pmap.c revision 130932
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 */
43/*-
44 * Copyright (c) 2003 Networks Associates Technology, Inc.
45 * All rights reserved.
46 *
47 * This software was developed for the FreeBSD Project by Jake Burkholder,
48 * Safeport Network Services, and Network Associates Laboratories, the
49 * Security Research Division of Network Associates, Inc. under
50 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
51 * CHATS research program.
52 *
53 * Redistribution and use in source and binary forms, with or without
54 * modification, are permitted provided that the following conditions
55 * are met:
56 * 1. Redistributions of source code must retain the above copyright
57 *    notice, this list of conditions and the following disclaimer.
58 * 2. Redistributions in binary form must reproduce the above copyright
59 *    notice, this list of conditions and the following disclaimer in the
60 *    documentation and/or other materials provided with the distribution.
61 *
62 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
63 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
66 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 * SUCH DAMAGE.
73 */
74
75#include <sys/cdefs.h>
76__FBSDID("$FreeBSD: head/sys/i386/i386/pmap.c 130932 2004-06-22 19:35:43Z alc $");
77
78/*
79 *	Manages physical address maps.
80 *
81 *	In addition to hardware address maps, this
82 *	module is called upon to provide software-use-only
83 *	maps which may or may not be stored in the same
84 *	form as hardware maps.  These pseudo-maps are
85 *	used to store intermediate results from copy
86 *	operations to and from address spaces.
87 *
88 *	Since the information managed by this module is
89 *	also stored by the logical address mapping module,
90 *	this module may throw away valid virtual-to-physical
91 *	mappings at almost any time.  However, invalidations
92 *	of virtual-to-physical mappings must be done as
93 *	requested.
94 *
95 *	In order to cope with hardware architectures which
96 *	make virtual-to-physical map invalidates expensive,
97 *	this module may delay invalidate or reduced protection
98 *	operations until such time as they are actually
99 *	necessary.  This module is given full information as
100 *	to which processors are currently using which maps,
101 *	and to when physical maps must be made correct.
102 */
103
104#include "opt_cpu.h"
105#include "opt_pmap.h"
106#include "opt_msgbuf.h"
107#include "opt_kstack_pages.h"
108
109#include <sys/param.h>
110#include <sys/systm.h>
111#include <sys/kernel.h>
112#include <sys/lock.h>
113#include <sys/mman.h>
114#include <sys/msgbuf.h>
115#include <sys/mutex.h>
116#include <sys/proc.h>
117#include <sys/sx.h>
118#include <sys/user.h>
119#include <sys/vmmeter.h>
120#include <sys/sched.h>
121#include <sys/sysctl.h>
122#ifdef SMP
123#include <sys/smp.h>
124#endif
125
126#include <vm/vm.h>
127#include <vm/vm_param.h>
128#include <vm/vm_kern.h>
129#include <vm/vm_page.h>
130#include <vm/vm_map.h>
131#include <vm/vm_object.h>
132#include <vm/vm_extern.h>
133#include <vm/vm_pageout.h>
134#include <vm/vm_pager.h>
135#include <vm/uma.h>
136
137#include <machine/cpu.h>
138#include <machine/cputypes.h>
139#include <machine/md_var.h>
140#include <machine/specialreg.h>
141#ifdef SMP
142#include <machine/smp.h>
143#endif
144
145#if !defined(CPU_ENABLE_SSE) && defined(I686_CPU)
146#define CPU_ENABLE_SSE
147#endif
148#if defined(CPU_DISABLE_SSE)
149#undef CPU_ENABLE_SSE
150#endif
151
152#ifndef PMAP_SHPGPERPROC
153#define PMAP_SHPGPERPROC 200
154#endif
155
156#if defined(DIAGNOSTIC)
157#define PMAP_DIAGNOSTIC
158#endif
159
160#define MINPV 2048
161
162#if !defined(PMAP_DIAGNOSTIC)
163#define PMAP_INLINE __inline
164#else
165#define PMAP_INLINE
166#endif
167
168/*
169 * Get PDEs and PTEs for user/kernel address space
170 */
171#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
172#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
173
174#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
175#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
176#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
177#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
178#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
179
180#define pmap_pte_set_w(pte, v)	((v) ? atomic_set_int((u_int *)(pte), PG_W) : \
181    atomic_clear_int((u_int *)(pte), PG_W))
182#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
183
184struct pmap kernel_pmap_store;
185LIST_HEAD(pmaplist, pmap);
186static struct pmaplist allpmaps;
187static struct mtx allpmaps_lock;
188#ifdef SMP
189static struct mtx lazypmap_lock;
190#endif
191
192vm_paddr_t avail_end;	/* PA of last available physical page */
193vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
194vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
195static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
196int pgeflag = 0;		/* PG_G or-in */
197int pseflag = 0;		/* PG_PS or-in */
198
199static int nkpt;
200vm_offset_t kernel_vm_end;
201extern u_int32_t KERNend;
202
203#ifdef PAE
204static uma_zone_t pdptzone;
205#endif
206
207/*
208 * Data for the pv entry allocation mechanism
209 */
210static uma_zone_t pvzone;
211static struct vm_object pvzone_obj;
212static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
213int pmap_pagedaemon_waken;
214
215/*
216 * All those kernel PT submaps that BSD is so fond of
217 */
218pt_entry_t *CMAP1 = 0;
219static pt_entry_t *CMAP2, *CMAP3;
220caddr_t CADDR1 = 0, ptvmmap = 0;
221static caddr_t CADDR2, CADDR3;
222static struct mtx CMAPCADDR12_lock;
223struct msgbuf *msgbufp = 0;
224
225/*
226 * Crashdump maps.
227 */
228static caddr_t crashdumpmap;
229
230#ifdef SMP
231extern pt_entry_t *SMPpt;
232#endif
233static pt_entry_t *PMAP1 = 0, *PMAP2;
234static pt_entry_t *PADDR1 = 0, *PADDR2;
235#ifdef SMP
236static int PMAP1cpu;
237static int PMAP1changedcpu;
238SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
239	   &PMAP1changedcpu, 0,
240	   "Number of times pmap_pte_quick changed CPU with same PMAP1");
241#endif
242static int PMAP1changed;
243SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
244	   &PMAP1changed, 0,
245	   "Number of times pmap_pte_quick changed PMAP1");
246static int PMAP1unchanged;
247SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
248	   &PMAP1unchanged, 0,
249	   "Number of times pmap_pte_quick didn't change PMAP1");
250
251static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
252static pv_entry_t get_pv_entry(void);
253static void	pmap_clear_ptes(vm_page_t m, int bit);
254
255static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
256static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
257static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
258					vm_offset_t va);
259static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
260		vm_page_t mpte, vm_page_t m);
261
262static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
263
264static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
265static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
266static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
267static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
268#ifdef PAE
269static void *pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
270#endif
271
272CTASSERT(1 << PDESHIFT == sizeof(pd_entry_t));
273CTASSERT(1 << PTESHIFT == sizeof(pt_entry_t));
274
275/*
276 * Move the kernel virtual free pointer to the next
277 * 4MB.  This is used to help improve performance
278 * by using a large (4MB) page for much of the kernel
279 * (.text, .data, .bss)
280 */
281static vm_offset_t
282pmap_kmem_choose(vm_offset_t addr)
283{
284	vm_offset_t newaddr = addr;
285
286#ifndef DISABLE_PSE
287	if (cpu_feature & CPUID_PSE)
288		newaddr = (addr + PDRMASK) & ~PDRMASK;
289#endif
290	return newaddr;
291}
292
293/*
294 *	Bootstrap the system enough to run with virtual memory.
295 *
296 *	On the i386 this is called after mapping has already been enabled
297 *	and just syncs the pmap module with what has already been done.
298 *	[We can't call it easily with mapping off since the kernel is not
299 *	mapped with PA == VA, hence we would have to relocate every address
300 *	from the linked base (virtual) address "KERNBASE" to the actual
301 *	(physical) address starting relative to 0]
302 */
303void
304pmap_bootstrap(firstaddr, loadaddr)
305	vm_paddr_t firstaddr;
306	vm_paddr_t loadaddr;
307{
308	vm_offset_t va;
309	pt_entry_t *pte, *unused;
310	int i;
311
312	/*
313	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
314	 * large. It should instead be correctly calculated in locore.s and
315	 * not based on 'first' (which is a physical address, not a virtual
316	 * address, for the start of unused physical memory). The kernel
317	 * page tables are NOT double mapped and thus should not be included
318	 * in this calculation.
319	 */
320	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
321	virtual_avail = pmap_kmem_choose(virtual_avail);
322
323	virtual_end = VM_MAX_KERNEL_ADDRESS;
324
325	/*
326	 * Initialize the kernel pmap (which is statically allocated).
327	 */
328	PMAP_LOCK_INIT(kernel_pmap);
329	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
330#ifdef PAE
331	kernel_pmap->pm_pdpt = (pdpt_entry_t *) (KERNBASE + (u_int)IdlePDPT);
332#endif
333	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
334	TAILQ_INIT(&kernel_pmap->pm_pvlist);
335	LIST_INIT(&allpmaps);
336#ifdef SMP
337	mtx_init(&lazypmap_lock, "lazypmap", NULL, MTX_SPIN);
338#endif
339	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
340	mtx_lock_spin(&allpmaps_lock);
341	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
342	mtx_unlock_spin(&allpmaps_lock);
343	nkpt = NKPT;
344
345	/*
346	 * Reserve some special page table entries/VA space for temporary
347	 * mapping of pages.
348	 */
349#define	SYSMAP(c, p, v, n)	\
350	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
351
352	va = virtual_avail;
353	pte = vtopte(va);
354
355	/*
356	 * CMAP1/CMAP2 are used for zeroing and copying pages.
357	 * CMAP3 is used for the idle process page zeroing.
358	 */
359	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
360	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
361	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
362	*CMAP3 = 0;
363
364	mtx_init(&CMAPCADDR12_lock, "CMAPCADDR12", NULL, MTX_DEF);
365
366	/*
367	 * Crashdump maps.
368	 */
369	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS)
370
371	/*
372	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
373	 */
374	SYSMAP(caddr_t, unused, ptvmmap, 1)
375
376	/*
377	 * msgbufp is used to map the system message buffer.
378	 */
379	SYSMAP(struct msgbuf *, unused, msgbufp, atop(round_page(MSGBUF_SIZE)))
380
381	/*
382	 * ptemap is used for pmap_pte_quick
383	 */
384	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
385	SYSMAP(pt_entry_t *, PMAP2, PADDR2, 1);
386
387	virtual_avail = va;
388
389	*CMAP1 = *CMAP2 = 0;
390	for (i = 0; i < NKPT; i++)
391		PTD[i] = 0;
392
393	/* Turn on PG_G on kernel page(s) */
394	pmap_set_pg();
395}
396
397/*
398 * Set PG_G on kernel pages.  Only the BSP calls this when SMP is turned on.
399 */
400void
401pmap_set_pg(void)
402{
403	pd_entry_t pdir;
404	pt_entry_t *pte;
405	vm_offset_t va, endva;
406	int i;
407
408	if (pgeflag == 0)
409		return;
410
411	i = KERNLOAD/NBPDR;
412	endva = KERNBASE + KERNend;
413
414	if (pseflag) {
415		va = KERNBASE + KERNLOAD;
416		while (va  < endva) {
417			pdir = kernel_pmap->pm_pdir[KPTDI+i];
418			pdir |= pgeflag;
419			kernel_pmap->pm_pdir[KPTDI+i] = PTD[KPTDI+i] = pdir;
420			invltlb();	/* Play it safe, invltlb() every time */
421			i++;
422			va += NBPDR;
423		}
424	} else {
425		va = (vm_offset_t)btext;
426		while (va < endva) {
427			pte = vtopte(va);
428			if (*pte)
429				*pte |= pgeflag;
430			invltlb();	/* Play it safe, invltlb() every time */
431			va += PAGE_SIZE;
432		}
433	}
434}
435
436#ifdef PAE
437static void *
438pmap_pdpt_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
439{
440	*flags = UMA_SLAB_PRIV;
441	return (contigmalloc(PAGE_SIZE, NULL, 0, 0x0ULL, 0xffffffffULL, 1, 0));
442}
443#endif
444
445/*
446 *	Initialize the pmap module.
447 *	Called by vm_init, to initialize any structures that the pmap
448 *	system needs to map virtual memory.
449 *	pmap_init has been enhanced to support in a fairly consistant
450 *	way, discontiguous physical memory.
451 */
452void
453pmap_init(void)
454{
455	int i;
456
457	/*
458	 * Allocate memory for random pmap data structures.  Includes the
459	 * pv_head_table.
460	 */
461
462	for(i = 0; i < vm_page_array_size; i++) {
463		vm_page_t m;
464
465		m = &vm_page_array[i];
466		TAILQ_INIT(&m->md.pv_list);
467		m->md.pv_list_count = 0;
468	}
469
470	/*
471	 * init the pv free list
472	 */
473	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
474	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
475	uma_prealloc(pvzone, MINPV);
476
477#ifdef PAE
478	pdptzone = uma_zcreate("PDPT", NPGPTD * sizeof(pdpt_entry_t), NULL,
479	    NULL, NULL, NULL, (NPGPTD * sizeof(pdpt_entry_t)) - 1,
480	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
481	uma_zone_set_allocf(pdptzone, pmap_pdpt_allocf);
482#endif
483
484	/*
485	 * Now it is safe to enable pv_table recording.
486	 */
487	pmap_initialized = TRUE;
488}
489
490/*
491 * Initialize the address space (zone) for the pv_entries.  Set a
492 * high water mark so that the system can recover from excessive
493 * numbers of pv entries.
494 */
495void
496pmap_init2()
497{
498	int shpgperproc = PMAP_SHPGPERPROC;
499
500	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
501	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
502	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
503	pv_entry_high_water = 9 * (pv_entry_max / 10);
504	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
505}
506
507
508/***************************************************
509 * Low level helper routines.....
510 ***************************************************/
511
512#if defined(PMAP_DIAGNOSTIC)
513
514/*
515 * This code checks for non-writeable/modified pages.
516 * This should be an invalid condition.
517 */
518static int
519pmap_nw_modified(pt_entry_t ptea)
520{
521	int pte;
522
523	pte = (int) ptea;
524
525	if ((pte & (PG_M|PG_RW)) == PG_M)
526		return 1;
527	else
528		return 0;
529}
530#endif
531
532
533/*
534 * this routine defines the region(s) of memory that should
535 * not be tested for the modified bit.
536 */
537static PMAP_INLINE int
538pmap_track_modified(vm_offset_t va)
539{
540	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
541		return 1;
542	else
543		return 0;
544}
545
546#ifdef I386_CPU
547/*
548 * i386 only has "invalidate everything" and no SMP to worry about.
549 */
550PMAP_INLINE void
551pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
552{
553
554	if (pmap == kernel_pmap || pmap->pm_active)
555		invltlb();
556}
557
558PMAP_INLINE void
559pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
560{
561
562	if (pmap == kernel_pmap || pmap->pm_active)
563		invltlb();
564}
565
566PMAP_INLINE void
567pmap_invalidate_all(pmap_t pmap)
568{
569
570	if (pmap == kernel_pmap || pmap->pm_active)
571		invltlb();
572}
573#else /* !I386_CPU */
574#ifdef SMP
575/*
576 * For SMP, these functions have to use the IPI mechanism for coherence.
577 */
578void
579pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
580{
581	u_int cpumask;
582	u_int other_cpus;
583
584	if (smp_started) {
585		if (!(read_eflags() & PSL_I))
586			panic("%s: interrupts disabled", __func__);
587		mtx_lock_spin(&smp_tlb_mtx);
588	} else
589		critical_enter();
590	/*
591	 * We need to disable interrupt preemption but MUST NOT have
592	 * interrupts disabled here.
593	 * XXX we may need to hold schedlock to get a coherent pm_active
594	 * XXX critical sections disable interrupts again
595	 */
596	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
597		invlpg(va);
598		smp_invlpg(va);
599	} else {
600		cpumask = PCPU_GET(cpumask);
601		other_cpus = PCPU_GET(other_cpus);
602		if (pmap->pm_active & cpumask)
603			invlpg(va);
604		if (pmap->pm_active & other_cpus)
605			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
606	}
607	if (smp_started)
608		mtx_unlock_spin(&smp_tlb_mtx);
609	else
610		critical_exit();
611}
612
613void
614pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
615{
616	u_int cpumask;
617	u_int other_cpus;
618	vm_offset_t addr;
619
620	if (smp_started) {
621		if (!(read_eflags() & PSL_I))
622			panic("%s: interrupts disabled", __func__);
623		mtx_lock_spin(&smp_tlb_mtx);
624	} else
625		critical_enter();
626	/*
627	 * We need to disable interrupt preemption but MUST NOT have
628	 * interrupts disabled here.
629	 * XXX we may need to hold schedlock to get a coherent pm_active
630	 * XXX critical sections disable interrupts again
631	 */
632	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
633		for (addr = sva; addr < eva; addr += PAGE_SIZE)
634			invlpg(addr);
635		smp_invlpg_range(sva, eva);
636	} else {
637		cpumask = PCPU_GET(cpumask);
638		other_cpus = PCPU_GET(other_cpus);
639		if (pmap->pm_active & cpumask)
640			for (addr = sva; addr < eva; addr += PAGE_SIZE)
641				invlpg(addr);
642		if (pmap->pm_active & other_cpus)
643			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
644			    sva, eva);
645	}
646	if (smp_started)
647		mtx_unlock_spin(&smp_tlb_mtx);
648	else
649		critical_exit();
650}
651
652void
653pmap_invalidate_all(pmap_t pmap)
654{
655	u_int cpumask;
656	u_int other_cpus;
657
658	if (smp_started) {
659		if (!(read_eflags() & PSL_I))
660			panic("%s: interrupts disabled", __func__);
661		mtx_lock_spin(&smp_tlb_mtx);
662	} else
663		critical_enter();
664	/*
665	 * We need to disable interrupt preemption but MUST NOT have
666	 * interrupts disabled here.
667	 * XXX we may need to hold schedlock to get a coherent pm_active
668	 * XXX critical sections disable interrupts again
669	 */
670	if (pmap == kernel_pmap || pmap->pm_active == all_cpus) {
671		invltlb();
672		smp_invltlb();
673	} else {
674		cpumask = PCPU_GET(cpumask);
675		other_cpus = PCPU_GET(other_cpus);
676		if (pmap->pm_active & cpumask)
677			invltlb();
678		if (pmap->pm_active & other_cpus)
679			smp_masked_invltlb(pmap->pm_active & other_cpus);
680	}
681	if (smp_started)
682		mtx_unlock_spin(&smp_tlb_mtx);
683	else
684		critical_exit();
685}
686#else /* !SMP */
687/*
688 * Normal, non-SMP, 486+ invalidation functions.
689 * We inline these within pmap.c for speed.
690 */
691PMAP_INLINE void
692pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
693{
694
695	if (pmap == kernel_pmap || pmap->pm_active)
696		invlpg(va);
697}
698
699PMAP_INLINE void
700pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
701{
702	vm_offset_t addr;
703
704	if (pmap == kernel_pmap || pmap->pm_active)
705		for (addr = sva; addr < eva; addr += PAGE_SIZE)
706			invlpg(addr);
707}
708
709PMAP_INLINE void
710pmap_invalidate_all(pmap_t pmap)
711{
712
713	if (pmap == kernel_pmap || pmap->pm_active)
714		invltlb();
715}
716#endif /* !SMP */
717#endif /* !I386_CPU */
718
719/*
720 * Are we current address space or kernel?  N.B. We return FALSE when
721 * a pmap's page table is in use because a kernel thread is borrowing
722 * it.  The borrowed page table can change spontaneously, making any
723 * dependence on its continued use subject to a race condition.
724 */
725static __inline int
726pmap_is_current(pmap_t pmap)
727{
728
729	return (pmap == kernel_pmap ||
730		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace) &&
731	    (pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)));
732}
733
734/*
735 * If the given pmap is not the current pmap, Giant must be held.
736 */
737pt_entry_t *
738pmap_pte(pmap_t pmap, vm_offset_t va)
739{
740	pd_entry_t newpf;
741	pd_entry_t *pde;
742
743	pde = pmap_pde(pmap, va);
744	if (*pde & PG_PS)
745		return (pde);
746	if (*pde != 0) {
747		/* are we current address space or kernel? */
748		if (pmap_is_current(pmap))
749			return (vtopte(va));
750		GIANT_REQUIRED;
751		newpf = *pde & PG_FRAME;
752		if ((*PMAP2 & PG_FRAME) != newpf) {
753			*PMAP2 = newpf | PG_RW | PG_V | PG_A | PG_M;
754			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR2);
755		}
756		return (PADDR2 + (i386_btop(va) & (NPTEPG - 1)));
757	}
758	return (0);
759}
760
761static __inline void
762invlcaddr(void *caddr)
763{
764#ifdef I386_CPU
765	invltlb();
766#else
767	invlpg((u_int)caddr);
768#endif
769}
770
771/*
772 * Super fast pmap_pte routine best used when scanning
773 * the pv lists.  This eliminates many coarse-grained
774 * invltlb calls.  Note that many of the pv list
775 * scans are across different pmaps.  It is very wasteful
776 * to do an entire invltlb for checking a single mapping.
777 *
778 * If the given pmap is not the current pmap, vm_page_queue_mtx
779 * must be held and curthread pinned to a CPU.
780 */
781static pt_entry_t *
782pmap_pte_quick(pmap_t pmap, vm_offset_t va)
783{
784	pd_entry_t newpf;
785	pd_entry_t *pde;
786
787	pde = pmap_pde(pmap, va);
788	if (*pde & PG_PS)
789		return (pde);
790	if (*pde != 0) {
791		/* are we current address space or kernel? */
792		if (pmap_is_current(pmap))
793			return (vtopte(va));
794		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
795		KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
796		newpf = *pde & PG_FRAME;
797		if ((*PMAP1 & PG_FRAME) != newpf) {
798			*PMAP1 = newpf | PG_RW | PG_V | PG_A | PG_M;
799#ifdef SMP
800			PMAP1cpu = PCPU_GET(cpuid);
801#endif
802			invlcaddr(PADDR1);
803			PMAP1changed++;
804		} else
805#ifdef SMP
806		if (PMAP1cpu != PCPU_GET(cpuid)) {
807			PMAP1cpu = PCPU_GET(cpuid);
808			invlcaddr(PADDR1);
809			PMAP1changedcpu++;
810		} else
811#endif
812			PMAP1unchanged++;
813		return (PADDR1 + (i386_btop(va) & (NPTEPG - 1)));
814	}
815	return (0);
816}
817
818/*
819 *	Routine:	pmap_extract
820 *	Function:
821 *		Extract the physical page address associated
822 *		with the given map/virtual_address pair.
823 */
824vm_paddr_t
825pmap_extract(pmap, va)
826	register pmap_t pmap;
827	vm_offset_t va;
828{
829	vm_paddr_t rtval;
830	pt_entry_t *pte;
831	pd_entry_t pde;
832
833	if (pmap == 0)
834		return 0;
835	PMAP_LOCK(pmap);
836	pde = pmap->pm_pdir[va >> PDRSHIFT];
837	if (pde != 0) {
838		if ((pde & PG_PS) != 0) {
839			rtval = (pde & ~PDRMASK) | (va & PDRMASK);
840			PMAP_UNLOCK(pmap);
841			return rtval;
842		}
843		pte = pmap_pte(pmap, va);
844		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
845		PMAP_UNLOCK(pmap);
846		return rtval;
847	}
848	PMAP_UNLOCK(pmap);
849	return 0;
850
851}
852
853/*
854 *	Routine:	pmap_extract_and_hold
855 *	Function:
856 *		Atomically extract and hold the physical page
857 *		with the given pmap and virtual address pair
858 *		if that mapping permits the given protection.
859 */
860vm_page_t
861pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
862{
863	pd_entry_t pde;
864	pt_entry_t pte;
865	vm_page_t m;
866
867	m = NULL;
868	if (pmap == NULL)
869		return (m);
870	vm_page_lock_queues();
871	PMAP_LOCK(pmap);
872	pde = *pmap_pde(pmap, va);
873	if (pde != 0) {
874		if (pde & PG_PS) {
875			if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
876				m = PHYS_TO_VM_PAGE((pde & ~PDRMASK) |
877				    (va & PDRMASK));
878				vm_page_hold(m);
879			}
880		} else {
881			pte = *pmap_pte_quick(pmap, va);
882			if (pte != 0 &&
883			    ((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
884				m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
885				vm_page_hold(m);
886			}
887		}
888	}
889	vm_page_unlock_queues();
890	PMAP_UNLOCK(pmap);
891	return (m);
892}
893
894/***************************************************
895 * Low level mapping routines.....
896 ***************************************************/
897
898/*
899 * Add a wired page to the kva.
900 * Note: not SMP coherent.
901 */
902PMAP_INLINE void
903pmap_kenter(vm_offset_t va, vm_paddr_t pa)
904{
905	pt_entry_t *pte;
906
907	pte = vtopte(va);
908	pte_store(pte, pa | PG_RW | PG_V | pgeflag);
909}
910
911/*
912 * Remove a page from the kernel pagetables.
913 * Note: not SMP coherent.
914 */
915PMAP_INLINE void
916pmap_kremove(vm_offset_t va)
917{
918	pt_entry_t *pte;
919
920	pte = vtopte(va);
921	pte_clear(pte);
922}
923
924/*
925 *	Used to map a range of physical addresses into kernel
926 *	virtual address space.
927 *
928 *	The value passed in '*virt' is a suggested virtual address for
929 *	the mapping. Architectures which can support a direct-mapped
930 *	physical to virtual region can return the appropriate address
931 *	within that region, leaving '*virt' unchanged. Other
932 *	architectures should map the pages starting at '*virt' and
933 *	update '*virt' with the first usable address after the mapped
934 *	region.
935 */
936vm_offset_t
937pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
938{
939	vm_offset_t va, sva;
940
941	va = sva = *virt;
942	while (start < end) {
943		pmap_kenter(va, start);
944		va += PAGE_SIZE;
945		start += PAGE_SIZE;
946	}
947	pmap_invalidate_range(kernel_pmap, sva, va);
948	*virt = va;
949	return (sva);
950}
951
952
953/*
954 * Add a list of wired pages to the kva
955 * this routine is only used for temporary
956 * kernel mappings that do not need to have
957 * page modification or references recorded.
958 * Note that old mappings are simply written
959 * over.  The page *must* be wired.
960 * Note: SMP coherent.  Uses a ranged shootdown IPI.
961 */
962void
963pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
964{
965	vm_offset_t va;
966
967	va = sva;
968	while (count-- > 0) {
969		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
970		va += PAGE_SIZE;
971		m++;
972	}
973	pmap_invalidate_range(kernel_pmap, sva, va);
974}
975
976/*
977 * This routine tears out page mappings from the
978 * kernel -- it is meant only for temporary mappings.
979 * Note: SMP coherent.  Uses a ranged shootdown IPI.
980 */
981void
982pmap_qremove(vm_offset_t sva, int count)
983{
984	vm_offset_t va;
985
986	va = sva;
987	while (count-- > 0) {
988		pmap_kremove(va);
989		va += PAGE_SIZE;
990	}
991	pmap_invalidate_range(kernel_pmap, sva, va);
992}
993
994/***************************************************
995 * Page table page management routines.....
996 ***************************************************/
997
998/*
999 * This routine unholds page table pages, and if the hold count
1000 * drops to zero, then it decrements the wire count.
1001 */
1002static int
1003_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1004{
1005
1006	while (vm_page_sleep_if_busy(m, FALSE, "pmuwpt"))
1007		vm_page_lock_queues();
1008
1009	if (m->hold_count == 0) {
1010		vm_offset_t pteva;
1011		/*
1012		 * unmap the page table page
1013		 */
1014		pmap->pm_pdir[m->pindex] = 0;
1015		--pmap->pm_stats.resident_count;
1016		/*
1017		 * We never unwire a kernel page table page, making a
1018		 * check for the kernel_pmap unnecessary.
1019		 */
1020		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) == (PTDpde[0] & PG_FRAME)) {
1021			/*
1022			 * Do an invltlb to make the invalidated mapping
1023			 * take effect immediately.
1024			 */
1025			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1026			pmap_invalidate_page(pmap, pteva);
1027		}
1028
1029		/*
1030		 * If the page is finally unwired, simply free it.
1031		 */
1032		--m->wire_count;
1033		if (m->wire_count == 0) {
1034			vm_page_busy(m);
1035			vm_page_free_zero(m);
1036			atomic_subtract_int(&cnt.v_wire_count, 1);
1037		}
1038		return 1;
1039	}
1040	return 0;
1041}
1042
1043static PMAP_INLINE int
1044pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1045{
1046	vm_page_unhold(m);
1047	if (m->hold_count == 0)
1048		return _pmap_unwire_pte_hold(pmap, m);
1049	else
1050		return 0;
1051}
1052
1053/*
1054 * After removing a page table entry, this routine is used to
1055 * conditionally free the page, and manage the hold/wire counts.
1056 */
1057static int
1058pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1059{
1060
1061	if (va >= VM_MAXUSER_ADDRESS)
1062		return 0;
1063
1064	return pmap_unwire_pte_hold(pmap, mpte);
1065}
1066
1067void
1068pmap_pinit0(pmap)
1069	struct pmap *pmap;
1070{
1071
1072	PMAP_LOCK_INIT(pmap);
1073	pmap->pm_pdir = (pd_entry_t *)(KERNBASE + (vm_offset_t)IdlePTD);
1074#ifdef PAE
1075	pmap->pm_pdpt = (pdpt_entry_t *)(KERNBASE + (vm_offset_t)IdlePDPT);
1076#endif
1077	pmap->pm_active = 0;
1078	PCPU_SET(curpmap, pmap);
1079	TAILQ_INIT(&pmap->pm_pvlist);
1080	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1081	mtx_lock_spin(&allpmaps_lock);
1082	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1083	mtx_unlock_spin(&allpmaps_lock);
1084}
1085
1086/*
1087 * Initialize a preallocated and zeroed pmap structure,
1088 * such as one in a vmspace structure.
1089 */
1090void
1091pmap_pinit(pmap)
1092	register struct pmap *pmap;
1093{
1094	vm_page_t m, ptdpg[NPGPTD];
1095	vm_paddr_t pa;
1096	static int color;
1097	int i;
1098
1099	PMAP_LOCK_INIT(pmap);
1100
1101	/*
1102	 * No need to allocate page table space yet but we do need a valid
1103	 * page directory table.
1104	 */
1105	if (pmap->pm_pdir == NULL) {
1106		pmap->pm_pdir = (pd_entry_t *)kmem_alloc_nofault(kernel_map,
1107		    NBPTD);
1108#ifdef PAE
1109		pmap->pm_pdpt = uma_zalloc(pdptzone, M_WAITOK | M_ZERO);
1110		KASSERT(((vm_offset_t)pmap->pm_pdpt &
1111		    ((NPGPTD * sizeof(pdpt_entry_t)) - 1)) == 0,
1112		    ("pmap_pinit: pdpt misaligned"));
1113		KASSERT(pmap_kextract((vm_offset_t)pmap->pm_pdpt) < (4ULL<<30),
1114		    ("pmap_pinit: pdpt above 4g"));
1115#endif
1116	}
1117
1118	/*
1119	 * allocate the page directory page(s)
1120	 */
1121	for (i = 0; i < NPGPTD;) {
1122		m = vm_page_alloc(NULL, color++,
1123		    VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
1124		    VM_ALLOC_ZERO);
1125		if (m == NULL)
1126			VM_WAIT;
1127		else {
1128			ptdpg[i++] = m;
1129		}
1130	}
1131
1132	pmap_qenter((vm_offset_t)pmap->pm_pdir, ptdpg, NPGPTD);
1133
1134	for (i = 0; i < NPGPTD; i++) {
1135		if ((ptdpg[i]->flags & PG_ZERO) == 0)
1136			bzero(pmap->pm_pdir + (i * NPDEPG), PAGE_SIZE);
1137	}
1138
1139	mtx_lock_spin(&allpmaps_lock);
1140	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1141	mtx_unlock_spin(&allpmaps_lock);
1142	/* Wire in kernel global address entries. */
1143	/* XXX copies current process, does not fill in MPPTDI */
1144	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * sizeof(pd_entry_t));
1145#ifdef SMP
1146	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1147#endif
1148
1149	/* install self-referential address mapping entry(s) */
1150	for (i = 0; i < NPGPTD; i++) {
1151		pa = VM_PAGE_TO_PHYS(ptdpg[i]);
1152		pmap->pm_pdir[PTDPTDI + i] = pa | PG_V | PG_RW | PG_A | PG_M;
1153#ifdef PAE
1154		pmap->pm_pdpt[i] = pa | PG_V;
1155#endif
1156	}
1157
1158	pmap->pm_active = 0;
1159	TAILQ_INIT(&pmap->pm_pvlist);
1160	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1161}
1162
1163/*
1164 * this routine is called if the page table page is not
1165 * mapped correctly.
1166 */
1167static vm_page_t
1168_pmap_allocpte(pmap, ptepindex)
1169	pmap_t	pmap;
1170	unsigned ptepindex;
1171{
1172	vm_paddr_t ptepa;
1173	vm_page_t m;
1174
1175	/*
1176	 * Allocate a page table page.
1177	 */
1178	if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
1179	    VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
1180		VM_WAIT;
1181		/*
1182		 * Indicate the need to retry.  While waiting, the page table
1183		 * page may have been allocated.
1184		 */
1185		return (NULL);
1186	}
1187	if ((m->flags & PG_ZERO) == 0)
1188		pmap_zero_page(m);
1189
1190	KASSERT(m->queue == PQ_NONE,
1191		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1192
1193	/*
1194	 * Increment the hold count for the page table page
1195	 * (denoting a new mapping.)
1196	 */
1197	m->hold_count++;
1198
1199	/*
1200	 * Map the pagetable page into the process address space, if
1201	 * it isn't already there.
1202	 */
1203
1204	pmap->pm_stats.resident_count++;
1205
1206	ptepa = VM_PAGE_TO_PHYS(m);
1207	pmap->pm_pdir[ptepindex] =
1208		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1209
1210	return m;
1211}
1212
1213static vm_page_t
1214pmap_allocpte(pmap_t pmap, vm_offset_t va)
1215{
1216	unsigned ptepindex;
1217	pd_entry_t ptepa;
1218	vm_page_t m;
1219
1220	/*
1221	 * Calculate pagetable page index
1222	 */
1223	ptepindex = va >> PDRSHIFT;
1224retry:
1225	/*
1226	 * Get the page directory entry
1227	 */
1228	ptepa = pmap->pm_pdir[ptepindex];
1229
1230	/*
1231	 * This supports switching from a 4MB page to a
1232	 * normal 4K page.
1233	 */
1234	if (ptepa & PG_PS) {
1235		pmap->pm_pdir[ptepindex] = 0;
1236		ptepa = 0;
1237		pmap_invalidate_all(kernel_pmap);
1238	}
1239
1240	/*
1241	 * If the page table page is mapped, we just increment the
1242	 * hold count, and activate it.
1243	 */
1244	if (ptepa) {
1245		m = PHYS_TO_VM_PAGE(ptepa);
1246		m->hold_count++;
1247	} else {
1248		/*
1249		 * Here if the pte page isn't mapped, or if it has
1250		 * been deallocated.
1251		 */
1252		m = _pmap_allocpte(pmap, ptepindex);
1253		if (m == NULL)
1254			goto retry;
1255	}
1256	return (m);
1257}
1258
1259
1260/***************************************************
1261* Pmap allocation/deallocation routines.
1262 ***************************************************/
1263
1264#ifdef SMP
1265/*
1266 * Deal with a SMP shootdown of other users of the pmap that we are
1267 * trying to dispose of.  This can be a bit hairy.
1268 */
1269static u_int *lazymask;
1270static u_int lazyptd;
1271static volatile u_int lazywait;
1272
1273void pmap_lazyfix_action(void);
1274
1275void
1276pmap_lazyfix_action(void)
1277{
1278	u_int mymask = PCPU_GET(cpumask);
1279
1280	if (rcr3() == lazyptd)
1281		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1282	atomic_clear_int(lazymask, mymask);
1283	atomic_store_rel_int(&lazywait, 1);
1284}
1285
1286static void
1287pmap_lazyfix_self(u_int mymask)
1288{
1289
1290	if (rcr3() == lazyptd)
1291		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1292	atomic_clear_int(lazymask, mymask);
1293}
1294
1295
1296static void
1297pmap_lazyfix(pmap_t pmap)
1298{
1299	u_int mymask = PCPU_GET(cpumask);
1300	u_int mask;
1301	register u_int spins;
1302
1303	while ((mask = pmap->pm_active) != 0) {
1304		spins = 50000000;
1305		mask = mask & -mask;	/* Find least significant set bit */
1306		mtx_lock_spin(&lazypmap_lock);
1307#ifdef PAE
1308		lazyptd = vtophys(pmap->pm_pdpt);
1309#else
1310		lazyptd = vtophys(pmap->pm_pdir);
1311#endif
1312		if (mask == mymask) {
1313			lazymask = &pmap->pm_active;
1314			pmap_lazyfix_self(mymask);
1315		} else {
1316			atomic_store_rel_int((u_int *)&lazymask,
1317			    (u_int)&pmap->pm_active);
1318			atomic_store_rel_int(&lazywait, 0);
1319			ipi_selected(mask, IPI_LAZYPMAP);
1320			while (lazywait == 0) {
1321				ia32_pause();
1322				if (--spins == 0)
1323					break;
1324			}
1325		}
1326		mtx_unlock_spin(&lazypmap_lock);
1327		if (spins == 0)
1328			printf("pmap_lazyfix: spun for 50000000\n");
1329	}
1330}
1331
1332#else	/* SMP */
1333
1334/*
1335 * Cleaning up on uniprocessor is easy.  For various reasons, we're
1336 * unlikely to have to even execute this code, including the fact
1337 * that the cleanup is deferred until the parent does a wait(2), which
1338 * means that another userland process has run.
1339 */
1340static void
1341pmap_lazyfix(pmap_t pmap)
1342{
1343	u_int cr3;
1344
1345	cr3 = vtophys(pmap->pm_pdir);
1346	if (cr3 == rcr3()) {
1347		load_cr3(PCPU_GET(curpcb)->pcb_cr3);
1348		pmap->pm_active &= ~(PCPU_GET(cpumask));
1349	}
1350}
1351#endif	/* SMP */
1352
1353/*
1354 * Release any resources held by the given physical map.
1355 * Called when a pmap initialized by pmap_pinit is being released.
1356 * Should only be called if the map contains no valid mappings.
1357 */
1358void
1359pmap_release(pmap_t pmap)
1360{
1361	vm_page_t m, ptdpg[NPGPTD];
1362	int i;
1363
1364	KASSERT(pmap->pm_stats.resident_count == 0,
1365	    ("pmap_release: pmap resident count %ld != 0",
1366	    pmap->pm_stats.resident_count));
1367
1368	pmap_lazyfix(pmap);
1369	mtx_lock_spin(&allpmaps_lock);
1370	LIST_REMOVE(pmap, pm_list);
1371	mtx_unlock_spin(&allpmaps_lock);
1372
1373	for (i = 0; i < NPGPTD; i++)
1374		ptdpg[i] = PHYS_TO_VM_PAGE(pmap->pm_pdir[PTDPTDI + i]);
1375
1376	bzero(pmap->pm_pdir + PTDPTDI, (nkpt + NPGPTD) *
1377	    sizeof(*pmap->pm_pdir));
1378#ifdef SMP
1379	pmap->pm_pdir[MPPTDI] = 0;
1380#endif
1381
1382	pmap_qremove((vm_offset_t)pmap->pm_pdir, NPGPTD);
1383
1384	vm_page_lock_queues();
1385	for (i = 0; i < NPGPTD; i++) {
1386		m = ptdpg[i];
1387#ifdef PAE
1388		KASSERT(VM_PAGE_TO_PHYS(m) == (pmap->pm_pdpt[i] & PG_FRAME),
1389		    ("pmap_release: got wrong ptd page"));
1390#endif
1391		m->wire_count--;
1392		atomic_subtract_int(&cnt.v_wire_count, 1);
1393		vm_page_free_zero(m);
1394	}
1395	vm_page_unlock_queues();
1396	PMAP_LOCK_DESTROY(pmap);
1397}
1398
1399static int
1400kvm_size(SYSCTL_HANDLER_ARGS)
1401{
1402	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1403
1404	return sysctl_handle_long(oidp, &ksize, 0, req);
1405}
1406SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1407    0, 0, kvm_size, "IU", "Size of KVM");
1408
1409static int
1410kvm_free(SYSCTL_HANDLER_ARGS)
1411{
1412	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1413
1414	return sysctl_handle_long(oidp, &kfree, 0, req);
1415}
1416SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1417    0, 0, kvm_free, "IU", "Amount of KVM free");
1418
1419/*
1420 * grow the number of kernel page table entries, if needed
1421 */
1422void
1423pmap_growkernel(vm_offset_t addr)
1424{
1425	struct pmap *pmap;
1426	vm_paddr_t ptppaddr;
1427	vm_page_t nkpg;
1428	pd_entry_t newpdir;
1429	pt_entry_t *pde;
1430
1431	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
1432	if (kernel_vm_end == 0) {
1433		kernel_vm_end = KERNBASE;
1434		nkpt = 0;
1435		while (pdir_pde(PTD, kernel_vm_end)) {
1436			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1437			nkpt++;
1438		}
1439	}
1440	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1441	while (kernel_vm_end < addr) {
1442		if (pdir_pde(PTD, kernel_vm_end)) {
1443			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1444			continue;
1445		}
1446
1447		/*
1448		 * This index is bogus, but out of the way
1449		 */
1450		nkpg = vm_page_alloc(NULL, nkpt,
1451		    VM_ALLOC_NOOBJ | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1452		if (!nkpg)
1453			panic("pmap_growkernel: no memory to grow kernel");
1454
1455		nkpt++;
1456
1457		pmap_zero_page(nkpg);
1458		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1459		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1460		pdir_pde(PTD, kernel_vm_end) = newpdir;
1461
1462		mtx_lock_spin(&allpmaps_lock);
1463		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1464			pde = pmap_pde(pmap, kernel_vm_end);
1465			pde_store(pde, newpdir);
1466		}
1467		mtx_unlock_spin(&allpmaps_lock);
1468		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1469	}
1470}
1471
1472
1473/***************************************************
1474 * page management routines.
1475 ***************************************************/
1476
1477/*
1478 * free the pv_entry back to the free list
1479 */
1480static PMAP_INLINE void
1481free_pv_entry(pv_entry_t pv)
1482{
1483	pv_entry_count--;
1484	uma_zfree(pvzone, pv);
1485}
1486
1487/*
1488 * get a new pv_entry, allocating a block from the system
1489 * when needed.
1490 * the memory allocation is performed bypassing the malloc code
1491 * because of the possibility of allocations at interrupt time.
1492 */
1493static pv_entry_t
1494get_pv_entry(void)
1495{
1496	pv_entry_count++;
1497	if (pv_entry_high_water &&
1498		(pv_entry_count > pv_entry_high_water) &&
1499		(pmap_pagedaemon_waken == 0)) {
1500		pmap_pagedaemon_waken = 1;
1501		wakeup (&vm_pages_needed);
1502	}
1503	return uma_zalloc(pvzone, M_NOWAIT);
1504}
1505
1506
1507static int
1508pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1509{
1510	pv_entry_t pv;
1511	int rtval;
1512
1513	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1514	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1515	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1516		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1517			if (pmap == pv->pv_pmap && va == pv->pv_va)
1518				break;
1519		}
1520	} else {
1521		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1522			if (va == pv->pv_va)
1523				break;
1524		}
1525	}
1526
1527	rtval = 0;
1528	if (pv) {
1529		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1530		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1531		m->md.pv_list_count--;
1532		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1533			vm_page_flag_clear(m, PG_WRITEABLE);
1534
1535		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1536		free_pv_entry(pv);
1537	}
1538
1539	return rtval;
1540}
1541
1542/*
1543 * Create a pv entry for page at pa for
1544 * (pmap, va).
1545 */
1546static void
1547pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1548{
1549
1550	pv_entry_t pv;
1551
1552	pv = get_pv_entry();
1553	pv->pv_va = va;
1554	pv->pv_pmap = pmap;
1555	pv->pv_ptem = mpte;
1556
1557	vm_page_lock_queues();
1558	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1559	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1560	m->md.pv_list_count++;
1561
1562	vm_page_unlock_queues();
1563}
1564
1565/*
1566 * pmap_remove_pte: do the things to unmap a page in a process
1567 */
1568static int
1569pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1570{
1571	pt_entry_t oldpte;
1572	vm_page_t m, mpte;
1573
1574	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1575	oldpte = pte_load_clear(ptq);
1576	if (oldpte & PG_W)
1577		pmap->pm_stats.wired_count -= 1;
1578	/*
1579	 * Machines that don't support invlpg, also don't support
1580	 * PG_G.
1581	 */
1582	if (oldpte & PG_G)
1583		pmap_invalidate_page(kernel_pmap, va);
1584	pmap->pm_stats.resident_count -= 1;
1585	if (oldpte & PG_MANAGED) {
1586		m = PHYS_TO_VM_PAGE(oldpte);
1587		if (oldpte & PG_M) {
1588#if defined(PMAP_DIAGNOSTIC)
1589			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1590				printf(
1591	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1592				    va, oldpte);
1593			}
1594#endif
1595			if (pmap_track_modified(va))
1596				vm_page_dirty(m);
1597		}
1598		if (oldpte & PG_A)
1599			vm_page_flag_set(m, PG_REFERENCED);
1600		return pmap_remove_entry(pmap, m, va);
1601	} else {
1602		mpte = PHYS_TO_VM_PAGE(*pmap_pde(pmap, va));
1603		return pmap_unuse_pt(pmap, va, mpte);
1604	}
1605}
1606
1607/*
1608 * Remove a single page from a process address space
1609 */
1610static void
1611pmap_remove_page(pmap_t pmap, vm_offset_t va)
1612{
1613	pt_entry_t *pte;
1614
1615	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1616	if ((pte = pmap_pte(pmap, va)) == NULL || *pte == 0)
1617		return;
1618	pmap_remove_pte(pmap, pte, va);
1619	pmap_invalidate_page(pmap, va);
1620}
1621
1622/*
1623 *	Remove the given range of addresses from the specified map.
1624 *
1625 *	It is assumed that the start and end are properly
1626 *	rounded to the page size.
1627 */
1628void
1629pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1630{
1631	vm_offset_t pdnxt;
1632	pd_entry_t ptpaddr;
1633	pt_entry_t *pte;
1634	int anyvalid;
1635
1636	if (pmap == NULL)
1637		return;
1638
1639	/*
1640	 * Perform an unsynchronized read.  This is, however, safe.
1641	 */
1642	if (pmap->pm_stats.resident_count == 0)
1643		return;
1644	PMAP_LOCK(pmap);
1645
1646	/*
1647	 * special handling of removing one page.  a very
1648	 * common operation and easy to short circuit some
1649	 * code.
1650	 */
1651	if ((sva + PAGE_SIZE == eva) &&
1652	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1653		pmap_remove_page(pmap, sva);
1654		PMAP_UNLOCK(pmap);
1655		return;
1656	}
1657
1658	anyvalid = 0;
1659
1660	for (; sva < eva; sva = pdnxt) {
1661		unsigned pdirindex;
1662
1663		/*
1664		 * Calculate index for next page table.
1665		 */
1666		pdnxt = (sva + NBPDR) & ~PDRMASK;
1667		if (pmap->pm_stats.resident_count == 0)
1668			break;
1669
1670		pdirindex = sva >> PDRSHIFT;
1671		ptpaddr = pmap->pm_pdir[pdirindex];
1672
1673		/*
1674		 * Weed out invalid mappings. Note: we assume that the page
1675		 * directory table is always allocated, and in kernel virtual.
1676		 */
1677		if (ptpaddr == 0)
1678			continue;
1679
1680		/*
1681		 * Check for large page.
1682		 */
1683		if ((ptpaddr & PG_PS) != 0) {
1684			pmap->pm_pdir[pdirindex] = 0;
1685			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1686			anyvalid = 1;
1687			continue;
1688		}
1689
1690		/*
1691		 * Limit our scan to either the end of the va represented
1692		 * by the current page table page, or to the end of the
1693		 * range being removed.
1694		 */
1695		if (pdnxt > eva)
1696			pdnxt = eva;
1697
1698		for (; sva != pdnxt; sva += PAGE_SIZE) {
1699			if ((pte = pmap_pte(pmap, sva)) == NULL ||
1700			    *pte == 0)
1701				continue;
1702			anyvalid = 1;
1703			if (pmap_remove_pte(pmap, pte, sva))
1704				break;
1705		}
1706	}
1707
1708	if (anyvalid)
1709		pmap_invalidate_all(pmap);
1710	PMAP_UNLOCK(pmap);
1711}
1712
1713/*
1714 *	Routine:	pmap_remove_all
1715 *	Function:
1716 *		Removes this physical page from
1717 *		all physical maps in which it resides.
1718 *		Reflects back modify bits to the pager.
1719 *
1720 *	Notes:
1721 *		Original versions of this routine were very
1722 *		inefficient because they iteratively called
1723 *		pmap_remove (slow...)
1724 */
1725
1726void
1727pmap_remove_all(vm_page_t m)
1728{
1729	register pv_entry_t pv;
1730	pt_entry_t *pte, tpte;
1731
1732#if defined(PMAP_DIAGNOSTIC)
1733	/*
1734	 * XXX This makes pmap_remove_all() illegal for non-managed pages!
1735	 */
1736	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1737		panic("pmap_remove_all: illegal for unmanaged page, va: 0x%x",
1738		    VM_PAGE_TO_PHYS(m));
1739	}
1740#endif
1741	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1742	sched_pin();
1743	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1744		PMAP_LOCK(pv->pv_pmap);
1745		pv->pv_pmap->pm_stats.resident_count--;
1746		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1747		tpte = pte_load_clear(pte);
1748		if (tpte & PG_W)
1749			pv->pv_pmap->pm_stats.wired_count--;
1750		if (tpte & PG_A)
1751			vm_page_flag_set(m, PG_REFERENCED);
1752
1753		/*
1754		 * Update the vm_page_t clean and reference bits.
1755		 */
1756		if (tpte & PG_M) {
1757#if defined(PMAP_DIAGNOSTIC)
1758			if (pmap_nw_modified((pt_entry_t) tpte)) {
1759				printf(
1760	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1761				    pv->pv_va, tpte);
1762			}
1763#endif
1764			if (pmap_track_modified(pv->pv_va))
1765				vm_page_dirty(m);
1766		}
1767		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1768		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1769		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1770		m->md.pv_list_count--;
1771		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1772		PMAP_UNLOCK(pv->pv_pmap);
1773		free_pv_entry(pv);
1774	}
1775	vm_page_flag_clear(m, PG_WRITEABLE);
1776	sched_unpin();
1777}
1778
1779/*
1780 *	Set the physical protection on the
1781 *	specified range of this map as requested.
1782 */
1783void
1784pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1785{
1786	vm_offset_t pdnxt;
1787	pd_entry_t ptpaddr;
1788	int anychanged;
1789
1790	if (pmap == NULL)
1791		return;
1792
1793	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1794		pmap_remove(pmap, sva, eva);
1795		return;
1796	}
1797
1798	if (prot & VM_PROT_WRITE)
1799		return;
1800
1801	anychanged = 0;
1802
1803	PMAP_LOCK(pmap);
1804	for (; sva < eva; sva = pdnxt) {
1805		unsigned pdirindex;
1806
1807		pdnxt = (sva + NBPDR) & ~PDRMASK;
1808
1809		pdirindex = sva >> PDRSHIFT;
1810		ptpaddr = pmap->pm_pdir[pdirindex];
1811
1812		/*
1813		 * Weed out invalid mappings. Note: we assume that the page
1814		 * directory table is always allocated, and in kernel virtual.
1815		 */
1816		if (ptpaddr == 0)
1817			continue;
1818
1819		/*
1820		 * Check for large page.
1821		 */
1822		if ((ptpaddr & PG_PS) != 0) {
1823			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1824			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1825			anychanged = 1;
1826			continue;
1827		}
1828
1829		if (pdnxt > eva)
1830			pdnxt = eva;
1831
1832		for (; sva != pdnxt; sva += PAGE_SIZE) {
1833			pt_entry_t pbits;
1834			pt_entry_t *pte;
1835			vm_page_t m;
1836
1837			if ((pte = pmap_pte(pmap, sva)) == NULL)
1838				continue;
1839			pbits = *pte;
1840			if (pbits & PG_MANAGED) {
1841				m = NULL;
1842				if (pbits & PG_A) {
1843					m = PHYS_TO_VM_PAGE(pbits);
1844					vm_page_flag_set(m, PG_REFERENCED);
1845					pbits &= ~PG_A;
1846				}
1847				if ((pbits & PG_M) != 0 &&
1848				    pmap_track_modified(sva)) {
1849					if (m == NULL)
1850						m = PHYS_TO_VM_PAGE(pbits);
1851					vm_page_dirty(m);
1852					pbits &= ~PG_M;
1853				}
1854			}
1855
1856			pbits &= ~PG_RW;
1857
1858			if (pbits != *pte) {
1859				pte_store(pte, pbits);
1860				anychanged = 1;
1861			}
1862		}
1863	}
1864	if (anychanged)
1865		pmap_invalidate_all(pmap);
1866	PMAP_UNLOCK(pmap);
1867}
1868
1869/*
1870 *	Insert the given physical page (p) at
1871 *	the specified virtual address (v) in the
1872 *	target physical map with the protection requested.
1873 *
1874 *	If specified, the page will be wired down, meaning
1875 *	that the related pte can not be reclaimed.
1876 *
1877 *	NB:  This is the only routine which MAY NOT lazy-evaluate
1878 *	or lose information.  That is, this routine must actually
1879 *	insert this page into the given map NOW.
1880 */
1881void
1882pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1883	   boolean_t wired)
1884{
1885	vm_paddr_t pa;
1886	register pt_entry_t *pte;
1887	vm_paddr_t opa;
1888	pt_entry_t origpte, newpte;
1889	vm_page_t mpte;
1890
1891	if (pmap == NULL)
1892		return;
1893
1894	va &= PG_FRAME;
1895#ifdef PMAP_DIAGNOSTIC
1896	if (va > VM_MAX_KERNEL_ADDRESS)
1897		panic("pmap_enter: toobig");
1898	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
1899		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
1900#endif
1901
1902	mpte = NULL;
1903	/*
1904	 * In the case that a page table page is not
1905	 * resident, we are creating it here.
1906	 */
1907	if (va < VM_MAXUSER_ADDRESS) {
1908		mpte = pmap_allocpte(pmap, va);
1909	}
1910#if 0 && defined(PMAP_DIAGNOSTIC)
1911	else {
1912		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
1913		origpte = *pdeaddr;
1914		if ((origpte & PG_V) == 0) {
1915			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
1916				pmap->pm_pdir[PTDPTDI], origpte, va);
1917		}
1918	}
1919#endif
1920
1921	pte = pmap_pte(pmap, va);
1922
1923	/*
1924	 * Page Directory table entry not valid, we need a new PT page
1925	 */
1926	if (pte == NULL) {
1927		panic("pmap_enter: invalid page directory pdir=%#jx, va=%#x\n",
1928			(uintmax_t)pmap->pm_pdir[PTDPTDI], va);
1929	}
1930
1931	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
1932	origpte = *pte;
1933	opa = origpte & PG_FRAME;
1934
1935	if (origpte & PG_PS) {
1936		/*
1937		 * Yes, I know this will truncate upper address bits for PAE,
1938		 * but I'm actually more interested in the lower bits
1939		 */
1940		printf("pmap_enter: va %p, pte %p, origpte %p\n",
1941		    (void *)va, (void *)pte, (void *)(uintptr_t)origpte);
1942		panic("pmap_enter: attempted pmap_enter on 4MB page");
1943	}
1944
1945	/*
1946	 * Mapping has not changed, must be protection or wiring change.
1947	 */
1948	if (origpte && (opa == pa)) {
1949		/*
1950		 * Wiring change, just update stats. We don't worry about
1951		 * wiring PT pages as they remain resident as long as there
1952		 * are valid mappings in them. Hence, if a user page is wired,
1953		 * the PT page will be also.
1954		 */
1955		if (wired && ((origpte & PG_W) == 0))
1956			pmap->pm_stats.wired_count++;
1957		else if (!wired && (origpte & PG_W))
1958			pmap->pm_stats.wired_count--;
1959
1960#if defined(PMAP_DIAGNOSTIC)
1961		if (pmap_nw_modified((pt_entry_t) origpte)) {
1962			printf(
1963	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
1964			    va, origpte);
1965		}
1966#endif
1967
1968		/*
1969		 * Remove extra pte reference
1970		 */
1971		if (mpte)
1972			mpte->hold_count--;
1973
1974		/*
1975		 * We might be turning off write access to the page,
1976		 * so we go ahead and sense modify status.
1977		 */
1978		if (origpte & PG_MANAGED) {
1979			if ((origpte & PG_M) && pmap_track_modified(va)) {
1980				vm_page_t om;
1981				om = PHYS_TO_VM_PAGE(opa);
1982				vm_page_dirty(om);
1983			}
1984			pa |= PG_MANAGED;
1985		}
1986		goto validate;
1987	}
1988	/*
1989	 * Mapping has changed, invalidate old range and fall through to
1990	 * handle validating new mapping.
1991	 */
1992	if (opa) {
1993		int err;
1994		vm_page_lock_queues();
1995		PMAP_LOCK(pmap);
1996		err = pmap_remove_pte(pmap, pte, va);
1997		PMAP_UNLOCK(pmap);
1998		vm_page_unlock_queues();
1999		if (err)
2000			panic("pmap_enter: pte vanished, va: 0x%x", va);
2001	}
2002
2003	/*
2004	 * Enter on the PV list if part of our managed memory. Note that we
2005	 * raise IPL while manipulating pv_table since pmap_enter can be
2006	 * called at interrupt time.
2007	 */
2008	if (pmap_initialized &&
2009	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2010		pmap_insert_entry(pmap, va, mpte, m);
2011		pa |= PG_MANAGED;
2012	}
2013
2014	/*
2015	 * Increment counters
2016	 */
2017	pmap->pm_stats.resident_count++;
2018	if (wired)
2019		pmap->pm_stats.wired_count++;
2020
2021validate:
2022	/*
2023	 * Now validate mapping with desired protection/wiring.
2024	 */
2025	newpte = (pt_entry_t)(pa | PG_V);
2026	if ((prot & VM_PROT_WRITE) != 0)
2027		newpte |= PG_RW;
2028	if (wired)
2029		newpte |= PG_W;
2030	if (va < VM_MAXUSER_ADDRESS)
2031		newpte |= PG_U;
2032	if (pmap == kernel_pmap)
2033		newpte |= pgeflag;
2034
2035	/*
2036	 * if the mapping or permission bits are different, we need
2037	 * to update the pte.
2038	 */
2039	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2040		pte_store(pte, newpte | PG_A);
2041		/*if (origpte)*/ {
2042			pmap_invalidate_page(pmap, va);
2043		}
2044	}
2045}
2046
2047/*
2048 * this code makes some *MAJOR* assumptions:
2049 * 1. Current pmap & pmap exists.
2050 * 2. Not wired.
2051 * 3. Read access.
2052 * 4. No page table pages.
2053 * 5. Tlbflush is deferred to calling procedure.
2054 * 6. Page IS managed.
2055 * but is *MUCH* faster than pmap_enter...
2056 */
2057
2058vm_page_t
2059pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2060{
2061	pt_entry_t *pte;
2062	vm_paddr_t pa;
2063
2064	/*
2065	 * In the case that a page table page is not
2066	 * resident, we are creating it here.
2067	 */
2068	if (va < VM_MAXUSER_ADDRESS) {
2069		unsigned ptepindex;
2070		pd_entry_t ptepa;
2071
2072		/*
2073		 * Calculate pagetable page index
2074		 */
2075		ptepindex = va >> PDRSHIFT;
2076		if (mpte && (mpte->pindex == ptepindex)) {
2077			mpte->hold_count++;
2078		} else {
2079retry:
2080			/*
2081			 * Get the page directory entry
2082			 */
2083			ptepa = pmap->pm_pdir[ptepindex];
2084
2085			/*
2086			 * If the page table page is mapped, we just increment
2087			 * the hold count, and activate it.
2088			 */
2089			if (ptepa) {
2090				if (ptepa & PG_PS)
2091					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2092				mpte = PHYS_TO_VM_PAGE(ptepa);
2093				mpte->hold_count++;
2094			} else {
2095				mpte = _pmap_allocpte(pmap, ptepindex);
2096				if (mpte == NULL)
2097					goto retry;
2098			}
2099		}
2100	} else {
2101		mpte = NULL;
2102	}
2103
2104	/*
2105	 * This call to vtopte makes the assumption that we are
2106	 * entering the page into the current pmap.  In order to support
2107	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2108	 * But that isn't as quick as vtopte.
2109	 */
2110	pte = vtopte(va);
2111	if (*pte) {
2112		if (mpte != NULL) {
2113			vm_page_lock_queues();
2114			pmap_unwire_pte_hold(pmap, mpte);
2115			vm_page_unlock_queues();
2116		}
2117		return 0;
2118	}
2119
2120	/*
2121	 * Enter on the PV list if part of our managed memory. Note that we
2122	 * raise IPL while manipulating pv_table since pmap_enter can be
2123	 * called at interrupt time.
2124	 */
2125	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2126		pmap_insert_entry(pmap, va, mpte, m);
2127
2128	/*
2129	 * Increment counters
2130	 */
2131	pmap->pm_stats.resident_count++;
2132
2133	pa = VM_PAGE_TO_PHYS(m);
2134
2135	/*
2136	 * Now validate mapping with RO protection
2137	 */
2138	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2139		pte_store(pte, pa | PG_V | PG_U);
2140	else
2141		pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
2142
2143	return mpte;
2144}
2145
2146/*
2147 * Make a temporary mapping for a physical address.  This is only intended
2148 * to be used for panic dumps.
2149 */
2150void *
2151pmap_kenter_temporary(vm_paddr_t pa, int i)
2152{
2153	vm_offset_t va;
2154
2155	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2156	pmap_kenter(va, pa);
2157#ifndef I386_CPU
2158	invlpg(va);
2159#else
2160	invltlb();
2161#endif
2162	return ((void *)crashdumpmap);
2163}
2164
2165/*
2166 * This code maps large physical mmap regions into the
2167 * processor address space.  Note that some shortcuts
2168 * are taken, but the code works.
2169 */
2170void
2171pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2172		    vm_object_t object, vm_pindex_t pindex,
2173		    vm_size_t size)
2174{
2175	vm_page_t p;
2176
2177	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2178	KASSERT(object->type == OBJT_DEVICE,
2179	    ("pmap_object_init_pt: non-device object"));
2180	if (pseflag &&
2181	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2182		int i;
2183		vm_page_t m[1];
2184		unsigned int ptepindex;
2185		int npdes;
2186		pd_entry_t ptepa;
2187
2188		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2189			return;
2190retry:
2191		p = vm_page_lookup(object, pindex);
2192		if (p != NULL) {
2193			vm_page_lock_queues();
2194			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2195				goto retry;
2196		} else {
2197			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2198			if (p == NULL)
2199				return;
2200			m[0] = p;
2201
2202			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2203				vm_page_lock_queues();
2204				vm_page_free(p);
2205				vm_page_unlock_queues();
2206				return;
2207			}
2208
2209			p = vm_page_lookup(object, pindex);
2210			vm_page_lock_queues();
2211			vm_page_wakeup(p);
2212		}
2213		vm_page_unlock_queues();
2214
2215		ptepa = VM_PAGE_TO_PHYS(p);
2216		if (ptepa & (NBPDR - 1))
2217			return;
2218
2219		p->valid = VM_PAGE_BITS_ALL;
2220
2221		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2222		npdes = size >> PDRSHIFT;
2223		for(i = 0; i < npdes; i++) {
2224			pde_store(&pmap->pm_pdir[ptepindex],
2225			    ptepa | PG_U | PG_RW | PG_V | PG_PS);
2226			ptepa += NBPDR;
2227			ptepindex += 1;
2228		}
2229		pmap_invalidate_all(pmap);
2230	}
2231}
2232
2233/*
2234 *	Routine:	pmap_change_wiring
2235 *	Function:	Change the wiring attribute for a map/virtual-address
2236 *			pair.
2237 *	In/out conditions:
2238 *			The mapping must already exist in the pmap.
2239 */
2240void
2241pmap_change_wiring(pmap, va, wired)
2242	register pmap_t pmap;
2243	vm_offset_t va;
2244	boolean_t wired;
2245{
2246	register pt_entry_t *pte;
2247
2248	if (pmap == NULL)
2249		return;
2250
2251	PMAP_LOCK(pmap);
2252	pte = pmap_pte(pmap, va);
2253
2254	if (wired && !pmap_pte_w(pte))
2255		pmap->pm_stats.wired_count++;
2256	else if (!wired && pmap_pte_w(pte))
2257		pmap->pm_stats.wired_count--;
2258
2259	/*
2260	 * Wiring is not a hardware characteristic so there is no need to
2261	 * invalidate TLB.
2262	 */
2263	pmap_pte_set_w(pte, wired);
2264	PMAP_UNLOCK(pmap);
2265}
2266
2267
2268
2269/*
2270 *	Copy the range specified by src_addr/len
2271 *	from the source map to the range dst_addr/len
2272 *	in the destination map.
2273 *
2274 *	This routine is only advisory and need not do anything.
2275 */
2276
2277void
2278pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2279	  vm_offset_t src_addr)
2280{
2281	vm_offset_t addr;
2282	vm_offset_t end_addr = src_addr + len;
2283	vm_offset_t pdnxt;
2284	vm_page_t m;
2285
2286	if (dst_addr != src_addr)
2287		return;
2288
2289	if (!pmap_is_current(src_pmap))
2290		return;
2291
2292	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2293		pt_entry_t *src_pte, *dst_pte;
2294		vm_page_t dstmpte, srcmpte;
2295		pd_entry_t srcptepaddr;
2296		unsigned ptepindex;
2297
2298		if (addr >= UPT_MIN_ADDRESS)
2299			panic("pmap_copy: invalid to pmap_copy page tables\n");
2300
2301		/*
2302		 * Don't let optional prefaulting of pages make us go
2303		 * way below the low water mark of free pages or way
2304		 * above high water mark of used pv entries.
2305		 */
2306		if (cnt.v_free_count < cnt.v_free_reserved ||
2307		    pv_entry_count > pv_entry_high_water)
2308			break;
2309
2310		pdnxt = (addr + NBPDR) & ~PDRMASK;
2311		ptepindex = addr >> PDRSHIFT;
2312
2313		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2314		if (srcptepaddr == 0)
2315			continue;
2316
2317		if (srcptepaddr & PG_PS) {
2318			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2319				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2320				dst_pmap->pm_stats.resident_count +=
2321				    NBPDR / PAGE_SIZE;
2322			}
2323			continue;
2324		}
2325
2326		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
2327		if (srcmpte->hold_count == 0 || (srcmpte->flags & PG_BUSY))
2328			continue;
2329
2330		if (pdnxt > end_addr)
2331			pdnxt = end_addr;
2332
2333		src_pte = vtopte(addr);
2334		while (addr < pdnxt) {
2335			pt_entry_t ptetemp;
2336			ptetemp = *src_pte;
2337			/*
2338			 * we only virtual copy managed pages
2339			 */
2340			if ((ptetemp & PG_MANAGED) != 0) {
2341				/*
2342				 * We have to check after allocpte for the
2343				 * pte still being around...  allocpte can
2344				 * block.
2345				 */
2346				dstmpte = pmap_allocpte(dst_pmap, addr);
2347				dst_pte = pmap_pte(dst_pmap, addr);
2348				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2349					/*
2350					 * Clear the modified and
2351					 * accessed (referenced) bits
2352					 * during the copy.
2353					 */
2354					m = PHYS_TO_VM_PAGE(ptetemp);
2355					*dst_pte = ptetemp & ~(PG_M | PG_A);
2356					dst_pmap->pm_stats.resident_count++;
2357					pmap_insert_entry(dst_pmap, addr,
2358						dstmpte, m);
2359	 			} else {
2360					vm_page_lock_queues();
2361					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2362					vm_page_unlock_queues();
2363				}
2364				if (dstmpte->hold_count >= srcmpte->hold_count)
2365					break;
2366			}
2367			addr += PAGE_SIZE;
2368			src_pte++;
2369		}
2370	}
2371}
2372
2373static __inline void
2374pagezero(void *page)
2375{
2376#if defined(I686_CPU)
2377	if (cpu_class == CPUCLASS_686) {
2378#if defined(CPU_ENABLE_SSE)
2379		if (cpu_feature & CPUID_SSE2)
2380			sse2_pagezero(page);
2381		else
2382#endif
2383			i686_pagezero(page);
2384	} else
2385#endif
2386		bzero(page, PAGE_SIZE);
2387}
2388
2389/*
2390 *	pmap_zero_page zeros the specified hardware page by mapping
2391 *	the page into KVM and using bzero to clear its contents.
2392 */
2393void
2394pmap_zero_page(vm_page_t m)
2395{
2396
2397	mtx_lock(&CMAPCADDR12_lock);
2398	if (*CMAP2)
2399		panic("pmap_zero_page: CMAP2 busy");
2400	sched_pin();
2401	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2402	invlcaddr(CADDR2);
2403	pagezero(CADDR2);
2404	*CMAP2 = 0;
2405	sched_unpin();
2406	mtx_unlock(&CMAPCADDR12_lock);
2407}
2408
2409/*
2410 *	pmap_zero_page_area zeros the specified hardware page by mapping
2411 *	the page into KVM and using bzero to clear its contents.
2412 *
2413 *	off and size may not cover an area beyond a single hardware page.
2414 */
2415void
2416pmap_zero_page_area(vm_page_t m, int off, int size)
2417{
2418
2419	mtx_lock(&CMAPCADDR12_lock);
2420	if (*CMAP2)
2421		panic("pmap_zero_page: CMAP2 busy");
2422	sched_pin();
2423	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2424	invlcaddr(CADDR2);
2425	if (off == 0 && size == PAGE_SIZE)
2426		pagezero(CADDR2);
2427	else
2428		bzero((char *)CADDR2 + off, size);
2429	*CMAP2 = 0;
2430	sched_unpin();
2431	mtx_unlock(&CMAPCADDR12_lock);
2432}
2433
2434/*
2435 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2436 *	the page into KVM and using bzero to clear its contents.  This
2437 *	is intended to be called from the vm_pagezero process only and
2438 *	outside of Giant.
2439 */
2440void
2441pmap_zero_page_idle(vm_page_t m)
2442{
2443
2444	if (*CMAP3)
2445		panic("pmap_zero_page: CMAP3 busy");
2446	sched_pin();
2447	*CMAP3 = PG_V | PG_RW | VM_PAGE_TO_PHYS(m) | PG_A | PG_M;
2448	invlcaddr(CADDR3);
2449	pagezero(CADDR3);
2450	*CMAP3 = 0;
2451	sched_unpin();
2452}
2453
2454/*
2455 *	pmap_copy_page copies the specified (machine independent)
2456 *	page by mapping the page into virtual memory and using
2457 *	bcopy to copy the page, one machine dependent page at a
2458 *	time.
2459 */
2460void
2461pmap_copy_page(vm_page_t src, vm_page_t dst)
2462{
2463
2464	mtx_lock(&CMAPCADDR12_lock);
2465	if (*CMAP1)
2466		panic("pmap_copy_page: CMAP1 busy");
2467	if (*CMAP2)
2468		panic("pmap_copy_page: CMAP2 busy");
2469	sched_pin();
2470#ifdef I386_CPU
2471	invltlb();
2472#else
2473	invlpg((u_int)CADDR1);
2474	invlpg((u_int)CADDR2);
2475#endif
2476	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2477	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2478	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2479	*CMAP1 = 0;
2480	*CMAP2 = 0;
2481	sched_unpin();
2482	mtx_unlock(&CMAPCADDR12_lock);
2483}
2484
2485/*
2486 * Returns true if the pmap's pv is one of the first
2487 * 16 pvs linked to from this page.  This count may
2488 * be changed upwards or downwards in the future; it
2489 * is only necessary that true be returned for a small
2490 * subset of pmaps for proper page aging.
2491 */
2492boolean_t
2493pmap_page_exists_quick(pmap, m)
2494	pmap_t pmap;
2495	vm_page_t m;
2496{
2497	pv_entry_t pv;
2498	int loops = 0;
2499
2500	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2501		return FALSE;
2502
2503	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2504	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2505		if (pv->pv_pmap == pmap) {
2506			return TRUE;
2507		}
2508		loops++;
2509		if (loops >= 16)
2510			break;
2511	}
2512	return (FALSE);
2513}
2514
2515#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2516/*
2517 * Remove all pages from specified address space
2518 * this aids process exit speeds.  Also, this code
2519 * is special cased for current process only, but
2520 * can have the more generic (and slightly slower)
2521 * mode enabled.  This is much faster than pmap_remove
2522 * in the case of running down an entire address space.
2523 */
2524void
2525pmap_remove_pages(pmap, sva, eva)
2526	pmap_t pmap;
2527	vm_offset_t sva, eva;
2528{
2529	pt_entry_t *pte, tpte;
2530	vm_page_t m;
2531	pv_entry_t pv, npv;
2532
2533#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2534	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2535		printf("warning: pmap_remove_pages called with non-current pmap\n");
2536		return;
2537	}
2538#endif
2539	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2540	PMAP_LOCK(pmap);
2541	sched_pin();
2542	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2543
2544		if (pv->pv_va >= eva || pv->pv_va < sva) {
2545			npv = TAILQ_NEXT(pv, pv_plist);
2546			continue;
2547		}
2548
2549#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2550		pte = vtopte(pv->pv_va);
2551#else
2552		pte = pmap_pte_quick(pmap, pv->pv_va);
2553#endif
2554		tpte = *pte;
2555
2556		if (tpte == 0) {
2557			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2558							pte, pv->pv_va);
2559			panic("bad pte");
2560		}
2561
2562/*
2563 * We cannot remove wired pages from a process' mapping at this time
2564 */
2565		if (tpte & PG_W) {
2566			npv = TAILQ_NEXT(pv, pv_plist);
2567			continue;
2568		}
2569
2570		m = PHYS_TO_VM_PAGE(tpte);
2571		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2572		    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
2573		    m, (uintmax_t)m->phys_addr, (uintmax_t)tpte));
2574
2575		KASSERT(m < &vm_page_array[vm_page_array_size],
2576			("pmap_remove_pages: bad tpte %#jx", (uintmax_t)tpte));
2577
2578		pmap->pm_stats.resident_count--;
2579
2580		pte_clear(pte);
2581
2582		/*
2583		 * Update the vm_page_t clean and reference bits.
2584		 */
2585		if (tpte & PG_M) {
2586			vm_page_dirty(m);
2587		}
2588
2589		npv = TAILQ_NEXT(pv, pv_plist);
2590		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2591
2592		m->md.pv_list_count--;
2593		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2594		if (TAILQ_EMPTY(&m->md.pv_list))
2595			vm_page_flag_clear(m, PG_WRITEABLE);
2596
2597		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2598		free_pv_entry(pv);
2599	}
2600	sched_unpin();
2601	pmap_invalidate_all(pmap);
2602	PMAP_UNLOCK(pmap);
2603}
2604
2605/*
2606 *	pmap_is_modified:
2607 *
2608 *	Return whether or not the specified physical page was modified
2609 *	in any physical maps.
2610 */
2611boolean_t
2612pmap_is_modified(vm_page_t m)
2613{
2614	pv_entry_t pv;
2615	pt_entry_t *pte;
2616	boolean_t rv;
2617
2618	rv = FALSE;
2619	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2620		return (rv);
2621
2622	sched_pin();
2623	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2624	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2625		/*
2626		 * if the bit being tested is the modified bit, then
2627		 * mark clean_map and ptes as never
2628		 * modified.
2629		 */
2630		if (!pmap_track_modified(pv->pv_va))
2631			continue;
2632#if defined(PMAP_DIAGNOSTIC)
2633		if (!pv->pv_pmap) {
2634			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
2635			continue;
2636		}
2637#endif
2638		PMAP_LOCK(pv->pv_pmap);
2639		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2640		rv = (*pte & PG_M) != 0;
2641		PMAP_UNLOCK(pv->pv_pmap);
2642		if (rv)
2643			break;
2644	}
2645	sched_unpin();
2646	return (rv);
2647}
2648
2649/*
2650 *	pmap_is_prefaultable:
2651 *
2652 *	Return whether or not the specified virtual address is elgible
2653 *	for prefault.
2654 */
2655boolean_t
2656pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
2657{
2658	pt_entry_t *pte;
2659	boolean_t rv;
2660
2661	rv = FALSE;
2662	PMAP_LOCK(pmap);
2663	if (*pmap_pde(pmap, addr)) {
2664		pte = vtopte(addr);
2665		rv = *pte == 0;
2666	}
2667	PMAP_UNLOCK(pmap);
2668	return (rv);
2669}
2670
2671/*
2672 *	Clear the given bit in each of the given page's ptes.
2673 */
2674static __inline void
2675pmap_clear_ptes(vm_page_t m, int bit)
2676{
2677	register pv_entry_t pv;
2678	pt_entry_t pbits, *pte;
2679
2680	if (!pmap_initialized || (m->flags & PG_FICTITIOUS) ||
2681	    (bit == PG_RW && (m->flags & PG_WRITEABLE) == 0))
2682		return;
2683
2684	sched_pin();
2685	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2686	/*
2687	 * Loop over all current mappings setting/clearing as appropos If
2688	 * setting RO do we need to clear the VAC?
2689	 */
2690	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2691		/*
2692		 * don't write protect pager mappings
2693		 */
2694		if (bit == PG_RW) {
2695			if (!pmap_track_modified(pv->pv_va))
2696				continue;
2697		}
2698
2699#if defined(PMAP_DIAGNOSTIC)
2700		if (!pv->pv_pmap) {
2701			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
2702			continue;
2703		}
2704#endif
2705
2706		PMAP_LOCK(pv->pv_pmap);
2707		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2708		pbits = *pte;
2709		if (pbits & bit) {
2710			if (bit == PG_RW) {
2711				if (pbits & PG_M) {
2712					vm_page_dirty(m);
2713				}
2714				pte_store(pte, pbits & ~(PG_M|PG_RW));
2715			} else {
2716				pte_store(pte, pbits & ~bit);
2717			}
2718			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2719		}
2720		PMAP_UNLOCK(pv->pv_pmap);
2721	}
2722	if (bit == PG_RW)
2723		vm_page_flag_clear(m, PG_WRITEABLE);
2724	sched_unpin();
2725}
2726
2727/*
2728 *      pmap_page_protect:
2729 *
2730 *      Lower the permission for all mappings to a given page.
2731 */
2732void
2733pmap_page_protect(vm_page_t m, vm_prot_t prot)
2734{
2735	if ((prot & VM_PROT_WRITE) == 0) {
2736		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
2737			pmap_clear_ptes(m, PG_RW);
2738		} else {
2739			pmap_remove_all(m);
2740		}
2741	}
2742}
2743
2744/*
2745 *	pmap_ts_referenced:
2746 *
2747 *	Return a count of reference bits for a page, clearing those bits.
2748 *	It is not necessary for every reference bit to be cleared, but it
2749 *	is necessary that 0 only be returned when there are truly no
2750 *	reference bits set.
2751 *
2752 *	XXX: The exact number of bits to check and clear is a matter that
2753 *	should be tested and standardized at some point in the future for
2754 *	optimal aging of shared pages.
2755 */
2756int
2757pmap_ts_referenced(vm_page_t m)
2758{
2759	register pv_entry_t pv, pvf, pvn;
2760	pt_entry_t *pte;
2761	pt_entry_t v;
2762	int rtval = 0;
2763
2764	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2765		return (rtval);
2766
2767	sched_pin();
2768	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2769	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2770
2771		pvf = pv;
2772
2773		do {
2774			pvn = TAILQ_NEXT(pv, pv_list);
2775
2776			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2777
2778			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2779
2780			if (!pmap_track_modified(pv->pv_va))
2781				continue;
2782
2783			PMAP_LOCK(pv->pv_pmap);
2784			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2785
2786			if (pte && ((v = pte_load(pte)) & PG_A) != 0) {
2787				atomic_clear_int((u_int *)pte, PG_A);
2788				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
2789
2790				rtval++;
2791				if (rtval > 4) {
2792					PMAP_UNLOCK(pv->pv_pmap);
2793					break;
2794				}
2795			}
2796			PMAP_UNLOCK(pv->pv_pmap);
2797		} while ((pv = pvn) != NULL && pv != pvf);
2798	}
2799	sched_unpin();
2800
2801	return (rtval);
2802}
2803
2804/*
2805 *	Clear the modify bits on the specified physical page.
2806 */
2807void
2808pmap_clear_modify(vm_page_t m)
2809{
2810	pmap_clear_ptes(m, PG_M);
2811}
2812
2813/*
2814 *	pmap_clear_reference:
2815 *
2816 *	Clear the reference bit on the specified physical page.
2817 */
2818void
2819pmap_clear_reference(vm_page_t m)
2820{
2821	pmap_clear_ptes(m, PG_A);
2822}
2823
2824/*
2825 * Miscellaneous support routines follow
2826 */
2827
2828/*
2829 * Map a set of physical memory pages into the kernel virtual
2830 * address space. Return a pointer to where it is mapped. This
2831 * routine is intended to be used for mapping device memory,
2832 * NOT real memory.
2833 */
2834void *
2835pmap_mapdev(pa, size)
2836	vm_paddr_t pa;
2837	vm_size_t size;
2838{
2839	vm_offset_t va, tmpva, offset;
2840
2841	offset = pa & PAGE_MASK;
2842	size = roundup(offset + size, PAGE_SIZE);
2843	pa = pa & PG_FRAME;
2844
2845	if (pa < KERNLOAD && pa + size <= KERNLOAD)
2846		va = KERNBASE + pa;
2847	else
2848		va = kmem_alloc_nofault(kernel_map, size);
2849	if (!va)
2850		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2851
2852	for (tmpva = va; size > 0; ) {
2853		pmap_kenter(tmpva, pa);
2854		size -= PAGE_SIZE;
2855		tmpva += PAGE_SIZE;
2856		pa += PAGE_SIZE;
2857	}
2858	pmap_invalidate_range(kernel_pmap, va, tmpva);
2859	return ((void *)(va + offset));
2860}
2861
2862void
2863pmap_unmapdev(va, size)
2864	vm_offset_t va;
2865	vm_size_t size;
2866{
2867	vm_offset_t base, offset, tmpva;
2868
2869	if (va >= KERNBASE && va + size <= KERNBASE + KERNLOAD)
2870		return;
2871	base = va & PG_FRAME;
2872	offset = va & PAGE_MASK;
2873	size = roundup(offset + size, PAGE_SIZE);
2874	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE)
2875		pmap_kremove(tmpva);
2876	pmap_invalidate_range(kernel_pmap, va, tmpva);
2877	kmem_free(kernel_map, base, size);
2878}
2879
2880/*
2881 * perform the pmap work for mincore
2882 */
2883int
2884pmap_mincore(pmap, addr)
2885	pmap_t pmap;
2886	vm_offset_t addr;
2887{
2888	pt_entry_t *ptep, pte;
2889	vm_page_t m;
2890	int val = 0;
2891
2892	PMAP_LOCK(pmap);
2893	ptep = pmap_pte(pmap, addr);
2894	pte = (ptep != NULL) ? *ptep : 0;
2895	PMAP_UNLOCK(pmap);
2896
2897	if (pte != 0) {
2898		vm_paddr_t pa;
2899
2900		val = MINCORE_INCORE;
2901		if ((pte & PG_MANAGED) == 0)
2902			return val;
2903
2904		pa = pte & PG_FRAME;
2905
2906		m = PHYS_TO_VM_PAGE(pa);
2907
2908		/*
2909		 * Modified by us
2910		 */
2911		if (pte & PG_M)
2912			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
2913		else {
2914			/*
2915			 * Modified by someone else
2916			 */
2917			vm_page_lock_queues();
2918			if (m->dirty || pmap_is_modified(m))
2919				val |= MINCORE_MODIFIED_OTHER;
2920			vm_page_unlock_queues();
2921		}
2922		/*
2923		 * Referenced by us
2924		 */
2925		if (pte & PG_A)
2926			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
2927		else {
2928			/*
2929			 * Referenced by someone else
2930			 */
2931			vm_page_lock_queues();
2932			if ((m->flags & PG_REFERENCED) ||
2933			    pmap_ts_referenced(m)) {
2934				val |= MINCORE_REFERENCED_OTHER;
2935				vm_page_flag_set(m, PG_REFERENCED);
2936			}
2937			vm_page_unlock_queues();
2938		}
2939	}
2940	return val;
2941}
2942
2943void
2944pmap_activate(struct thread *td)
2945{
2946	struct proc *p = td->td_proc;
2947	pmap_t	pmap, oldpmap;
2948	u_int32_t  cr3;
2949
2950	critical_enter();
2951	pmap = vmspace_pmap(td->td_proc->p_vmspace);
2952	oldpmap = PCPU_GET(curpmap);
2953#if defined(SMP)
2954	atomic_clear_int(&oldpmap->pm_active, PCPU_GET(cpumask));
2955	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
2956#else
2957	oldpmap->pm_active &= ~1;
2958	pmap->pm_active |= 1;
2959#endif
2960#ifdef PAE
2961	cr3 = vtophys(pmap->pm_pdpt);
2962#else
2963	cr3 = vtophys(pmap->pm_pdir);
2964#endif
2965	/* XXXKSE this is wrong.
2966	 * pmap_activate is for the current thread on the current cpu
2967	 */
2968	if (p->p_flag & P_SA) {
2969		/* Make sure all other cr3 entries are updated. */
2970		/* what if they are running?  XXXKSE (maybe abort them) */
2971		FOREACH_THREAD_IN_PROC(p, td) {
2972			td->td_pcb->pcb_cr3 = cr3;
2973		}
2974	} else {
2975		td->td_pcb->pcb_cr3 = cr3;
2976	}
2977	load_cr3(cr3);
2978	PCPU_SET(curpmap, pmap);
2979	critical_exit();
2980}
2981
2982vm_offset_t
2983pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
2984{
2985
2986	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
2987		return addr;
2988	}
2989
2990	addr = (addr + PDRMASK) & ~PDRMASK;
2991	return addr;
2992}
2993
2994
2995#if defined(PMAP_DEBUG)
2996pmap_pid_dump(int pid)
2997{
2998	pmap_t pmap;
2999	struct proc *p;
3000	int npte = 0;
3001	int index;
3002
3003	sx_slock(&allproc_lock);
3004	LIST_FOREACH(p, &allproc, p_list) {
3005		if (p->p_pid != pid)
3006			continue;
3007
3008		if (p->p_vmspace) {
3009			int i,j;
3010			index = 0;
3011			pmap = vmspace_pmap(p->p_vmspace);
3012			for (i = 0; i < NPDEPTD; i++) {
3013				pd_entry_t *pde;
3014				pt_entry_t *pte;
3015				vm_offset_t base = i << PDRSHIFT;
3016
3017				pde = &pmap->pm_pdir[i];
3018				if (pde && pmap_pde_v(pde)) {
3019					for (j = 0; j < NPTEPG; j++) {
3020						vm_offset_t va = base + (j << PAGE_SHIFT);
3021						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3022							if (index) {
3023								index = 0;
3024								printf("\n");
3025							}
3026							sx_sunlock(&allproc_lock);
3027							return npte;
3028						}
3029						pte = pmap_pte(pmap, va);
3030						if (pte && pmap_pte_v(pte)) {
3031							pt_entry_t pa;
3032							vm_page_t m;
3033							pa = *pte;
3034							m = PHYS_TO_VM_PAGE(pa);
3035							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3036								va, pa, m->hold_count, m->wire_count, m->flags);
3037							npte++;
3038							index++;
3039							if (index >= 2) {
3040								index = 0;
3041								printf("\n");
3042							} else {
3043								printf(" ");
3044							}
3045						}
3046					}
3047				}
3048			}
3049		}
3050	}
3051	sx_sunlock(&allproc_lock);
3052	return npte;
3053}
3054#endif
3055
3056#if defined(DEBUG)
3057
3058static void	pads(pmap_t pm);
3059void		pmap_pvdump(vm_offset_t pa);
3060
3061/* print address space of pmap*/
3062static void
3063pads(pm)
3064	pmap_t pm;
3065{
3066	int i, j;
3067	vm_paddr_t va;
3068	pt_entry_t *ptep;
3069
3070	if (pm == kernel_pmap)
3071		return;
3072	for (i = 0; i < NPDEPTD; i++)
3073		if (pm->pm_pdir[i])
3074			for (j = 0; j < NPTEPG; j++) {
3075				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3076				if (pm == kernel_pmap && va < KERNBASE)
3077					continue;
3078				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3079					continue;
3080				ptep = pmap_pte(pm, va);
3081				if (pmap_pte_v(ptep))
3082					printf("%x:%x ", va, *ptep);
3083			};
3084
3085}
3086
3087void
3088pmap_pvdump(pa)
3089	vm_paddr_t pa;
3090{
3091	pv_entry_t pv;
3092	vm_page_t m;
3093
3094	printf("pa %x", pa);
3095	m = PHYS_TO_VM_PAGE(pa);
3096	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3097		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3098		pads(pv->pv_pmap);
3099	}
3100	printf(" ");
3101}
3102#endif
3103