pmap.c revision 102241
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * the Systems Programming Group of the University of Utah Computer
11 * Science Department and William Jolitz of UUNET Technologies Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by the University of
24 *	California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
42 * $FreeBSD: head/sys/i386/i386/pmap.c 102241 2002-08-21 23:39:52Z archie $
43 */
44
45/*
46 *	Manages physical address maps.
47 *
48 *	In addition to hardware address maps, this
49 *	module is called upon to provide software-use-only
50 *	maps which may or may not be stored in the same
51 *	form as hardware maps.  These pseudo-maps are
52 *	used to store intermediate results from copy
53 *	operations to and from address spaces.
54 *
55 *	Since the information managed by this module is
56 *	also stored by the logical address mapping module,
57 *	this module may throw away valid virtual-to-physical
58 *	mappings at almost any time.  However, invalidations
59 *	of virtual-to-physical mappings must be done as
60 *	requested.
61 *
62 *	In order to cope with hardware architectures which
63 *	make virtual-to-physical map invalidates expensive,
64 *	this module may delay invalidate or reduced protection
65 *	operations until such time as they are actually
66 *	necessary.  This module is given full information as
67 *	to which processors are currently using which maps,
68 *	and to when physical maps must be made correct.
69 */
70
71#include "opt_pmap.h"
72#include "opt_msgbuf.h"
73#include "opt_kstack_pages.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/kernel.h>
78#include <sys/lock.h>
79#include <sys/mman.h>
80#include <sys/msgbuf.h>
81#include <sys/mutex.h>
82#include <sys/proc.h>
83#include <sys/sx.h>
84#include <sys/user.h>
85#include <sys/vmmeter.h>
86#include <sys/sysctl.h>
87#ifdef SMP
88#include <sys/smp.h>
89#endif
90
91#include <vm/vm.h>
92#include <vm/vm_param.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_page.h>
95#include <vm/vm_map.h>
96#include <vm/vm_object.h>
97#include <vm/vm_extern.h>
98#include <vm/vm_pageout.h>
99#include <vm/vm_pager.h>
100#include <vm/uma.h>
101
102#include <machine/cpu.h>
103#include <machine/cputypes.h>
104#include <machine/md_var.h>
105#include <machine/specialreg.h>
106#if defined(SMP) || defined(APIC_IO)
107#include <machine/smp.h>
108#include <machine/apic.h>
109#include <machine/segments.h>
110#include <machine/tss.h>
111#endif /* SMP || APIC_IO */
112
113#define PMAP_KEEP_PDIRS
114#ifndef PMAP_SHPGPERPROC
115#define PMAP_SHPGPERPROC 200
116#endif
117
118#if defined(DIAGNOSTIC)
119#define PMAP_DIAGNOSTIC
120#endif
121
122#define MINPV 2048
123
124#if !defined(PMAP_DIAGNOSTIC)
125#define PMAP_INLINE __inline
126#else
127#define PMAP_INLINE
128#endif
129
130/*
131 * Get PDEs and PTEs for user/kernel address space
132 */
133#define	pmap_pde(m, v)	(&((m)->pm_pdir[(vm_offset_t)(v) >> PDRSHIFT]))
134#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
135
136#define pmap_pde_v(pte)		((*(int *)pte & PG_V) != 0)
137#define pmap_pte_w(pte)		((*(int *)pte & PG_W) != 0)
138#define pmap_pte_m(pte)		((*(int *)pte & PG_M) != 0)
139#define pmap_pte_u(pte)		((*(int *)pte & PG_A) != 0)
140#define pmap_pte_v(pte)		((*(int *)pte & PG_V) != 0)
141
142#define pmap_pte_set_w(pte, v) ((v)?(*(int *)pte |= PG_W):(*(int *)pte &= ~PG_W))
143#define pmap_pte_set_prot(pte, v) ((*(int *)pte &= ~PG_PROT), (*(int *)pte |= (v)))
144
145/*
146 * Given a map and a machine independent protection code,
147 * convert to a vax protection code.
148 */
149#define pte_prot(m, p)	(protection_codes[p])
150static int protection_codes[8];
151
152struct pmap kernel_pmap_store;
153LIST_HEAD(pmaplist, pmap);
154struct pmaplist allpmaps;
155
156vm_offset_t avail_start;	/* PA of first available physical page */
157vm_offset_t avail_end;		/* PA of last available physical page */
158vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
159vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
160static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
161static int pgeflag;		/* PG_G or-in */
162static int pseflag;		/* PG_PS or-in */
163
164static vm_object_t kptobj;
165
166static int nkpt;
167vm_offset_t kernel_vm_end;
168extern u_int32_t KERNend;
169
170/*
171 * Data for the pv entry allocation mechanism
172 */
173static uma_zone_t pvzone;
174static struct vm_object pvzone_obj;
175static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
176static int pmap_pagedaemon_waken = 0;
177
178/*
179 * All those kernel PT submaps that BSD is so fond of
180 */
181pt_entry_t *CMAP1 = 0;
182static pt_entry_t *CMAP2, *CMAP3, *ptmmap;
183caddr_t CADDR1 = 0, ptvmmap = 0;
184static caddr_t CADDR2, CADDR3;
185static pt_entry_t *msgbufmap;
186struct msgbuf *msgbufp = 0;
187
188/*
189 * Crashdump maps.
190 */
191static pt_entry_t *pt_crashdumpmap;
192static caddr_t crashdumpmap;
193
194#ifdef SMP
195extern pt_entry_t *SMPpt;
196#endif
197static pt_entry_t *PMAP1 = 0;
198static pt_entry_t *PADDR1 = 0;
199
200static PMAP_INLINE void	free_pv_entry(pv_entry_t pv);
201static pt_entry_t *get_ptbase(pmap_t pmap);
202static pv_entry_t get_pv_entry(void);
203static void	i386_protection_init(void);
204static __inline void	pmap_changebit(vm_page_t m, int bit, boolean_t setem);
205
206static void	pmap_remove_all(vm_page_t m);
207static vm_page_t pmap_enter_quick(pmap_t pmap, vm_offset_t va,
208				      vm_page_t m, vm_page_t mpte);
209static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva);
210static void pmap_remove_page(struct pmap *pmap, vm_offset_t va);
211static int pmap_remove_entry(struct pmap *pmap, vm_page_t m,
212					vm_offset_t va);
213static boolean_t pmap_testbit(vm_page_t m, int bit);
214static void pmap_insert_entry(pmap_t pmap, vm_offset_t va,
215		vm_page_t mpte, vm_page_t m);
216
217static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va);
218
219static int pmap_release_free_page(pmap_t pmap, vm_page_t p);
220static vm_page_t _pmap_allocpte(pmap_t pmap, unsigned ptepindex);
221static pt_entry_t *pmap_pte_quick(pmap_t pmap, vm_offset_t va);
222static vm_page_t pmap_page_lookup(vm_object_t object, vm_pindex_t pindex);
223static int pmap_unuse_pt(pmap_t, vm_offset_t, vm_page_t);
224static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
225static void *pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait);
226
227static pd_entry_t pdir4mb;
228
229/*
230 *	Routine:	pmap_pte
231 *	Function:
232 *		Extract the page table entry associated
233 *		with the given map/virtual_address pair.
234 */
235
236PMAP_INLINE pt_entry_t *
237pmap_pte(pmap, va)
238	register pmap_t pmap;
239	vm_offset_t va;
240{
241	pd_entry_t *pdeaddr;
242
243	if (pmap) {
244		pdeaddr = pmap_pde(pmap, va);
245		if (*pdeaddr & PG_PS)
246			return pdeaddr;
247		if (*pdeaddr) {
248			return get_ptbase(pmap) + i386_btop(va);
249		}
250	}
251	return (0);
252}
253
254/*
255 * Move the kernel virtual free pointer to the next
256 * 4MB.  This is used to help improve performance
257 * by using a large (4MB) page for much of the kernel
258 * (.text, .data, .bss)
259 */
260static vm_offset_t
261pmap_kmem_choose(vm_offset_t addr)
262{
263	vm_offset_t newaddr = addr;
264
265#ifndef DISABLE_PSE
266	if (cpu_feature & CPUID_PSE)
267		newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
268#endif
269	return newaddr;
270}
271
272/*
273 *	Bootstrap the system enough to run with virtual memory.
274 *
275 *	On the i386 this is called after mapping has already been enabled
276 *	and just syncs the pmap module with what has already been done.
277 *	[We can't call it easily with mapping off since the kernel is not
278 *	mapped with PA == VA, hence we would have to relocate every address
279 *	from the linked base (virtual) address "KERNBASE" to the actual
280 *	(physical) address starting relative to 0]
281 */
282void
283pmap_bootstrap(firstaddr, loadaddr)
284	vm_offset_t firstaddr;
285	vm_offset_t loadaddr;
286{
287	vm_offset_t va;
288	pt_entry_t *pte;
289	int i;
290
291	avail_start = firstaddr;
292
293	/*
294	 * XXX The calculation of virtual_avail is wrong. It's NKPT*PAGE_SIZE too
295	 * large. It should instead be correctly calculated in locore.s and
296	 * not based on 'first' (which is a physical address, not a virtual
297	 * address, for the start of unused physical memory). The kernel
298	 * page tables are NOT double mapped and thus should not be included
299	 * in this calculation.
300	 */
301	virtual_avail = (vm_offset_t) KERNBASE + firstaddr;
302	virtual_avail = pmap_kmem_choose(virtual_avail);
303
304	virtual_end = VM_MAX_KERNEL_ADDRESS;
305
306	/*
307	 * Initialize protection array.
308	 */
309	i386_protection_init();
310
311	/*
312	 * Initialize the kernel pmap (which is statically allocated).
313	 */
314	kernel_pmap->pm_pdir = (pd_entry_t *) (KERNBASE + (u_int)IdlePTD);
315	kernel_pmap->pm_active = -1;	/* don't allow deactivation */
316	TAILQ_INIT(&kernel_pmap->pm_pvlist);
317	LIST_INIT(&allpmaps);
318	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
319	nkpt = NKPT;
320
321	/*
322	 * Reserve some special page table entries/VA space for temporary
323	 * mapping of pages.
324	 */
325#define	SYSMAP(c, p, v, n)	\
326	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
327
328	va = virtual_avail;
329	pte = (pt_entry_t *) pmap_pte(kernel_pmap, va);
330
331	/*
332	 * CMAP1/CMAP2 are used for zeroing and copying pages.
333	 * CMAP3 is used for the idle process page zeroing.
334	 */
335	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
336	SYSMAP(caddr_t, CMAP2, CADDR2, 1)
337	SYSMAP(caddr_t, CMAP3, CADDR3, 1)
338
339	/*
340	 * Crashdump maps.
341	 */
342	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
343
344	/*
345	 * ptvmmap is used for reading arbitrary physical pages via /dev/mem.
346	 * XXX ptmmap is not used.
347	 */
348	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
349
350	/*
351	 * msgbufp is used to map the system message buffer.
352	 * XXX msgbufmap is not used.
353	 */
354	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
355	       atop(round_page(MSGBUF_SIZE)))
356
357	/*
358	 * ptemap is used for pmap_pte_quick
359	 */
360	SYSMAP(pt_entry_t *, PMAP1, PADDR1, 1);
361
362	virtual_avail = va;
363
364	*CMAP1 = *CMAP2 = 0;
365	for (i = 0; i < NKPT; i++)
366		PTD[i] = 0;
367
368	pgeflag = 0;
369#ifndef DISABLE_PG_G
370	if (cpu_feature & CPUID_PGE)
371		pgeflag = PG_G;
372#endif
373
374/*
375 * Initialize the 4MB page size flag
376 */
377	pseflag = 0;
378/*
379 * The 4MB page version of the initial
380 * kernel page mapping.
381 */
382	pdir4mb = 0;
383
384#ifndef DISABLE_PSE
385	if (cpu_feature & CPUID_PSE) {
386		pd_entry_t ptditmp;
387		/*
388		 * Note that we have enabled PSE mode
389		 */
390		pseflag = PG_PS;
391		ptditmp = *(PTmap + i386_btop(KERNBASE));
392		ptditmp &= ~(NBPDR - 1);
393		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
394		pdir4mb = ptditmp;
395	}
396#endif
397#ifndef SMP
398	/*
399	 * Turn on PGE/PSE.  SMP does this later on since the
400	 * 4K page tables are required for AP boot (for now).
401	 * XXX fixme.
402	 */
403	pmap_set_opt();
404#endif
405#ifdef SMP
406	if (cpu_apic_address == 0)
407		panic("pmap_bootstrap: no local apic! (non-SMP hardware?)");
408
409	/* local apic is mapped on last page */
410	SMPpt[NPTEPG - 1] = (pt_entry_t)(PG_V | PG_RW | PG_N | pgeflag |
411	    (cpu_apic_address & PG_FRAME));
412#endif
413	invltlb();
414}
415
416/*
417 * Enable 4MB page mode for MP startup.  Turn on PG_G support.
418 * BSP will run this after all the AP's have started up.
419 */
420void
421pmap_set_opt(void)
422{
423	pt_entry_t *pte;
424	vm_offset_t va, endva;
425
426	if (pgeflag && (cpu_feature & CPUID_PGE)) {
427		load_cr4(rcr4() | CR4_PGE);
428		invltlb();		/* Insurance */
429	}
430#ifndef DISABLE_PSE
431	if (pseflag && (cpu_feature & CPUID_PSE)) {
432		load_cr4(rcr4() | CR4_PSE);
433		invltlb();		/* Insurance */
434	}
435#endif
436	if (PCPU_GET(cpuid) == 0) {
437#ifndef DISABLE_PSE
438		if (pdir4mb) {
439			kernel_pmap->pm_pdir[KPTDI] = PTD[KPTDI] = pdir4mb;
440			invltlb();	/* Insurance */
441		}
442#endif
443		if (pgeflag) {
444			/* Turn on PG_G for text, data, bss pages. */
445			va = (vm_offset_t)btext;
446#ifndef DISABLE_PSE
447			if (pseflag && (cpu_feature & CPUID_PSE)) {
448				if (va < KERNBASE + (1 << PDRSHIFT))
449					va = KERNBASE + (1 << PDRSHIFT);
450			}
451#endif
452			endva = KERNBASE + KERNend;
453			while (va < endva) {
454				pte = vtopte(va);
455				if (*pte)
456					*pte |= pgeflag;
457				va += PAGE_SIZE;
458			}
459			invltlb();	/* Insurance */
460		}
461		/*
462		 * We do not need to broadcast the invltlb here, because
463		 * each AP does it the moment it is released from the boot
464		 * lock.  See ap_init().
465		 */
466	}
467}
468
469void *
470pmap_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
471{
472	*flags = UMA_SLAB_PRIV;
473	return (void *)kmem_alloc(kernel_map, bytes);
474}
475
476/*
477 *	Initialize the pmap module.
478 *	Called by vm_init, to initialize any structures that the pmap
479 *	system needs to map virtual memory.
480 *	pmap_init has been enhanced to support in a fairly consistant
481 *	way, discontiguous physical memory.
482 */
483void
484pmap_init(phys_start, phys_end)
485	vm_offset_t phys_start, phys_end;
486{
487	int i;
488	int initial_pvs;
489
490	/*
491	 * object for kernel page table pages
492	 */
493	kptobj = vm_object_allocate(OBJT_DEFAULT, NKPDE);
494
495	/*
496	 * Allocate memory for random pmap data structures.  Includes the
497	 * pv_head_table.
498	 */
499
500	for(i = 0; i < vm_page_array_size; i++) {
501		vm_page_t m;
502
503		m = &vm_page_array[i];
504		TAILQ_INIT(&m->md.pv_list);
505		m->md.pv_list_count = 0;
506	}
507
508	/*
509	 * init the pv free list
510	 */
511	initial_pvs = vm_page_array_size;
512	if (initial_pvs < MINPV)
513		initial_pvs = MINPV;
514	pvzone = uma_zcreate("PV ENTRY", sizeof (struct pv_entry), NULL, NULL,
515	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
516	uma_zone_set_allocf(pvzone, pmap_allocf);
517	uma_prealloc(pvzone, initial_pvs);
518
519	/*
520	 * Now it is safe to enable pv_table recording.
521	 */
522	pmap_initialized = TRUE;
523}
524
525/*
526 * Initialize the address space (zone) for the pv_entries.  Set a
527 * high water mark so that the system can recover from excessive
528 * numbers of pv entries.
529 */
530void
531pmap_init2()
532{
533	int shpgperproc = PMAP_SHPGPERPROC;
534
535	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
536	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
537	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
538	pv_entry_high_water = 9 * (pv_entry_max / 10);
539	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
540}
541
542
543/***************************************************
544 * Low level helper routines.....
545 ***************************************************/
546
547#if defined(PMAP_DIAGNOSTIC)
548
549/*
550 * This code checks for non-writeable/modified pages.
551 * This should be an invalid condition.
552 */
553static int
554pmap_nw_modified(pt_entry_t ptea)
555{
556	int pte;
557
558	pte = (int) ptea;
559
560	if ((pte & (PG_M|PG_RW)) == PG_M)
561		return 1;
562	else
563		return 0;
564}
565#endif
566
567
568/*
569 * this routine defines the region(s) of memory that should
570 * not be tested for the modified bit.
571 */
572static PMAP_INLINE int
573pmap_track_modified(vm_offset_t va)
574{
575	if ((va < kmi.clean_sva) || (va >= kmi.clean_eva))
576		return 1;
577	else
578		return 0;
579}
580
581#ifdef I386_CPU
582/*
583 * i386 only has "invalidate everything" and no SMP to worry about.
584 */
585PMAP_INLINE void
586pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
587{
588
589	if (pmap == kernel_pmap || pmap->pm_active)
590		invltlb();
591}
592
593PMAP_INLINE void
594pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
595{
596
597	if (pmap == kernel_pmap || pmap->pm_active)
598		invltlb();
599}
600
601PMAP_INLINE void
602pmap_invalidate_all(pmap_t pmap)
603{
604
605	if (pmap == kernel_pmap || pmap->pm_active)
606		invltlb();
607}
608#else /* !I386_CPU */
609#ifdef SMP
610/*
611 * For SMP, these functions have to use the IPI mechanism for coherence.
612 */
613void
614pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
615{
616	u_int cpumask;
617	u_int other_cpus;
618
619	critical_enter();
620	/*
621	 * We need to disable interrupt preemption but MUST NOT have
622	 * interrupts disabled here.
623	 * XXX we may need to hold schedlock to get a coherent pm_active
624	 */
625	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
626		invlpg(va);
627		smp_invlpg(va);
628	} else {
629		cpumask = PCPU_GET(cpumask);
630		other_cpus = PCPU_GET(other_cpus);
631		if (pmap->pm_active & cpumask)
632			invlpg(va);
633		if (pmap->pm_active & other_cpus)
634			smp_masked_invlpg(pmap->pm_active & other_cpus, va);
635	}
636	critical_exit();
637}
638
639void
640pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
641{
642	u_int cpumask;
643	u_int other_cpus;
644	vm_offset_t addr;
645
646	critical_enter();
647	/*
648	 * We need to disable interrupt preemption but MUST NOT have
649	 * interrupts disabled here.
650	 * XXX we may need to hold schedlock to get a coherent pm_active
651	 */
652	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
653		for (addr = sva; addr < eva; addr += PAGE_SIZE)
654			invlpg(addr);
655		smp_invlpg_range(sva, eva);
656	} else {
657		cpumask = PCPU_GET(cpumask);
658		other_cpus = PCPU_GET(other_cpus);
659		if (pmap->pm_active & cpumask)
660			for (addr = sva; addr < eva; addr += PAGE_SIZE)
661				invlpg(addr);
662		if (pmap->pm_active & other_cpus)
663			smp_masked_invlpg_range(pmap->pm_active & other_cpus,
664			    sva, eva);
665	}
666	critical_exit();
667}
668
669void
670pmap_invalidate_all(pmap_t pmap)
671{
672	u_int cpumask;
673	u_int other_cpus;
674
675#ifdef SWTCH_OPTIM_STATS
676	tlb_flush_count++;
677#endif
678	critical_enter();
679	/*
680	 * We need to disable interrupt preemption but MUST NOT have
681	 * interrupts disabled here.
682	 * XXX we may need to hold schedlock to get a coherent pm_active
683	 */
684	if (pmap->pm_active == -1 || pmap->pm_active == all_cpus) {
685		invltlb();
686		smp_invltlb();
687	} else {
688		cpumask = PCPU_GET(cpumask);
689		other_cpus = PCPU_GET(other_cpus);
690		if (pmap->pm_active & cpumask)
691			invltlb();
692		if (pmap->pm_active & other_cpus)
693			smp_masked_invltlb(pmap->pm_active & other_cpus);
694	}
695	critical_exit();
696}
697#else /* !SMP */
698/*
699 * Normal, non-SMP, 486+ invalidation functions.
700 * We inline these within pmap.c for speed.
701 */
702PMAP_INLINE void
703pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
704{
705
706	if (pmap == kernel_pmap || pmap->pm_active)
707		invlpg(va);
708}
709
710PMAP_INLINE void
711pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
712{
713	vm_offset_t addr;
714
715	if (pmap == kernel_pmap || pmap->pm_active)
716		for (addr = sva; addr < eva; addr += PAGE_SIZE)
717			invlpg(addr);
718}
719
720PMAP_INLINE void
721pmap_invalidate_all(pmap_t pmap)
722{
723
724	if (pmap == kernel_pmap || pmap->pm_active)
725		invltlb();
726}
727#endif /* !SMP */
728#endif /* !I386_CPU */
729
730/*
731 * Return an address which is the base of the Virtual mapping of
732 * all the PTEs for the given pmap. Note this doesn't say that
733 * all the PTEs will be present or that the pages there are valid.
734 * The PTEs are made available by the recursive mapping trick.
735 * It will map in the alternate PTE space if needed.
736 */
737static pt_entry_t *
738get_ptbase(pmap)
739	pmap_t pmap;
740{
741	pd_entry_t frame;
742
743	/* are we current address space or kernel? */
744	if (pmap == kernel_pmap)
745		return PTmap;
746	frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
747	if (frame == (PTDpde & PG_FRAME))
748		return PTmap;
749	/* otherwise, we are alternate address space */
750	if (frame != (APTDpde & PG_FRAME)) {
751		APTDpde = (pd_entry_t) (frame | PG_RW | PG_V);
752		pmap_invalidate_all(kernel_pmap);	/* XXX Bandaid */
753	}
754	return APTmap;
755}
756
757/*
758 * Super fast pmap_pte routine best used when scanning
759 * the pv lists.  This eliminates many coarse-grained
760 * invltlb calls.  Note that many of the pv list
761 * scans are across different pmaps.  It is very wasteful
762 * to do an entire invltlb for checking a single mapping.
763 */
764
765static pt_entry_t *
766pmap_pte_quick(pmap, va)
767	register pmap_t pmap;
768	vm_offset_t va;
769{
770	pd_entry_t pde, newpf;
771	pde = pmap->pm_pdir[va >> PDRSHIFT];
772	if (pde != 0) {
773		pd_entry_t frame = pmap->pm_pdir[PTDPTDI] & PG_FRAME;
774		unsigned index = i386_btop(va);
775		/* are we current address space or kernel? */
776		if (pmap == kernel_pmap || frame == (PTDpde & PG_FRAME))
777			return PTmap + index;
778		newpf = pde & PG_FRAME;
779		if (((*PMAP1) & PG_FRAME) != newpf) {
780			*PMAP1 = newpf | PG_RW | PG_V;
781			pmap_invalidate_page(kernel_pmap, (vm_offset_t)PADDR1);
782		}
783		return PADDR1 + (index & (NPTEPG - 1));
784	}
785	return (0);
786}
787
788/*
789 *	Routine:	pmap_extract
790 *	Function:
791 *		Extract the physical page address associated
792 *		with the given map/virtual_address pair.
793 */
794vm_offset_t
795pmap_extract(pmap, va)
796	register pmap_t pmap;
797	vm_offset_t va;
798{
799	vm_offset_t rtval;	/* XXX FIXME */
800	vm_offset_t pdirindex;
801
802	if (pmap == 0)
803		return 0;
804	pdirindex = va >> PDRSHIFT;
805	rtval = pmap->pm_pdir[pdirindex];
806	if (rtval != 0) {
807		pt_entry_t *pte;
808		if ((rtval & PG_PS) != 0) {
809			rtval &= ~(NBPDR - 1);
810			rtval |= va & (NBPDR - 1);
811			return rtval;
812		}
813		pte = get_ptbase(pmap) + i386_btop(va);
814		rtval = ((*pte & PG_FRAME) | (va & PAGE_MASK));
815		return rtval;
816	}
817	return 0;
818
819}
820
821/***************************************************
822 * Low level mapping routines.....
823 ***************************************************/
824
825/*
826 * Add a wired page to the kva.
827 * Note: not SMP coherent.
828 */
829PMAP_INLINE void
830pmap_kenter(vm_offset_t va, vm_offset_t pa)
831{
832	pt_entry_t *pte;
833
834	pte = vtopte(va);
835	*pte = pa | PG_RW | PG_V | pgeflag;
836}
837
838/*
839 * Remove a page from the kernel pagetables.
840 * Note: not SMP coherent.
841 */
842PMAP_INLINE void
843pmap_kremove(vm_offset_t va)
844{
845	pt_entry_t *pte;
846
847	pte = vtopte(va);
848	*pte = 0;
849}
850
851/*
852 *	Used to map a range of physical addresses into kernel
853 *	virtual address space.
854 *
855 *	The value passed in '*virt' is a suggested virtual address for
856 *	the mapping. Architectures which can support a direct-mapped
857 *	physical to virtual region can return the appropriate address
858 *	within that region, leaving '*virt' unchanged. Other
859 *	architectures should map the pages starting at '*virt' and
860 *	update '*virt' with the first usable address after the mapped
861 *	region.
862 */
863vm_offset_t
864pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot)
865{
866	vm_offset_t va, sva;
867
868	va = sva = *virt;
869	while (start < end) {
870		pmap_kenter(va, start);
871		va += PAGE_SIZE;
872		start += PAGE_SIZE;
873	}
874	pmap_invalidate_range(kernel_pmap, sva, va);
875	*virt = va;
876	return (sva);
877}
878
879
880/*
881 * Add a list of wired pages to the kva
882 * this routine is only used for temporary
883 * kernel mappings that do not need to have
884 * page modification or references recorded.
885 * Note that old mappings are simply written
886 * over.  The page *must* be wired.
887 * Note: SMP coherent.  Uses a ranged shootdown IPI.
888 */
889void
890pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
891{
892	vm_offset_t va;
893
894	va = sva;
895	while (count-- > 0) {
896		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
897		va += PAGE_SIZE;
898		m++;
899	}
900	pmap_invalidate_range(kernel_pmap, sva, va);
901}
902
903/*
904 * This routine tears out page mappings from the
905 * kernel -- it is meant only for temporary mappings.
906 * Note: SMP coherent.  Uses a ranged shootdown IPI.
907 */
908void
909pmap_qremove(vm_offset_t sva, int count)
910{
911	vm_offset_t va;
912
913	va = sva;
914	while (count-- > 0) {
915		pmap_kremove(va);
916		va += PAGE_SIZE;
917	}
918	pmap_invalidate_range(kernel_pmap, sva, va);
919}
920
921static vm_page_t
922pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
923{
924	vm_page_t m;
925
926retry:
927	m = vm_page_lookup(object, pindex);
928	if (m != NULL) {
929		vm_page_lock_queues();
930		if (vm_page_sleep_if_busy(m, FALSE, "pplookp"))
931			goto retry;
932		vm_page_unlock_queues();
933	}
934	return m;
935}
936
937/*
938 * Create the kernel stack (including pcb for i386) for a new thread.
939 * This routine directly affects the fork perf for a process and
940 * create performance for a thread.
941 */
942void
943pmap_new_thread(struct thread *td)
944{
945	int i;
946	vm_page_t ma[KSTACK_PAGES];
947	vm_object_t ksobj;
948	vm_page_t m;
949	vm_offset_t ks;
950
951	/*
952	 * allocate object for the kstack
953	 */
954	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
955	td->td_kstack_obj = ksobj;
956
957	/* get a kernel virtual address for the kstack for this thread */
958#ifdef KSTACK_GUARD
959	ks = kmem_alloc_nofault(kernel_map, (KSTACK_PAGES + 1) * PAGE_SIZE);
960	if (ks == 0)
961		panic("pmap_new_thread: kstack allocation failed");
962	if (*vtopte(ks) != 0)
963		pmap_qremove(ks, 1);
964	ks += PAGE_SIZE;
965	td->td_kstack = ks;
966#else
967	/* get a kernel virtual address for the kstack for this thread */
968	ks = kmem_alloc_nofault(kernel_map, KSTACK_PAGES * PAGE_SIZE);
969	if (ks == 0)
970		panic("pmap_new_thread: kstack allocation failed");
971	td->td_kstack = ks;
972#endif
973	/*
974	 * For the length of the stack, link in a real page of ram for each
975	 * page of stack.
976	 */
977	for (i = 0; i < KSTACK_PAGES; i++) {
978		/*
979		 * Get a kernel stack page
980		 */
981		m = vm_page_grab(ksobj, i,
982		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
983		ma[i] = m;
984
985		vm_page_wakeup(m);
986		vm_page_flag_clear(m, PG_ZERO);
987		m->valid = VM_PAGE_BITS_ALL;
988	}
989	pmap_qenter(ks, ma, KSTACK_PAGES);
990}
991
992/*
993 * Dispose the kernel stack for a thread that has exited.
994 * This routine directly impacts the exit perf of a process and thread.
995 */
996void
997pmap_dispose_thread(td)
998	struct thread *td;
999{
1000	int i;
1001	vm_object_t ksobj;
1002	vm_offset_t ks;
1003	vm_page_t m;
1004
1005	ksobj = td->td_kstack_obj;
1006	ks = td->td_kstack;
1007	pmap_qremove(ks, KSTACK_PAGES);
1008	for (i = 0; i < KSTACK_PAGES; i++) {
1009		m = vm_page_lookup(ksobj, i);
1010		if (m == NULL)
1011			panic("pmap_dispose_thread: kstack already missing?");
1012		vm_page_lock_queues();
1013		vm_page_busy(m);
1014		vm_page_unwire(m, 0);
1015		vm_page_free(m);
1016		vm_page_unlock_queues();
1017	}
1018	/*
1019	 * Free the space that this stack was mapped to in the kernel
1020	 * address map.
1021	 */
1022#ifdef KSTACK_GUARD
1023	kmem_free(kernel_map, ks - PAGE_SIZE, (KSTACK_PAGES + 1) * PAGE_SIZE);
1024#else
1025	kmem_free(kernel_map, ks, KSTACK_PAGES * PAGE_SIZE);
1026#endif
1027	vm_object_deallocate(ksobj);
1028}
1029
1030/*
1031 * Allow the Kernel stack for a thread to be prejudicially paged out.
1032 */
1033void
1034pmap_swapout_thread(td)
1035	struct thread *td;
1036{
1037	int i;
1038	vm_object_t ksobj;
1039	vm_offset_t ks;
1040	vm_page_t m;
1041
1042	ksobj = td->td_kstack_obj;
1043	ks = td->td_kstack;
1044	pmap_qremove(ks, KSTACK_PAGES);
1045	for (i = 0; i < KSTACK_PAGES; i++) {
1046		m = vm_page_lookup(ksobj, i);
1047		if (m == NULL)
1048			panic("pmap_swapout_thread: kstack already missing?");
1049		vm_page_lock_queues();
1050		vm_page_dirty(m);
1051		vm_page_unwire(m, 0);
1052		vm_page_unlock_queues();
1053	}
1054}
1055
1056/*
1057 * Bring the kernel stack for a specified thread back in.
1058 */
1059void
1060pmap_swapin_thread(td)
1061	struct thread *td;
1062{
1063	int i, rv;
1064	vm_page_t ma[KSTACK_PAGES];
1065	vm_object_t ksobj;
1066	vm_offset_t ks;
1067	vm_page_t m;
1068
1069	ksobj = td->td_kstack_obj;
1070	ks = td->td_kstack;
1071	for (i = 0; i < KSTACK_PAGES; i++) {
1072		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1073		if (m->valid != VM_PAGE_BITS_ALL) {
1074			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1075			if (rv != VM_PAGER_OK)
1076				panic("pmap_swapin_thread: cannot get kstack for proc: %d\n", td->td_proc->p_pid);
1077			m = vm_page_lookup(ksobj, i);
1078			m->valid = VM_PAGE_BITS_ALL;
1079		}
1080		ma[i] = m;
1081		vm_page_lock_queues();
1082		vm_page_wire(m);
1083		vm_page_wakeup(m);
1084		vm_page_unlock_queues();
1085	}
1086	pmap_qenter(ks, ma, KSTACK_PAGES);
1087}
1088
1089/***************************************************
1090 * Page table page management routines.....
1091 ***************************************************/
1092
1093/*
1094 * This routine unholds page table pages, and if the hold count
1095 * drops to zero, then it decrements the wire count.
1096 */
1097static int
1098_pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1099{
1100
1101	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1102		;
1103
1104	if (m->hold_count == 0) {
1105		vm_offset_t pteva;
1106		/*
1107		 * unmap the page table page
1108		 */
1109		pmap->pm_pdir[m->pindex] = 0;
1110		--pmap->pm_stats.resident_count;
1111		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1112		    (PTDpde & PG_FRAME)) {
1113			/*
1114			 * Do a invltlb to make the invalidated mapping
1115			 * take effect immediately.
1116			 */
1117			pteva = VM_MAXUSER_ADDRESS + i386_ptob(m->pindex);
1118			pmap_invalidate_page(pmap, pteva);
1119		}
1120
1121		if (pmap->pm_ptphint == m)
1122			pmap->pm_ptphint = NULL;
1123
1124		/*
1125		 * If the page is finally unwired, simply free it.
1126		 */
1127		--m->wire_count;
1128		if (m->wire_count == 0) {
1129			vm_page_busy(m);
1130			vm_page_free_zero(m);
1131			--cnt.v_wire_count;
1132		}
1133		return 1;
1134	}
1135	return 0;
1136}
1137
1138static PMAP_INLINE int
1139pmap_unwire_pte_hold(pmap_t pmap, vm_page_t m)
1140{
1141	vm_page_unhold(m);
1142	if (m->hold_count == 0)
1143		return _pmap_unwire_pte_hold(pmap, m);
1144	else
1145		return 0;
1146}
1147
1148/*
1149 * After removing a page table entry, this routine is used to
1150 * conditionally free the page, and manage the hold/wire counts.
1151 */
1152static int
1153pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1154{
1155	unsigned ptepindex;
1156	if (va >= VM_MAXUSER_ADDRESS)
1157		return 0;
1158
1159	if (mpte == NULL) {
1160		ptepindex = (va >> PDRSHIFT);
1161		if (pmap->pm_ptphint &&
1162			(pmap->pm_ptphint->pindex == ptepindex)) {
1163			mpte = pmap->pm_ptphint;
1164		} else {
1165			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1166			pmap->pm_ptphint = mpte;
1167		}
1168	}
1169
1170	return pmap_unwire_pte_hold(pmap, mpte);
1171}
1172
1173void
1174pmap_pinit0(pmap)
1175	struct pmap *pmap;
1176{
1177	pmap->pm_pdir =
1178		(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1179	pmap_kenter((vm_offset_t)pmap->pm_pdir, (vm_offset_t)IdlePTD);
1180#ifndef I386_CPU
1181	invlpg((vm_offset_t)pmap->pm_pdir);
1182#else
1183	invltlb();
1184#endif
1185	pmap->pm_ptphint = NULL;
1186	pmap->pm_active = 0;
1187	TAILQ_INIT(&pmap->pm_pvlist);
1188	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1189	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1190}
1191
1192/*
1193 * Initialize a preallocated and zeroed pmap structure,
1194 * such as one in a vmspace structure.
1195 */
1196void
1197pmap_pinit(pmap)
1198	register struct pmap *pmap;
1199{
1200	vm_page_t ptdpg;
1201
1202	/*
1203	 * No need to allocate page table space yet but we do need a valid
1204	 * page directory table.
1205	 */
1206	if (pmap->pm_pdir == NULL)
1207		pmap->pm_pdir =
1208			(pd_entry_t *)kmem_alloc_pageable(kernel_map, PAGE_SIZE);
1209
1210	/*
1211	 * allocate object for the ptes
1212	 */
1213	if (pmap->pm_pteobj == NULL)
1214		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, PTDPTDI + 1);
1215
1216	/*
1217	 * allocate the page directory page
1218	 */
1219	ptdpg = vm_page_grab(pmap->pm_pteobj, PTDPTDI,
1220	    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
1221	vm_page_flag_clear(ptdpg, PG_BUSY);
1222	ptdpg->valid = VM_PAGE_BITS_ALL;
1223
1224	pmap_qenter((vm_offset_t) pmap->pm_pdir, &ptdpg, 1);
1225	if ((ptdpg->flags & PG_ZERO) == 0)
1226		bzero(pmap->pm_pdir, PAGE_SIZE);
1227
1228	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
1229	/* Wire in kernel global address entries. */
1230	/* XXX copies current process, does not fill in MPPTDI */
1231	bcopy(PTD + KPTDI, pmap->pm_pdir + KPTDI, nkpt * PTESIZE);
1232#ifdef SMP
1233	pmap->pm_pdir[MPPTDI] = PTD[MPPTDI];
1234#endif
1235
1236	/* install self-referential address mapping entry */
1237	pmap->pm_pdir[PTDPTDI] =
1238		VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1239
1240	pmap->pm_active = 0;
1241	pmap->pm_ptphint = NULL;
1242	TAILQ_INIT(&pmap->pm_pvlist);
1243	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1244}
1245
1246/*
1247 * Wire in kernel global address entries.  To avoid a race condition
1248 * between pmap initialization and pmap_growkernel, this procedure
1249 * should be called after the vmspace is attached to the process
1250 * but before this pmap is activated.
1251 */
1252void
1253pmap_pinit2(pmap)
1254	struct pmap *pmap;
1255{
1256	/* XXX: Remove this stub when no longer called */
1257}
1258
1259static int
1260pmap_release_free_page(pmap_t pmap, vm_page_t p)
1261{
1262	pd_entry_t *pde = pmap->pm_pdir;
1263
1264	/*
1265	 * This code optimizes the case of freeing non-busy
1266	 * page-table pages.  Those pages are zero now, and
1267	 * might as well be placed directly into the zero queue.
1268	 */
1269	vm_page_lock_queues();
1270	if (vm_page_sleep_if_busy(p, FALSE, "pmaprl"))
1271		return (0);
1272	vm_page_busy(p);
1273
1274	/*
1275	 * Remove the page table page from the processes address space.
1276	 */
1277	pde[p->pindex] = 0;
1278	pmap->pm_stats.resident_count--;
1279
1280	if (p->hold_count)  {
1281		panic("pmap_release: freeing held page table page");
1282	}
1283	/*
1284	 * Page directory pages need to have the kernel
1285	 * stuff cleared, so they can go into the zero queue also.
1286	 */
1287	if (p->pindex == PTDPTDI) {
1288		bzero(pde + KPTDI, nkpt * PTESIZE);
1289#ifdef SMP
1290		pde[MPPTDI] = 0;
1291#endif
1292		pde[APTDPTDI] = 0;
1293		pmap_kremove((vm_offset_t) pmap->pm_pdir);
1294	}
1295
1296	if (pmap->pm_ptphint == p)
1297		pmap->pm_ptphint = NULL;
1298
1299	p->wire_count--;
1300	cnt.v_wire_count--;
1301	vm_page_free_zero(p);
1302	vm_page_unlock_queues();
1303	return 1;
1304}
1305
1306/*
1307 * this routine is called if the page table page is not
1308 * mapped correctly.
1309 */
1310static vm_page_t
1311_pmap_allocpte(pmap, ptepindex)
1312	pmap_t	pmap;
1313	unsigned ptepindex;
1314{
1315	vm_offset_t pteva, ptepa;	/* XXXPA */
1316	vm_page_t m;
1317
1318	/*
1319	 * Find or fabricate a new pagetable page
1320	 */
1321	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1322	    VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1323
1324	KASSERT(m->queue == PQ_NONE,
1325		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1326
1327	/*
1328	 * Increment the hold count for the page table page
1329	 * (denoting a new mapping.)
1330	 */
1331	m->hold_count++;
1332
1333	/*
1334	 * Map the pagetable page into the process address space, if
1335	 * it isn't already there.
1336	 */
1337
1338	pmap->pm_stats.resident_count++;
1339
1340	ptepa = VM_PAGE_TO_PHYS(m);
1341	pmap->pm_pdir[ptepindex] =
1342		(pd_entry_t) (ptepa | PG_U | PG_RW | PG_V | PG_A | PG_M);
1343
1344	/*
1345	 * Set the page table hint
1346	 */
1347	pmap->pm_ptphint = m;
1348
1349	/*
1350	 * Try to use the new mapping, but if we cannot, then
1351	 * do it with the routine that maps the page explicitly.
1352	 */
1353	if ((m->flags & PG_ZERO) == 0) {
1354		if ((pmap->pm_pdir[PTDPTDI] & PG_FRAME) ==
1355		    (PTDpde & PG_FRAME)) {
1356			pteva = VM_MAXUSER_ADDRESS + i386_ptob(ptepindex);
1357			bzero((caddr_t) pteva, PAGE_SIZE);
1358		} else {
1359			pmap_zero_page(m);
1360		}
1361	}
1362
1363	m->valid = VM_PAGE_BITS_ALL;
1364	vm_page_flag_clear(m, PG_ZERO);
1365	vm_page_wakeup(m);
1366
1367	return m;
1368}
1369
1370static vm_page_t
1371pmap_allocpte(pmap_t pmap, vm_offset_t va)
1372{
1373	unsigned ptepindex;
1374	pd_entry_t ptepa;
1375	vm_page_t m;
1376
1377	/*
1378	 * Calculate pagetable page index
1379	 */
1380	ptepindex = va >> PDRSHIFT;
1381
1382	/*
1383	 * Get the page directory entry
1384	 */
1385	ptepa = (vm_offset_t) pmap->pm_pdir[ptepindex];
1386
1387	/*
1388	 * This supports switching from a 4MB page to a
1389	 * normal 4K page.
1390	 */
1391	if (ptepa & PG_PS) {
1392		pmap->pm_pdir[ptepindex] = 0;
1393		ptepa = 0;
1394		pmap_invalidate_all(kernel_pmap);
1395	}
1396
1397	/*
1398	 * If the page table page is mapped, we just increment the
1399	 * hold count, and activate it.
1400	 */
1401	if (ptepa) {
1402		/*
1403		 * In order to get the page table page, try the
1404		 * hint first.
1405		 */
1406		if (pmap->pm_ptphint &&
1407			(pmap->pm_ptphint->pindex == ptepindex)) {
1408			m = pmap->pm_ptphint;
1409		} else {
1410			m = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1411			pmap->pm_ptphint = m;
1412		}
1413		m->hold_count++;
1414		return m;
1415	}
1416	/*
1417	 * Here if the pte page isn't mapped, or if it has been deallocated.
1418	 */
1419	return _pmap_allocpte(pmap, ptepindex);
1420}
1421
1422
1423/***************************************************
1424* Pmap allocation/deallocation routines.
1425 ***************************************************/
1426
1427/*
1428 * Release any resources held by the given physical map.
1429 * Called when a pmap initialized by pmap_pinit is being released.
1430 * Should only be called if the map contains no valid mappings.
1431 */
1432void
1433pmap_release(pmap_t pmap)
1434{
1435	vm_page_t p,n,ptdpg;
1436	vm_object_t object = pmap->pm_pteobj;
1437	int curgeneration;
1438
1439#if defined(DIAGNOSTIC)
1440	if (object->ref_count != 1)
1441		panic("pmap_release: pteobj reference count != 1");
1442#endif
1443
1444	ptdpg = NULL;
1445	LIST_REMOVE(pmap, pm_list);
1446retry:
1447	curgeneration = object->generation;
1448	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = n) {
1449		n = TAILQ_NEXT(p, listq);
1450		if (p->pindex == PTDPTDI) {
1451			ptdpg = p;
1452			continue;
1453		}
1454		while (1) {
1455			if (!pmap_release_free_page(pmap, p) &&
1456				(object->generation != curgeneration))
1457				goto retry;
1458		}
1459	}
1460
1461	if (ptdpg && !pmap_release_free_page(pmap, ptdpg))
1462		goto retry;
1463}
1464
1465static int
1466kvm_size(SYSCTL_HANDLER_ARGS)
1467{
1468	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - KERNBASE;
1469
1470	return sysctl_handle_long(oidp, &ksize, 0, req);
1471}
1472SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
1473    0, 0, kvm_size, "IU", "Size of KVM");
1474
1475static int
1476kvm_free(SYSCTL_HANDLER_ARGS)
1477{
1478	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
1479
1480	return sysctl_handle_long(oidp, &kfree, 0, req);
1481}
1482SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
1483    0, 0, kvm_free, "IU", "Amount of KVM free");
1484
1485/*
1486 * grow the number of kernel page table entries, if needed
1487 */
1488void
1489pmap_growkernel(vm_offset_t addr)
1490{
1491	struct pmap *pmap;
1492	int s;
1493	vm_offset_t ptppaddr;
1494	vm_page_t nkpg;
1495	pd_entry_t newpdir;
1496
1497	s = splhigh();
1498	if (kernel_vm_end == 0) {
1499		kernel_vm_end = KERNBASE;
1500		nkpt = 0;
1501		while (pdir_pde(PTD, kernel_vm_end)) {
1502			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1503			nkpt++;
1504		}
1505	}
1506	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1507	while (kernel_vm_end < addr) {
1508		if (pdir_pde(PTD, kernel_vm_end)) {
1509			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1510			continue;
1511		}
1512
1513		/*
1514		 * This index is bogus, but out of the way
1515		 */
1516		nkpg = vm_page_alloc(kptobj, nkpt,
1517				     VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
1518		if (!nkpg)
1519			panic("pmap_growkernel: no memory to grow kernel");
1520
1521		nkpt++;
1522
1523		pmap_zero_page(nkpg);
1524		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1525		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1526		pdir_pde(PTD, kernel_vm_end) = newpdir;
1527
1528		LIST_FOREACH(pmap, &allpmaps, pm_list) {
1529			*pmap_pde(pmap, kernel_vm_end) = newpdir;
1530		}
1531		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1532	}
1533	splx(s);
1534}
1535
1536
1537/***************************************************
1538 * page management routines.
1539 ***************************************************/
1540
1541/*
1542 * free the pv_entry back to the free list
1543 */
1544static PMAP_INLINE void
1545free_pv_entry(pv_entry_t pv)
1546{
1547	pv_entry_count--;
1548	uma_zfree(pvzone, pv);
1549}
1550
1551/*
1552 * get a new pv_entry, allocating a block from the system
1553 * when needed.
1554 * the memory allocation is performed bypassing the malloc code
1555 * because of the possibility of allocations at interrupt time.
1556 */
1557static pv_entry_t
1558get_pv_entry(void)
1559{
1560	pv_entry_count++;
1561	if (pv_entry_high_water &&
1562		(pv_entry_count > pv_entry_high_water) &&
1563		(pmap_pagedaemon_waken == 0)) {
1564		pmap_pagedaemon_waken = 1;
1565		wakeup (&vm_pages_needed);
1566	}
1567	return uma_zalloc(pvzone, M_NOWAIT);
1568}
1569
1570/*
1571 * This routine is very drastic, but can save the system
1572 * in a pinch.
1573 */
1574void
1575pmap_collect()
1576{
1577	int i;
1578	vm_page_t m;
1579	static int warningdone = 0;
1580
1581	if (pmap_pagedaemon_waken == 0)
1582		return;
1583
1584	if (warningdone < 5) {
1585		printf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1586		warningdone++;
1587	}
1588
1589	for(i = 0; i < vm_page_array_size; i++) {
1590		m = &vm_page_array[i];
1591		if (m->wire_count || m->hold_count || m->busy ||
1592		    (m->flags & (PG_BUSY | PG_UNMANAGED)))
1593			continue;
1594		pmap_remove_all(m);
1595	}
1596	pmap_pagedaemon_waken = 0;
1597}
1598
1599
1600/*
1601 * If it is the first entry on the list, it is actually
1602 * in the header and we must copy the following entry up
1603 * to the header.  Otherwise we must search the list for
1604 * the entry.  In either case we free the now unused entry.
1605 */
1606
1607static int
1608pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
1609{
1610	pv_entry_t pv;
1611	int rtval;
1612	int s;
1613
1614	s = splvm();
1615	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1616		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1617			if (pmap == pv->pv_pmap && va == pv->pv_va)
1618				break;
1619		}
1620	} else {
1621		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1622			if (va == pv->pv_va)
1623				break;
1624		}
1625	}
1626
1627	rtval = 0;
1628	if (pv) {
1629		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1630		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1631		m->md.pv_list_count--;
1632		if (TAILQ_FIRST(&m->md.pv_list) == NULL)
1633			vm_page_flag_clear(m, PG_WRITEABLE);
1634
1635		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1636		free_pv_entry(pv);
1637	}
1638
1639	splx(s);
1640	return rtval;
1641}
1642
1643/*
1644 * Create a pv entry for page at pa for
1645 * (pmap, va).
1646 */
1647static void
1648pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1649{
1650
1651	int s;
1652	pv_entry_t pv;
1653
1654	s = splvm();
1655	pv = get_pv_entry();
1656	pv->pv_va = va;
1657	pv->pv_pmap = pmap;
1658	pv->pv_ptem = mpte;
1659
1660	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1661	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1662	m->md.pv_list_count++;
1663
1664	splx(s);
1665}
1666
1667/*
1668 * pmap_remove_pte: do the things to unmap a page in a process
1669 */
1670static int
1671pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va)
1672{
1673	pt_entry_t oldpte;
1674	vm_page_t m;
1675
1676	oldpte = atomic_readandclear_int(ptq);
1677	if (oldpte & PG_W)
1678		pmap->pm_stats.wired_count -= 1;
1679	/*
1680	 * Machines that don't support invlpg, also don't support
1681	 * PG_G.
1682	 */
1683	if (oldpte & PG_G)
1684		pmap_invalidate_page(kernel_pmap, va);
1685	pmap->pm_stats.resident_count -= 1;
1686	if (oldpte & PG_MANAGED) {
1687		m = PHYS_TO_VM_PAGE(oldpte);
1688		if (oldpte & PG_M) {
1689#if defined(PMAP_DIAGNOSTIC)
1690			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1691				printf(
1692	"pmap_remove: modified page not writable: va: 0x%x, pte: 0x%x\n",
1693				    va, oldpte);
1694			}
1695#endif
1696			if (pmap_track_modified(va))
1697				vm_page_dirty(m);
1698		}
1699		if (oldpte & PG_A)
1700			vm_page_flag_set(m, PG_REFERENCED);
1701		return pmap_remove_entry(pmap, m, va);
1702	} else {
1703		return pmap_unuse_pt(pmap, va, NULL);
1704	}
1705
1706	return 0;
1707}
1708
1709/*
1710 * Remove a single page from a process address space
1711 */
1712static void
1713pmap_remove_page(pmap_t pmap, vm_offset_t va)
1714{
1715	register pt_entry_t *ptq;
1716
1717	/*
1718	 * if there is no pte for this address, just skip it!!!
1719	 */
1720	if (*pmap_pde(pmap, va) == 0) {
1721		return;
1722	}
1723
1724	/*
1725	 * get a local va for mappings for this pmap.
1726	 */
1727	ptq = get_ptbase(pmap) + i386_btop(va);
1728	if (*ptq) {
1729		(void) pmap_remove_pte(pmap, ptq, va);
1730		pmap_invalidate_page(pmap, va);
1731	}
1732	return;
1733}
1734
1735/*
1736 *	Remove the given range of addresses from the specified map.
1737 *
1738 *	It is assumed that the start and end are properly
1739 *	rounded to the page size.
1740 */
1741void
1742pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1743{
1744	register pt_entry_t *ptbase;
1745	vm_offset_t pdnxt;
1746	pd_entry_t ptpaddr;
1747	vm_offset_t sindex, eindex;
1748	int anyvalid;
1749
1750	if (pmap == NULL)
1751		return;
1752
1753	if (pmap->pm_stats.resident_count == 0)
1754		return;
1755
1756	/*
1757	 * special handling of removing one page.  a very
1758	 * common operation and easy to short circuit some
1759	 * code.
1760	 */
1761	if ((sva + PAGE_SIZE == eva) &&
1762	    ((pmap->pm_pdir[(sva >> PDRSHIFT)] & PG_PS) == 0)) {
1763		pmap_remove_page(pmap, sva);
1764		return;
1765	}
1766
1767	anyvalid = 0;
1768
1769	/*
1770	 * Get a local virtual address for the mappings that are being
1771	 * worked with.
1772	 */
1773	ptbase = get_ptbase(pmap);
1774
1775	sindex = i386_btop(sva);
1776	eindex = i386_btop(eva);
1777
1778	for (; sindex < eindex; sindex = pdnxt) {
1779		unsigned pdirindex;
1780
1781		/*
1782		 * Calculate index for next page table.
1783		 */
1784		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1785		if (pmap->pm_stats.resident_count == 0)
1786			break;
1787
1788		pdirindex = sindex / NPDEPG;
1789		ptpaddr = pmap->pm_pdir[pdirindex];
1790		if ((ptpaddr & PG_PS) != 0) {
1791			pmap->pm_pdir[pdirindex] = 0;
1792			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1793			anyvalid++;
1794			continue;
1795		}
1796
1797		/*
1798		 * Weed out invalid mappings. Note: we assume that the page
1799		 * directory table is always allocated, and in kernel virtual.
1800		 */
1801		if (ptpaddr == 0)
1802			continue;
1803
1804		/*
1805		 * Limit our scan to either the end of the va represented
1806		 * by the current page table page, or to the end of the
1807		 * range being removed.
1808		 */
1809		if (pdnxt > eindex) {
1810			pdnxt = eindex;
1811		}
1812
1813		for (; sindex != pdnxt; sindex++) {
1814			vm_offset_t va;
1815			if (ptbase[sindex] == 0) {
1816				continue;
1817			}
1818			va = i386_ptob(sindex);
1819
1820			anyvalid++;
1821			if (pmap_remove_pte(pmap,
1822				ptbase + sindex, va))
1823				break;
1824		}
1825	}
1826
1827	if (anyvalid)
1828		pmap_invalidate_all(pmap);
1829}
1830
1831/*
1832 *	Routine:	pmap_remove_all
1833 *	Function:
1834 *		Removes this physical page from
1835 *		all physical maps in which it resides.
1836 *		Reflects back modify bits to the pager.
1837 *
1838 *	Notes:
1839 *		Original versions of this routine were very
1840 *		inefficient because they iteratively called
1841 *		pmap_remove (slow...)
1842 */
1843
1844static void
1845pmap_remove_all(vm_page_t m)
1846{
1847	register pv_entry_t pv;
1848	pt_entry_t *pte, tpte;
1849	int s;
1850
1851#if defined(PMAP_DIAGNOSTIC)
1852	/*
1853	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
1854	 * pages!
1855	 */
1856	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
1857		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%x", VM_PAGE_TO_PHYS(m));
1858	}
1859#endif
1860
1861	s = splvm();
1862	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
1863		pv->pv_pmap->pm_stats.resident_count--;
1864
1865		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
1866
1867		tpte = atomic_readandclear_int(pte);
1868		if (tpte & PG_W)
1869			pv->pv_pmap->pm_stats.wired_count--;
1870
1871		if (tpte & PG_A)
1872			vm_page_flag_set(m, PG_REFERENCED);
1873
1874		/*
1875		 * Update the vm_page_t clean and reference bits.
1876		 */
1877		if (tpte & PG_M) {
1878#if defined(PMAP_DIAGNOSTIC)
1879			if (pmap_nw_modified((pt_entry_t) tpte)) {
1880				printf(
1881	"pmap_remove_all: modified page not writable: va: 0x%x, pte: 0x%x\n",
1882				    pv->pv_va, tpte);
1883			}
1884#endif
1885			if (pmap_track_modified(pv->pv_va))
1886				vm_page_dirty(m);
1887		}
1888		pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
1889
1890		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
1891		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1892		m->md.pv_list_count--;
1893		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
1894		free_pv_entry(pv);
1895	}
1896
1897	vm_page_flag_clear(m, PG_WRITEABLE);
1898
1899	splx(s);
1900}
1901
1902/*
1903 *	Set the physical protection on the
1904 *	specified range of this map as requested.
1905 */
1906void
1907pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1908{
1909	register pt_entry_t *ptbase;
1910	vm_offset_t pdnxt;
1911	pd_entry_t ptpaddr;
1912	vm_offset_t sindex, eindex;
1913	int anychanged;
1914
1915	if (pmap == NULL)
1916		return;
1917
1918	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1919		pmap_remove(pmap, sva, eva);
1920		return;
1921	}
1922
1923	if (prot & VM_PROT_WRITE)
1924		return;
1925
1926	anychanged = 0;
1927
1928	ptbase = get_ptbase(pmap);
1929
1930	sindex = i386_btop(sva);
1931	eindex = i386_btop(eva);
1932
1933	for (; sindex < eindex; sindex = pdnxt) {
1934
1935		unsigned pdirindex;
1936
1937		pdnxt = ((sindex + NPTEPG) & ~(NPTEPG - 1));
1938
1939		pdirindex = sindex / NPDEPG;
1940		ptpaddr = pmap->pm_pdir[pdirindex];
1941		if ((ptpaddr & PG_PS) != 0) {
1942			pmap->pm_pdir[pdirindex] &= ~(PG_M|PG_RW);
1943			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1944			anychanged++;
1945			continue;
1946		}
1947
1948		/*
1949		 * Weed out invalid mappings. Note: we assume that the page
1950		 * directory table is always allocated, and in kernel virtual.
1951		 */
1952		if (ptpaddr == 0)
1953			continue;
1954
1955		if (pdnxt > eindex) {
1956			pdnxt = eindex;
1957		}
1958
1959		for (; sindex != pdnxt; sindex++) {
1960
1961			pt_entry_t pbits;
1962			vm_page_t m;
1963
1964			pbits = ptbase[sindex];
1965
1966			if (pbits & PG_MANAGED) {
1967				m = NULL;
1968				if (pbits & PG_A) {
1969					m = PHYS_TO_VM_PAGE(pbits);
1970					vm_page_flag_set(m, PG_REFERENCED);
1971					pbits &= ~PG_A;
1972				}
1973				if (pbits & PG_M) {
1974					if (pmap_track_modified(i386_ptob(sindex))) {
1975						if (m == NULL)
1976							m = PHYS_TO_VM_PAGE(pbits);
1977						vm_page_dirty(m);
1978						pbits &= ~PG_M;
1979					}
1980				}
1981			}
1982
1983			pbits &= ~PG_RW;
1984
1985			if (pbits != ptbase[sindex]) {
1986				ptbase[sindex] = pbits;
1987				anychanged = 1;
1988			}
1989		}
1990	}
1991	if (anychanged)
1992		pmap_invalidate_all(pmap);
1993}
1994
1995/*
1996 *	Insert the given physical page (p) at
1997 *	the specified virtual address (v) in the
1998 *	target physical map with the protection requested.
1999 *
2000 *	If specified, the page will be wired down, meaning
2001 *	that the related pte can not be reclaimed.
2002 *
2003 *	NB:  This is the only routine which MAY NOT lazy-evaluate
2004 *	or lose information.  That is, this routine must actually
2005 *	insert this page into the given map NOW.
2006 */
2007void
2008pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2009	   boolean_t wired)
2010{
2011	vm_offset_t pa;
2012	register pt_entry_t *pte;
2013	vm_offset_t opa;
2014	pt_entry_t origpte, newpte;
2015	vm_page_t mpte;
2016
2017	if (pmap == NULL)
2018		return;
2019
2020	va &= PG_FRAME;
2021#ifdef PMAP_DIAGNOSTIC
2022	if (va > VM_MAX_KERNEL_ADDRESS)
2023		panic("pmap_enter: toobig");
2024	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2025		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%x)", va);
2026#endif
2027
2028	mpte = NULL;
2029	/*
2030	 * In the case that a page table page is not
2031	 * resident, we are creating it here.
2032	 */
2033	if (va < VM_MAXUSER_ADDRESS) {
2034		mpte = pmap_allocpte(pmap, va);
2035	}
2036#if 0 && defined(PMAP_DIAGNOSTIC)
2037	else {
2038		pd_entry_t *pdeaddr = pmap_pde(pmap, va);
2039		origpte = *pdeaddr;
2040		if ((origpte & PG_V) == 0) {
2041			panic("pmap_enter: invalid kernel page table page, pdir=%p, pde=%p, va=%p\n",
2042				pmap->pm_pdir[PTDPTDI], origpte, va);
2043		}
2044	}
2045#endif
2046
2047	pte = pmap_pte(pmap, va);
2048
2049	/*
2050	 * Page Directory table entry not valid, we need a new PT page
2051	 */
2052	if (pte == NULL) {
2053		panic("pmap_enter: invalid page directory, pdir=%p, va=0x%x\n",
2054			(void *)pmap->pm_pdir[PTDPTDI], va);
2055	}
2056
2057	pa = VM_PAGE_TO_PHYS(m) & PG_FRAME;
2058	origpte = *(vm_offset_t *)pte;
2059	opa = origpte & PG_FRAME;
2060
2061	if (origpte & PG_PS)
2062		panic("pmap_enter: attempted pmap_enter on 4MB page");
2063
2064	/*
2065	 * Mapping has not changed, must be protection or wiring change.
2066	 */
2067	if (origpte && (opa == pa)) {
2068		/*
2069		 * Wiring change, just update stats. We don't worry about
2070		 * wiring PT pages as they remain resident as long as there
2071		 * are valid mappings in them. Hence, if a user page is wired,
2072		 * the PT page will be also.
2073		 */
2074		if (wired && ((origpte & PG_W) == 0))
2075			pmap->pm_stats.wired_count++;
2076		else if (!wired && (origpte & PG_W))
2077			pmap->pm_stats.wired_count--;
2078
2079#if defined(PMAP_DIAGNOSTIC)
2080		if (pmap_nw_modified((pt_entry_t) origpte)) {
2081			printf(
2082	"pmap_enter: modified page not writable: va: 0x%x, pte: 0x%x\n",
2083			    va, origpte);
2084		}
2085#endif
2086
2087		/*
2088		 * Remove extra pte reference
2089		 */
2090		if (mpte)
2091			mpte->hold_count--;
2092
2093		if ((prot & VM_PROT_WRITE) && (origpte & PG_V)) {
2094			if ((origpte & PG_RW) == 0) {
2095				*pte |= PG_RW;
2096				pmap_invalidate_page(pmap, va);
2097			}
2098			return;
2099		}
2100
2101		/*
2102		 * We might be turning off write access to the page,
2103		 * so we go ahead and sense modify status.
2104		 */
2105		if (origpte & PG_MANAGED) {
2106			if ((origpte & PG_M) && pmap_track_modified(va)) {
2107				vm_page_t om;
2108				om = PHYS_TO_VM_PAGE(opa);
2109				vm_page_dirty(om);
2110			}
2111			pa |= PG_MANAGED;
2112		}
2113		goto validate;
2114	}
2115	/*
2116	 * Mapping has changed, invalidate old range and fall through to
2117	 * handle validating new mapping.
2118	 */
2119	if (opa) {
2120		int err;
2121		err = pmap_remove_pte(pmap, pte, va);
2122		if (err)
2123			panic("pmap_enter: pte vanished, va: 0x%x", va);
2124	}
2125
2126	/*
2127	 * Enter on the PV list if part of our managed memory. Note that we
2128	 * raise IPL while manipulating pv_table since pmap_enter can be
2129	 * called at interrupt time.
2130	 */
2131	if (pmap_initialized &&
2132	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2133		pmap_insert_entry(pmap, va, mpte, m);
2134		pa |= PG_MANAGED;
2135	}
2136
2137	/*
2138	 * Increment counters
2139	 */
2140	pmap->pm_stats.resident_count++;
2141	if (wired)
2142		pmap->pm_stats.wired_count++;
2143
2144validate:
2145	/*
2146	 * Now validate mapping with desired protection/wiring.
2147	 */
2148	newpte = (vm_offset_t) (pa | pte_prot(pmap, prot) | PG_V);
2149
2150	if (wired)
2151		newpte |= PG_W;
2152	if (va < VM_MAXUSER_ADDRESS)
2153		newpte |= PG_U;
2154	if (pmap == kernel_pmap)
2155		newpte |= pgeflag;
2156
2157	/*
2158	 * if the mapping or permission bits are different, we need
2159	 * to update the pte.
2160	 */
2161	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2162		*pte = newpte | PG_A;
2163		/*if (origpte)*/ {
2164			pmap_invalidate_page(pmap, va);
2165		}
2166	}
2167}
2168
2169/*
2170 * this code makes some *MAJOR* assumptions:
2171 * 1. Current pmap & pmap exists.
2172 * 2. Not wired.
2173 * 3. Read access.
2174 * 4. No page table pages.
2175 * 5. Tlbflush is deferred to calling procedure.
2176 * 6. Page IS managed.
2177 * but is *MUCH* faster than pmap_enter...
2178 */
2179
2180static vm_page_t
2181pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_page_t mpte)
2182{
2183	pt_entry_t *pte;
2184	vm_offset_t pa;
2185
2186	/*
2187	 * In the case that a page table page is not
2188	 * resident, we are creating it here.
2189	 */
2190	if (va < VM_MAXUSER_ADDRESS) {
2191		unsigned ptepindex;
2192		pd_entry_t ptepa;
2193
2194		/*
2195		 * Calculate pagetable page index
2196		 */
2197		ptepindex = va >> PDRSHIFT;
2198		if (mpte && (mpte->pindex == ptepindex)) {
2199			mpte->hold_count++;
2200		} else {
2201retry:
2202			/*
2203			 * Get the page directory entry
2204			 */
2205			ptepa = pmap->pm_pdir[ptepindex];
2206
2207			/*
2208			 * If the page table page is mapped, we just increment
2209			 * the hold count, and activate it.
2210			 */
2211			if (ptepa) {
2212				if (ptepa & PG_PS)
2213					panic("pmap_enter_quick: unexpected mapping into 4MB page");
2214				if (pmap->pm_ptphint &&
2215					(pmap->pm_ptphint->pindex == ptepindex)) {
2216					mpte = pmap->pm_ptphint;
2217				} else {
2218					mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
2219					pmap->pm_ptphint = mpte;
2220				}
2221				if (mpte == NULL)
2222					goto retry;
2223				mpte->hold_count++;
2224			} else {
2225				mpte = _pmap_allocpte(pmap, ptepindex);
2226			}
2227		}
2228	} else {
2229		mpte = NULL;
2230	}
2231
2232	/*
2233	 * This call to vtopte makes the assumption that we are
2234	 * entering the page into the current pmap.  In order to support
2235	 * quick entry into any pmap, one would likely use pmap_pte_quick.
2236	 * But that isn't as quick as vtopte.
2237	 */
2238	pte = vtopte(va);
2239	if (*pte) {
2240		if (mpte)
2241			pmap_unwire_pte_hold(pmap, mpte);
2242		return 0;
2243	}
2244
2245	/*
2246	 * Enter on the PV list if part of our managed memory. Note that we
2247	 * raise IPL while manipulating pv_table since pmap_enter can be
2248	 * called at interrupt time.
2249	 */
2250	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0)
2251		pmap_insert_entry(pmap, va, mpte, m);
2252
2253	/*
2254	 * Increment counters
2255	 */
2256	pmap->pm_stats.resident_count++;
2257
2258	pa = VM_PAGE_TO_PHYS(m);
2259
2260	/*
2261	 * Now validate mapping with RO protection
2262	 */
2263	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2264		*pte = pa | PG_V | PG_U;
2265	else
2266		*pte = pa | PG_V | PG_U | PG_MANAGED;
2267
2268	return mpte;
2269}
2270
2271/*
2272 * Make a temporary mapping for a physical address.  This is only intended
2273 * to be used for panic dumps.
2274 */
2275void *
2276pmap_kenter_temporary(vm_offset_t pa, int i)
2277{
2278	vm_offset_t va;
2279
2280	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
2281	pmap_kenter(va, pa);
2282#ifndef I386_CPU
2283	invlpg(va);
2284#else
2285	invltlb();
2286#endif
2287	return ((void *)crashdumpmap);
2288}
2289
2290#define MAX_INIT_PT (96)
2291/*
2292 * pmap_object_init_pt preloads the ptes for a given object
2293 * into the specified pmap.  This eliminates the blast of soft
2294 * faults on process startup and immediately after an mmap.
2295 */
2296void
2297pmap_object_init_pt(pmap_t pmap, vm_offset_t addr,
2298		    vm_object_t object, vm_pindex_t pindex,
2299		    vm_size_t size, int limit)
2300{
2301	vm_offset_t tmpidx;
2302	int psize;
2303	vm_page_t p, mpte;
2304	int objpgs;
2305
2306	if (pmap == NULL || object == NULL)
2307		return;
2308
2309	/*
2310	 * This code maps large physical mmap regions into the
2311	 * processor address space.  Note that some shortcuts
2312	 * are taken, but the code works.
2313	 */
2314	if (pseflag && (object->type == OBJT_DEVICE) &&
2315	    ((addr & (NBPDR - 1)) == 0) && ((size & (NBPDR - 1)) == 0)) {
2316		int i;
2317		vm_page_t m[1];
2318		unsigned int ptepindex;
2319		int npdes;
2320		pd_entry_t ptepa;
2321
2322		if (pmap->pm_pdir[ptepindex = (addr >> PDRSHIFT)])
2323			return;
2324
2325retry:
2326		p = vm_page_lookup(object, pindex);
2327		if (p != NULL) {
2328			vm_page_lock_queues();
2329			if (vm_page_sleep_if_busy(p, FALSE, "init4p"))
2330				goto retry;
2331			vm_page_unlock_queues();
2332		} else {
2333			p = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL);
2334			if (p == NULL)
2335				return;
2336			m[0] = p;
2337
2338			if (vm_pager_get_pages(object, m, 1, 0) != VM_PAGER_OK) {
2339				vm_page_lock_queues();
2340				vm_page_free(p);
2341				vm_page_unlock_queues();
2342				return;
2343			}
2344
2345			p = vm_page_lookup(object, pindex);
2346			vm_page_wakeup(p);
2347		}
2348
2349		ptepa = VM_PAGE_TO_PHYS(p);
2350		if (ptepa & (NBPDR - 1)) {
2351			return;
2352		}
2353
2354		p->valid = VM_PAGE_BITS_ALL;
2355
2356		pmap->pm_stats.resident_count += size >> PAGE_SHIFT;
2357		npdes = size >> PDRSHIFT;
2358		for(i = 0; i < npdes; i++) {
2359			pmap->pm_pdir[ptepindex] =
2360			    ptepa | PG_U | PG_RW | PG_V | PG_PS;
2361			ptepa += NBPDR;
2362			ptepindex += 1;
2363		}
2364		pmap_invalidate_all(kernel_pmap);
2365		return;
2366	}
2367
2368	psize = i386_btop(size);
2369
2370	if ((object->type != OBJT_VNODE) ||
2371	    ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2372	     (object->resident_page_count > MAX_INIT_PT))) {
2373		return;
2374	}
2375
2376	if (psize + pindex > object->size) {
2377		if (object->size < pindex)
2378			return;
2379		psize = object->size - pindex;
2380	}
2381
2382	mpte = NULL;
2383	/*
2384	 * if we are processing a major portion of the object, then scan the
2385	 * entire thing.
2386	 */
2387	if (psize > (object->resident_page_count >> 2)) {
2388		objpgs = psize;
2389
2390		for (p = TAILQ_FIRST(&object->memq);
2391		    ((objpgs > 0) && (p != NULL));
2392		    p = TAILQ_NEXT(p, listq)) {
2393
2394			if (p->pindex < pindex || p->pindex - pindex >= psize) {
2395				continue;
2396			}
2397			tmpidx = p->pindex - pindex;
2398			/*
2399			 * don't allow an madvise to blow away our really
2400			 * free pages allocating pv entries.
2401			 */
2402			if ((limit & MAP_PREFAULT_MADVISE) &&
2403			    cnt.v_free_count < cnt.v_free_reserved) {
2404				break;
2405			}
2406			vm_page_lock_queues();
2407			if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2408				(p->busy == 0) &&
2409			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2410				if ((p->queue - p->pc) == PQ_CACHE)
2411					vm_page_deactivate(p);
2412				vm_page_busy(p);
2413				vm_page_unlock_queues();
2414				mpte = pmap_enter_quick(pmap,
2415					addr + i386_ptob(tmpidx), p, mpte);
2416				vm_page_lock_queues();
2417				vm_page_wakeup(p);
2418			}
2419			vm_page_unlock_queues();
2420			objpgs -= 1;
2421		}
2422	} else {
2423		/*
2424		 * else lookup the pages one-by-one.
2425		 */
2426		for (tmpidx = 0; tmpidx < psize; tmpidx += 1) {
2427			/*
2428			 * don't allow an madvise to blow away our really
2429			 * free pages allocating pv entries.
2430			 */
2431			if ((limit & MAP_PREFAULT_MADVISE) &&
2432			    cnt.v_free_count < cnt.v_free_reserved) {
2433				break;
2434			}
2435			p = vm_page_lookup(object, tmpidx + pindex);
2436			if (p == NULL)
2437				continue;
2438			vm_page_lock_queues();
2439			if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
2440				(p->busy == 0) &&
2441			    (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2442				if ((p->queue - p->pc) == PQ_CACHE)
2443					vm_page_deactivate(p);
2444				vm_page_busy(p);
2445				vm_page_unlock_queues();
2446				mpte = pmap_enter_quick(pmap,
2447					addr + i386_ptob(tmpidx), p, mpte);
2448				vm_page_lock_queues();
2449				vm_page_wakeup(p);
2450			}
2451			vm_page_unlock_queues();
2452		}
2453	}
2454	return;
2455}
2456
2457/*
2458 * pmap_prefault provides a quick way of clustering
2459 * pagefaults into a processes address space.  It is a "cousin"
2460 * of pmap_object_init_pt, except it runs at page fault time instead
2461 * of mmap time.
2462 */
2463#define PFBAK 4
2464#define PFFOR 4
2465#define PAGEORDER_SIZE (PFBAK+PFFOR)
2466
2467static int pmap_prefault_pageorder[] = {
2468	-PAGE_SIZE, PAGE_SIZE,
2469	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
2470	-3 * PAGE_SIZE, 3 * PAGE_SIZE
2471	-4 * PAGE_SIZE, 4 * PAGE_SIZE
2472};
2473
2474void
2475pmap_prefault(pmap, addra, entry)
2476	pmap_t pmap;
2477	vm_offset_t addra;
2478	vm_map_entry_t entry;
2479{
2480	int i;
2481	vm_offset_t starta;
2482	vm_offset_t addr;
2483	vm_pindex_t pindex;
2484	vm_page_t m, mpte;
2485	vm_object_t object;
2486
2487	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
2488		return;
2489
2490	object = entry->object.vm_object;
2491
2492	starta = addra - PFBAK * PAGE_SIZE;
2493	if (starta < entry->start) {
2494		starta = entry->start;
2495	} else if (starta > addra) {
2496		starta = 0;
2497	}
2498
2499	mpte = NULL;
2500	for (i = 0; i < PAGEORDER_SIZE; i++) {
2501		vm_object_t lobject;
2502		pt_entry_t *pte;
2503
2504		addr = addra + pmap_prefault_pageorder[i];
2505		if (addr > addra + (PFFOR * PAGE_SIZE))
2506			addr = 0;
2507
2508		if (addr < starta || addr >= entry->end)
2509			continue;
2510
2511		if ((*pmap_pde(pmap, addr)) == 0)
2512			continue;
2513
2514		pte = vtopte(addr);
2515		if (*pte)
2516			continue;
2517
2518		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2519		lobject = object;
2520		for (m = vm_page_lookup(lobject, pindex);
2521		    (!m && (lobject->type == OBJT_DEFAULT) && (lobject->backing_object));
2522		    lobject = lobject->backing_object) {
2523			if (lobject->backing_object_offset & PAGE_MASK)
2524				break;
2525			pindex += (lobject->backing_object_offset >> PAGE_SHIFT);
2526			m = vm_page_lookup(lobject->backing_object, pindex);
2527		}
2528
2529		/*
2530		 * give-up when a page is not in memory
2531		 */
2532		if (m == NULL)
2533			break;
2534		vm_page_lock_queues();
2535		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2536			(m->busy == 0) &&
2537		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2538
2539			if ((m->queue - m->pc) == PQ_CACHE) {
2540				vm_page_deactivate(m);
2541			}
2542			vm_page_busy(m);
2543			vm_page_unlock_queues();
2544			mpte = pmap_enter_quick(pmap, addr, m, mpte);
2545			vm_page_lock_queues();
2546			vm_page_wakeup(m);
2547		}
2548		vm_page_unlock_queues();
2549	}
2550}
2551
2552/*
2553 *	Routine:	pmap_change_wiring
2554 *	Function:	Change the wiring attribute for a map/virtual-address
2555 *			pair.
2556 *	In/out conditions:
2557 *			The mapping must already exist in the pmap.
2558 */
2559void
2560pmap_change_wiring(pmap, va, wired)
2561	register pmap_t pmap;
2562	vm_offset_t va;
2563	boolean_t wired;
2564{
2565	register pt_entry_t *pte;
2566
2567	if (pmap == NULL)
2568		return;
2569
2570	pte = pmap_pte(pmap, va);
2571
2572	if (wired && !pmap_pte_w(pte))
2573		pmap->pm_stats.wired_count++;
2574	else if (!wired && pmap_pte_w(pte))
2575		pmap->pm_stats.wired_count--;
2576
2577	/*
2578	 * Wiring is not a hardware characteristic so there is no need to
2579	 * invalidate TLB.
2580	 */
2581	pmap_pte_set_w(pte, wired);
2582}
2583
2584
2585
2586/*
2587 *	Copy the range specified by src_addr/len
2588 *	from the source map to the range dst_addr/len
2589 *	in the destination map.
2590 *
2591 *	This routine is only advisory and need not do anything.
2592 */
2593
2594void
2595pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
2596	  vm_offset_t src_addr)
2597{
2598	vm_offset_t addr;
2599	vm_offset_t end_addr = src_addr + len;
2600	vm_offset_t pdnxt;
2601	pd_entry_t src_frame, dst_frame;
2602	vm_page_t m;
2603
2604	if (dst_addr != src_addr)
2605		return;
2606
2607	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2608	if (src_frame != (PTDpde & PG_FRAME))
2609		return;
2610
2611	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
2612	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
2613		pt_entry_t *src_pte, *dst_pte;
2614		vm_page_t dstmpte, srcmpte;
2615		pd_entry_t srcptepaddr;
2616		unsigned ptepindex;
2617
2618		if (addr >= UPT_MIN_ADDRESS)
2619			panic("pmap_copy: invalid to pmap_copy page tables\n");
2620
2621		/*
2622		 * Don't let optional prefaulting of pages make us go
2623		 * way below the low water mark of free pages or way
2624		 * above high water mark of used pv entries.
2625		 */
2626		if (cnt.v_free_count < cnt.v_free_reserved ||
2627		    pv_entry_count > pv_entry_high_water)
2628			break;
2629
2630		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
2631		ptepindex = addr >> PDRSHIFT;
2632
2633		srcptepaddr = src_pmap->pm_pdir[ptepindex];
2634		if (srcptepaddr == 0)
2635			continue;
2636
2637		if (srcptepaddr & PG_PS) {
2638			if (dst_pmap->pm_pdir[ptepindex] == 0) {
2639				dst_pmap->pm_pdir[ptepindex] = srcptepaddr;
2640				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
2641			}
2642			continue;
2643		}
2644
2645		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
2646		if ((srcmpte == NULL) ||
2647		    (srcmpte->hold_count == 0) || (srcmpte->flags & PG_BUSY))
2648			continue;
2649
2650		if (pdnxt > end_addr)
2651			pdnxt = end_addr;
2652
2653		/*
2654		 * Have to recheck this before every avtopte() call below
2655		 * in case we have blocked and something else used APTDpde.
2656		 */
2657		if (dst_frame != (APTDpde & PG_FRAME)) {
2658			APTDpde = dst_frame | PG_RW | PG_V;
2659			pmap_invalidate_all(kernel_pmap); /* XXX Bandaid */
2660		}
2661		src_pte = vtopte(addr);
2662		dst_pte = avtopte(addr);
2663		while (addr < pdnxt) {
2664			pt_entry_t ptetemp;
2665			ptetemp = *src_pte;
2666			/*
2667			 * we only virtual copy managed pages
2668			 */
2669			if ((ptetemp & PG_MANAGED) != 0) {
2670				/*
2671				 * We have to check after allocpte for the
2672				 * pte still being around...  allocpte can
2673				 * block.
2674				 */
2675				dstmpte = pmap_allocpte(dst_pmap, addr);
2676				if ((*dst_pte == 0) && (ptetemp = *src_pte)) {
2677					/*
2678					 * Clear the modified and
2679					 * accessed (referenced) bits
2680					 * during the copy.
2681					 */
2682					m = PHYS_TO_VM_PAGE(ptetemp);
2683					*dst_pte = ptetemp & ~(PG_M | PG_A);
2684					dst_pmap->pm_stats.resident_count++;
2685					pmap_insert_entry(dst_pmap, addr,
2686						dstmpte, m);
2687	 			} else {
2688					pmap_unwire_pte_hold(dst_pmap, dstmpte);
2689				}
2690				if (dstmpte->hold_count >= srcmpte->hold_count)
2691					break;
2692			}
2693			addr += PAGE_SIZE;
2694			src_pte++;
2695			dst_pte++;
2696		}
2697	}
2698}
2699
2700#ifdef SMP
2701
2702/*
2703 *	pmap_zpi_switchin*()
2704 *
2705 *	These functions allow us to avoid doing IPIs alltogether in certain
2706 *	temporary page-mapping situations (page zeroing).  Instead to deal
2707 *	with being preempted and moved onto a different cpu we invalidate
2708 *	the page when the scheduler switches us in.  This does not occur
2709 *	very often so we remain relatively optimal with very little effort.
2710 */
2711static void
2712pmap_zpi_switchin12(void)
2713{
2714	invlpg((u_int)CADDR1);
2715	invlpg((u_int)CADDR2);
2716}
2717
2718static void
2719pmap_zpi_switchin2(void)
2720{
2721	invlpg((u_int)CADDR2);
2722}
2723
2724static void
2725pmap_zpi_switchin3(void)
2726{
2727	invlpg((u_int)CADDR3);
2728}
2729
2730#endif
2731
2732/*
2733 *	pmap_zero_page zeros the specified hardware page by mapping
2734 *	the page into KVM and using bzero to clear its contents.
2735 */
2736void
2737pmap_zero_page(vm_page_t m)
2738{
2739	vm_offset_t phys;
2740
2741	phys = VM_PAGE_TO_PHYS(m);
2742	if (*CMAP2)
2743		panic("pmap_zero_page: CMAP2 busy");
2744	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2745#ifdef I386_CPU
2746	invltlb();
2747#else
2748#ifdef SMP
2749	curthread->td_switchin = pmap_zpi_switchin2;
2750#endif
2751	invlpg((u_int)CADDR2);
2752#endif
2753#if defined(I686_CPU)
2754	if (cpu_class == CPUCLASS_686)
2755		i686_pagezero(CADDR2);
2756	else
2757#endif
2758		bzero(CADDR2, PAGE_SIZE);
2759#ifdef SMP
2760	curthread->td_switchin = NULL;
2761#endif
2762	*CMAP2 = 0;
2763}
2764
2765/*
2766 *	pmap_zero_page_area zeros the specified hardware page by mapping
2767 *	the page into KVM and using bzero to clear its contents.
2768 *
2769 *	off and size may not cover an area beyond a single hardware page.
2770 */
2771void
2772pmap_zero_page_area(vm_page_t m, int off, int size)
2773{
2774	vm_offset_t phys;
2775
2776	phys = VM_PAGE_TO_PHYS(m);
2777	if (*CMAP2)
2778		panic("pmap_zero_page: CMAP2 busy");
2779	*CMAP2 = PG_V | PG_RW | phys | PG_A | PG_M;
2780#ifdef I386_CPU
2781	invltlb();
2782#else
2783#ifdef SMP
2784	curthread->td_switchin = pmap_zpi_switchin2;
2785#endif
2786	invlpg((u_int)CADDR2);
2787#endif
2788#if defined(I686_CPU)
2789	if (cpu_class == CPUCLASS_686 && off == 0 && size == PAGE_SIZE)
2790		i686_pagezero(CADDR2);
2791	else
2792#endif
2793		bzero((char *)CADDR2 + off, size);
2794#ifdef SMP
2795	curthread->td_switchin = NULL;
2796#endif
2797	*CMAP2 = 0;
2798}
2799
2800/*
2801 *	pmap_zero_page_idle zeros the specified hardware page by mapping
2802 *	the page into KVM and using bzero to clear its contents.  This
2803 *	is intended to be called from the vm_pagezero process only and
2804 *	outside of Giant.
2805 */
2806void
2807pmap_zero_page_idle(vm_page_t m)
2808{
2809	vm_offset_t phys;
2810
2811	phys = VM_PAGE_TO_PHYS(m);
2812	if (*CMAP3)
2813		panic("pmap_zero_page: CMAP3 busy");
2814	*CMAP3 = PG_V | PG_RW | phys | PG_A | PG_M;
2815#ifdef I386_CPU
2816	invltlb();
2817#else
2818#ifdef SMP
2819	curthread->td_switchin = pmap_zpi_switchin3;
2820#endif
2821	invlpg((u_int)CADDR3);
2822#endif
2823#if defined(I686_CPU)
2824	if (cpu_class == CPUCLASS_686)
2825		i686_pagezero(CADDR3);
2826	else
2827#endif
2828		bzero(CADDR3, PAGE_SIZE);
2829#ifdef SMP
2830	curthread->td_switchin = NULL;
2831#endif
2832	*CMAP3 = 0;
2833}
2834
2835/*
2836 *	pmap_copy_page copies the specified (machine independent)
2837 *	page by mapping the page into virtual memory and using
2838 *	bcopy to copy the page, one machine dependent page at a
2839 *	time.
2840 */
2841void
2842pmap_copy_page(vm_page_t src, vm_page_t dst)
2843{
2844
2845	if (*CMAP1)
2846		panic("pmap_copy_page: CMAP1 busy");
2847	if (*CMAP2)
2848		panic("pmap_copy_page: CMAP2 busy");
2849	*CMAP1 = PG_V | VM_PAGE_TO_PHYS(src) | PG_A;
2850	*CMAP2 = PG_V | PG_RW | VM_PAGE_TO_PHYS(dst) | PG_A | PG_M;
2851#ifdef I386_CPU
2852	invltlb();
2853#else
2854#ifdef SMP
2855	curthread->td_switchin = pmap_zpi_switchin12;
2856#endif
2857	invlpg((u_int)CADDR1);
2858	invlpg((u_int)CADDR2);
2859#endif
2860	bcopy(CADDR1, CADDR2, PAGE_SIZE);
2861#ifdef SMP
2862	curthread->td_switchin = NULL;
2863#endif
2864	*CMAP1 = 0;
2865	*CMAP2 = 0;
2866}
2867
2868
2869/*
2870 *	Routine:	pmap_pageable
2871 *	Function:
2872 *		Make the specified pages (by pmap, offset)
2873 *		pageable (or not) as requested.
2874 *
2875 *		A page which is not pageable may not take
2876 *		a fault; therefore, its page table entry
2877 *		must remain valid for the duration.
2878 *
2879 *		This routine is merely advisory; pmap_enter
2880 *		will specify that these pages are to be wired
2881 *		down (or not) as appropriate.
2882 */
2883void
2884pmap_pageable(pmap, sva, eva, pageable)
2885	pmap_t pmap;
2886	vm_offset_t sva, eva;
2887	boolean_t pageable;
2888{
2889}
2890
2891/*
2892 * Returns true if the pmap's pv is one of the first
2893 * 16 pvs linked to from this page.  This count may
2894 * be changed upwards or downwards in the future; it
2895 * is only necessary that true be returned for a small
2896 * subset of pmaps for proper page aging.
2897 */
2898boolean_t
2899pmap_page_exists_quick(pmap, m)
2900	pmap_t pmap;
2901	vm_page_t m;
2902{
2903	pv_entry_t pv;
2904	int loops = 0;
2905	int s;
2906
2907	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2908		return FALSE;
2909
2910	s = splvm();
2911
2912	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2913		if (pv->pv_pmap == pmap) {
2914			splx(s);
2915			return TRUE;
2916		}
2917		loops++;
2918		if (loops >= 16)
2919			break;
2920	}
2921	splx(s);
2922	return (FALSE);
2923}
2924
2925#define PMAP_REMOVE_PAGES_CURPROC_ONLY
2926/*
2927 * Remove all pages from specified address space
2928 * this aids process exit speeds.  Also, this code
2929 * is special cased for current process only, but
2930 * can have the more generic (and slightly slower)
2931 * mode enabled.  This is much faster than pmap_remove
2932 * in the case of running down an entire address space.
2933 */
2934void
2935pmap_remove_pages(pmap, sva, eva)
2936	pmap_t pmap;
2937	vm_offset_t sva, eva;
2938{
2939	pt_entry_t *pte, tpte;
2940	vm_page_t m;
2941	pv_entry_t pv, npv;
2942	int s;
2943
2944#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2945	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))) {
2946		printf("warning: pmap_remove_pages called with non-current pmap\n");
2947		return;
2948	}
2949#endif
2950
2951	s = splvm();
2952	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2953
2954		if (pv->pv_va >= eva || pv->pv_va < sva) {
2955			npv = TAILQ_NEXT(pv, pv_plist);
2956			continue;
2957		}
2958
2959#ifdef PMAP_REMOVE_PAGES_CURPROC_ONLY
2960		pte = vtopte(pv->pv_va);
2961#else
2962		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2963#endif
2964		tpte = *pte;
2965
2966		if (tpte == 0) {
2967			printf("TPTE at %p  IS ZERO @ VA %08x\n",
2968							pte, pv->pv_va);
2969			panic("bad pte");
2970		}
2971
2972/*
2973 * We cannot remove wired pages from a process' mapping at this time
2974 */
2975		if (tpte & PG_W) {
2976			npv = TAILQ_NEXT(pv, pv_plist);
2977			continue;
2978		}
2979
2980		m = PHYS_TO_VM_PAGE(tpte);
2981		KASSERT(m->phys_addr == (tpte & PG_FRAME),
2982		    ("vm_page_t %p phys_addr mismatch %08x %08x",
2983		    m, m->phys_addr, tpte));
2984
2985		KASSERT(m < &vm_page_array[vm_page_array_size],
2986			("pmap_remove_pages: bad tpte %x", tpte));
2987
2988		pv->pv_pmap->pm_stats.resident_count--;
2989
2990		*pte = 0;
2991
2992		/*
2993		 * Update the vm_page_t clean and reference bits.
2994		 */
2995		if (tpte & PG_M) {
2996			vm_page_dirty(m);
2997		}
2998
2999		npv = TAILQ_NEXT(pv, pv_plist);
3000		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
3001
3002		m->md.pv_list_count--;
3003		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3004		if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3005			vm_page_flag_clear(m, PG_WRITEABLE);
3006		}
3007
3008		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
3009		free_pv_entry(pv);
3010	}
3011	splx(s);
3012	pmap_invalidate_all(pmap);
3013}
3014
3015/*
3016 * pmap_testbit tests bits in pte's
3017 * note that the testbit/changebit routines are inline,
3018 * and a lot of things compile-time evaluate.
3019 */
3020static boolean_t
3021pmap_testbit(m, bit)
3022	vm_page_t m;
3023	int bit;
3024{
3025	pv_entry_t pv;
3026	pt_entry_t *pte;
3027	int s;
3028
3029	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3030		return FALSE;
3031
3032	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3033		return FALSE;
3034
3035	s = splvm();
3036
3037	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3038		/*
3039		 * if the bit being tested is the modified bit, then
3040		 * mark clean_map and ptes as never
3041		 * modified.
3042		 */
3043		if (bit & (PG_A|PG_M)) {
3044			if (!pmap_track_modified(pv->pv_va))
3045				continue;
3046		}
3047
3048#if defined(PMAP_DIAGNOSTIC)
3049		if (!pv->pv_pmap) {
3050			printf("Null pmap (tb) at va: 0x%x\n", pv->pv_va);
3051			continue;
3052		}
3053#endif
3054		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3055		if (*pte & bit) {
3056			splx(s);
3057			return TRUE;
3058		}
3059	}
3060	splx(s);
3061	return (FALSE);
3062}
3063
3064/*
3065 * this routine is used to modify bits in ptes
3066 */
3067static __inline void
3068pmap_changebit(vm_page_t m, int bit, boolean_t setem)
3069{
3070	register pv_entry_t pv;
3071	register pt_entry_t *pte;
3072	int s;
3073
3074	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3075		return;
3076
3077	s = splvm();
3078
3079	/*
3080	 * Loop over all current mappings setting/clearing as appropos If
3081	 * setting RO do we need to clear the VAC?
3082	 */
3083	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3084		/*
3085		 * don't write protect pager mappings
3086		 */
3087		if (!setem && (bit == PG_RW)) {
3088			if (!pmap_track_modified(pv->pv_va))
3089				continue;
3090		}
3091
3092#if defined(PMAP_DIAGNOSTIC)
3093		if (!pv->pv_pmap) {
3094			printf("Null pmap (cb) at va: 0x%x\n", pv->pv_va);
3095			continue;
3096		}
3097#endif
3098
3099		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3100
3101		if (setem) {
3102			*pte |= bit;
3103			pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3104		} else {
3105			pt_entry_t pbits = *pte;
3106			if (pbits & bit) {
3107				if (bit == PG_RW) {
3108					if (pbits & PG_M) {
3109						vm_page_dirty(m);
3110					}
3111					*pte = pbits & ~(PG_M|PG_RW);
3112				} else {
3113					*pte = pbits & ~bit;
3114				}
3115				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3116			}
3117		}
3118	}
3119	splx(s);
3120}
3121
3122/*
3123 *      pmap_page_protect:
3124 *
3125 *      Lower the permission for all mappings to a given page.
3126 */
3127void
3128pmap_page_protect(vm_page_t m, vm_prot_t prot)
3129{
3130	if ((prot & VM_PROT_WRITE) == 0) {
3131		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3132			pmap_changebit(m, PG_RW, FALSE);
3133		} else {
3134			pmap_remove_all(m);
3135		}
3136	}
3137}
3138
3139vm_offset_t
3140pmap_phys_address(ppn)
3141	int ppn;
3142{
3143	return (i386_ptob(ppn));
3144}
3145
3146/*
3147 *	pmap_ts_referenced:
3148 *
3149 *	Return a count of reference bits for a page, clearing those bits.
3150 *	It is not necessary for every reference bit to be cleared, but it
3151 *	is necessary that 0 only be returned when there are truly no
3152 *	reference bits set.
3153 *
3154 *	XXX: The exact number of bits to check and clear is a matter that
3155 *	should be tested and standardized at some point in the future for
3156 *	optimal aging of shared pages.
3157 */
3158int
3159pmap_ts_referenced(vm_page_t m)
3160{
3161	register pv_entry_t pv, pvf, pvn;
3162	pt_entry_t *pte;
3163	int s;
3164	int rtval = 0;
3165
3166	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3167		return (rtval);
3168
3169	s = splvm();
3170
3171	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3172
3173		pvf = pv;
3174
3175		do {
3176			pvn = TAILQ_NEXT(pv, pv_list);
3177
3178			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3179
3180			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3181
3182			if (!pmap_track_modified(pv->pv_va))
3183				continue;
3184
3185			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3186
3187			if (pte && (*pte & PG_A)) {
3188				*pte &= ~PG_A;
3189
3190				pmap_invalidate_page(pv->pv_pmap, pv->pv_va);
3191
3192				rtval++;
3193				if (rtval > 4) {
3194					break;
3195				}
3196			}
3197		} while ((pv = pvn) != NULL && pv != pvf);
3198	}
3199	splx(s);
3200
3201	return (rtval);
3202}
3203
3204/*
3205 *	pmap_is_modified:
3206 *
3207 *	Return whether or not the specified physical page was modified
3208 *	in any physical maps.
3209 */
3210boolean_t
3211pmap_is_modified(vm_page_t m)
3212{
3213	return pmap_testbit(m, PG_M);
3214}
3215
3216/*
3217 *	Clear the modify bits on the specified physical page.
3218 */
3219void
3220pmap_clear_modify(vm_page_t m)
3221{
3222	pmap_changebit(m, PG_M, FALSE);
3223}
3224
3225/*
3226 *	pmap_clear_reference:
3227 *
3228 *	Clear the reference bit on the specified physical page.
3229 */
3230void
3231pmap_clear_reference(vm_page_t m)
3232{
3233	pmap_changebit(m, PG_A, FALSE);
3234}
3235
3236/*
3237 * Miscellaneous support routines follow
3238 */
3239
3240static void
3241i386_protection_init()
3242{
3243	register int *kp, prot;
3244
3245	kp = protection_codes;
3246	for (prot = 0; prot < 8; prot++) {
3247		switch (prot) {
3248		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3249			/*
3250			 * Read access is also 0. There isn't any execute bit,
3251			 * so just make it readable.
3252			 */
3253		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3254		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3255		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3256			*kp++ = 0;
3257			break;
3258		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3259		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3260		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3261		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3262			*kp++ = PG_RW;
3263			break;
3264		}
3265	}
3266}
3267
3268/*
3269 * Map a set of physical memory pages into the kernel virtual
3270 * address space. Return a pointer to where it is mapped. This
3271 * routine is intended to be used for mapping device memory,
3272 * NOT real memory.
3273 */
3274void *
3275pmap_mapdev(pa, size)
3276	vm_offset_t pa;
3277	vm_size_t size;
3278{
3279	vm_offset_t va, tmpva, offset;
3280	pt_entry_t *pte;
3281
3282	offset = pa & PAGE_MASK;
3283	size = roundup(offset + size, PAGE_SIZE);
3284
3285	GIANT_REQUIRED;
3286
3287	va = kmem_alloc_pageable(kernel_map, size);
3288	if (!va)
3289		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3290
3291	pa = pa & PG_FRAME;
3292	for (tmpva = va; size > 0; ) {
3293		pte = vtopte(tmpva);
3294		*pte = pa | PG_RW | PG_V | pgeflag;
3295		size -= PAGE_SIZE;
3296		tmpva += PAGE_SIZE;
3297		pa += PAGE_SIZE;
3298	}
3299	pmap_invalidate_range(kernel_pmap, va, tmpva);
3300	return ((void *)(va + offset));
3301}
3302
3303void
3304pmap_unmapdev(va, size)
3305	vm_offset_t va;
3306	vm_size_t size;
3307{
3308	vm_offset_t base, offset, tmpva;
3309	pt_entry_t *pte;
3310
3311	base = va & PG_FRAME;
3312	offset = va & PAGE_MASK;
3313	size = roundup(offset + size, PAGE_SIZE);
3314	for (tmpva = base; tmpva < (base + size); tmpva += PAGE_SIZE) {
3315		pte = vtopte(tmpva);
3316		*pte = 0;
3317	}
3318	pmap_invalidate_range(kernel_pmap, va, tmpva);
3319	kmem_free(kernel_map, base, size);
3320}
3321
3322/*
3323 * perform the pmap work for mincore
3324 */
3325int
3326pmap_mincore(pmap, addr)
3327	pmap_t pmap;
3328	vm_offset_t addr;
3329{
3330	pt_entry_t *ptep, pte;
3331	vm_page_t m;
3332	int val = 0;
3333
3334	ptep = pmap_pte(pmap, addr);
3335	if (ptep == 0) {
3336		return 0;
3337	}
3338
3339	if ((pte = *ptep) != 0) {
3340		vm_offset_t pa;
3341
3342		val = MINCORE_INCORE;
3343		if ((pte & PG_MANAGED) == 0)
3344			return val;
3345
3346		pa = pte & PG_FRAME;
3347
3348		m = PHYS_TO_VM_PAGE(pa);
3349
3350		/*
3351		 * Modified by us
3352		 */
3353		if (pte & PG_M)
3354			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3355		/*
3356		 * Modified by someone
3357		 */
3358		else if (m->dirty || pmap_is_modified(m))
3359			val |= MINCORE_MODIFIED_OTHER;
3360		/*
3361		 * Referenced by us
3362		 */
3363		if (pte & PG_A)
3364			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3365
3366		/*
3367		 * Referenced by someone
3368		 */
3369		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3370			val |= MINCORE_REFERENCED_OTHER;
3371			vm_page_flag_set(m, PG_REFERENCED);
3372		}
3373	}
3374	return val;
3375}
3376
3377void
3378pmap_activate(struct thread *td)
3379{
3380	struct proc *p = td->td_proc;
3381	pmap_t	pmap;
3382	u_int32_t  cr3;
3383
3384	pmap = vmspace_pmap(td->td_proc->p_vmspace);
3385#if defined(SMP)
3386	pmap->pm_active |= PCPU_GET(cpumask);
3387#else
3388	pmap->pm_active |= 1;
3389#endif
3390	cr3 = vtophys(pmap->pm_pdir);
3391	/* XXXKSE this is wrong.
3392	 * pmap_activate is for the current thread on the current cpu
3393	 */
3394	if (p->p_flag & P_KSES) {
3395		/* Make sure all other cr3 entries are updated. */
3396		/* what if they are running?  XXXKSE (maybe abort them) */
3397		FOREACH_THREAD_IN_PROC(p, td) {
3398			td->td_pcb->pcb_cr3 = cr3;
3399		}
3400	} else {
3401		td->td_pcb->pcb_cr3 = cr3;
3402	}
3403	load_cr3(cr3);
3404#ifdef SWTCH_OPTIM_STATS
3405	tlb_flush_count++;
3406#endif
3407}
3408
3409vm_offset_t
3410pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3411{
3412
3413	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3414		return addr;
3415	}
3416
3417	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3418	return addr;
3419}
3420
3421
3422#if defined(PMAP_DEBUG)
3423pmap_pid_dump(int pid)
3424{
3425	pmap_t pmap;
3426	struct proc *p;
3427	int npte = 0;
3428	int index;
3429
3430	sx_slock(&allproc_lock);
3431	LIST_FOREACH(p, &allproc, p_list) {
3432		if (p->p_pid != pid)
3433			continue;
3434
3435		if (p->p_vmspace) {
3436			int i,j;
3437			index = 0;
3438			pmap = vmspace_pmap(p->p_vmspace);
3439			for (i = 0; i < NPDEPG; i++) {
3440				pd_entry_t *pde;
3441				pt_entry_t *pte;
3442				vm_offset_t base = i << PDRSHIFT;
3443
3444				pde = &pmap->pm_pdir[i];
3445				if (pde && pmap_pde_v(pde)) {
3446					for (j = 0; j < NPTEPG; j++) {
3447						vm_offset_t va = base + (j << PAGE_SHIFT);
3448						if (va >= (vm_offset_t) VM_MIN_KERNEL_ADDRESS) {
3449							if (index) {
3450								index = 0;
3451								printf("\n");
3452							}
3453							sx_sunlock(&allproc_lock);
3454							return npte;
3455						}
3456						pte = pmap_pte_quick(pmap, va);
3457						if (pte && pmap_pte_v(pte)) {
3458							pt_entry_t pa;
3459							vm_page_t m;
3460							pa = *pte;
3461							m = PHYS_TO_VM_PAGE(pa);
3462							printf("va: 0x%x, pt: 0x%x, h: %d, w: %d, f: 0x%x",
3463								va, pa, m->hold_count, m->wire_count, m->flags);
3464							npte++;
3465							index++;
3466							if (index >= 2) {
3467								index = 0;
3468								printf("\n");
3469							} else {
3470								printf(" ");
3471							}
3472						}
3473					}
3474				}
3475			}
3476		}
3477	}
3478	sx_sunlock(&allproc_lock);
3479	return npte;
3480}
3481#endif
3482
3483#if defined(DEBUG)
3484
3485static void	pads(pmap_t pm);
3486void		pmap_pvdump(vm_offset_t pa);
3487
3488/* print address space of pmap*/
3489static void
3490pads(pm)
3491	pmap_t pm;
3492{
3493	int i, j;
3494	vm_offset_t va;
3495	pt_entry_t *ptep;
3496
3497	if (pm == kernel_pmap)
3498		return;
3499	for (i = 0; i < NPDEPG; i++)
3500		if (pm->pm_pdir[i])
3501			for (j = 0; j < NPTEPG; j++) {
3502				va = (i << PDRSHIFT) + (j << PAGE_SHIFT);
3503				if (pm == kernel_pmap && va < KERNBASE)
3504					continue;
3505				if (pm != kernel_pmap && va > UPT_MAX_ADDRESS)
3506					continue;
3507				ptep = pmap_pte_quick(pm, va);
3508				if (pmap_pte_v(ptep))
3509					printf("%x:%x ", va, *ptep);
3510			};
3511
3512}
3513
3514void
3515pmap_pvdump(pa)
3516	vm_offset_t pa;
3517{
3518	pv_entry_t pv;
3519	vm_page_t m;
3520
3521	printf("pa %x", pa);
3522	m = PHYS_TO_VM_PAGE(pa);
3523	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3524		printf(" -> pmap %p, va %x", (void *)pv->pv_pmap, pv->pv_va);
3525		pads(pv->pv_pmap);
3526	}
3527	printf(" ");
3528}
3529#endif
3530