmem_alloc_pageable(kernel_map, npvvapg * PAGE_SIZE);
965	/*
966	 * get the first batch of entries
967	 */
968	pmap_alloc_pv_entry();
969}
970
971/*
972 * If it is the first entry on the list, it is actually
973 * in the header and we must copy the following entry up
974 * to the header.  Otherwise we must search the list for
975 * the entry.  In either case we free the now unused entry.
976 */
977static __inline int
978pmap_remove_entry(pmap, ppv, va)
979	struct pmap *pmap;
980	pv_entry_t *ppv;
981	vm_offset_t va;
982{
983	pv_entry_t npv;
984	int s;
985
986	s = splvm();
987	for (npv = *ppv; npv; (ppv = &npv->pv_next, npv = *ppv)) {
988		if (pmap == npv->pv_pmap && va == npv->pv_va) {
989			int rtval = pmap_unuse_pt(pmap, va, npv->pv_ptem);
990			*ppv = npv->pv_next;
991			free_pv_entry(npv);
992			splx(s);
993			return rtval;
994		}
995	}
996	splx(s);
997	return 0;
998}
999
1000/*
1001 * pmap_remove_pte: do the things to unmap a page in a process
1002 */
1003static
1004#if !defined(PMAP_DIAGNOSTIC)
1005__inline
1006#endif
1007int
1008pmap_remove_pte(pmap, ptq, va)
1009	struct pmap *pmap;
1010	unsigned *ptq;
1011	vm_offset_t va;
1012{
1013	unsigned oldpte;
1014	pv_entry_t *ppv;
1015	int rtval;
1016
1017	oldpte = *ptq;
1018	*ptq = 0;
1019	if (oldpte & PG_W)
1020		pmap->pm_stats.wired_count -= 1;
1021	pmap->pm_stats.resident_count -= 1;
1022	if (oldpte & PG_MANAGED) {
1023		if (oldpte & PG_M) {
1024#if defined(PMAP_DIAGNOSTIC)
1025			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1026				printf("pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, (int) oldpte);
1027			}
1028#endif
1029			if (va < clean_sva || va >= clean_eva) {
1030				PHYS_TO_VM_PAGE(oldpte)->dirty = VM_PAGE_BITS_ALL;
1031			}
1032		}
1033		ppv = pa_to_pvh(oldpte);
1034		rtval = pmap_remove_entry(pmap, ppv, va);
1035#if defined(notyet)
1036		if (*ppv == NULL) {
1037			PHYS_TO_VM_PAGE(oldpte)->flags &= ~PG_MAPPED;
1038		}
1039#endif
1040		return rtval;
1041	} else {
1042		return pmap_unuse_pt(pmap, va, NULL);
1043	}
1044
1045	return 0;
1046}
1047
1048/*
1049 * Remove a single page from a process address space
1050 */
1051static __inline void
1052pmap_remove_page(pmap, va)
1053	struct pmap *pmap;
1054	register vm_offset_t va;
1055{
1056	register unsigned *ptq;
1057
1058	/*
1059	 * if there is no pte for this address, just skip it!!!
1060	 */
1061	if (*pmap_pde(pmap, va) == 0) {
1062		return;
1063	}
1064
1065	/*
1066	 * get a local va for mappings for this pmap.
1067	 */
1068	ptq = get_ptbase(pmap) + i386_btop(va);
1069	if (*ptq) {
1070		(void) pmap_remove_pte(pmap, ptq, va);
1071		pmap_update_1pg(va);
1072	}
1073	return;
1074}
1075
1076/*
1077 *	Remove the given range of addresses from the specified map.
1078 *
1079 *	It is assumed that the start and end are properly
1080 *	rounded to the page size.
1081 */
1082void
1083pmap_remove(pmap, sva, eva)
1084	struct pmap *pmap;
1085	register vm_offset_t sva;
1086	register vm_offset_t eva;
1087{
1088	register unsigned *ptbase;
1089	vm_offset_t pdnxt;
1090	vm_offset_t ptpaddr;
1091	vm_offset_t sindex, eindex;
1092	vm_page_t mpte;
1093	int anyvalid;
1094
1095	if (pmap == NULL)
1096		return;
1097
1098	/*
1099	 * special handling of removing one page.  a very
1100	 * common operation and easy to short circuit some
1101	 * code.
1102	 */
1103	if ((sva + PAGE_SIZE) == eva) {
1104		pmap_remove_page(pmap, sva);
1105		return;
1106	}
1107
1108	anyvalid = 0;
1109
1110	/*
1111	 * Get a local virtual address for the mappings that are being
1112	 * worked with.
1113	 */
1114	ptbase = get_ptbase(pmap);
1115
1116	sindex = i386_btop(sva);
1117	eindex = i386_btop(eva);
1118
1119	for (; sindex < eindex; sindex = pdnxt) {
1120
1121		/*
1122		 * Calculate index for next page table.
1123		 */
1124		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1125		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1126
1127		/*
1128		 * Weed out invalid mappings. Note: we assume that the page
1129		 * directory table is always allocated, and in kernel virtual.
1130		 */
1131		if (ptpaddr == 0)
1132			continue;
1133
1134		if (sindex < i386_btop(UPT_MIN_ADDRESS)) {
1135		/*
1136		 * get the vm_page_t for the page table page
1137		 */
1138			mpte = PHYS_TO_VM_PAGE(ptpaddr);
1139
1140		/*
1141		 * if the pte isn't wired, just skip it.
1142		 */
1143			if (mpte->wire_count == 0)
1144				continue;
1145		}
1146
1147		/*
1148		 * Limit our scan to either the end of the va represented
1149		 * by the current page table page, or to the end of the
1150		 * range being removed.
1151		 */
1152		if (pdnxt > eindex) {
1153			pdnxt = eindex;
1154		}
1155
1156		for ( ;sindex != pdnxt; sindex++) {
1157			vm_offset_t va;
1158			if (ptbase[sindex] == 0) {
1159				continue;
1160			}
1161			va = i386_ptob(sindex);
1162			anyvalid = 1;
1163			if (pmap_remove_pte(pmap,
1164				ptbase + sindex, va))
1165				break;
1166		}
1167	}
1168
1169	if (anyvalid) {
1170		pmap_update();
1171	}
1172}
1173
1174
1175void
1176pmap_remove_pte_mapping(pa)
1177	vm_offset_t pa;
1178{
1179	register pv_entry_t pv, *ppv, npv;
1180	register unsigned *pte;
1181	vm_offset_t va;
1182	int anyvalid = 0;
1183
1184	ppv = pa_to_pvh(pa);
1185
1186	for (pv = *ppv; pv; pv=pv->pv_next) {
1187		unsigned tpte;
1188		struct pmap *pmap;
1189
1190		anyvalid = 1;
1191		pmap = pv->pv_pmap;
1192		pte = get_ptbase(pmap) + i386_btop(pv->pv_va);
1193		if (tpte = *pte) {
1194			pmap->pm_stats.resident_count--;
1195			*pte = 0;
1196			if (tpte & PG_W)
1197				pmap->pm_stats.wired_count--;
1198		}
1199	}
1200
1201	if (anyvalid) {
1202		for (pv = *ppv; pv; pv = npv) {
1203			npv = pv->pv_next;
1204			free_pv_entry(pv);
1205		}
1206		*ppv = NULL;
1207	}
1208}
1209
1210/*
1211 *	Routine:	pmap_remove_all
1212 *	Function:
1213 *		Removes this physical page from
1214 *		all physical maps in which it resides.
1215 *		Reflects back modify bits to the pager.
1216 *
1217 *	Notes:
1218 *		Original versions of this routine were very
1219 *		inefficient because they iteratively called
1220 *		pmap_remove (slow...)
1221 */
1222static __inline void
1223pmap_remove_all(pa)
1224	vm_offset_t pa;
1225{
1226	register pv_entry_t pv, *ppv, npv;
1227	register unsigned *pte, *ptbase;
1228	vm_offset_t va;
1229	vm_page_t m;
1230	int s;
1231
1232#if defined(PMAP_DIAGNOSTIC)
1233	/*
1234	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1235	 * pages!
1236	 */
1237	if (!pmap_is_managed(pa)) {
1238		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%lx", pa);
1239	}
1240#endif
1241
1242	m = PHYS_TO_VM_PAGE(pa);
1243	ppv = pa_to_pvh(pa);
1244
1245	s = splvm();
1246	for (pv = *ppv; pv; pv=pv->pv_next) {
1247		int tpte;
1248		struct pmap *pmap;
1249
1250		pmap = pv->pv_pmap;
1251		ptbase = get_ptbase(pmap);
1252		va = pv->pv_va;
1253		if (*pmap_pde(pmap, va) == 0)
1254			continue;
1255		pte = ptbase + i386_btop(va);
1256		if (tpte = ((int) *pte)) {
1257			pmap->pm_stats.resident_count--;
1258			*pte = 0;
1259			if (tpte & PG_W)
1260				pmap->pm_stats.wired_count--;
1261			/*
1262			 * Update the vm_page_t clean and reference bits.
1263			 */
1264			if (tpte & PG_M) {
1265#if defined(PMAP_DIAGNOSTIC)
1266				if (pmap_nw_modified((pt_entry_t) tpte)) {
1267					printf("pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, tpte);
1268				}
1269#endif
1270				if ((va >= UPT_MIN_ADDRESS) &&
1271					(va < UPT_MAX_ADDRESS))
1272					continue;
1273
1274				if (va < clean_sva || va >= clean_eva) {
1275					m->dirty = VM_PAGE_BITS_ALL;
1276				}
1277			}
1278		}
1279	}
1280
1281	for (pv = *ppv; pv; pv = npv) {
1282		npv = pv->pv_next;
1283		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1284		free_pv_entry(pv);
1285	}
1286	*ppv = NULL;
1287
1288	splx(s);
1289}
1290
1291/*
1292 *	Set the physical protection on the
1293 *	specified range of this map as requested.
1294 */
1295void
1296pmap_protect(pmap, sva, eva, prot)
1297	register pmap_t pmap;
1298	vm_offset_t sva, eva;
1299	vm_prot_t prot;
1300{
1301	register unsigned *pte;
1302	register vm_offset_t va;
1303	register unsigned *ptbase;
1304	vm_offset_t pdnxt;
1305	vm_offset_t ptpaddr;
1306	vm_offset_t sindex, eindex;
1307	vm_page_t mpte;
1308	int anyvalid;
1309
1310
1311	if (pmap == NULL)
1312		return;
1313
1314	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1315		pmap_remove(pmap, sva, eva);
1316		return;
1317	}
1318	if (prot & VM_PROT_WRITE)
1319		return;
1320
1321	anyvalid = 0;
1322
1323	ptbase = get_ptbase(pmap);
1324
1325	sindex = i386_btop(sva);
1326	eindex = i386_btop(eva);
1327
1328	for (; sindex < eindex; sindex = pdnxt) {
1329
1330		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1331		ptpaddr = (vm_offset_t) *pmap_pde(pmap, i386_ptob(sindex));
1332
1333		/*
1334		 * Weed out invalid mappings. Note: we assume that the page
1335		 * directory table is always allocated, and in kernel virtual.
1336		 */
1337		if (ptpaddr == 0)
1338			continue;
1339
1340		/*
1341		 * Don't look at kernel page table pages
1342		 */
1343		if (sindex < i386_btop(UPT_MIN_ADDRESS)) {
1344			mpte = PHYS_TO_VM_PAGE(ptpaddr);
1345
1346			if (mpte->wire_count == 0)
1347				continue;
1348		}
1349
1350		if (pdnxt > eindex) {
1351			pdnxt = eindex;
1352		}
1353
1354		for (; sindex != pdnxt; sindex++) {
1355
1356			unsigned pbits = ptbase[sindex];
1357
1358			if (pbits & PG_RW) {
1359				if (pbits & PG_M) {
1360					vm_page_t m = PHYS_TO_VM_PAGE(pbits);
1361					m->dirty = VM_PAGE_BITS_ALL;
1362				}
1363				ptbase[sindex] = pbits & ~(PG_M|PG_RW);
1364				anyvalid = 1;
1365			}
1366		}
1367	}
1368	if (anyvalid)
1369		pmap_update();
1370}
1371
1372/*
1373 * Create a pv entry for page at pa for
1374 * (pmap, va).
1375 */
1376static __inline void
1377pmap_insert_entry(pmap, va, mpte, pa)
1378	pmap_t pmap;
1379	vm_offset_t va;
1380	vm_page_t mpte;
1381	vm_offset_t pa;
1382{
1383
1384	int s;
1385	pv_entry_t *ppv, pv;
1386
1387	s = splvm();
1388	pv = get_pv_entry();
1389	pv->pv_va = va;
1390	pv->pv_pmap = pmap;
1391	pv->pv_ptem = mpte;
1392
1393	ppv = pa_to_pvh(pa);
1394	if (*ppv)
1395		pv->pv_next = *ppv;
1396	else
1397		pv->pv_next = NULL;
1398	*ppv = pv;
1399	splx(s);
1400}
1401
1402/*
1403 * this routine is called if the page table page is not
1404 * mapped correctly.
1405 */
1406static vm_page_t
1407_pmap_allocpte(pmap, va, ptepindex)
1408	pmap_t	pmap;
1409	vm_offset_t va;
1410	int ptepindex;
1411{
1412	vm_offset_t pteva, ptepa;
1413	vm_page_t m;
1414	int s;
1415
1416	/*
1417	 * Find or fabricate a new pagetable page
1418	 */
1419retry:
1420	m = vm_page_lookup(pmap->pm_pteobj, ptepindex);
1421	if (m == NULL) {
1422		m = vm_page_alloc(pmap->pm_pteobj, ptepindex, VM_ALLOC_ZERO);
1423		if (m == NULL) {
1424			VM_WAIT;
1425			goto retry;
1426		}
1427		if ((m->flags & PG_ZERO) == 0)
1428			pmap_zero_page(VM_PAGE_TO_PHYS(m));
1429		m->flags &= ~(PG_ZERO|PG_BUSY);
1430		m->valid = VM_PAGE_BITS_ALL;
1431	} else {
1432		if ((m->flags & PG_BUSY) || m->busy) {
1433			m->flags |= PG_WANTED;
1434			tsleep(m, PVM, "ptewai", 0);
1435			goto retry;
1436		}
1437	}
1438
1439	/*
1440	 * mark the object writeable
1441	 */
1442	pmap->pm_pteobj->flags |= OBJ_WRITEABLE;
1443
1444	if (m->hold_count == 0) {
1445		s = splvm();
1446		vm_page_unqueue(m);
1447		splx(s);
1448		++m->wire_count;
1449		++cnt.v_wire_count;
1450	}
1451
1452	/*
1453	 * Increment the hold count for the page table page
1454	 * (denoting a new mapping.)
1455	 */
1456	++m->hold_count;
1457
1458	/*
1459	 * Map the pagetable page into the process address space, if
1460	 * it isn't already there.
1461	 */
1462	pteva = ((vm_offset_t) vtopte(va)) & PG_FRAME;
1463	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1464	if (ptepa == 0) {
1465		pv_entry_t pv, *ppv;
1466
1467		pmap->pm_stats.resident_count++;
1468
1469		s = splvm();
1470		pv = get_pv_entry();
1471
1472		pv->pv_va = pteva;
1473		pv->pv_pmap = pmap;
1474		pv->pv_next = NULL;
1475		pv->pv_ptem = NULL;
1476
1477		ptepa = VM_PAGE_TO_PHYS(m);
1478		ppv = pa_to_pvh(ptepa);
1479#if defined(PMAP_DIAGNOSTIC)
1480		if (*ppv)
1481			panic("pmap_allocpte: page is already mapped");
1482#endif
1483		*ppv = pv;
1484		splx(s);
1485		pmap_update_1pg(pteva);
1486	} else {
1487#if defined(PMAP_DIAGNOSTIC)
1488		if (VM_PAGE_TO_PHYS(m) != (ptepa & PG_FRAME))
1489			panic("pmap_allocpte: mismatch");
1490#endif
1491	}
1492	pmap->pm_pdir[ptepindex] =
1493		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_MANAGED);
1494	m->flags |= PG_MAPPED;
1495	return m;
1496}
1497
1498static __inline vm_page_t
1499pmap_allocpte(pmap, va)
1500	pmap_t	pmap;
1501	vm_offset_t va;
1502{
1503	int ptepindex;
1504	vm_offset_t ptepa;
1505	vm_page_t m;
1506
1507	/*
1508	 * Calculate pagetable page index
1509	 */
1510	ptepindex = va >> PDRSHIFT;
1511
1512	/*
1513	 * Get the page directory entry
1514	 */
1515	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1516
1517	/*
1518	 * If the page table page is mapped, we just increment the
1519	 * hold count, and activate it.
1520	 */
1521	if ((ptepa & (PG_RW|PG_U|PG_V)) == (PG_RW|PG_U|PG_V)) {
1522		m = PHYS_TO_VM_PAGE(ptepa);
1523		if (m->hold_count == 0) {
1524			int s = splvm();
1525			vm_page_unqueue(m);
1526			splx(s);
1527			++m->wire_count;
1528			++cnt.v_wire_count;
1529		}
1530		++m->hold_count;
1531		return m;
1532	}
1533	return _pmap_allocpte(pmap, va, ptepindex);
1534}
1535
1536/*
1537 *	Insert the given physical page (p) at
1538 *	the specified virtual address (v) in the
1539 *	target physical map with the protection requested.
1540 *
1541 *	If specified, the page will be wired down, meaning
1542 *	that the related pte can not be reclaimed.
1543 *
1544 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1545 *	or lose information.  That is, this routine must actually
1546 *	insert this page into the given map NOW.
1547 */
1548void
1549pmap_enter(pmap, va, pa, prot, wired)
1550	register pmap_t pmap;
1551	vm_offset_t va;
1552	register vm_offset_t pa;
1553	vm_prot_t prot;
1554	boolean_t wired;
1555{
1556	register unsigned *pte;
1557	vm_offset_t opa;
1558	vm_offset_t origpte, newpte;
1559	vm_page_t mpte;
1560
1561	if (pmap == NULL)
1562		return;
1563
1564	va &= PG_FRAME;
1565	if (va > VM_MAX_KERNEL_ADDRESS)
1566		panic("pmap_enter: toobig");
1567
1568	mpte = NULL;
1569	/*
1570	 * In the case that a page table page is not
1571	 * resident, we are creating it here.
1572	 */
1573	if (va < UPT_MIN_ADDRESS)
1574		mpte = pmap_allocpte(pmap, va);
1575
1576	pte = pmap_pte(pmap, va);
1577	/*
1578	 * Page Directory table entry not valid, we need a new PT page
1579	 */
1580	if (pte == NULL) {
1581		printf("kernel page directory invalid pdir=%p, va=0x%lx\n",
1582			pmap->pm_pdir[PTDPTDI], va);
1583		panic("invalid kernel page directory");
1584	}
1585
1586	origpte = *(vm_offset_t *)pte;
1587	pa &= PG_FRAME;
1588	opa = origpte & PG_FRAME;
1589
1590	/*
1591	 * Mapping has not changed, must be protection or wiring change.
1592	 */
1593	if (opa == pa) {
1594		/*
1595		 * Wiring change, just update stats. We don't worry about
1596		 * wiring PT pages as they remain resident as long as there
1597		 * are valid mappings in them. Hence, if a user page is wired,
1598		 * the PT page will be also.
1599		 */
1600		if (wired && ((origpte & PG_W) == 0))
1601			pmap->pm_stats.wired_count++;
1602		else if (!wired && (origpte & PG_W))
1603			pmap->pm_stats.wired_count--;
1604
1605#if defined(PMAP_DIAGNOSTIC)
1606		if (pmap_nw_modified((pt_entry_t) origpte)) {
1607			printf("pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n", va, origpte);
1608		}
1609#endif
1610
1611		/*
1612		 * We might be turning off write access to the page,
1613		 * so we go ahead and sense modify status.
1614		 */
1615		if (origpte & PG_MANAGED) {
1616			vm_page_t m;
1617			if (origpte & PG_M) {
1618				m = PHYS_TO_VM_PAGE(pa);
1619				m->dirty = VM_PAGE_BITS_ALL;
1620			}
1621			pa |= PG_MANAGED;
1622		}
1623
1624		if (mpte)
1625			--mpte->hold_count;
1626
1627		goto validate;
1628	}
1629	/*
1630	 * Mapping has changed, invalidate old range and fall through to
1631	 * handle validating new mapping.
1632	 */
1633	if (opa)
1634		(void) pmap_remove_pte(pmap, pte, va);
1635
1636	/*
1637	 * Enter on the PV list if part of our managed memory Note that we
1638	 * raise IPL while manipulating pv_table since pmap_enter can be
1639	 * called at interrupt time.
1640	 */
1641	if (pmap_is_managed(pa)) {
1642		pmap_insert_entry(pmap, va, mpte, pa);
1643		pa |= PG_MANAGED;
1644	}
1645
1646	/*
1647	 * Increment counters
1648	 */
1649	pmap->pm_stats.resident_count++;
1650	if (wired)
1651		pmap->pm_stats.wired_count++;
1652
1653validate:
1654	/*
1655	 * Now validate mapping with desired protection/wiring.
1656	 */
1657	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
1658
1659	if (wired)
1660		newpte |= PG_W;
1661	if (va < UPT_MIN_ADDRESS)
1662		newpte |= PG_U;
1663
1664	/*
1665	 * if the mapping or permission bits are different, we need
1666	 * to update the pte.
1667	 */
1668	if ((origpte & ~(PG_M|PG_A)) != newpte) {
1669		*pte = newpte;
1670		if (origpte)
1671			pmap_update_1pg(va);
1672	}
1673}
1674
1675/*
1676 * this code makes some *MAJOR* assumptions:
1677 * 1. Current pmap & pmap exists.
1678 * 2. Not wired.
1679 * 3. Read access.
1680 * 4. No page table pages.
1681 * 5. Tlbflush is deferred to calling procedure.
1682 * 6. Page IS managed.
1683 * but is *MUCH* faster than pmap_enter...
1684 */
1685
1686static void
1687pmap_enter_quick(pmap, va, pa)
1688	register pmap_t pmap;
1689	vm_offset_t va;
1690	register vm_offset_t pa;
1691{
1692	register unsigned *pte;
1693	vm_page_t mpte;
1694
1695	mpte = NULL;
1696	/*
1697	 * In the case that a page table page is not
1698	 * resident, we are creating it here.
1699	 */
1700	if (va < UPT_MIN_ADDRESS)
1701		mpte = pmap_allocpte(pmap, va);
1702
1703	pte = (unsigned *)vtopte(va);
1704	if (*pte)
1705		(void) pmap_remove_pte(pmap, pte, va);
1706
1707	/*
1708	 * Enter on the PV list if part of our managed memory Note that we
1709	 * raise IPL while manipulating pv_table since pmap_enter can be
1710	 * called at interrupt time.
1711	 */
1712	pmap_insert_entry(pmap, va, mpte, pa);
1713
1714	/*
1715	 * Increment counters
1716	 */
1717	pmap->pm_stats.resident_count++;
1718
1719	/*
1720	 * Now validate mapping with RO protection
1721	 */
1722	*pte = pa | PG_V | PG_U | PG_MANAGED;
1723
1724	return;
1725}
1726
1727#define MAX_INIT_PT (96)
1728/*
1729 * pmap_object_init_pt preloads the ptes for a given object
1730 * into the specified pmap.  This eliminates the blast of soft
1731 * faults on process startup and immediately after an mmap.
1732 */
1733void
1734pmap_object_init_pt(pmap, addr, object, pindex, size, limit)
1735	pmap_t pmap;
1736	vm_offset_t addr;
1737	vm_object_t object;
1738	vm_pindex_t pindex;
1739	vm_size_t size;
1740	int limit;
1741{
1742	vm_offset_t tmpidx;
1743	int psize;
1744	vm_page_t p;
1745	int objpgs;
1746
1747	psize = (size >> PAGE_SHIFT);
1748
1749	if (!pmap || (object->type != OBJT_VNODE) ||
1750		(limit && (psize > MAX_INIT_PT) &&
1751			(object->resident_page_count > MAX_INIT_PT))) {
1752		return;
1753	}
1754
1755	/*
1756	 * if we are processing a major portion of the object, then scan the
1757	 * entire thing.
1758	 */
1759	if (psize > (object->size >> 2)) {
1760		objpgs = psize;
1761
1762		for (p = TAILQ_FIRST(&object->memq);
1763		    ((objpgs > 0) && (p != NULL));
1764		    p = TAILQ_NEXT(p, listq)) {
1765
1766			tmpidx = p->pindex;
1767			if (tmpidx < pindex) {
1768				continue;
1769			}
1770			tmpidx -= pindex;
1771			if (tmpidx >= psize) {
1772				continue;
1773			}
1774			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1775			    (p->busy == 0) &&
1776			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1777				if (p->queue == PQ_CACHE)
1778					vm_page_deactivate(p);
1779				p->flags |= PG_BUSY;
1780				pmap_enter_quick(pmap,
1781					addr + (tmpidx << PAGE_SHIFT),
1782					VM_PAGE_TO_PHYS(p));
1783				p->flags |= PG_MAPPED;
1784				PAGE_WAKEUP(p);
1785			}
1786			objpgs -= 1;
1787		}
1788	} else {
1789		/*
1790		 * else lookup the pages one-by-one.
1791		 */
1792		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
1793			p = vm_page_lookup(object, tmpidx + pindex);
1794			if (p &&
1795			    ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1796			    (p->busy == 0) &&
1797			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1798				p->flags |= PG_BUSY;
1799				pmap_enter_quick(pmap,
1800					addr + (tmpidx << PAGE_SHIFT),
1801					VM_PAGE_TO_PHYS(p));
1802				p->flags |= PG_MAPPED;
1803				PAGE_WAKEUP(p);
1804			}
1805		}
1806	}
1807	return;
1808}
1809
1810/*
1811 * pmap_prefault provides a quick way of clustering
1812 * pagefaults into a processes address space.  It is a "cousin"
1813 * of pmap_object_init_pt, except it runs at page fault time instead
1814 * of mmap time.
1815 */
1816#define PFBAK 2
1817#define PFFOR 2
1818#define PAGEORDER_SIZE (PFBAK+PFFOR)
1819
1820static int pmap_prefault_pageorder[] = {
1821	-PAGE_SIZE, PAGE_SIZE, -2 * PAGE_SIZE, 2 * PAGE_SIZE
1822};
1823
1824void
1825pmap_prefault(pmap, addra, entry, object)
1826	pmap_t pmap;
1827	vm_offset_t addra;
1828	vm_map_entry_t entry;
1829	vm_object_t object;
1830{
1831	int i;
1832	vm_offset_t starta;
1833	vm_offset_t addr;
1834	vm_pindex_t pindex;
1835	vm_page_t m;
1836
1837	if (entry->object.vm_object != object)
1838		return;
1839
1840	if (!curproc || (pmap != &curproc->p_vmspace->vm_pmap))
1841		return;
1842
1843	starta = addra - PFBAK * PAGE_SIZE;
1844	if (starta < entry->start) {
1845		starta = entry->start;
1846	} else if (starta > addra) {
1847		starta = 0;
1848	}
1849
1850	for (i = 0; i < PAGEORDER_SIZE; i++) {
1851		vm_object_t lobject;
1852		unsigned *pte;
1853
1854		addr = addra + pmap_prefault_pageorder[i];
1855		if (addr < starta || addr >= entry->end)
1856			continue;
1857
1858		if ((*pmap_pde(pmap, addr)) == NULL)
1859			continue;
1860
1861		pte = (unsigned *) vtopte(addr);
1862		if (*pte)
1863			continue;
1864
1865		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1866		lobject = object;
1867		for (m = vm_page_lookup(lobject, pindex);
1868		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
1869		    lobject = lobject->backing_object) {
1870			if (lobject->backing_object_offset & PAGE_MASK)
1871				break;
1872			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
1873			m = vm_page_lookup(lobject->backing_object, pindex);
1874		}
1875
1876		/*
1877		 * give-up when a page is not in memory
1878		 */
1879		if (m == NULL)
1880			break;
1881
1882		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1883		    (m->busy == 0) &&
1884		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1885
1886			if (m->queue == PQ_CACHE) {
1887				vm_page_deactivate(m);
1888			}
1889			m->flags |= PG_BUSY;
1890			pmap_enter_quick(pmap, addr, VM_PAGE_TO_PHYS(m));
1891			m->flags |= PG_MAPPED;
1892			PAGE_WAKEUP(m);
1893		}
1894	}
1895}
1896
1897/*
1898 *	Routine:	pmap_change_wiring
1899 *	Function:	Change the wiring attribute for a map/virtual-address
1900 *			pair.
1901 *	In/out conditions:
1902 *			The mapping must already exist in the pmap.
1903 */
1904void
1905pmap_change_wiring(pmap, va, wired)
1906	register pmap_t pmap;
1907	vm_offset_t va;
1908	boolean_t wired;
1909{
1910	register unsigned *pte;
1911
1912	if (pmap == NULL)
1913		return;
1914
1915	pte = pmap_pte(pmap, va);
1916
1917	if (wired && !pmap_pte_w(pte))
1918		pmap->pm_stats.wired_count++;
1919	else if (!wired && pmap_pte_w(pte))
1920		pmap->pm_stats.wired_count--;
1921
1922	/*
1923	 * Wiring is not a hardware characteristic so there is no need to
1924	 * invalidate TLB.
1925	 */
1926	pmap_pte_set_w(pte, wired);
1927}
1928
1929
1930
1931/*
1932 *	Copy the range specified by src_addr/len
1933 *	from the source map to the range dst_addr/len
1934 *	in the destination map.
1935 *
1936 *	This routine is only advisory and need not do anything.
1937 */
1938void
1939pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr)
1940	pmap_t dst_pmap, src_pmap;
1941	vm_offset_t dst_addr;
1942	vm_size_t len;
1943	vm_offset_t src_addr;
1944{
1945	vm_offset_t addr;
1946	vm_offset_t end_addr = src_addr + len;
1947	vm_offset_t pdnxt;
1948	unsigned src_frame, dst_frame;
1949
1950	if (dst_addr != src_addr)
1951		return;
1952
1953	src_frame = ((unsigned) src_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
1954	if (src_frame != (((unsigned) PTDpde) & PG_FRAME))
1955		return;
1956
1957	dst_frame = ((unsigned) dst_pmap->pm_pdir[PTDPTDI]) & PG_FRAME;
1958	if (dst_frame != (((unsigned) APTDpde) & PG_FRAME)) {
1959		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
1960		pmap_update();
1961	}
1962
1963	for(addr = src_addr; addr < end_addr; addr = pdnxt) {
1964		unsigned *src_pte, *dst_pte;
1965		vm_page_t dstmpte, srcmpte;
1966		vm_offset_t srcptepaddr;
1967
1968		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
1969		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[addr >> PDRSHIFT];
1970		if (srcptepaddr == 0) {
1971			continue;
1972		}
1973
1974		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
1975		if (srcmpte->hold_count == 0)
1976			continue;
1977
1978		if (pdnxt > end_addr)
1979			pdnxt = end_addr;
1980
1981		src_pte = (unsigned *) vtopte(addr);
1982		dst_pte = (unsigned *) avtopte(addr);
1983		while (addr < pdnxt) {
1984			unsigned ptetemp;
1985			ptetemp = *src_pte;
1986			/*
1987			 * we only virtual copy managed pages
1988			 */
1989			if ((ptetemp & PG_MANAGED) != 0) {
1990				/*
1991				 * We have to check after allocpte for the
1992				 * pte still being around...  allocpte can
1993				 * block.
1994				 */
1995				dstmpte = pmap_allocpte(dst_pmap, addr);
1996				if (ptetemp = *src_pte) {
1997					/*
1998					 * Simply clear the modified and accessed (referenced)
1999					 * bits.
2000					 */
2001					*dst_pte = ptetemp & ~(PG_M|PG_A);
2002					dst_pmap->pm_stats.resident_count++;
2003					pmap_insert_entry(dst_pmap, addr, dstmpte,
2004						(ptetemp & PG_FRAME));
2005	 			} else {
2006					pmap_unwire_pte_hold(dstmpte);
2007				}
2008				if (dstmpte->hold_count >= srcmpte->hold_count)
2009					break;
2010			}
2011			addr += PAGE_SIZE;
2012			++src_pte;
2013			++dst_pte;
2014		}
2015	}
2016}
2017
2018/*
2019 *	Routine:	pmap_kernel
2020 *	Function:
2021 *		Returns the physical map handle for the kernel.
2022 */
2023pmap_t
2024pmap_kernel()
2025{
2026	return (kernel_pmap);
2027}
2028
2029/*
2030 *	pmap_zero_page zeros the specified (machine independent)
2031 *	page by mapping the page into virtual memory and using
2032 *	bzero to clear its contents, one machine dependent page
2033 *	at a time.
2034 */
2035void
2036pmap_zero_page(phys)
2037	vm_offset_t phys;
2038{
2039	if (*(int *) CMAP2)
2040		panic("pmap_zero_page: CMAP busy");
2041
2042	*(int *) CMAP2 = PG_V | PG_RW | (phys & PG_FRAME);
2043	bzero(CADDR2, PAGE_SIZE);
2044	*(int *) CMAP2 = 0;
2045	pmap_update_1pg((vm_offset_t) CADDR2);
2046}
2047
2048/*
2049 *	pmap_copy_page copies the specified (machine independent)
2050 *	page by mapping the page into virtual memory and using
2051 *	bcopy to copy the page, one machine dependent page at a
2052 *	time.
2053 */
2054void
2055pmap_copy_page(src, dst)
2056	vm_offset_t src;
2057	vm_offset_t dst;
2058{
2059	if (*(int *) CMAP1 || *(int *) CMAP2)
2060		panic("pmap_copy_page: CMAP busy");
2061
2062	*(int *) CMAP1 = PG_V | PG_RW | (src & PG_FRAME);
2063	*(int *) CMAP2 = PG_V | PG_RW | (dst & PG_FRAME);
2064
2065#if __GNUC__ > 1
2066	memcpy(CADDR2, CADDR1, PAGE_SIZE);
2067#else
2068	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2069#endif
2070	*(int *) CMAP1 = 0;
2071	*(int *) CMAP2 = 0;
2072	pmap_update_2pg( (vm_offset_t) CADDR1, (vm_offset_t) CADDR2);
2073}
2074
2075
2076/*
2077 *	Routine:	pmap_pageable
2078 *	Function:
2079 *		Make the specified pages (by pmap, offset)
2080 *		pageable (or not) as requested.
2081 *
2082 *		A page which is not pageable may not take
2083 *		a fault; therefore, its page table entry
2084 *		must remain valid for the duration.
2085 *
2086 *		This routine is merely advisory; pmap_enter
2087 *		will specify that these pages are to be wired
2088 *		down (or not) as appropriate.
2089 */
2090void
2091pmap_pageable(pmap, sva, eva, pageable)
2092	pmap_t pmap;
2093	vm_offset_t sva, eva;
2094	boolean_t pageable;
2095{
2096}
2097
2098/*
2099 * this routine returns true if a physical page resides
2100 * in the given pmap.
2101 */
2102boolean_t
2103pmap_page_exists(pmap, pa)
2104	pmap_t pmap;
2105	vm_offset_t pa;
2106{
2107	register pv_entry_t *ppv, pv;
2108	int s;
2109
2110	if (!pmap_is_managed(pa))
2111		return FALSE;
2112
2113	s = splvm();
2114
2115	ppv = pa_to_pvh(pa);
2116	/*
2117	 * Not found, check current mappings returning immediately if found.
2118	 */
2119	for (pv = *ppv; pv; pv = pv->pv_next) {
2120		if (pv->pv_pmap == pmap) {
2121			splx(s);
2122			return TRUE;
2123		}
2124	}
2125	splx(s);
2126	return (FALSE);
2127}
2128
2129/*
2130 * pmap_testbit tests bits in pte's
2131 * note that the testbit/changebit routines are inline,
2132 * and a lot of things compile-time evaluate.
2133 */
2134static __inline boolean_t
2135pmap_testbit(pa, bit)
2136	register vm_offset_t pa;
2137	int bit;
2138{
2139	register pv_entry_t *ppv, pv;
2140	unsigned *pte;
2141	int s;
2142
2143	if (!pmap_is_managed(pa))
2144		return FALSE;
2145
2146	s = splvm();
2147
2148	ppv = pa_to_pvh(pa);
2149	/*
2150	 * Not found, check current mappings returning immediately if found.
2151	 */
2152	for (pv = *ppv ;pv; pv = pv->pv_next) {
2153		/*
2154		 * if the bit being tested is the modified bit, then
2155		 * mark UPAGES as always modified, and ptes as never
2156		 * modified.
2157		 */
2158		if (bit & (PG_A|PG_M)) {
2159			if ((pv->pv_va >= UPT_MIN_ADDRESS) &&
2160				(pv->pv_va < UPT_MAX_ADDRESS)) {
2161				continue;
2162			}
2163			if ((pv->pv_va >= clean_sva) &&
2164				(pv->pv_va < clean_eva)) {
2165				continue;
2166			}
2167		}
2168		if (!pv->pv_pmap) {
2169#if defined(PMAP_DIAGNOSTIC)
2170			printf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2171#endif
2172			continue;
2173		}
2174		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2175		if (pte == NULL)
2176			continue;
2177		if ((int) *pte & bit) {
2178			splx(s);
2179			return TRUE;
2180		}
2181	}
2182	splx(s);
2183	return (FALSE);
2184}
2185
2186/*
2187 * this routine is used to modify bits in ptes
2188 */
2189static __inline void
2190pmap_changebit(pa, bit, setem)
2191	vm_offset_t pa;
2192	int bit;
2193	boolean_t setem;
2194{
2195	register pv_entry_t pv, *ppv;
2196	register unsigned *pte;
2197	vm_offset_t va;
2198	int changed;
2199	int s;
2200
2201	if (!pmap_is_managed(pa))
2202		return;
2203
2204	s = splvm();
2205
2206	changed = 0;
2207	ppv = pa_to_pvh(pa);
2208	/*
2209	 * Loop over all current mappings setting/clearing as appropos If
2210	 * setting RO do we need to clear the VAC?
2211	 */
2212	for ( pv = *ppv; pv; pv = pv->pv_next) {
2213		va = pv->pv_va;
2214
2215		/*
2216		 * don't write protect pager mappings
2217		 */
2218		if (!setem && (bit == PG_RW)) {
2219			if (va >= clean_sva && va < clean_eva)
2220				continue;
2221		}
2222		if (!pv->pv_pmap) {
2223#if defined(PMAP_DIAGNOSTIC)
2224			printf("Null pmap (cb) at va: 0x%lx\n", va);
2225#endif
2226			continue;
2227		}
2228
2229		pte = pmap_pte(pv->pv_pmap, va);
2230		if (pte == NULL)
2231			continue;
2232		if (setem) {
2233			*(int *)pte |= bit;
2234			changed = 1;
2235		} else {
2236			vm_offset_t pbits = *(vm_offset_t *)pte;
2237			if (pbits & bit)
2238				changed = 1;
2239			if (bit == PG_RW) {
2240				if (pbits & PG_M) {
2241					vm_page_t m;
2242					vm_offset_t pa = pbits & PG_FRAME;
2243					m = PHYS_TO_VM_PAGE(pa);
2244					m->dirty = VM_PAGE_BITS_ALL;
2245				}
2246				*(int *)pte = pbits & ~(PG_M|PG_RW);
2247			} else {
2248				*(int *)pte = pbits & ~bit;
2249			}
2250		}
2251	}
2252	splx(s);
2253	if (changed)
2254		pmap_update();
2255}
2256
2257/*
2258 *      pmap_page_protect:
2259 *
2260 *      Lower the permission for all mappings to a given page.
2261 */
2262void
2263pmap_page_protect(phys, prot)
2264	vm_offset_t phys;
2265	vm_prot_t prot;
2266{
2267	if ((prot & VM_PROT_WRITE) == 0) {
2268		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
2269			pmap_changebit(phys, PG_RW, FALSE);
2270		else {
2271			pmap_remove_all(phys);
2272			pmap_update();
2273		}
2274	}
2275}
2276
2277vm_offset_t
2278pmap_phys_address(ppn)
2279	int ppn;
2280{
2281	return (i386_ptob(ppn));
2282}
2283
2284/*
2285 *	pmap_is_referenced:
2286 *
2287 *	Return whether or not the specified physical page was referenced
2288 *	by any physical maps.
2289 */
2290boolean_t
2291pmap_is_referenced(vm_offset_t pa)
2292{
2293	return pmap_testbit((pa), PG_A);
2294}
2295
2296/*
2297 *	pmap_is_modified:
2298 *
2299 *	Return whether or not the specified physical page was modified
2300 *	in any physical maps.
2301 */
2302boolean_t
2303pmap_is_modified(vm_offset_t pa)
2304{
2305	return pmap_testbit((pa), PG_M);
2306}
2307
2308/*
2309 *	Clear the modify bits on the specified physical page.
2310 */
2311void
2312pmap_clear_modify(vm_offset_t pa)
2313{
2314	pmap_changebit((pa), PG_M, FALSE);
2315}
2316
2317/*
2318 *	pmap_clear_reference:
2319 *
2320 *	Clear the reference bit on the specified physical page.
2321 */
2322void
2323pmap_clear_reference(vm_offset_t pa)
2324{
2325	pmap_changebit((pa), PG_A, FALSE);
2326}
2327
2328/*
2329 * Miscellaneous support routines follow
2330 */
2331
2332static void
2333i386_protection_init()
2334{
2335	register int *kp, prot;
2336
2337	kp = protection_codes;
2338	for (prot = 0; prot < 8; prot++) {
2339		switch (prot) {
2340		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
2341			/*
2342			 * Read access is also 0. There isn't any execute bit,
2343			 * so just make it readable.
2344			 */
2345		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
2346		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
2347		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
2348			*kp++ = 0;
2349			break;
2350		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
2351		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
2352		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
2353		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
2354			*kp++ = PG_RW;
2355			break;
2356		}
2357	}
2358}
2359
2360/*
2361 * Map a set of physical memory pages into the kernel virtual
2362 * address space. Return a pointer to where it is mapped. This
2363 * routine is intended to be used for mapping device memory,
2364 * NOT real memory. The non-cacheable bits are set on each
2365 * mapped page.
2366 */
2367void *
2368pmap_mapdev(pa, size)
2369	vm_offset_t pa;
2370	vm_size_t size;
2371{
2372	vm_offset_t va, tmpva;
2373	unsigned *pte;
2374
2375	size = roundup(size, PAGE_SIZE);
2376
2377	va = kmem_alloc_pageable(kernel_map, size);
2378	if (!va)
2379		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2380
2381	pa = pa & PG_FRAME;
2382	for (tmpva = va; size > 0;) {
2383		pte = (unsigned *)vtopte(tmpva);
2384		*pte = pa | PG_RW | PG_V | PG_N;
2385		size -= PAGE_SIZE;
2386		tmpva += PAGE_SIZE;
2387		pa += PAGE_SIZE;
2388	}
2389	pmap_update();
2390
2391	return ((void *) va);
2392}
2393
2394int
2395pmap_mincore(pmap, addr)
2396	pmap_t pmap;
2397	vm_offset_t addr;
2398{
2399
2400	unsigned *ptep, pte;
2401	int val = 0;
2402
2403	ptep = pmap_pte(pmap, addr);
2404	if (ptep == 0) {
2405		return 0;
2406	}
2407
2408	if ((pte = *ptep)) {
2409		vm_offset_t pa;
2410		val = MINCORE_INCORE;
2411		pa = pte & PG_FRAME;
2412
2413		/*
2414		 * Modified by us
2415		 */
2416		if (pte & PG_M)
2417			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2418		/*
2419		 * Modified by someone
2420		 */
2421		else if (PHYS_TO_VM_PAGE(pa)->dirty ||
2422			pmap_is_modified(pa))
2423			val |= MINCORE_MODIFIED_OTHER;
2424		/*
2425		 * Referenced by us
2426		 */
2427		if (pte & PG_U)
2428			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2429
2430		/*
2431		 * Referenced by someone
2432		 */
2433		else if ((PHYS_TO_VM_PAGE(pa)->flags & PG_REFERENCED) ||
2434			pmap_is_referenced(pa))
2435			val |= MINCORE_REFERENCED_OTHER;
2436	}
2437	return val;
2438}
2439
2440#if defined(PMAP_DEBUG)
2441pmap_pid_dump(int pid) {
2442	pmap_t pmap;
2443	struct proc *p;
2444	int npte = 0;
2445	int index;
2446	for (p = allproc.lh_first; p != NULL; p = p->p_list.le_next) {
2447		if (p->p_pid != pid)
2448			continue;
2449
2450		if (p->p_vmspace) {
2451			int i,j;
2452			index = 0;
2453			pmap = &p->p_vmspace->vm_pmap;
2454			for(i=0;i<1024;i++) {
2455				pd_entry_t *pde;
2456				unsigned *pte;
2457				unsigned base = i << PDRSHIFT;
2458
2459				pde = &pmap->pm_pdir[i];
2460				if (pde && pmap_pde_v(pde)) {
2461					for(j=0;j<1024;j++) {
2462						unsigned va = base + (j << PAGE_SHIFT);
2463						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
2464							if (index) {
2465								index = 0;
2466								printf("\n");
2467							}
2468							return npte;
2469						}
2470						pte = pmap_pte( pmap, va);
2471						if (pte && pmap_pte_v(pte)) {
2472							vm_offset_t pa;
2473							vm_page_t m;
2474							pa = *(int *)pte;
2475							m = PHYS_TO_VM_PAGE((pa & PG_FRAME));
2476							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
2477								va, pa, m->hold_count, m->wire_count, m->flags);
2478							npte++;
2479							index++;
2480							if (index >= 2) {
2481								index = 0;
2482								printf("\n");
2483							} else {
2484								printf(" ");
2485							}
2486						}
2487					}
2488				}
2489			}
2490		}
2491	}
2492	return npte;
2493}
2494#endif
2495
2496#if defined(DEBUG)
2497
2498static void	pads __P((pmap_t pm));
2499static void	pmap_pvdump __P((vm_offset_t pa));
2500
2501/* print address space of pmap*/
2502static void
2503pads(pm)
2504	pmap_t pm;
2505{
2506	unsigned va, i, j;
2507	unsigned *ptep;
2508
2509	if (pm == kernel_pmap)
2510		return;
2511	for (i = 0; i < 1024; i++)
2512		if (pm->pm_pdir[i])
2513			for (j = 0; j < 1024; j++) {
2514				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
2515				if (pm == kernel_pmap && va < KERNBASE)
2516					continue;
2517				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
2518					continue;
2519				ptep = pmap_pte(pm, va);
2520				if (pmap_pte_v(ptep))
2521					printf("%x:%x ", va, *(int *) ptep);
2522			};
2523
2524}
2525
2526static void
2527pmap_pvdump(pa)
2528	vm_offset_t pa;
2529{
2530	register pv_entry_t pv;
2531
2532	printf("pa %x", pa);
2533	for (pv = pa_to_pvh(pa); pv; pv = pv->pv_next) {
2534#ifdef used_to_be
2535		printf(" -> pmap %x, va %x, flags %x",
2536		    pv->pv_pmap, pv->pv_va, pv->pv_flags);
2537#endif
2538		printf(" -> pmap %x, va %x",
2539		    pv->pv_pmap, pv->pv_va);
2540		pads(pv->pv_pmap);
2541	}
2542	printf(" ");
2543}
2544#endif
2545