tr_raid1.c revision 234603
1/*-
2 * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/geom/raid/tr_raid1.c 234603 2012-04-23 13:04:02Z mav $");
29
30#include <sys/param.h>
31#include <sys/bio.h>
32#include <sys/endian.h>
33#include <sys/kernel.h>
34#include <sys/kobj.h>
35#include <sys/limits.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mutex.h>
39#include <sys/sysctl.h>
40#include <sys/systm.h>
41#include <geom/geom.h>
42#include "geom/raid/g_raid.h"
43#include "g_raid_tr_if.h"
44
45SYSCTL_DECL(_kern_geom_raid);
46static SYSCTL_NODE(_kern_geom_raid, OID_AUTO, raid1, CTLFLAG_RW, 0,
47    "RAID1 parameters");
48
49#define RAID1_REBUILD_SLAB	(1 << 20) /* One transation in a rebuild */
50static int g_raid1_rebuild_slab = RAID1_REBUILD_SLAB;
51TUNABLE_INT("kern.geom.raid.raid1.rebuild_slab_size",
52    &g_raid1_rebuild_slab);
53SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_slab_size, CTLFLAG_RW,
54    &g_raid1_rebuild_slab, 0,
55    "Amount of the disk to rebuild each read/write cycle of the rebuild.");
56
57#define RAID1_REBUILD_FAIR_IO 20 /* use 1/x of the available I/O */
58static int g_raid1_rebuild_fair_io = RAID1_REBUILD_FAIR_IO;
59TUNABLE_INT("kern.geom.raid.raid1.rebuild_fair_io",
60    &g_raid1_rebuild_fair_io);
61SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_fair_io, CTLFLAG_RW,
62    &g_raid1_rebuild_fair_io, 0,
63    "Fraction of the I/O bandwidth to use when disk busy for rebuild.");
64
65#define RAID1_REBUILD_CLUSTER_IDLE 100
66static int g_raid1_rebuild_cluster_idle = RAID1_REBUILD_CLUSTER_IDLE;
67TUNABLE_INT("kern.geom.raid.raid1.rebuild_cluster_idle",
68    &g_raid1_rebuild_cluster_idle);
69SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_cluster_idle, CTLFLAG_RW,
70    &g_raid1_rebuild_cluster_idle, 0,
71    "Number of slabs to do each time we trigger a rebuild cycle");
72
73#define RAID1_REBUILD_META_UPDATE 1024 /* update meta data every 1GB or so */
74static int g_raid1_rebuild_meta_update = RAID1_REBUILD_META_UPDATE;
75TUNABLE_INT("kern.geom.raid.raid1.rebuild_meta_update",
76    &g_raid1_rebuild_meta_update);
77SYSCTL_UINT(_kern_geom_raid_raid1, OID_AUTO, rebuild_meta_update, CTLFLAG_RW,
78    &g_raid1_rebuild_meta_update, 0,
79    "When to update the meta data.");
80
81static MALLOC_DEFINE(M_TR_RAID1, "tr_raid1_data", "GEOM_RAID RAID1 data");
82
83#define TR_RAID1_NONE 0
84#define TR_RAID1_REBUILD 1
85#define TR_RAID1_RESYNC 2
86
87#define TR_RAID1_F_DOING_SOME	0x1
88#define TR_RAID1_F_LOCKED	0x2
89#define TR_RAID1_F_ABORT	0x4
90
91struct g_raid_tr_raid1_object {
92	struct g_raid_tr_object	 trso_base;
93	int			 trso_starting;
94	int			 trso_stopping;
95	int			 trso_type;
96	int			 trso_recover_slabs; /* slabs before rest */
97	int			 trso_fair_io;
98	int			 trso_meta_update;
99	int			 trso_flags;
100	struct g_raid_subdisk	*trso_failed_sd; /* like per volume */
101	void			*trso_buffer;	 /* Buffer space */
102	struct bio		 trso_bio;
103};
104
105static g_raid_tr_taste_t g_raid_tr_taste_raid1;
106static g_raid_tr_event_t g_raid_tr_event_raid1;
107static g_raid_tr_start_t g_raid_tr_start_raid1;
108static g_raid_tr_stop_t g_raid_tr_stop_raid1;
109static g_raid_tr_iostart_t g_raid_tr_iostart_raid1;
110static g_raid_tr_iodone_t g_raid_tr_iodone_raid1;
111static g_raid_tr_kerneldump_t g_raid_tr_kerneldump_raid1;
112static g_raid_tr_locked_t g_raid_tr_locked_raid1;
113static g_raid_tr_idle_t g_raid_tr_idle_raid1;
114static g_raid_tr_free_t g_raid_tr_free_raid1;
115
116static kobj_method_t g_raid_tr_raid1_methods[] = {
117	KOBJMETHOD(g_raid_tr_taste,	g_raid_tr_taste_raid1),
118	KOBJMETHOD(g_raid_tr_event,	g_raid_tr_event_raid1),
119	KOBJMETHOD(g_raid_tr_start,	g_raid_tr_start_raid1),
120	KOBJMETHOD(g_raid_tr_stop,	g_raid_tr_stop_raid1),
121	KOBJMETHOD(g_raid_tr_iostart,	g_raid_tr_iostart_raid1),
122	KOBJMETHOD(g_raid_tr_iodone,	g_raid_tr_iodone_raid1),
123	KOBJMETHOD(g_raid_tr_kerneldump, g_raid_tr_kerneldump_raid1),
124	KOBJMETHOD(g_raid_tr_locked,	g_raid_tr_locked_raid1),
125	KOBJMETHOD(g_raid_tr_idle,	g_raid_tr_idle_raid1),
126	KOBJMETHOD(g_raid_tr_free,	g_raid_tr_free_raid1),
127	{ 0, 0 }
128};
129
130static struct g_raid_tr_class g_raid_tr_raid1_class = {
131	"RAID1",
132	g_raid_tr_raid1_methods,
133	sizeof(struct g_raid_tr_raid1_object),
134	.trc_priority = 100
135};
136
137static void g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr);
138static void g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
139    struct g_raid_subdisk *sd);
140
141static int
142g_raid_tr_taste_raid1(struct g_raid_tr_object *tr, struct g_raid_volume *vol)
143{
144	struct g_raid_tr_raid1_object *trs;
145
146	trs = (struct g_raid_tr_raid1_object *)tr;
147	if (tr->tro_volume->v_raid_level != G_RAID_VOLUME_RL_RAID1 ||
148	    (tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1SM &&
149	     tr->tro_volume->v_raid_level_qualifier != G_RAID_VOLUME_RLQ_R1MM))
150		return (G_RAID_TR_TASTE_FAIL);
151	trs->trso_starting = 1;
152	return (G_RAID_TR_TASTE_SUCCEED);
153}
154
155static int
156g_raid_tr_update_state_raid1(struct g_raid_volume *vol,
157    struct g_raid_subdisk *sd)
158{
159	struct g_raid_tr_raid1_object *trs;
160	struct g_raid_softc *sc;
161	struct g_raid_subdisk *tsd, *bestsd;
162	u_int s;
163	int i, na, ns;
164
165	sc = vol->v_softc;
166	trs = (struct g_raid_tr_raid1_object *)vol->v_tr;
167	if (trs->trso_stopping &&
168	    (trs->trso_flags & TR_RAID1_F_DOING_SOME) == 0)
169		s = G_RAID_VOLUME_S_STOPPED;
170	else if (trs->trso_starting)
171		s = G_RAID_VOLUME_S_STARTING;
172	else {
173		/* Make sure we have at least one ACTIVE disk. */
174		na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
175		if (na == 0) {
176			/*
177			 * Critical situation! We have no any active disk!
178			 * Choose the best disk we have to make it active.
179			 */
180			bestsd = &vol->v_subdisks[0];
181			for (i = 1; i < vol->v_disks_count; i++) {
182				tsd = &vol->v_subdisks[i];
183				if (tsd->sd_state > bestsd->sd_state)
184					bestsd = tsd;
185				else if (tsd->sd_state == bestsd->sd_state &&
186				    (tsd->sd_state == G_RAID_SUBDISK_S_REBUILD ||
187				     tsd->sd_state == G_RAID_SUBDISK_S_RESYNC) &&
188				    tsd->sd_rebuild_pos > bestsd->sd_rebuild_pos)
189					bestsd = tsd;
190			}
191			if (bestsd->sd_state >= G_RAID_SUBDISK_S_UNINITIALIZED) {
192				/* We found reasonable candidate. */
193				G_RAID_DEBUG1(1, sc,
194				    "Promote subdisk %s:%d from %s to ACTIVE.",
195				    vol->v_name, bestsd->sd_pos,
196				    g_raid_subdisk_state2str(bestsd->sd_state));
197				g_raid_change_subdisk_state(bestsd,
198				    G_RAID_SUBDISK_S_ACTIVE);
199				g_raid_write_metadata(sc,
200				    vol, bestsd, bestsd->sd_disk);
201			}
202		}
203		na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
204		ns = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
205		     g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
206		if (na == vol->v_disks_count)
207			s = G_RAID_VOLUME_S_OPTIMAL;
208		else if (na + ns == vol->v_disks_count)
209			s = G_RAID_VOLUME_S_SUBOPTIMAL;
210		else if (na > 0)
211			s = G_RAID_VOLUME_S_DEGRADED;
212		else
213			s = G_RAID_VOLUME_S_BROKEN;
214		g_raid_tr_raid1_maybe_rebuild(vol->v_tr, sd);
215	}
216	if (s != vol->v_state) {
217		g_raid_event_send(vol, G_RAID_VOLUME_S_ALIVE(s) ?
218		    G_RAID_VOLUME_E_UP : G_RAID_VOLUME_E_DOWN,
219		    G_RAID_EVENT_VOLUME);
220		g_raid_change_volume_state(vol, s);
221		if (!trs->trso_starting && !trs->trso_stopping)
222			g_raid_write_metadata(sc, vol, NULL, NULL);
223	}
224	return (0);
225}
226
227static void
228g_raid_tr_raid1_fail_disk(struct g_raid_softc *sc, struct g_raid_subdisk *sd,
229    struct g_raid_disk *disk)
230{
231	/*
232	 * We don't fail the last disk in the pack, since it still has decent
233	 * data on it and that's better than failing the disk if it is the root
234	 * file system.
235	 *
236	 * XXX should this be controlled via a tunable?  It makes sense for
237	 * the volume that has / on it.  I can't think of a case where we'd
238	 * want the volume to go away on this kind of event.
239	 */
240	if (g_raid_nsubdisks(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == 1 &&
241	    g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE) == sd)
242		return;
243	g_raid_fail_disk(sc, sd, disk);
244}
245
246static void
247g_raid_tr_raid1_rebuild_some(struct g_raid_tr_object *tr)
248{
249	struct g_raid_tr_raid1_object *trs;
250	struct g_raid_subdisk *sd, *good_sd;
251	struct bio *bp;
252
253	trs = (struct g_raid_tr_raid1_object *)tr;
254	if (trs->trso_flags & TR_RAID1_F_DOING_SOME)
255		return;
256	sd = trs->trso_failed_sd;
257	good_sd = g_raid_get_subdisk(sd->sd_volume, G_RAID_SUBDISK_S_ACTIVE);
258	if (good_sd == NULL) {
259		g_raid_tr_raid1_rebuild_abort(tr);
260		return;
261	}
262	bp = &trs->trso_bio;
263	memset(bp, 0, sizeof(*bp));
264	bp->bio_offset = sd->sd_rebuild_pos;
265	bp->bio_length = MIN(g_raid1_rebuild_slab,
266	    sd->sd_size - sd->sd_rebuild_pos);
267	bp->bio_data = trs->trso_buffer;
268	bp->bio_cmd = BIO_READ;
269	bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
270	bp->bio_caller1 = good_sd;
271	trs->trso_flags |= TR_RAID1_F_DOING_SOME;
272	trs->trso_flags |= TR_RAID1_F_LOCKED;
273	g_raid_lock_range(sd->sd_volume,	/* Lock callback starts I/O */
274	   bp->bio_offset, bp->bio_length, NULL, bp);
275}
276
277static void
278g_raid_tr_raid1_rebuild_done(struct g_raid_tr_raid1_object *trs)
279{
280	struct g_raid_volume *vol;
281	struct g_raid_subdisk *sd;
282
283	vol = trs->trso_base.tro_volume;
284	sd = trs->trso_failed_sd;
285	g_raid_write_metadata(vol->v_softc, vol, sd, sd->sd_disk);
286	free(trs->trso_buffer, M_TR_RAID1);
287	trs->trso_buffer = NULL;
288	trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
289	trs->trso_type = TR_RAID1_NONE;
290	trs->trso_recover_slabs = 0;
291	trs->trso_failed_sd = NULL;
292	g_raid_tr_update_state_raid1(vol, NULL);
293}
294
295static void
296g_raid_tr_raid1_rebuild_finish(struct g_raid_tr_object *tr)
297{
298	struct g_raid_tr_raid1_object *trs;
299	struct g_raid_subdisk *sd;
300
301	trs = (struct g_raid_tr_raid1_object *)tr;
302	sd = trs->trso_failed_sd;
303	G_RAID_DEBUG1(0, tr->tro_volume->v_softc,
304	    "Subdisk %s:%d-%s rebuild completed.",
305	    sd->sd_volume->v_name, sd->sd_pos,
306	    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
307	g_raid_change_subdisk_state(sd, G_RAID_SUBDISK_S_ACTIVE);
308	sd->sd_rebuild_pos = 0;
309	g_raid_tr_raid1_rebuild_done(trs);
310}
311
312static void
313g_raid_tr_raid1_rebuild_abort(struct g_raid_tr_object *tr)
314{
315	struct g_raid_tr_raid1_object *trs;
316	struct g_raid_subdisk *sd;
317	struct g_raid_volume *vol;
318	off_t len;
319
320	vol = tr->tro_volume;
321	trs = (struct g_raid_tr_raid1_object *)tr;
322	sd = trs->trso_failed_sd;
323	if (trs->trso_flags & TR_RAID1_F_DOING_SOME) {
324		G_RAID_DEBUG1(1, vol->v_softc,
325		    "Subdisk %s:%d-%s rebuild is aborting.",
326		    sd->sd_volume->v_name, sd->sd_pos,
327		    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
328		trs->trso_flags |= TR_RAID1_F_ABORT;
329	} else {
330		G_RAID_DEBUG1(0, vol->v_softc,
331		    "Subdisk %s:%d-%s rebuild aborted.",
332		    sd->sd_volume->v_name, sd->sd_pos,
333		    sd->sd_disk ? g_raid_get_diskname(sd->sd_disk) : "[none]");
334		trs->trso_flags &= ~TR_RAID1_F_ABORT;
335		if (trs->trso_flags & TR_RAID1_F_LOCKED) {
336			trs->trso_flags &= ~TR_RAID1_F_LOCKED;
337			len = MIN(g_raid1_rebuild_slab,
338			    sd->sd_size - sd->sd_rebuild_pos);
339			g_raid_unlock_range(tr->tro_volume,
340			    sd->sd_rebuild_pos, len);
341		}
342		g_raid_tr_raid1_rebuild_done(trs);
343	}
344}
345
346static void
347g_raid_tr_raid1_rebuild_start(struct g_raid_tr_object *tr)
348{
349	struct g_raid_volume *vol;
350	struct g_raid_tr_raid1_object *trs;
351	struct g_raid_subdisk *sd, *fsd;
352
353	vol = tr->tro_volume;
354	trs = (struct g_raid_tr_raid1_object *)tr;
355	if (trs->trso_failed_sd) {
356		G_RAID_DEBUG1(1, vol->v_softc,
357		    "Already rebuild in start rebuild. pos %jd\n",
358		    (intmax_t)trs->trso_failed_sd->sd_rebuild_pos);
359		return;
360	}
361	sd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_ACTIVE);
362	if (sd == NULL) {
363		G_RAID_DEBUG1(1, vol->v_softc,
364		    "No active disk to rebuild.  night night.");
365		return;
366	}
367	fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_RESYNC);
368	if (fsd == NULL)
369		fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_REBUILD);
370	if (fsd == NULL) {
371		fsd = g_raid_get_subdisk(vol, G_RAID_SUBDISK_S_STALE);
372		if (fsd != NULL) {
373			fsd->sd_rebuild_pos = 0;
374			g_raid_change_subdisk_state(fsd,
375			    G_RAID_SUBDISK_S_RESYNC);
376			g_raid_write_metadata(vol->v_softc, vol, fsd, NULL);
377		} else {
378			fsd = g_raid_get_subdisk(vol,
379			    G_RAID_SUBDISK_S_UNINITIALIZED);
380			if (fsd == NULL)
381				fsd = g_raid_get_subdisk(vol,
382				    G_RAID_SUBDISK_S_NEW);
383			if (fsd != NULL) {
384				fsd->sd_rebuild_pos = 0;
385				g_raid_change_subdisk_state(fsd,
386				    G_RAID_SUBDISK_S_REBUILD);
387				g_raid_write_metadata(vol->v_softc,
388				    vol, fsd, NULL);
389			}
390		}
391	}
392	if (fsd == NULL) {
393		G_RAID_DEBUG1(1, vol->v_softc,
394		    "No failed disk to rebuild.  night night.");
395		return;
396	}
397	trs->trso_failed_sd = fsd;
398	G_RAID_DEBUG1(0, vol->v_softc,
399	    "Subdisk %s:%d-%s rebuild start at %jd.",
400	    fsd->sd_volume->v_name, fsd->sd_pos,
401	    fsd->sd_disk ? g_raid_get_diskname(fsd->sd_disk) : "[none]",
402	    trs->trso_failed_sd->sd_rebuild_pos);
403	trs->trso_type = TR_RAID1_REBUILD;
404	trs->trso_buffer = malloc(g_raid1_rebuild_slab, M_TR_RAID1, M_WAITOK);
405	trs->trso_meta_update = g_raid1_rebuild_meta_update;
406	g_raid_tr_raid1_rebuild_some(tr);
407}
408
409
410static void
411g_raid_tr_raid1_maybe_rebuild(struct g_raid_tr_object *tr,
412    struct g_raid_subdisk *sd)
413{
414	struct g_raid_volume *vol;
415	struct g_raid_tr_raid1_object *trs;
416	int na, nr;
417
418	/*
419	 * If we're stopping, don't do anything.  If we don't have at least one
420	 * good disk and one bad disk, we don't do anything.  And if there's a
421	 * 'good disk' stored in the trs, then we're in progress and we punt.
422	 * If we make it past all these checks, we need to rebuild.
423	 */
424	vol = tr->tro_volume;
425	trs = (struct g_raid_tr_raid1_object *)tr;
426	if (trs->trso_stopping)
427		return;
428	na = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_ACTIVE);
429	nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_REBUILD) +
430	    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_RESYNC);
431	switch(trs->trso_type) {
432	case TR_RAID1_NONE:
433		if (na == 0)
434			return;
435		if (nr == 0) {
436			nr = g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_NEW) +
437			    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_STALE) +
438			    g_raid_nsubdisks(vol, G_RAID_SUBDISK_S_UNINITIALIZED);
439			if (nr == 0)
440				return;
441		}
442		g_raid_tr_raid1_rebuild_start(tr);
443		break;
444	case TR_RAID1_REBUILD:
445		if (na == 0 || nr == 0 || trs->trso_failed_sd == sd)
446			g_raid_tr_raid1_rebuild_abort(tr);
447		break;
448	case TR_RAID1_RESYNC:
449		break;
450	}
451}
452
453static int
454g_raid_tr_event_raid1(struct g_raid_tr_object *tr,
455    struct g_raid_subdisk *sd, u_int event)
456{
457
458	g_raid_tr_update_state_raid1(tr->tro_volume, sd);
459	return (0);
460}
461
462static int
463g_raid_tr_start_raid1(struct g_raid_tr_object *tr)
464{
465	struct g_raid_tr_raid1_object *trs;
466	struct g_raid_volume *vol;
467
468	trs = (struct g_raid_tr_raid1_object *)tr;
469	vol = tr->tro_volume;
470	trs->trso_starting = 0;
471	g_raid_tr_update_state_raid1(vol, NULL);
472	return (0);
473}
474
475static int
476g_raid_tr_stop_raid1(struct g_raid_tr_object *tr)
477{
478	struct g_raid_tr_raid1_object *trs;
479	struct g_raid_volume *vol;
480
481	trs = (struct g_raid_tr_raid1_object *)tr;
482	vol = tr->tro_volume;
483	trs->trso_starting = 0;
484	trs->trso_stopping = 1;
485	g_raid_tr_update_state_raid1(vol, NULL);
486	return (0);
487}
488
489/*
490 * Select the disk to read from.  Take into account: subdisk state, running
491 * error recovery, average disk load, head position and possible cache hits.
492 */
493#define ABS(x)		(((x) >= 0) ? (x) : (-(x)))
494static struct g_raid_subdisk *
495g_raid_tr_raid1_select_read_disk(struct g_raid_volume *vol, struct bio *bp,
496    u_int mask)
497{
498	struct g_raid_subdisk *sd, *best;
499	int i, prio, bestprio;
500
501	best = NULL;
502	bestprio = INT_MAX;
503	for (i = 0; i < vol->v_disks_count; i++) {
504		sd = &vol->v_subdisks[i];
505		if (sd->sd_state != G_RAID_SUBDISK_S_ACTIVE &&
506		    ((sd->sd_state != G_RAID_SUBDISK_S_REBUILD &&
507		      sd->sd_state != G_RAID_SUBDISK_S_RESYNC) ||
508		     bp->bio_offset + bp->bio_length > sd->sd_rebuild_pos))
509			continue;
510		if ((mask & (1 << i)) != 0)
511			continue;
512		prio = G_RAID_SUBDISK_LOAD(sd);
513		prio += min(sd->sd_recovery, 255) << 22;
514		prio += (G_RAID_SUBDISK_S_ACTIVE - sd->sd_state) << 16;
515		/* If disk head is precisely in position - highly prefer it. */
516		if (G_RAID_SUBDISK_POS(sd) == bp->bio_offset)
517			prio -= 2 * G_RAID_SUBDISK_LOAD_SCALE;
518		else
519		/* If disk head is close to position - prefer it. */
520		if (ABS(G_RAID_SUBDISK_POS(sd) - bp->bio_offset) <
521		    G_RAID_SUBDISK_TRACK_SIZE)
522			prio -= 1 * G_RAID_SUBDISK_LOAD_SCALE;
523		if (prio < bestprio) {
524			best = sd;
525			bestprio = prio;
526		}
527	}
528	return (best);
529}
530
531static void
532g_raid_tr_iostart_raid1_read(struct g_raid_tr_object *tr, struct bio *bp)
533{
534	struct g_raid_subdisk *sd;
535	struct bio *cbp;
536
537	sd = g_raid_tr_raid1_select_read_disk(tr->tro_volume, bp, 0);
538	KASSERT(sd != NULL, ("No active disks in volume %s.",
539		tr->tro_volume->v_name));
540
541	cbp = g_clone_bio(bp);
542	if (cbp == NULL) {
543		g_raid_iodone(bp, ENOMEM);
544		return;
545	}
546
547	g_raid_subdisk_iostart(sd, cbp);
548}
549
550static void
551g_raid_tr_iostart_raid1_write(struct g_raid_tr_object *tr, struct bio *bp)
552{
553	struct g_raid_volume *vol;
554	struct g_raid_subdisk *sd;
555	struct bio_queue_head queue;
556	struct bio *cbp;
557	int i;
558
559	vol = tr->tro_volume;
560
561	/*
562	 * Allocate all bios before sending any request, so we can return
563	 * ENOMEM in nice and clean way.
564	 */
565	bioq_init(&queue);
566	for (i = 0; i < vol->v_disks_count; i++) {
567		sd = &vol->v_subdisks[i];
568		switch (sd->sd_state) {
569		case G_RAID_SUBDISK_S_ACTIVE:
570			break;
571		case G_RAID_SUBDISK_S_REBUILD:
572			/*
573			 * When rebuilding, only part of this subdisk is
574			 * writable, the rest will be written as part of the
575			 * that process.
576			 */
577			if (bp->bio_offset >= sd->sd_rebuild_pos)
578				continue;
579			break;
580		case G_RAID_SUBDISK_S_STALE:
581		case G_RAID_SUBDISK_S_RESYNC:
582			/*
583			 * Resyncing still writes on the theory that the
584			 * resync'd disk is very close and writing it will
585			 * keep it that way better if we keep up while
586			 * resyncing.
587			 */
588			break;
589		default:
590			continue;
591		}
592		cbp = g_clone_bio(bp);
593		if (cbp == NULL)
594			goto failure;
595		cbp->bio_caller1 = sd;
596		bioq_insert_tail(&queue, cbp);
597	}
598	for (cbp = bioq_first(&queue); cbp != NULL;
599	    cbp = bioq_first(&queue)) {
600		bioq_remove(&queue, cbp);
601		sd = cbp->bio_caller1;
602		cbp->bio_caller1 = NULL;
603		g_raid_subdisk_iostart(sd, cbp);
604	}
605	return;
606failure:
607	for (cbp = bioq_first(&queue); cbp != NULL;
608	    cbp = bioq_first(&queue)) {
609		bioq_remove(&queue, cbp);
610		g_destroy_bio(cbp);
611	}
612	if (bp->bio_error == 0)
613		bp->bio_error = ENOMEM;
614	g_raid_iodone(bp, bp->bio_error);
615}
616
617static void
618g_raid_tr_iostart_raid1(struct g_raid_tr_object *tr, struct bio *bp)
619{
620	struct g_raid_volume *vol;
621	struct g_raid_tr_raid1_object *trs;
622
623	vol = tr->tro_volume;
624	trs = (struct g_raid_tr_raid1_object *)tr;
625	if (vol->v_state != G_RAID_VOLUME_S_OPTIMAL &&
626	    vol->v_state != G_RAID_VOLUME_S_SUBOPTIMAL &&
627	    vol->v_state != G_RAID_VOLUME_S_DEGRADED) {
628		g_raid_iodone(bp, EIO);
629		return;
630	}
631	/*
632	 * If we're rebuilding, squeeze in rebuild activity every so often,
633	 * even when the disk is busy.  Be sure to only count real I/O
634	 * to the disk.  All 'SPECIAL' I/O is traffic generated to the disk
635	 * by this module.
636	 */
637	if (trs->trso_failed_sd != NULL &&
638	    !(bp->bio_cflags & G_RAID_BIO_FLAG_SPECIAL)) {
639		/* Make this new or running now round short. */
640		trs->trso_recover_slabs = 0;
641		if (--trs->trso_fair_io <= 0) {
642			trs->trso_fair_io = g_raid1_rebuild_fair_io;
643			g_raid_tr_raid1_rebuild_some(tr);
644		}
645	}
646	switch (bp->bio_cmd) {
647	case BIO_READ:
648		g_raid_tr_iostart_raid1_read(tr, bp);
649		break;
650	case BIO_WRITE:
651		g_raid_tr_iostart_raid1_write(tr, bp);
652		break;
653	case BIO_DELETE:
654		g_raid_iodone(bp, EIO);
655		break;
656	case BIO_FLUSH:
657		g_raid_tr_flush_common(tr, bp);
658		break;
659	default:
660		KASSERT(1 == 0, ("Invalid command here: %u (volume=%s)",
661		    bp->bio_cmd, vol->v_name));
662		break;
663	}
664}
665
666static void
667g_raid_tr_iodone_raid1(struct g_raid_tr_object *tr,
668    struct g_raid_subdisk *sd, struct bio *bp)
669{
670	struct bio *cbp;
671	struct g_raid_subdisk *nsd;
672	struct g_raid_volume *vol;
673	struct bio *pbp;
674	struct g_raid_tr_raid1_object *trs;
675	uintptr_t *mask;
676	int error, do_write;
677
678	trs = (struct g_raid_tr_raid1_object *)tr;
679	vol = tr->tro_volume;
680	if (bp->bio_cflags & G_RAID_BIO_FLAG_SYNC) {
681		/*
682		 * This operation is part of a rebuild or resync operation.
683		 * See what work just got done, then schedule the next bit of
684		 * work, if any.  Rebuild/resync is done a little bit at a
685		 * time.  Either when a timeout happens, or after we get a
686		 * bunch of I/Os to the disk (to make sure an active system
687		 * will complete in a sane amount of time).
688		 *
689		 * We are setup to do differing amounts of work for each of
690		 * these cases.  so long as the slabs is smallish (less than
691		 * 50 or so, I'd guess, but that's just a WAG), we shouldn't
692		 * have any bio starvation issues.  For active disks, we do
693		 * 5MB of data, for inactive ones, we do 50MB.
694		 */
695		if (trs->trso_type == TR_RAID1_REBUILD) {
696			if (bp->bio_cmd == BIO_READ) {
697
698				/* Immediately abort rebuild, if requested. */
699				if (trs->trso_flags & TR_RAID1_F_ABORT) {
700					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
701					g_raid_tr_raid1_rebuild_abort(tr);
702					return;
703				}
704
705				/* On read error, skip and cross fingers. */
706				if (bp->bio_error != 0) {
707					G_RAID_LOGREQ(0, bp,
708					    "Read error during rebuild (%d), "
709					    "possible data loss!",
710					    bp->bio_error);
711					goto rebuild_round_done;
712				}
713
714				/*
715				 * The read operation finished, queue the
716				 * write and get out.
717				 */
718				G_RAID_LOGREQ(4, bp, "rebuild read done. %d",
719				    bp->bio_error);
720				bp->bio_cmd = BIO_WRITE;
721				bp->bio_cflags = G_RAID_BIO_FLAG_SYNC;
722				G_RAID_LOGREQ(4, bp, "Queueing rebuild write.");
723				g_raid_subdisk_iostart(trs->trso_failed_sd, bp);
724			} else {
725				/*
726				 * The write operation just finished.  Do
727				 * another.  We keep cloning the master bio
728				 * since it has the right buffers allocated to
729				 * it.
730				 */
731				G_RAID_LOGREQ(4, bp,
732				    "rebuild write done. Error %d",
733				    bp->bio_error);
734				nsd = trs->trso_failed_sd;
735				if (bp->bio_error != 0 ||
736				    trs->trso_flags & TR_RAID1_F_ABORT) {
737					if ((trs->trso_flags &
738					    TR_RAID1_F_ABORT) == 0) {
739						g_raid_tr_raid1_fail_disk(sd->sd_softc,
740						    nsd, nsd->sd_disk);
741					}
742					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
743					g_raid_tr_raid1_rebuild_abort(tr);
744					return;
745				}
746rebuild_round_done:
747				nsd = trs->trso_failed_sd;
748				trs->trso_flags &= ~TR_RAID1_F_LOCKED;
749				g_raid_unlock_range(sd->sd_volume,
750				    bp->bio_offset, bp->bio_length);
751				nsd->sd_rebuild_pos += bp->bio_length;
752				if (nsd->sd_rebuild_pos >= nsd->sd_size) {
753					g_raid_tr_raid1_rebuild_finish(tr);
754					return;
755				}
756
757				/* Abort rebuild if we are stopping */
758				if (trs->trso_stopping) {
759					trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
760					g_raid_tr_raid1_rebuild_abort(tr);
761					return;
762				}
763
764				if (--trs->trso_meta_update <= 0) {
765					g_raid_write_metadata(vol->v_softc,
766					    vol, nsd, nsd->sd_disk);
767					trs->trso_meta_update =
768					    g_raid1_rebuild_meta_update;
769				}
770				trs->trso_flags &= ~TR_RAID1_F_DOING_SOME;
771				if (--trs->trso_recover_slabs <= 0)
772					return;
773				g_raid_tr_raid1_rebuild_some(tr);
774			}
775		} else if (trs->trso_type == TR_RAID1_RESYNC) {
776			/*
777			 * read good sd, read bad sd in parallel.  when both
778			 * done, compare the buffers.  write good to the bad
779			 * if different.  do the next bit of work.
780			 */
781			panic("Somehow, we think we're doing a resync");
782		}
783		return;
784	}
785	pbp = bp->bio_parent;
786	pbp->bio_inbed++;
787	if (bp->bio_cmd == BIO_READ && bp->bio_error != 0) {
788		/*
789		 * Read failed on first drive.  Retry the read error on
790		 * another disk drive, if available, before erroring out the
791		 * read.
792		 */
793		sd->sd_disk->d_read_errs++;
794		G_RAID_LOGREQ(0, bp,
795		    "Read error (%d), %d read errors total",
796		    bp->bio_error, sd->sd_disk->d_read_errs);
797
798		/*
799		 * If there are too many read errors, we move to degraded.
800		 * XXX Do we want to FAIL the drive (eg, make the user redo
801		 * everything to get it back in sync), or just degrade the
802		 * drive, which kicks off a resync?
803		 */
804		do_write = 1;
805		if (sd->sd_disk->d_read_errs > g_raid_read_err_thresh) {
806			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
807			if (pbp->bio_children == 1)
808				do_write = 0;
809		}
810
811		/*
812		 * Find the other disk, and try to do the I/O to it.
813		 */
814		mask = (uintptr_t *)(&pbp->bio_driver2);
815		if (pbp->bio_children == 1) {
816			/* Save original subdisk. */
817			pbp->bio_driver1 = do_write ? sd : NULL;
818			*mask = 0;
819		}
820		*mask |= 1 << sd->sd_pos;
821		nsd = g_raid_tr_raid1_select_read_disk(vol, pbp, *mask);
822		if (nsd != NULL && (cbp = g_clone_bio(pbp)) != NULL) {
823			g_destroy_bio(bp);
824			G_RAID_LOGREQ(2, cbp, "Retrying read from %d",
825			    nsd->sd_pos);
826			if (pbp->bio_children == 2 && do_write) {
827				sd->sd_recovery++;
828				cbp->bio_caller1 = nsd;
829				pbp->bio_pflags = G_RAID_BIO_FLAG_LOCKED;
830				/* Lock callback starts I/O */
831				g_raid_lock_range(sd->sd_volume,
832				    cbp->bio_offset, cbp->bio_length, pbp, cbp);
833			} else {
834				g_raid_subdisk_iostart(nsd, cbp);
835			}
836			return;
837		}
838		/*
839		 * We can't retry.  Return the original error by falling
840		 * through.  This will happen when there's only one good disk.
841		 * We don't need to fail the raid, since its actual state is
842		 * based on the state of the subdisks.
843		 */
844		G_RAID_LOGREQ(2, bp, "Couldn't retry read, failing it");
845	}
846	if (bp->bio_cmd == BIO_READ &&
847	    bp->bio_error == 0 &&
848	    pbp->bio_children > 1 &&
849	    pbp->bio_driver1 != NULL) {
850		/*
851		 * If it was a read, and bio_children is >1, then we just
852		 * recovered the data from the second drive.  We should try to
853		 * write that data to the first drive if sector remapping is
854		 * enabled.  A write should put the data in a new place on the
855		 * disk, remapping the bad sector.  Do we need to do that by
856		 * queueing a request to the main worker thread?  It doesn't
857		 * affect the return code of this current read, and can be
858		 * done at our liesure.  However, to make the code simpler, it
859		 * is done syncrhonously.
860		 */
861		G_RAID_LOGREQ(3, bp, "Recovered data from other drive");
862		cbp = g_clone_bio(pbp);
863		if (cbp != NULL) {
864			g_destroy_bio(bp);
865			cbp->bio_cmd = BIO_WRITE;
866			cbp->bio_cflags = G_RAID_BIO_FLAG_REMAP;
867			G_RAID_LOGREQ(2, cbp,
868			    "Attempting bad sector remap on failing drive.");
869			g_raid_subdisk_iostart(pbp->bio_driver1, cbp);
870			return;
871		}
872	}
873	if (pbp->bio_pflags & G_RAID_BIO_FLAG_LOCKED) {
874		/*
875		 * We're done with a recovery, mark the range as unlocked.
876		 * For any write errors, we agressively fail the disk since
877		 * there was both a READ and a WRITE error at this location.
878		 * Both types of errors generally indicates the drive is on
879		 * the verge of total failure anyway.  Better to stop trusting
880		 * it now.  However, we need to reset error to 0 in that case
881		 * because we're not failing the original I/O which succeeded.
882		 */
883		if (bp->bio_cmd == BIO_WRITE && bp->bio_error) {
884			G_RAID_LOGREQ(0, bp, "Remap write failed: "
885			    "failing subdisk.");
886			g_raid_tr_raid1_fail_disk(sd->sd_softc, sd, sd->sd_disk);
887			bp->bio_error = 0;
888		}
889		if (pbp->bio_driver1 != NULL) {
890			((struct g_raid_subdisk *)pbp->bio_driver1)
891			    ->sd_recovery--;
892		}
893		G_RAID_LOGREQ(2, bp, "REMAP done %d.", bp->bio_error);
894		g_raid_unlock_range(sd->sd_volume, bp->bio_offset,
895		    bp->bio_length);
896	}
897	error = bp->bio_error;
898	g_destroy_bio(bp);
899	if (pbp->bio_children == pbp->bio_inbed) {
900		pbp->bio_completed = pbp->bio_length;
901		g_raid_iodone(pbp, error);
902	}
903}
904
905static int
906g_raid_tr_kerneldump_raid1(struct g_raid_tr_object *tr,
907    void *virtual, vm_offset_t physical, off_t offset, size_t length)
908{
909	struct g_raid_volume *vol;
910	struct g_raid_subdisk *sd;
911	int error, i, ok;
912
913	vol = tr->tro_volume;
914	error = 0;
915	ok = 0;
916	for (i = 0; i < vol->v_disks_count; i++) {
917		sd = &vol->v_subdisks[i];
918		switch (sd->sd_state) {
919		case G_RAID_SUBDISK_S_ACTIVE:
920			break;
921		case G_RAID_SUBDISK_S_REBUILD:
922			/*
923			 * When rebuilding, only part of this subdisk is
924			 * writable, the rest will be written as part of the
925			 * that process.
926			 */
927			if (offset >= sd->sd_rebuild_pos)
928				continue;
929			break;
930		case G_RAID_SUBDISK_S_STALE:
931		case G_RAID_SUBDISK_S_RESYNC:
932			/*
933			 * Resyncing still writes on the theory that the
934			 * resync'd disk is very close and writing it will
935			 * keep it that way better if we keep up while
936			 * resyncing.
937			 */
938			break;
939		default:
940			continue;
941		}
942		error = g_raid_subdisk_kerneldump(sd,
943		    virtual, physical, offset, length);
944		if (error == 0)
945			ok++;
946	}
947	return (ok > 0 ? 0 : error);
948}
949
950static int
951g_raid_tr_locked_raid1(struct g_raid_tr_object *tr, void *argp)
952{
953	struct bio *bp;
954	struct g_raid_subdisk *sd;
955
956	bp = (struct bio *)argp;
957	sd = (struct g_raid_subdisk *)bp->bio_caller1;
958	g_raid_subdisk_iostart(sd, bp);
959
960	return (0);
961}
962
963static int
964g_raid_tr_idle_raid1(struct g_raid_tr_object *tr)
965{
966	struct g_raid_tr_raid1_object *trs;
967
968	trs = (struct g_raid_tr_raid1_object *)tr;
969	trs->trso_fair_io = g_raid1_rebuild_fair_io;
970	trs->trso_recover_slabs = g_raid1_rebuild_cluster_idle;
971	if (trs->trso_type == TR_RAID1_REBUILD)
972		g_raid_tr_raid1_rebuild_some(tr);
973	return (0);
974}
975
976static int
977g_raid_tr_free_raid1(struct g_raid_tr_object *tr)
978{
979	struct g_raid_tr_raid1_object *trs;
980
981	trs = (struct g_raid_tr_raid1_object *)tr;
982
983	if (trs->trso_buffer != NULL) {
984		free(trs->trso_buffer, M_TR_RAID1);
985		trs->trso_buffer = NULL;
986	}
987	return (0);
988}
989
990G_RAID_TR_DECLARE(g_raid_tr_raid1);
991