tr_raid1.c revision 256281
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/10/sys/geom/raid/tr_raid1.c 242328 2012-10-29 21:08:06Z mav $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/endian.h>
33#include <sys/kernel.h>
34#include <sys/kobj.h>
35#include <sys/limits.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/sysctl.h>
40#include <sys/systm.h>
41#include <geom/geom.h>
42#include "geom/raid/g_raid.h"
43#include "g_raid_tr_if.h"
44
45SYSCTL_DECL(_kern_geom_raid_raid1);
46
47#define RAID1_REBUILD_SLAB	(1 << 20) /* One transation in a rebuild */
48static int g_raid1_rebuild_slab = RAID1_REBUILD_SLAB;
49TUNABLE_INT("kern.geom.raid.raid1.rebuild_slab_size",
50    &g_raid1_rebuild_slab);
51SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_slab_size, CTLFLAG_RW,
52    &g_raid1_rebuild_slab, 0,
53    "Amount of the disk to rebuild each read/write cycle of the rebuild.");
54
55#define RAID1_REBUILD_FAIR_IO 20 /* use 1/x of the available I/O */
56static int g_raid1_rebuild_fair_io = RAID1_REBUILD_FAIR_IO;
57TUNABLE_INT("kern.geom.raid.raid1.rebuild_fair_io",
58    &g_raid1_rebuild_fair_io);
59SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_fair_io, CTLFLAG_RW,
60    &g_raid1_rebuild_fair_io, 0,
61    "Fraction of the I/O bandwidth to use when disk busy for rebuild.");
62
63#define RAID1_REBUILD_CLUSTER_IDLE 100
64static int g_raid1_rebuild_cluster_idle = RAID1_REBUILD_CLUSTER_IDLE;
65TUNABLE_INT("kern.geom.raid.raid1.rebuild_cluster_idle",
66    &g_raid1_rebuild_cluster_idle);
67SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_cluster_idle, CTLFLAG_RW,
68    &g_raid1_rebuild_cluster_idle, 0,
69    "Number of slabs to do each time we trigger a rebuild cycle");
70
71#define RAID1_REBUILD_META_UPDATE 1024 /* update meta data every 1GB or so */
72static int g_raid1_rebuild_meta_update = RAID1_REBUILD_META_UPDATE;
73TUNABLE_INT("kern.geom.raid.raid1.rebuild_meta_update",
74    &g_raid1_rebuild_meta_update);
75SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_meta_update, CTLFLAG_RW,
76    &g_raid1_rebuild_meta_update, 0,
77    "When to update the meta data.");
78
79static MALLOC_DEFINE(M_TR_RAID1, "tr_raid1_data", "GEOM_RAID RAID1 data");
80
81#define TR_RAID1_NONE 0
82#define TR_RAID1_REBUILD 1
83#define TR_RAID1_RESYNC 2
84
85#define TR_RAID1_F_DOING_SOME	0x1
86#define TR_RAID1_F_LOCKED	0x2
87#define TR_RAID1_F_ABORT	0x4
88
89struct g_raid_tr_raid1_object {
90	struct g_raid_tr_object	 trso_base;
91	int			 trso_starting;
92	int			 trso_stopping;
93	int			 trso_type;
94	int			 trso_recover_slabs; /* slabs before rest */
95	int			 trso_fair_io;
96	int			 trso_meta_update;
97	int			 trso_flags;
98	struct g_raid_subdisk	*trso_failed_sd; /* like per volume */
99	void			*trso_buffer;	 /* Buffer space */
100	struct bio		 trso_bio;
101};
102
103static g_raid_tr_taste_t g_raid_tr_taste_raid1;
104static g_raid_tr_event_t g_raid_tr_event_raid1;
105static g_raid_tr_start_t g_raid_tr_start_raid1;
106static g_raid_tr_stop_t g_raid_tr_stop_raid1;
107static g_raid_tr_iostart_t g_raid_tr_iostart_raid1;
108static g_raid_tr_iodone_t g_raid_tr_iodone_raid1;
109static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid1;
110static g_raid_tr_locked_t g_raid_tr_locked_raid1;
111static g_raid_tr_idle_t g_raid_tr_idle_raid1;
112static g_raid_tr_free_t g_raid_tr_free_raid1;
113
114static kobj_method_t g_raid_tr_raid1_methods[] = {
115	KOBJMETHOD(g_raid_tr_taste,	g_raid_tr_taste_raid1),
116	KOBJMETHOD(g_raid_tr_event,	g_raid_tr_event_raid1),
117	KOBJMETHOD(g_raid_tr_start,	g_raid_tr_start_raid1),
118	KOBJMETHOD(g_raid_tr_stop,	g_raid_tr_stop_raid1),
119	KOBJMETHOD(g_raid_tr_iostart,	g_raid_tr_iostart_raid1),
120	KOBJMETHOD(g_raid_tr_iodone,	g_raid_tr_iodone_raid1),
121	KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid1),
122	KOBJMETHOD(g_raid_tr_locked,	g_raid_tr_locked_raid1),
123	KOBJMETHOD(g_raid_tr_idle,	g_raid_tr_idle_raid1),
124	KOBJMETHOD(g_raid_tr_free,	g_raid_tr_free_raid1),
125	{ 0, 0 }
126};
127
128static struct g_raid_tr_class g_raid_tr_raid1_class = {
129	"RAID1",
130	g_raid_tr_raid1_methods,
131	sizeof(struct g_raid_tr_raid1_object),
132	.trc_enable = 1,
133	.trc_priority = 100
134};
135
136static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr);
137static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
138    struct g_raid_subdisk *sd);
139
140static int
141g_raid_tr_taste_raid1(struct g_raid_tr_object *tr, struct g_raid_volume *vol)
142{
143	struct g_raid_tr_raid1_object *trs;
144
145	trs = (struct g_raid_tr_raid1_object *)tr;
146	if (tr->tro_volume->v_raid_level != G_RAID_VOLUME_RL_RAID1 ||
147	    (tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1SM &&
148	     tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1MM))
149		return (G_RAID_TR_TASTE_FAIL);
150	trs->trso_starting = 1;
151	return (G_RAID_TR_TASTE_SUCCEED);
152}
153
154static int
155g_raid_tr_update_state_raid1(struct g_raid_volume *vol,
156    struct g_raid_subdisk *sd)
157{
158	struct g_raid_tr_raid1_object *trs;
159	struct g_raid_softc *sc;
160	struct g_raid_subdisk *tsd, *bestsd;
161	u_int s;
162	int i, na, ns;
163
164	sc = vol->v_softc;
165	trs = (struct g_raid_tr_raid1_object *)vol->v_tr;
166	if (trs->trso_stopping &&
167	    (trs->trso_flags & TR_RAID1_F_DOING_SOME) == 0)
168		s = G_RAID_VOLUME_S_STOPPED;
169	else if (trs->trso_starting)
170		s = G_RAID_VOLUME_S_STARTING;
171	else {
172		/* Make sure we have at least one ACTIVE disk. */
173		na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
174		if (na == 0) {
175			/*
176			 * Critical situation! We have no any active disk!
177			 * Choose the best disk we have to make it active.
178			 */
179			bestsd = &vol->v_subdisks[0];
180			for (i = 1; i < vol->v_disks_count; i++) {
181				tsd = &vol->v_subdisks[i];
182				if (tsd->sd_state > bestsd->sd_state)
183					bestsd = tsd;
184				else if (tsd->sd_state == bestsd->sd_state &&
185				    (tsd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
186				     tsd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
187				    tsd->sd_rebuild_pos > bestsd->sd_rebuild_pos)
188					bestsd = tsd;
189			}
190			if (bestsd->sd_state >= G_RAID_SUBDISK_S_UNINITIALIZED) {
191				/* We found reasonable candidate. */
192				G_RAID_DEBUG1(1, sc,
193				    "Promote subdisk %s:%d from %s to ACTIVE.",
194				    vol->v_name, bestsd->sd_pos,
195				    g_raid_subdisk_state2str(bestsd->sd_state));
196				g_raid_change_subdisk_state(bestsd,
197				    G_RAID_SUBDISK_S_ACTIVE);
198				g_raid_write_metadata(sc,
199				    vol, bestsd, bestsd->sd_disk);
200			}
201		}
202		na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
203		ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
204		     g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
205		if (na == vol->v_disks_count)
206			s = G_RAID_VOLUME_S_OPTIMAL;
207		else if (na + ns == vol->v_disks_count)
208			s = G_RAID_VOLUME_S_SUBOPTIMAL;
209		else if (na > 0)
210			s = G_RAID_VOLUME_S_DEGRADED;
211		else
212			s = G_RAID_VOLUME_S_BROKEN;
213		g_raid_tr_raid1_maybe_rebuild(vol->v_tr, sd);
214	}
215	if (s != vol->v_state) {
216		g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ?
217		    G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN,
218		    G_RAID_EVENT_VOLUME);
219		g_raid_change_volume_state(vol, s);
220		if (!trs->trso_starting && !trs->trso_stopping)
221			g_raid_write_metadata(sc, vol, NULL, NULL);
222	}
223	return (0);
224}
225
226static void
227g_raid_tr_raid1_fail_disk(struct g_raid_softc *sc, struct g_raid_subdisk *sd,
228    struct g_raid_disk *disk)
229{
230	/*
231	 * We don't fail the last disk in the pack, since it still has decent
232	 * data on it and that's better than failing the disk if it is the root
233	 * file system.
234	 *
235	 * XXX should this be controlled via a tunable?  It makes sense for
236	 * the volume that has / on it.  I can't think of a case where we'd
237	 * want the volume to go away on this kind of event.
238	 */
239	if (g_raid_nsubdisks(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == 1 &&
240	    g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == sd)
241		return;
242	g_raid_fail_disk(sc, sd, disk);
243}
244
245static void
246g_raid_tr_raid1_rebuild_some(struct g_raid_tr_object *tr)
247{
248	struct g_raid_tr_raid1_object *trs;
249	struct g_raid_subdisk *sd, *good_sd;
250	struct bio *bp;
251
252	trs = (struct g_raid_tr_raid1_object *)tr;
253	if (trs->trso_flags & TR_RAID1_F_DOING_SOME)
254		return;
255	sd = trs->trso_failed_sd;
256	good_sd = g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE);
257	if (good_sd == NULL) {
258		g_raid_tr_raid1_rebuild_abort(tr);
259		return;
260	}
261	bp = &trs->trso_bio;
262	memset(bp, 0, sizeof(*bp));
263	bp->bio_offset = sd->sd_rebuild_pos;
264	bp->bio_length = MIN(g_raid1_rebuild_slab,
265	    sd->sd_size - sd->sd_rebuild_pos);
266	bp->bio_data = trs->trso_buffer;
267	bp->bio_cmd = BIO_READ;
268	bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
269	bp->bio_caller1 = good_sd;
270	trs->trso_flags |= TR_RAID1_F_DOING_SOME;
271	trs->trso_flags |= TR_RAID1_F_LOCKED;
272	g_raid_lock_range(sd->sd_volume,	/* Lock callback starts I/O */
273	   bp->bio_offset, bp->bio_length, NULL, bp);
274}
275
276static void
277g_raid_tr_raid1_rebuild_done(struct g_raid_tr_raid1_object *trs)
278{
279	struct g_raid_volume *vol;
280	struct g_raid_subdisk *sd;
281
282	vol = trs->trso_base.tro_volume;
283	sd = trs->trso_failed_sd;
284	g_raid_write_metadata(vol->v_softc, vol, sd, sd->sd_disk);
285	free(trs->trso_buffer, M_TR_RAID1);
286	trs->trso_buffer = NULL;
287	trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
288	trs->trso_type = TR_RAID1_NONE;
289	trs->trso_recover_slabs = 0;
290	trs->trso_failed_sd = NULL;
291	g_raid_tr_update_state_raid1(vol, NULL);
292}
293
294static void
295g_raid_tr_raid1_rebuild_finish(struct g_raid_tr_object *tr)
296{
297	struct g_raid_tr_raid1_object *trs;
298	struct g_raid_subdisk *sd;
299
300	trs = (struct g_raid_tr_raid1_object *)tr;
301	sd = trs->trso_failed_sd;
302	G_RAID_DEBUG1(0, tr->tro_volume->v_softc,
303	    "Subdisk %s:%d-%s rebuild completed.",
304	    sd->sd_volume->v_name, sd->sd_pos,
305	    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
306	g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE);
307	sd->sd_rebuild_pos = 0;
308	g_raid_tr_raid1_rebuild_done(trs);
309}
310
311static void
312g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr)
313{
314	struct g_raid_tr_raid1_object *trs;
315	struct g_raid_subdisk *sd;
316	struct g_raid_volume *vol;
317	off_t len;
318
319	vol = tr->tro_volume;
320	trs = (struct g_raid_tr_raid1_object *)tr;
321	sd = trs->trso_failed_sd;
322	if (trs->trso_flags & TR_RAID1_F_DOING_SOME) {
323		G_RAID_DEBUG1(1, vol->v_softc,
324		    "Subdisk %s:%d-%s rebuild is aborting.",
325		    sd->sd_volume->v_name, sd->sd_pos,
326		    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
327		trs->trso_flags |= TR_RAID1_F_ABORT;
328	} else {
329		G_RAID_DEBUG1(0, vol->v_softc,
330		    "Subdisk %s:%d-%s rebuild aborted.",
331		    sd->sd_volume->v_name, sd->sd_pos,
332		    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
333		trs->trso_flags &= ~TR_RAID1_F_ABORT;
334		if (trs->trso_flags & TR_RAID1_F_LOCKED) {
335			trs->trso_flags &= ~TR_RAID1_F_LOCKED;
336			len = MIN(g_raid1_rebuild_slab,
337			    sd->sd_size - sd->sd_rebuild_pos);
338			g_raid_unlock_range(tr->tro_volume,
339			    sd->sd_rebuild_pos, len);
340		}
341		g_raid_tr_raid1_rebuild_done(trs);
342	}
343}
344
345static void
346g_raid_tr_raid1_rebuild_start(struct g_raid_tr_object *tr)
347{
348	struct g_raid_volume *vol;
349	struct g_raid_tr_raid1_object *trs;
350	struct g_raid_subdisk *sd, *fsd;
351
352	vol = tr->tro_volume;
353	trs = (struct g_raid_tr_raid1_object *)tr;
354	if (trs->trso_failed_sd) {
355		G_RAID_DEBUG1(1, vol->v_softc,
356		    "Already rebuild in start rebuild. pos %jd\n",
357		    (intmax_t)trs->trso_failed_sd->sd_rebuild_pos);
358		return;
359	}
360	sd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_ACTIVE);
361	if (sd == NULL) {
362		G_RAID_DEBUG1(1, vol->v_softc,
363		    "No active disk to rebuild.  night night.");
364		return;
365	}
366	fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_RESYNC);
367	if (fsd == NULL)
368		fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_REBUILD);
369	if (fsd == NULL) {
370		fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_STALE);
371		if (fsd != NULL) {
372			fsd->sd_rebuild_pos = 0;
373			g_raid_change_subdisk_state(fsd,
374			    G_RAID_SUBDISK_S_RESYNC);
375			g_raid_write_metadata(vol->v_softc, vol, fsd, NULL);
376		} else {
377			fsd = g_raid_get_subdisk(vol,
378			    G_RAID_SUBDISK_S_UNINITIALIZED);
379			if (fsd == NULL)
380				fsd = g_raid_get_subdisk(vol,
381				    G_RAID_SUBDISK_S_NEW);
382			if (fsd != NULL) {
383				fsd->sd_rebuild_pos = 0;
384				g_raid_change_subdisk_state(fsd,
385				    G_RAID_SUBDISK_S_REBUILD);
386				g_raid_write_metadata(vol->v_softc,
387				    vol, fsd, NULL);
388			}
389		}
390	}
391	if (fsd == NULL) {
392		G_RAID_DEBUG1(1, vol->v_softc,
393		    "No failed disk to rebuild.  night night.");
394		return;
395	}
396	trs->trso_failed_sd = fsd;
397	G_RAID_DEBUG1(0, vol->v_softc,
398	    "Subdisk %s:%d-%s rebuild start at %jd.",
399	    fsd->sd_volume->v_name, fsd->sd_pos,
400	    fsd->sd_disk ? g_raid_get_diskname(fsd->sd_disk) : "[none]",
401	    trs->trso_failed_sd->sd_rebuild_pos);
402	trs->trso_type = TR_RAID1_REBUILD;
403	trs->trso_buffer = malloc(g_raid1_rebuild_slab, M_TR_RAID1, M_WAITOK);
404	trs->trso_meta_update = g_raid1_rebuild_meta_update;
405	g_raid_tr_raid1_rebuild_some(tr);
406}
407
408
409static void
410g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
411    struct g_raid_subdisk *sd)
412{
413	struct g_raid_volume *vol;
414	struct g_raid_tr_raid1_object *trs;
415	int na, nr;
416
417	/*
418	 * If we're stopping, don't do anything.  If we don't have at least one
419	 * good disk and one bad disk, we don't do anything.  And if there's a
420	 * 'good disk' stored in the trs, then we're in progress and we punt.
421	 * If we make it past all these checks, we need to rebuild.
422	 */
423	vol = tr->tro_volume;
424	trs = (struct g_raid_tr_raid1_object *)tr;
425	if (trs->trso_stopping)
426		return;
427	na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
428	nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_REBUILD) +
429	    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
430	switch(trs->trso_type) {
431	case TR_RAID1_NONE:
432		if (na == 0)
433			return;
434		if (nr == 0) {
435			nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_NEW) +
436			    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
437			    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED);
438			if (nr == 0)
439				return;
440		}
441		g_raid_tr_raid1_rebuild_start(tr);
442		break;
443	case TR_RAID1_REBUILD:
444		if (na == 0 || nr == 0 || trs->trso_failed_sd == sd)
445			g_raid_tr_raid1_rebuild_abort(tr);
446		break;
447	case TR_RAID1_RESYNC:
448		break;
449	}
450}
451
452static int
453g_raid_tr_event_raid1(struct g_raid_tr_object *tr,
454    struct g_raid_subdisk *sd, u_int event)
455{
456
457	g_raid_tr_update_state_raid1(tr->tro_volume, sd);
458	return (0);
459}
460
461static int
462g_raid_tr_start_raid1(struct g_raid_tr_object *tr)
463{
464	struct g_raid_tr_raid1_object *trs;
465	struct g_raid_volume *vol;
466
467	trs = (struct g_raid_tr_raid1_object *)tr;
468	vol = tr->tro_volume;
469	trs->trso_starting = 0;
470	g_raid_tr_update_state_raid1(vol, NULL);
471	return (0);
472}
473
474static int
475g_raid_tr_stop_raid1(struct g_raid_tr_object *tr)
476{
477	struct g_raid_tr_raid1_object *trs;
478	struct g_raid_volume *vol;
479
480	trs = (struct g_raid_tr_raid1_object *)tr;
481	vol = tr->tro_volume;
482	trs->trso_starting = 0;
483	trs->trso_stopping = 1;
484	g_raid_tr_update_state_raid1(vol, NULL);
485	return (0);
486}
487
488/*
489 * Select the disk to read from.  Take into account: subdisk state, running
490 * error recovery, average disk load, head position and possible cache hits.
491 */
492#define ABS(x)		(((x) >= 0) ? (x) : (-(x)))
493static struct g_raid_subdisk *
494g_raid_tr_raid1_select_read_disk(struct g_raid_volume *vol, struct bio *bp,
495    u_int mask)
496{
497	struct g_raid_subdisk *sd, *best;
498	int i, prio, bestprio;
499
500	best = NULL;
501	bestprio = INT_MAX;
502	for (i = 0; i < vol->v_disks_count; i++) {
503		sd = &vol->v_subdisks[i];
504		if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
505		    ((sd->sd_state != G_RAID_SUBDISK_S_REBUILD &&
506		      sd->sd_state != G_RAID_SUBDISK_S_RESYNC) ||
507		     bp->bio_offset + bp->bio_length > sd->sd_rebuild_pos))
508			continue;
509		if ((mask & (1 << i)) != 0)
510			continue;
511		prio = G_RAID_SUBDISK_LOAD(sd);
512		prio += min(sd->sd_recovery, 255) << 22;
513		prio += (G_RAID_SUBDISK_S_ACTIVE - sd->sd_state) << 16;
514		/* If disk head is precisely in position - highly prefer it. */
515		if (G_RAID_SUBDISK_POS(sd) == bp->bio_offset)
516			prio -= 2 * G_RAID_SUBDISK_LOAD_SCALE;
517		else
518		/* If disk head is close to position - prefer it. */
519		if (ABS(G_RAID_SUBDISK_POS(sd) - bp->bio_offset) <
520		    G_RAID_SUBDISK_TRACK_SIZE)
521			prio -= 1 * G_RAID_SUBDISK_LOAD_SCALE;
522		if (prio < bestprio) {
523			best = sd;
524			bestprio = prio;
525		}
526	}
527	return (best);
528}
529
530static void
531g_raid_tr_iostart_raid1_read(struct g_raid_tr_object *tr, struct bio *bp)
532{
533	struct g_raid_subdisk *sd;
534	struct bio *cbp;
535
536	sd = g_raid_tr_raid1_select_read_disk(tr->tro_volume, bp, 0);
537	KASSERT(sd != NULL, ("No active disks in volume %s.",
538		tr->tro_volume->v_name));
539
540	cbp = g_clone_bio(bp);
541	if (cbp == NULL) {
542		g_raid_iodone(bp, ENOMEM);
543		return;
544	}
545
546	g_raid_subdisk_iostart(sd, cbp);
547}
548
549static void
550g_raid_tr_iostart_raid1_write(struct g_raid_tr_object *tr, struct bio *bp)
551{
552	struct g_raid_volume *vol;
553	struct g_raid_subdisk *sd;
554	struct bio_queue_head queue;
555	struct bio *cbp;
556	int i;
557
558	vol = tr->tro_volume;
559
560	/*
561	 * Allocate all bios before sending any request, so we can return
562	 * ENOMEM in nice and clean way.
563	 */
564	bioq_init(&queue);
565	for (i = 0; i < vol->v_disks_count; i++) {
566		sd = &vol->v_subdisks[i];
567		switch (sd->sd_state) {
568		case G_RAID_SUBDISK_S_ACTIVE:
569			break;
570		case G_RAID_SUBDISK_S_REBUILD:
571			/*
572			 * When rebuilding, only part of this subdisk is
573			 * writable, the rest will be written as part of the
574			 * that process.
575			 */
576			if (bp->bio_offset >= sd->sd_rebuild_pos)
577				continue;
578			break;
579		case G_RAID_SUBDISK_S_STALE:
580		case G_RAID_SUBDISK_S_RESYNC:
581			/*
582			 * Resyncing still writes on the theory that the
583			 * resync'd disk is very close and writing it will
584			 * keep it that way better if we keep up while
585			 * resyncing.
586			 */
587			break;
588		default:
589			continue;
590		}
591		cbp = g_clone_bio(bp);
592		if (cbp == NULL)
593			goto failure;
594		cbp->bio_caller1 = sd;
595		bioq_insert_tail(&queue, cbp);
596	}
597	for (cbp = bioq_first(&queue); cbp != NULL;
598	    cbp = bioq_first(&queue)) {
599		bioq_remove(&queue, cbp);
600		sd = cbp->bio_caller1;
601		cbp->bio_caller1 = NULL;
602		g_raid_subdisk_iostart(sd, cbp);
603	}
604	return;
605failure:
606	for (cbp = bioq_first(&queue); cbp != NULL;
607	    cbp = bioq_first(&queue)) {
608		bioq_remove(&queue, cbp);
609		g_destroy_bio(cbp);
610	}
611	if (bp->bio_error == 0)
612		bp->bio_error = ENOMEM;
613	g_raid_iodone(bp, bp->bio_error);
614}
615
616static void
617g_raid_tr_iostart_raid1(struct g_raid_tr_object *tr, struct bio *bp)
618{
619	struct g_raid_volume *vol;
620	struct g_raid_tr_raid1_object *trs;
621
622	vol = tr->tro_volume;
623	trs = (struct g_raid_tr_raid1_object *)tr;
624	if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL &&
625	    vol->v_state != G_RAID_VOLUME_S_SUBOPTIMAL &&
626	    vol->v_state != G_RAID_VOLUME_S_DEGRADED) {
627		g_raid_iodone(bp, EIO);
628		return;
629	}
630	/*
631	 * If we're rebuilding, squeeze in rebuild activity every so often,
632	 * even when the disk is busy.  Be sure to only count real I/O
633	 * to the disk.  All 'SPECIAL' I/O is traffic generated to the disk
634	 * by this module.
635	 */
636	if (trs->trso_failed_sd != NULL &&
637	    !(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL)) {
638		/* Make this new or running now round short. */
639		trs->trso_recover_slabs = 0;
640		if (--trs->trso_fair_io <= 0) {
641			trs->trso_fair_io = g_raid1_rebuild_fair_io;
642			g_raid_tr_raid1_rebuild_some(tr);
643		}
644	}
645	switch (bp->bio_cmd) {
646	case BIO_READ:
647		g_raid_tr_iostart_raid1_read(tr, bp);
648		break;
649	case BIO_WRITE:
650	case BIO_DELETE:
651		g_raid_tr_iostart_raid1_write(tr, bp);
652		break;
653	case BIO_FLUSH:
654		g_raid_tr_flush_common(tr, bp);
655		break;
656	default:
657		KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)",
658		    bp->bio_cmd, vol->v_name));
659		break;
660	}
661}
662
663static void
664g_raid_tr_iodone_raid1(struct g_raid_tr_object *tr,
665    struct g_raid_subdisk *sd, struct bio *bp)
666{
667	struct bio *cbp;
668	struct g_raid_subdisk *nsd;
669	struct g_raid_volume *vol;
670	struct bio *pbp;
671	struct g_raid_tr_raid1_object *trs;
672	uintptr_t *mask;
673	int error, do_write;
674
675	trs = (struct g_raid_tr_raid1_object *)tr;
676	vol = tr->tro_volume;
677	if (bp->bio_cflags & G_RAID_BIO_FLAG_SYNC) {
678		/*
679		 * This operation is part of a rebuild or resync operation.
680		 * See what work just got done, then schedule the next bit of
681		 * work, if any.  Rebuild/resync is done a little bit at a
682		 * time.  Either when a timeout happens, or after we get a
683		 * bunch of I/Os to the disk (to make sure an active system
684		 * will complete in a sane amount of time).
685		 *
686		 * We are setup to do differing amounts of work for each of
687		 * these cases.  so long as the slabs is smallish (less than
688		 * 50 or so, I'd guess, but that's just a WAG), we shouldn't
689		 * have any bio starvation issues.  For active disks, we do
690		 * 5MB of data, for inactive ones, we do 50MB.
691		 */
692		if (trs->trso_type == TR_RAID1_REBUILD) {
693			if (bp->bio_cmd == BIO_READ) {
694
695				/* Immediately abort rebuild, if requested. */
696				if (trs->trso_flags & TR_RAID1_F_ABORT) {
697					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
698					g_raid_tr_raid1_rebuild_abort(tr);
699					return;
700				}
701
702				/* On read error, skip and cross fingers. */
703				if (bp->bio_error != 0) {
704					G_RAID_LOGREQ(0, bp,
705					    "Read error during rebuild (%d), "
706					    "possible data loss!",
707					    bp->bio_error);
708					goto rebuild_round_done;
709				}
710
711				/*
712				 * The read operation finished, queue the
713				 * write and get out.
714				 */
715				G_RAID_LOGREQ(4, bp, "rebuild read done. %d",
716				    bp->bio_error);
717				bp->bio_cmd = BIO_WRITE;
718				bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
719				G_RAID_LOGREQ(4, bp, "Queueing rebuild write.");
720				g_raid_subdisk_iostart(trs->trso_failed_sd, bp);
721			} else {
722				/*
723				 * The write operation just finished.  Do
724				 * another.  We keep cloning the master bio
725				 * since it has the right buffers allocated to
726				 * it.
727				 */
728				G_RAID_LOGREQ(4, bp,
729				    "rebuild write done. Error %d",
730				    bp->bio_error);
731				nsd = trs->trso_failed_sd;
732				if (bp->bio_error != 0 ||
733				    trs->trso_flags & TR_RAID1_F_ABORT) {
734					if ((trs->trso_flags &
735					    TR_RAID1_F_ABORT) == 0) {
736						g_raid_tr_raid1_fail_disk(sd->sd_softc,
737						    nsd, nsd->sd_disk);
738					}
739					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
740					g_raid_tr_raid1_rebuild_abort(tr);
741					return;
742				}
743rebuild_round_done:
744				nsd = trs->trso_failed_sd;
745				trs->trso_flags &= ~TR_RAID1_F_LOCKED;
746				g_raid_unlock_range(sd->sd_volume,
747				    bp->bio_offset, bp->bio_length);
748				nsd->sd_rebuild_pos += bp->bio_length;
749				if (nsd->sd_rebuild_pos >= nsd->sd_size) {
750					g_raid_tr_raid1_rebuild_finish(tr);
751					return;
752				}
753
754				/* Abort rebuild if we are stopping */
755				if (trs->trso_stopping) {
756					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
757					g_raid_tr_raid1_rebuild_abort(tr);
758					return;
759				}
760
761				if (--trs->trso_meta_update <= 0) {
762					g_raid_write_metadata(vol->v_softc,
763					    vol, nsd, nsd->sd_disk);
764					trs->trso_meta_update =
765					    g_raid1_rebuild_meta_update;
766				}
767				trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
768				if (--trs->trso_recover_slabs <= 0)
769					return;
770				g_raid_tr_raid1_rebuild_some(tr);
771			}
772		} else if (trs->trso_type == TR_RAID1_RESYNC) {
773			/*
774			 * read good sd, read bad sd in parallel.  when both
775			 * done, compare the buffers.  write good to the bad
776			 * if different.  do the next bit of work.
777			 */
778			panic("Somehow, we think we're doing a resync");
779		}
780		return;
781	}
782	pbp = bp->bio_parent;
783	pbp->bio_inbed++;
784	if (bp->bio_cmd == BIO_READ && bp->bio_error != 0) {
785		/*
786		 * Read failed on first drive.  Retry the read error on
787		 * another disk drive, if available, before erroring out the
788		 * read.
789		 */
790		sd->sd_disk->d_read_errs++;
791		G_RAID_LOGREQ(0, bp,
792		    "Read error (%d), %d read errors total",
793		    bp->bio_error, sd->sd_disk->d_read_errs);
794
795		/*
796		 * If there are too many read errors, we move to degraded.
797		 * XXX Do we want to FAIL the drive (eg, make the user redo
798		 * everything to get it back in sync), or just degrade the
799		 * drive, which kicks off a resync?
800		 */
801		do_write = 1;
802		if (sd->sd_disk->d_read_errs > g_raid_read_err_thresh) {
803			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
804			if (pbp->bio_children == 1)
805				do_write = 0;
806		}
807
808		/*
809		 * Find the other disk, and try to do the I/O to it.
810		 */
811		mask = (uintptr_t *)(&pbp->bio_driver2);
812		if (pbp->bio_children == 1) {
813			/* Save original subdisk. */
814			pbp->bio_driver1 = do_write ? sd : NULL;
815			*mask = 0;
816		}
817		*mask |= 1 << sd->sd_pos;
818		nsd = g_raid_tr_raid1_select_read_disk(vol, pbp, *mask);
819		if (nsd != NULL && (cbp = g_clone_bio(pbp)) != NULL) {
820			g_destroy_bio(bp);
821			G_RAID_LOGREQ(2, cbp, "Retrying read from %d",
822			    nsd->sd_pos);
823			if (pbp->bio_children == 2 && do_write) {
824				sd->sd_recovery++;
825				cbp->bio_caller1 = nsd;
826				pbp->bio_pflags = G_RAID_BIO_FLAG_LOCKED;
827				/* Lock callback starts I/O */
828				g_raid_lock_range(sd->sd_volume,
829				    cbp->bio_offset, cbp->bio_length, pbp, cbp);
830			} else {
831				g_raid_subdisk_iostart(nsd, cbp);
832			}
833			return;
834		}
835		/*
836		 * We can't retry.  Return the original error by falling
837		 * through.  This will happen when there's only one good disk.
838		 * We don't need to fail the raid, since its actual state is
839		 * based on the state of the subdisks.
840		 */
841		G_RAID_LOGREQ(2, bp, "Couldn't retry read, failing it");
842	}
843	if (bp->bio_cmd == BIO_READ &&
844	    bp->bio_error == 0 &&
845	    pbp->bio_children > 1 &&
846	    pbp->bio_driver1 != NULL) {
847		/*
848		 * If it was a read, and bio_children is >1, then we just
849		 * recovered the data from the second drive.  We should try to
850		 * write that data to the first drive if sector remapping is
851		 * enabled.  A write should put the data in a new place on the
852		 * disk, remapping the bad sector.  Do we need to do that by
853		 * queueing a request to the main worker thread?  It doesn't
854		 * affect the return code of this current read, and can be
855		 * done at our liesure.  However, to make the code simpler, it
856		 * is done syncrhonously.
857		 */
858		G_RAID_LOGREQ(3, bp, "Recovered data from other drive");
859		cbp = g_clone_bio(pbp);
860		if (cbp != NULL) {
861			g_destroy_bio(bp);
862			cbp->bio_cmd = BIO_WRITE;
863			cbp->bio_cflags = G_RAID_BIO_FLAG_REMAP;
864			G_RAID_LOGREQ(2, cbp,
865			    "Attempting bad sector remap on failing drive.");
866			g_raid_subdisk_iostart(pbp->bio_driver1, cbp);
867			return;
868		}
869	}
870	if (pbp->bio_pflags & G_RAID_BIO_FLAG_LOCKED) {
871		/*
872		 * We're done with a recovery, mark the range as unlocked.
873		 * For any write errors, we agressively fail the disk since
874		 * there was both a READ and a WRITE error at this location.
875		 * Both types of errors generally indicates the drive is on
876		 * the verge of total failure anyway.  Better to stop trusting
877		 * it now.  However, we need to reset error to 0 in that case
878		 * because we're not failing the original I/O which succeeded.
879		 */
880		if (bp->bio_cmd == BIO_WRITE && bp->bio_error) {
881			G_RAID_LOGREQ(0, bp, "Remap write failed: "
882			    "failing subdisk.");
883			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
884			bp->bio_error = 0;
885		}
886		if (pbp->bio_driver1 != NULL) {
887			((struct g_raid_subdisk *)pbp->bio_driver1)
888			    ->sd_recovery--;
889		}
890		G_RAID_LOGREQ(2, bp, "REMAP done %d.", bp->bio_error);
891		g_raid_unlock_range(sd->sd_volume, bp->bio_offset,
892		    bp->bio_length);
893	}
894	if (pbp->bio_cmd != BIO_READ) {
895		if (pbp->bio_inbed == 1 || pbp->bio_error != 0)
896			pbp->bio_error = bp->bio_error;
897		if (pbp->bio_cmd == BIO_WRITE && bp->bio_error != 0) {
898			G_RAID_LOGREQ(0, bp, "Write failed: failing subdisk.");
899			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
900		}
901		error = pbp->bio_error;
902	} else
903		error = bp->bio_error;
904	g_destroy_bio(bp);
905	if (pbp->bio_children == pbp->bio_inbed) {
906		pbp->bio_completed = pbp->bio_length;
907		g_raid_iodone(pbp, error);
908	}
909}
910
911static int
912g_raid_tr_kerneldump_raid1(struct g_raid_tr_object *tr,
913    void *virtual, vm_offset_t physical, off_t offset, size_t length)
914{
915	struct g_raid_volume *vol;
916	struct g_raid_subdisk *sd;
917	int error, i, ok;
918
919	vol = tr->tro_volume;
920	error = 0;
921	ok = 0;
922	for (i = 0; i < vol->v_disks_count; i++) {
923		sd = &vol->v_subdisks[i];
924		switch (sd->sd_state) {
925		case G_RAID_SUBDISK_S_ACTIVE:
926			break;
927		case G_RAID_SUBDISK_S_REBUILD:
928			/*
929			 * When rebuilding, only part of this subdisk is
930			 * writable, the rest will be written as part of the
931			 * that process.
932			 */
933			if (offset >= sd->sd_rebuild_pos)
934				continue;
935			break;
936		case G_RAID_SUBDISK_S_STALE:
937		case G_RAID_SUBDISK_S_RESYNC:
938			/*
939			 * Resyncing still writes on the theory that the
940			 * resync'd disk is very close and writing it will
941			 * keep it that way better if we keep up while
942			 * resyncing.
943			 */
944			break;
945		default:
946			continue;
947		}
948		error = g_raid_subdisk_kerneldump(sd,
949		    virtual, physical, offset, length);
950		if (error == 0)
951			ok++;
952	}
953	return (ok > 0 ? 0 : error);
954}
955
956static int
957g_raid_tr_locked_raid1(struct g_raid_tr_object *tr, void *argp)
958{
959	struct bio *bp;
960	struct g_raid_subdisk *sd;
961
962	bp = (struct bio *)argp;
963	sd = (struct g_raid_subdisk *)bp->bio_caller1;
964	g_raid_subdisk_iostart(sd, bp);
965
966	return (0);
967}
968
969static int
970g_raid_tr_idle_raid1(struct g_raid_tr_object *tr)
971{
972	struct g_raid_tr_raid1_object *trs;
973
974	trs = (struct g_raid_tr_raid1_object *)tr;
975	trs->trso_fair_io = g_raid1_rebuild_fair_io;
976	trs->trso_recover_slabs = g_raid1_rebuild_cluster_idle;
977	if (trs->trso_type == TR_RAID1_REBUILD)
978		g_raid_tr_raid1_rebuild_some(tr);
979	return (0);
980}
981
982static int
983g_raid_tr_free_raid1(struct g_raid_tr_object *tr)
984{
985	struct g_raid_tr_raid1_object *trs;
986
987	trs = (struct g_raid_tr_raid1_object *)tr;
988
989	if (trs->trso_buffer != NULL) {
990		free(trs->trso_buffer, M_TR_RAID1);
991		trs->trso_buffer = NULL;
992	}
993	return (0);
994}
995
996G_RAID_TR_DECLARE(raid1, "RAID1");
997