if_stge.c revision 204520
1/*	$NetBSD: if_stge.c,v 1.32 2005/12/11 12:22:49 christos Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the Sundance Tech. TC9021 10/100/1000
34 * Ethernet controller.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/stge/if_stge.c 204520 2010-03-01 16:52:11Z joel $");
39
40#ifdef HAVE_KERNEL_OPTION_HEADERS
41#include "opt_device_polling.h"
42#endif
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/endian.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/kernel.h>
50#include <sys/module.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/sysctl.h>
54#include <sys/taskqueue.h>
55
56#include <net/bpf.h>
57#include <net/ethernet.h>
58#include <net/if.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62#include <net/if_vlan_var.h>
63
64#include <machine/bus.h>
65#include <machine/resource.h>
66#include <sys/bus.h>
67#include <sys/rman.h>
68
69#include <dev/mii/mii.h>
70#include <dev/mii/miivar.h>
71
72#include <dev/pci/pcireg.h>
73#include <dev/pci/pcivar.h>
74
75#include <dev/stge/if_stgereg.h>
76
77#define	STGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(stge, pci, 1, 1, 1);
80MODULE_DEPEND(stge, ether, 1, 1, 1);
81MODULE_DEPEND(stge, miibus, 1, 1, 1);
82
83/* "device miibus" required.  See GENERIC if you get errors here. */
84#include "miibus_if.h"
85
86/*
87 * Devices supported by this driver.
88 */
89static struct stge_product {
90	uint16_t	stge_vendorid;
91	uint16_t	stge_deviceid;
92	const char	*stge_name;
93} stge_products[] = {
94	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST1023,
95	  "Sundance ST-1023 Gigabit Ethernet" },
96
97	{ VENDOR_SUNDANCETI,	DEVICEID_SUNDANCETI_ST2021,
98	  "Sundance ST-2021 Gigabit Ethernet" },
99
100	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021,
101	  "Tamarack TC9021 Gigabit Ethernet" },
102
103	{ VENDOR_TAMARACK,	DEVICEID_TAMARACK_TC9021_ALT,
104	  "Tamarack TC9021 Gigabit Ethernet" },
105
106	/*
107	 * The Sundance sample boards use the Sundance vendor ID,
108	 * but the Tamarack product ID.
109	 */
110	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021,
111	  "Sundance TC9021 Gigabit Ethernet" },
112
113	{ VENDOR_SUNDANCETI,	DEVICEID_TAMARACK_TC9021_ALT,
114	  "Sundance TC9021 Gigabit Ethernet" },
115
116	{ VENDOR_DLINK,		DEVICEID_DLINK_DL4000,
117	  "D-Link DL-4000 Gigabit Ethernet" },
118
119	{ VENDOR_ANTARES,	DEVICEID_ANTARES_TC9021,
120	  "Antares Gigabit Ethernet" }
121};
122
123static int	stge_probe(device_t);
124static int	stge_attach(device_t);
125static int	stge_detach(device_t);
126static int	stge_shutdown(device_t);
127static int	stge_suspend(device_t);
128static int	stge_resume(device_t);
129
130static int	stge_encap(struct stge_softc *, struct mbuf **);
131static void	stge_start(struct ifnet *);
132static void	stge_start_locked(struct ifnet *);
133static void	stge_watchdog(struct stge_softc *);
134static int	stge_ioctl(struct ifnet *, u_long, caddr_t);
135static void	stge_init(void *);
136static void	stge_init_locked(struct stge_softc *);
137static void	stge_vlan_setup(struct stge_softc *);
138static void	stge_stop(struct stge_softc *);
139static void	stge_start_tx(struct stge_softc *);
140static void	stge_start_rx(struct stge_softc *);
141static void	stge_stop_tx(struct stge_softc *);
142static void	stge_stop_rx(struct stge_softc *);
143
144static void	stge_reset(struct stge_softc *, uint32_t);
145static int	stge_eeprom_wait(struct stge_softc *);
146static void	stge_read_eeprom(struct stge_softc *, int, uint16_t *);
147static void	stge_tick(void *);
148static void	stge_stats_update(struct stge_softc *);
149static void	stge_set_filter(struct stge_softc *);
150static void	stge_set_multi(struct stge_softc *);
151
152static void	stge_link_task(void *, int);
153static void	stge_intr(void *);
154static __inline int stge_tx_error(struct stge_softc *);
155static void	stge_txeof(struct stge_softc *);
156static int	stge_rxeof(struct stge_softc *);
157static __inline void stge_discard_rxbuf(struct stge_softc *, int);
158static int	stge_newbuf(struct stge_softc *, int);
159#ifndef __NO_STRICT_ALIGNMENT
160static __inline struct mbuf *stge_fixup_rx(struct stge_softc *, struct mbuf *);
161#endif
162
163static void	stge_mii_sync(struct stge_softc *);
164static void	stge_mii_send(struct stge_softc *, uint32_t, int);
165static int	stge_mii_readreg(struct stge_softc *, struct stge_mii_frame *);
166static int	stge_mii_writereg(struct stge_softc *, struct stge_mii_frame *);
167static int	stge_miibus_readreg(device_t, int, int);
168static int	stge_miibus_writereg(device_t, int, int, int);
169static void	stge_miibus_statchg(device_t);
170static int	stge_mediachange(struct ifnet *);
171static void	stge_mediastatus(struct ifnet *, struct ifmediareq *);
172
173static void	stge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
174static int	stge_dma_alloc(struct stge_softc *);
175static void	stge_dma_free(struct stge_softc *);
176static void	stge_dma_wait(struct stge_softc *);
177static void	stge_init_tx_ring(struct stge_softc *);
178static int	stge_init_rx_ring(struct stge_softc *);
179#ifdef DEVICE_POLLING
180static int	stge_poll(struct ifnet *, enum poll_cmd, int);
181#endif
182
183static void	stge_setwol(struct stge_softc *);
184static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
185static int	sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS);
186static int	sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS);
187
188static device_method_t stge_methods[] = {
189	/* Device interface */
190	DEVMETHOD(device_probe,		stge_probe),
191	DEVMETHOD(device_attach,	stge_attach),
192	DEVMETHOD(device_detach,	stge_detach),
193	DEVMETHOD(device_shutdown,	stge_shutdown),
194	DEVMETHOD(device_suspend,	stge_suspend),
195	DEVMETHOD(device_resume,	stge_resume),
196
197	/* MII interface */
198	DEVMETHOD(miibus_readreg,	stge_miibus_readreg),
199	DEVMETHOD(miibus_writereg,	stge_miibus_writereg),
200	DEVMETHOD(miibus_statchg,	stge_miibus_statchg),
201
202	{ 0, 0 }
203
204};
205
206static driver_t stge_driver = {
207	"stge",
208	stge_methods,
209	sizeof(struct stge_softc)
210};
211
212static devclass_t stge_devclass;
213
214DRIVER_MODULE(stge, pci, stge_driver, stge_devclass, 0, 0);
215DRIVER_MODULE(miibus, stge, miibus_driver, miibus_devclass, 0, 0);
216
217static struct resource_spec stge_res_spec_io[] = {
218	{ SYS_RES_IOPORT,	PCIR_BAR(0),	RF_ACTIVE },
219	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
220	{ -1,			0,		0 }
221};
222
223static struct resource_spec stge_res_spec_mem[] = {
224	{ SYS_RES_MEMORY,	PCIR_BAR(1),	RF_ACTIVE },
225	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
226	{ -1,			0,		0 }
227};
228
229#define	MII_SET(x)	\
230	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) | (x))
231#define	MII_CLR(x)	\
232	CSR_WRITE_1(sc, STGE_PhyCtrl, CSR_READ_1(sc, STGE_PhyCtrl) & ~(x))
233
234/*
235 * Sync the PHYs by setting data bit and strobing the clock 32 times.
236 */
237static void
238stge_mii_sync(struct stge_softc	*sc)
239{
240	int i;
241
242	MII_SET(PC_MgmtDir | PC_MgmtData);
243
244	for (i = 0; i < 32; i++) {
245		MII_SET(PC_MgmtClk);
246		DELAY(1);
247		MII_CLR(PC_MgmtClk);
248		DELAY(1);
249	}
250}
251
252/*
253 * Clock a series of bits through the MII.
254 */
255static void
256stge_mii_send(struct stge_softc *sc, uint32_t bits, int cnt)
257{
258	int i;
259
260	MII_CLR(PC_MgmtClk);
261
262	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
263		if (bits & i)
264			MII_SET(PC_MgmtData);
265                else
266			MII_CLR(PC_MgmtData);
267		DELAY(1);
268		MII_CLR(PC_MgmtClk);
269		DELAY(1);
270		MII_SET(PC_MgmtClk);
271	}
272}
273
274/*
275 * Read an PHY register through the MII.
276 */
277static int
278stge_mii_readreg(struct stge_softc *sc, struct stge_mii_frame *frame)
279{
280	int i, ack;
281
282	/*
283	 * Set up frame for RX.
284	 */
285	frame->mii_stdelim = STGE_MII_STARTDELIM;
286	frame->mii_opcode = STGE_MII_READOP;
287	frame->mii_turnaround = 0;
288	frame->mii_data = 0;
289
290	CSR_WRITE_1(sc, STGE_PhyCtrl, 0 | sc->sc_PhyCtrl);
291	/*
292 	 * Turn on data xmit.
293	 */
294	MII_SET(PC_MgmtDir);
295
296	stge_mii_sync(sc);
297
298	/*
299	 * Send command/address info.
300	 */
301	stge_mii_send(sc, frame->mii_stdelim, 2);
302	stge_mii_send(sc, frame->mii_opcode, 2);
303	stge_mii_send(sc, frame->mii_phyaddr, 5);
304	stge_mii_send(sc, frame->mii_regaddr, 5);
305
306	/* Turn off xmit. */
307	MII_CLR(PC_MgmtDir);
308
309	/* Idle bit */
310	MII_CLR((PC_MgmtClk | PC_MgmtData));
311	DELAY(1);
312	MII_SET(PC_MgmtClk);
313	DELAY(1);
314
315	/* Check for ack */
316	MII_CLR(PC_MgmtClk);
317	DELAY(1);
318	ack = CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData;
319	MII_SET(PC_MgmtClk);
320	DELAY(1);
321
322	/*
323	 * Now try reading data bits. If the ack failed, we still
324	 * need to clock through 16 cycles to keep the PHY(s) in sync.
325	 */
326	if (ack) {
327		for(i = 0; i < 16; i++) {
328			MII_CLR(PC_MgmtClk);
329			DELAY(1);
330			MII_SET(PC_MgmtClk);
331			DELAY(1);
332		}
333		goto fail;
334	}
335
336	for (i = 0x8000; i; i >>= 1) {
337		MII_CLR(PC_MgmtClk);
338		DELAY(1);
339		if (!ack) {
340			if (CSR_READ_1(sc, STGE_PhyCtrl) & PC_MgmtData)
341				frame->mii_data |= i;
342			DELAY(1);
343		}
344		MII_SET(PC_MgmtClk);
345		DELAY(1);
346	}
347
348fail:
349	MII_CLR(PC_MgmtClk);
350	DELAY(1);
351	MII_SET(PC_MgmtClk);
352	DELAY(1);
353
354	if (ack)
355		return(1);
356	return(0);
357}
358
359/*
360 * Write to a PHY register through the MII.
361 */
362static int
363stge_mii_writereg(struct stge_softc *sc, struct stge_mii_frame *frame)
364{
365
366	/*
367	 * Set up frame for TX.
368	 */
369	frame->mii_stdelim = STGE_MII_STARTDELIM;
370	frame->mii_opcode = STGE_MII_WRITEOP;
371	frame->mii_turnaround = STGE_MII_TURNAROUND;
372
373	/*
374 	 * Turn on data output.
375	 */
376	MII_SET(PC_MgmtDir);
377
378	stge_mii_sync(sc);
379
380	stge_mii_send(sc, frame->mii_stdelim, 2);
381	stge_mii_send(sc, frame->mii_opcode, 2);
382	stge_mii_send(sc, frame->mii_phyaddr, 5);
383	stge_mii_send(sc, frame->mii_regaddr, 5);
384	stge_mii_send(sc, frame->mii_turnaround, 2);
385	stge_mii_send(sc, frame->mii_data, 16);
386
387	/* Idle bit. */
388	MII_SET(PC_MgmtClk);
389	DELAY(1);
390	MII_CLR(PC_MgmtClk);
391	DELAY(1);
392
393	/*
394	 * Turn off xmit.
395	 */
396	MII_CLR(PC_MgmtDir);
397
398	return(0);
399}
400
401/*
402 * sc_miibus_readreg:	[mii interface function]
403 *
404 *	Read a PHY register on the MII of the TC9021.
405 */
406static int
407stge_miibus_readreg(device_t dev, int phy, int reg)
408{
409	struct stge_softc *sc;
410	struct stge_mii_frame frame;
411	int error;
412
413	sc = device_get_softc(dev);
414
415	if (reg == STGE_PhyCtrl) {
416		/* XXX allow ip1000phy read STGE_PhyCtrl register. */
417		STGE_MII_LOCK(sc);
418		error = CSR_READ_1(sc, STGE_PhyCtrl);
419		STGE_MII_UNLOCK(sc);
420		return (error);
421	}
422	bzero(&frame, sizeof(frame));
423	frame.mii_phyaddr = phy;
424	frame.mii_regaddr = reg;
425
426	STGE_MII_LOCK(sc);
427	error = stge_mii_readreg(sc, &frame);
428	STGE_MII_UNLOCK(sc);
429
430	if (error != 0) {
431		/* Don't show errors for PHY probe request */
432		if (reg != 1)
433			device_printf(sc->sc_dev, "phy read fail\n");
434		return (0);
435	}
436	return (frame.mii_data);
437}
438
439/*
440 * stge_miibus_writereg:	[mii interface function]
441 *
442 *	Write a PHY register on the MII of the TC9021.
443 */
444static int
445stge_miibus_writereg(device_t dev, int phy, int reg, int val)
446{
447	struct stge_softc *sc;
448	struct stge_mii_frame frame;
449	int error;
450
451	sc = device_get_softc(dev);
452
453	bzero(&frame, sizeof(frame));
454	frame.mii_phyaddr = phy;
455	frame.mii_regaddr = reg;
456	frame.mii_data = val;
457
458	STGE_MII_LOCK(sc);
459	error = stge_mii_writereg(sc, &frame);
460	STGE_MII_UNLOCK(sc);
461
462	if (error != 0)
463		device_printf(sc->sc_dev, "phy write fail\n");
464	return (0);
465}
466
467/*
468 * stge_miibus_statchg:	[mii interface function]
469 *
470 *	Callback from MII layer when media changes.
471 */
472static void
473stge_miibus_statchg(device_t dev)
474{
475	struct stge_softc *sc;
476
477	sc = device_get_softc(dev);
478	taskqueue_enqueue(taskqueue_swi, &sc->sc_link_task);
479}
480
481/*
482 * stge_mediastatus:	[ifmedia interface function]
483 *
484 *	Get the current interface media status.
485 */
486static void
487stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
488{
489	struct stge_softc *sc;
490	struct mii_data *mii;
491
492	sc = ifp->if_softc;
493	mii = device_get_softc(sc->sc_miibus);
494
495	mii_pollstat(mii);
496	ifmr->ifm_status = mii->mii_media_status;
497	ifmr->ifm_active = mii->mii_media_active;
498}
499
500/*
501 * stge_mediachange:	[ifmedia interface function]
502 *
503 *	Set hardware to newly-selected media.
504 */
505static int
506stge_mediachange(struct ifnet *ifp)
507{
508	struct stge_softc *sc;
509	struct mii_data *mii;
510
511	sc = ifp->if_softc;
512	mii = device_get_softc(sc->sc_miibus);
513	mii_mediachg(mii);
514
515	return (0);
516}
517
518static int
519stge_eeprom_wait(struct stge_softc *sc)
520{
521	int i;
522
523	for (i = 0; i < STGE_TIMEOUT; i++) {
524		DELAY(1000);
525		if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0)
526			return (0);
527	}
528	return (1);
529}
530
531/*
532 * stge_read_eeprom:
533 *
534 *	Read data from the serial EEPROM.
535 */
536static void
537stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data)
538{
539
540	if (stge_eeprom_wait(sc))
541		device_printf(sc->sc_dev, "EEPROM failed to come ready\n");
542
543	CSR_WRITE_2(sc, STGE_EepromCtrl,
544	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR));
545	if (stge_eeprom_wait(sc))
546		device_printf(sc->sc_dev, "EEPROM read timed out\n");
547	*data = CSR_READ_2(sc, STGE_EepromData);
548}
549
550
551static int
552stge_probe(device_t dev)
553{
554	struct stge_product *sp;
555	int i;
556	uint16_t vendor, devid;
557
558	vendor = pci_get_vendor(dev);
559	devid = pci_get_device(dev);
560	sp = stge_products;
561	for (i = 0; i < sizeof(stge_products)/sizeof(stge_products[0]);
562	    i++, sp++) {
563		if (vendor == sp->stge_vendorid &&
564		    devid == sp->stge_deviceid) {
565			device_set_desc(dev, sp->stge_name);
566			return (BUS_PROBE_DEFAULT);
567		}
568	}
569
570	return (ENXIO);
571}
572
573static int
574stge_attach(device_t dev)
575{
576	struct stge_softc *sc;
577	struct ifnet *ifp;
578	uint8_t enaddr[ETHER_ADDR_LEN];
579	int error, i;
580	uint16_t cmd;
581	uint32_t val;
582
583	error = 0;
584	sc = device_get_softc(dev);
585	sc->sc_dev = dev;
586
587	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
588	    MTX_DEF);
589	mtx_init(&sc->sc_mii_mtx, "stge_mii_mutex", NULL, MTX_DEF);
590	callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
591	TASK_INIT(&sc->sc_link_task, 0, stge_link_task, sc);
592
593	/*
594	 * Map the device.
595	 */
596	pci_enable_busmaster(dev);
597	cmd = pci_read_config(dev, PCIR_COMMAND, 2);
598	val = pci_read_config(dev, PCIR_BAR(1), 4);
599	if ((val & 0x01) != 0)
600		sc->sc_spec = stge_res_spec_mem;
601	else {
602		val = pci_read_config(dev, PCIR_BAR(0), 4);
603		if ((val & 0x01) == 0) {
604			device_printf(sc->sc_dev, "couldn't locate IO BAR\n");
605			error = ENXIO;
606			goto fail;
607		}
608		sc->sc_spec = stge_res_spec_io;
609	}
610	error = bus_alloc_resources(dev, sc->sc_spec, sc->sc_res);
611	if (error != 0) {
612		device_printf(dev, "couldn't allocate %s resources\n",
613		    sc->sc_spec == stge_res_spec_mem ? "memory" : "I/O");
614		goto fail;
615	}
616	sc->sc_rev = pci_get_revid(dev);
617
618	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
619	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
620	    "rxint_nframe", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_nframe, 0,
621	    sysctl_hw_stge_rxint_nframe, "I", "stge rx interrupt nframe");
622
623	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
624	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
625	    "rxint_dmawait", CTLTYPE_INT|CTLFLAG_RW, &sc->sc_rxint_dmawait, 0,
626	    sysctl_hw_stge_rxint_dmawait, "I", "stge rx interrupt dmawait");
627
628	/* Pull in device tunables. */
629	sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
630	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
631	    "rxint_nframe", &sc->sc_rxint_nframe);
632	if (error == 0) {
633		if (sc->sc_rxint_nframe < STGE_RXINT_NFRAME_MIN ||
634		    sc->sc_rxint_nframe > STGE_RXINT_NFRAME_MAX) {
635			device_printf(dev, "rxint_nframe value out of range; "
636			    "using default: %d\n", STGE_RXINT_NFRAME_DEFAULT);
637			sc->sc_rxint_nframe = STGE_RXINT_NFRAME_DEFAULT;
638		}
639	}
640
641	sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
642	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
643	    "rxint_dmawait", &sc->sc_rxint_dmawait);
644	if (error == 0) {
645		if (sc->sc_rxint_dmawait < STGE_RXINT_DMAWAIT_MIN ||
646		    sc->sc_rxint_dmawait > STGE_RXINT_DMAWAIT_MAX) {
647			device_printf(dev, "rxint_dmawait value out of range; "
648			    "using default: %d\n", STGE_RXINT_DMAWAIT_DEFAULT);
649			sc->sc_rxint_dmawait = STGE_RXINT_DMAWAIT_DEFAULT;
650		}
651	}
652
653	if ((error = stge_dma_alloc(sc) != 0))
654		goto fail;
655
656	/*
657	 * Determine if we're copper or fiber.  It affects how we
658	 * reset the card.
659	 */
660	if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia)
661		sc->sc_usefiber = 1;
662	else
663		sc->sc_usefiber = 0;
664
665	/* Load LED configuration from EEPROM. */
666	stge_read_eeprom(sc, STGE_EEPROM_LEDMode, &sc->sc_led);
667
668	/*
669	 * Reset the chip to a known state.
670	 */
671	STGE_LOCK(sc);
672	stge_reset(sc, STGE_RESET_FULL);
673	STGE_UNLOCK(sc);
674
675	/*
676	 * Reading the station address from the EEPROM doesn't seem
677	 * to work, at least on my sample boards.  Instead, since
678	 * the reset sequence does AutoInit, read it from the station
679	 * address registers. For Sundance 1023 you can only read it
680	 * from EEPROM.
681	 */
682	if (pci_get_device(dev) != DEVICEID_SUNDANCETI_ST1023) {
683		uint16_t v;
684
685		v = CSR_READ_2(sc, STGE_StationAddress0);
686		enaddr[0] = v & 0xff;
687		enaddr[1] = v >> 8;
688		v = CSR_READ_2(sc, STGE_StationAddress1);
689		enaddr[2] = v & 0xff;
690		enaddr[3] = v >> 8;
691		v = CSR_READ_2(sc, STGE_StationAddress2);
692		enaddr[4] = v & 0xff;
693		enaddr[5] = v >> 8;
694		sc->sc_stge1023 = 0;
695	} else {
696		uint16_t myaddr[ETHER_ADDR_LEN / 2];
697		for (i = 0; i <ETHER_ADDR_LEN / 2; i++) {
698			stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i,
699			    &myaddr[i]);
700			myaddr[i] = le16toh(myaddr[i]);
701		}
702		bcopy(myaddr, enaddr, sizeof(enaddr));
703		sc->sc_stge1023 = 1;
704	}
705
706	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
707	if (ifp == NULL) {
708		device_printf(sc->sc_dev, "failed to if_alloc()\n");
709		error = ENXIO;
710		goto fail;
711	}
712
713	ifp->if_softc = sc;
714	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
715	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
716	ifp->if_ioctl = stge_ioctl;
717	ifp->if_start = stge_start;
718	ifp->if_init = stge_init;
719	ifp->if_mtu = ETHERMTU;
720	ifp->if_snd.ifq_drv_maxlen = STGE_TX_RING_CNT - 1;
721	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
722	IFQ_SET_READY(&ifp->if_snd);
723	/* Revision B3 and earlier chips have checksum bug. */
724	if (sc->sc_rev >= 0x0c) {
725		ifp->if_hwassist = STGE_CSUM_FEATURES;
726		ifp->if_capabilities = IFCAP_HWCSUM;
727	} else {
728		ifp->if_hwassist = 0;
729		ifp->if_capabilities = 0;
730	}
731	ifp->if_capabilities |= IFCAP_WOL_MAGIC;
732	ifp->if_capenable = ifp->if_capabilities;
733
734	/*
735	 * Read some important bits from the PhyCtrl register.
736	 */
737	sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) &
738	    (PC_PhyDuplexPolarity | PC_PhyLnkPolarity);
739
740	/* Set up MII bus. */
741	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, stge_mediachange,
742	    stge_mediastatus)) != 0) {
743		device_printf(sc->sc_dev, "no PHY found!\n");
744		goto fail;
745	}
746
747	ether_ifattach(ifp, enaddr);
748
749	/* VLAN capability setup */
750	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
751	if (sc->sc_rev >= 0x0c)
752		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
753	ifp->if_capenable = ifp->if_capabilities;
754#ifdef DEVICE_POLLING
755	ifp->if_capabilities |= IFCAP_POLLING;
756#endif
757	/*
758	 * Tell the upper layer(s) we support long frames.
759	 * Must appear after the call to ether_ifattach() because
760	 * ether_ifattach() sets ifi_hdrlen to the default value.
761	 */
762	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
763
764	/*
765	 * The manual recommends disabling early transmit, so we
766	 * do.  It's disabled anyway, if using IP checksumming,
767	 * since the entire packet must be in the FIFO in order
768	 * for the chip to perform the checksum.
769	 */
770	sc->sc_txthresh = 0x0fff;
771
772	/*
773	 * Disable MWI if the PCI layer tells us to.
774	 */
775	sc->sc_DMACtrl = 0;
776	if ((cmd & PCIM_CMD_MWRICEN) == 0)
777		sc->sc_DMACtrl |= DMAC_MWIDisable;
778
779	/*
780	 * Hookup IRQ
781	 */
782	error = bus_setup_intr(dev, sc->sc_res[1], INTR_TYPE_NET | INTR_MPSAFE,
783	    NULL, stge_intr, sc, &sc->sc_ih);
784	if (error != 0) {
785		ether_ifdetach(ifp);
786		device_printf(sc->sc_dev, "couldn't set up IRQ\n");
787		sc->sc_ifp = NULL;
788		goto fail;
789	}
790
791fail:
792	if (error != 0)
793		stge_detach(dev);
794
795	return (error);
796}
797
798static int
799stge_detach(device_t dev)
800{
801	struct stge_softc *sc;
802	struct ifnet *ifp;
803
804	sc = device_get_softc(dev);
805
806	ifp = sc->sc_ifp;
807#ifdef DEVICE_POLLING
808	if (ifp && ifp->if_capenable & IFCAP_POLLING)
809		ether_poll_deregister(ifp);
810#endif
811	if (device_is_attached(dev)) {
812		STGE_LOCK(sc);
813		/* XXX */
814		sc->sc_detach = 1;
815		stge_stop(sc);
816		STGE_UNLOCK(sc);
817		callout_drain(&sc->sc_tick_ch);
818		taskqueue_drain(taskqueue_swi, &sc->sc_link_task);
819		ether_ifdetach(ifp);
820	}
821
822	if (sc->sc_miibus != NULL) {
823		device_delete_child(dev, sc->sc_miibus);
824		sc->sc_miibus = NULL;
825	}
826	bus_generic_detach(dev);
827	stge_dma_free(sc);
828
829	if (ifp != NULL) {
830		if_free(ifp);
831		sc->sc_ifp = NULL;
832	}
833
834	if (sc->sc_ih) {
835		bus_teardown_intr(dev, sc->sc_res[1], sc->sc_ih);
836		sc->sc_ih = NULL;
837	}
838	bus_release_resources(dev, sc->sc_spec, sc->sc_res);
839
840	mtx_destroy(&sc->sc_mii_mtx);
841	mtx_destroy(&sc->sc_mtx);
842
843	return (0);
844}
845
846struct stge_dmamap_arg {
847	bus_addr_t	stge_busaddr;
848};
849
850static void
851stge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
852{
853	struct stge_dmamap_arg *ctx;
854
855	if (error != 0)
856		return;
857
858	ctx = (struct stge_dmamap_arg *)arg;
859	ctx->stge_busaddr = segs[0].ds_addr;
860}
861
862static int
863stge_dma_alloc(struct stge_softc *sc)
864{
865	struct stge_dmamap_arg ctx;
866	struct stge_txdesc *txd;
867	struct stge_rxdesc *rxd;
868	int error, i;
869
870	/* create parent tag. */
871	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),/* parent */
872		    1, 0,			/* algnmnt, boundary */
873		    STGE_DMA_MAXADDR,		/* lowaddr */
874		    BUS_SPACE_MAXADDR,		/* highaddr */
875		    NULL, NULL,			/* filter, filterarg */
876		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
877		    0,				/* nsegments */
878		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
879		    0,				/* flags */
880		    NULL, NULL,			/* lockfunc, lockarg */
881		    &sc->sc_cdata.stge_parent_tag);
882	if (error != 0) {
883		device_printf(sc->sc_dev, "failed to create parent DMA tag\n");
884		goto fail;
885	}
886	/* create tag for Tx ring. */
887	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
888		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
889		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
890		    BUS_SPACE_MAXADDR,		/* highaddr */
891		    NULL, NULL,			/* filter, filterarg */
892		    STGE_TX_RING_SZ,		/* maxsize */
893		    1,				/* nsegments */
894		    STGE_TX_RING_SZ,		/* maxsegsize */
895		    0,				/* flags */
896		    NULL, NULL,			/* lockfunc, lockarg */
897		    &sc->sc_cdata.stge_tx_ring_tag);
898	if (error != 0) {
899		device_printf(sc->sc_dev,
900		    "failed to allocate Tx ring DMA tag\n");
901		goto fail;
902	}
903
904	/* create tag for Rx ring. */
905	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
906		    STGE_RING_ALIGN, 0,		/* algnmnt, boundary */
907		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
908		    BUS_SPACE_MAXADDR,		/* highaddr */
909		    NULL, NULL,			/* filter, filterarg */
910		    STGE_RX_RING_SZ,		/* maxsize */
911		    1,				/* nsegments */
912		    STGE_RX_RING_SZ,		/* maxsegsize */
913		    0,				/* flags */
914		    NULL, NULL,			/* lockfunc, lockarg */
915		    &sc->sc_cdata.stge_rx_ring_tag);
916	if (error != 0) {
917		device_printf(sc->sc_dev,
918		    "failed to allocate Rx ring DMA tag\n");
919		goto fail;
920	}
921
922	/* create tag for Tx buffers. */
923	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
924		    1, 0,			/* algnmnt, boundary */
925		    BUS_SPACE_MAXADDR,		/* lowaddr */
926		    BUS_SPACE_MAXADDR,		/* highaddr */
927		    NULL, NULL,			/* filter, filterarg */
928		    MCLBYTES * STGE_MAXTXSEGS,	/* maxsize */
929		    STGE_MAXTXSEGS,		/* nsegments */
930		    MCLBYTES,			/* maxsegsize */
931		    0,				/* flags */
932		    NULL, NULL,			/* lockfunc, lockarg */
933		    &sc->sc_cdata.stge_tx_tag);
934	if (error != 0) {
935		device_printf(sc->sc_dev, "failed to allocate Tx DMA tag\n");
936		goto fail;
937	}
938
939	/* create tag for Rx buffers. */
940	error = bus_dma_tag_create(sc->sc_cdata.stge_parent_tag,/* parent */
941		    1, 0,			/* algnmnt, boundary */
942		    BUS_SPACE_MAXADDR,		/* lowaddr */
943		    BUS_SPACE_MAXADDR,		/* highaddr */
944		    NULL, NULL,			/* filter, filterarg */
945		    MCLBYTES,			/* maxsize */
946		    1,				/* nsegments */
947		    MCLBYTES,			/* maxsegsize */
948		    0,				/* flags */
949		    NULL, NULL,			/* lockfunc, lockarg */
950		    &sc->sc_cdata.stge_rx_tag);
951	if (error != 0) {
952		device_printf(sc->sc_dev, "failed to allocate Rx DMA tag\n");
953		goto fail;
954	}
955
956	/* allocate DMA'able memory and load the DMA map for Tx ring. */
957	error = bus_dmamem_alloc(sc->sc_cdata.stge_tx_ring_tag,
958	    (void **)&sc->sc_rdata.stge_tx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
959	    &sc->sc_cdata.stge_tx_ring_map);
960	if (error != 0) {
961		device_printf(sc->sc_dev,
962		    "failed to allocate DMA'able memory for Tx ring\n");
963		goto fail;
964	}
965
966	ctx.stge_busaddr = 0;
967	error = bus_dmamap_load(sc->sc_cdata.stge_tx_ring_tag,
968	    sc->sc_cdata.stge_tx_ring_map, sc->sc_rdata.stge_tx_ring,
969	    STGE_TX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
970	if (error != 0 || ctx.stge_busaddr == 0) {
971		device_printf(sc->sc_dev,
972		    "failed to load DMA'able memory for Tx ring\n");
973		goto fail;
974	}
975	sc->sc_rdata.stge_tx_ring_paddr = ctx.stge_busaddr;
976
977	/* allocate DMA'able memory and load the DMA map for Rx ring. */
978	error = bus_dmamem_alloc(sc->sc_cdata.stge_rx_ring_tag,
979	    (void **)&sc->sc_rdata.stge_rx_ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
980	    &sc->sc_cdata.stge_rx_ring_map);
981	if (error != 0) {
982		device_printf(sc->sc_dev,
983		    "failed to allocate DMA'able memory for Rx ring\n");
984		goto fail;
985	}
986
987	ctx.stge_busaddr = 0;
988	error = bus_dmamap_load(sc->sc_cdata.stge_rx_ring_tag,
989	    sc->sc_cdata.stge_rx_ring_map, sc->sc_rdata.stge_rx_ring,
990	    STGE_RX_RING_SZ, stge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
991	if (error != 0 || ctx.stge_busaddr == 0) {
992		device_printf(sc->sc_dev,
993		    "failed to load DMA'able memory for Rx ring\n");
994		goto fail;
995	}
996	sc->sc_rdata.stge_rx_ring_paddr = ctx.stge_busaddr;
997
998	/* create DMA maps for Tx buffers. */
999	for (i = 0; i < STGE_TX_RING_CNT; i++) {
1000		txd = &sc->sc_cdata.stge_txdesc[i];
1001		txd->tx_m = NULL;
1002		txd->tx_dmamap = 0;
1003		error = bus_dmamap_create(sc->sc_cdata.stge_tx_tag, 0,
1004		    &txd->tx_dmamap);
1005		if (error != 0) {
1006			device_printf(sc->sc_dev,
1007			    "failed to create Tx dmamap\n");
1008			goto fail;
1009		}
1010	}
1011	/* create DMA maps for Rx buffers. */
1012	if ((error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1013	    &sc->sc_cdata.stge_rx_sparemap)) != 0) {
1014		device_printf(sc->sc_dev, "failed to create spare Rx dmamap\n");
1015		goto fail;
1016	}
1017	for (i = 0; i < STGE_RX_RING_CNT; i++) {
1018		rxd = &sc->sc_cdata.stge_rxdesc[i];
1019		rxd->rx_m = NULL;
1020		rxd->rx_dmamap = 0;
1021		error = bus_dmamap_create(sc->sc_cdata.stge_rx_tag, 0,
1022		    &rxd->rx_dmamap);
1023		if (error != 0) {
1024			device_printf(sc->sc_dev,
1025			    "failed to create Rx dmamap\n");
1026			goto fail;
1027		}
1028	}
1029
1030fail:
1031	return (error);
1032}
1033
1034static void
1035stge_dma_free(struct stge_softc *sc)
1036{
1037	struct stge_txdesc *txd;
1038	struct stge_rxdesc *rxd;
1039	int i;
1040
1041	/* Tx ring */
1042	if (sc->sc_cdata.stge_tx_ring_tag) {
1043		if (sc->sc_cdata.stge_tx_ring_map)
1044			bus_dmamap_unload(sc->sc_cdata.stge_tx_ring_tag,
1045			    sc->sc_cdata.stge_tx_ring_map);
1046		if (sc->sc_cdata.stge_tx_ring_map &&
1047		    sc->sc_rdata.stge_tx_ring)
1048			bus_dmamem_free(sc->sc_cdata.stge_tx_ring_tag,
1049			    sc->sc_rdata.stge_tx_ring,
1050			    sc->sc_cdata.stge_tx_ring_map);
1051		sc->sc_rdata.stge_tx_ring = NULL;
1052		sc->sc_cdata.stge_tx_ring_map = 0;
1053		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_ring_tag);
1054		sc->sc_cdata.stge_tx_ring_tag = NULL;
1055	}
1056	/* Rx ring */
1057	if (sc->sc_cdata.stge_rx_ring_tag) {
1058		if (sc->sc_cdata.stge_rx_ring_map)
1059			bus_dmamap_unload(sc->sc_cdata.stge_rx_ring_tag,
1060			    sc->sc_cdata.stge_rx_ring_map);
1061		if (sc->sc_cdata.stge_rx_ring_map &&
1062		    sc->sc_rdata.stge_rx_ring)
1063			bus_dmamem_free(sc->sc_cdata.stge_rx_ring_tag,
1064			    sc->sc_rdata.stge_rx_ring,
1065			    sc->sc_cdata.stge_rx_ring_map);
1066		sc->sc_rdata.stge_rx_ring = NULL;
1067		sc->sc_cdata.stge_rx_ring_map = 0;
1068		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_ring_tag);
1069		sc->sc_cdata.stge_rx_ring_tag = NULL;
1070	}
1071	/* Tx buffers */
1072	if (sc->sc_cdata.stge_tx_tag) {
1073		for (i = 0; i < STGE_TX_RING_CNT; i++) {
1074			txd = &sc->sc_cdata.stge_txdesc[i];
1075			if (txd->tx_dmamap) {
1076				bus_dmamap_destroy(sc->sc_cdata.stge_tx_tag,
1077				    txd->tx_dmamap);
1078				txd->tx_dmamap = 0;
1079			}
1080		}
1081		bus_dma_tag_destroy(sc->sc_cdata.stge_tx_tag);
1082		sc->sc_cdata.stge_tx_tag = NULL;
1083	}
1084	/* Rx buffers */
1085	if (sc->sc_cdata.stge_rx_tag) {
1086		for (i = 0; i < STGE_RX_RING_CNT; i++) {
1087			rxd = &sc->sc_cdata.stge_rxdesc[i];
1088			if (rxd->rx_dmamap) {
1089				bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1090				    rxd->rx_dmamap);
1091				rxd->rx_dmamap = 0;
1092			}
1093		}
1094		if (sc->sc_cdata.stge_rx_sparemap) {
1095			bus_dmamap_destroy(sc->sc_cdata.stge_rx_tag,
1096			    sc->sc_cdata.stge_rx_sparemap);
1097			sc->sc_cdata.stge_rx_sparemap = 0;
1098		}
1099		bus_dma_tag_destroy(sc->sc_cdata.stge_rx_tag);
1100		sc->sc_cdata.stge_rx_tag = NULL;
1101	}
1102
1103	if (sc->sc_cdata.stge_parent_tag) {
1104		bus_dma_tag_destroy(sc->sc_cdata.stge_parent_tag);
1105		sc->sc_cdata.stge_parent_tag = NULL;
1106	}
1107}
1108
1109/*
1110 * stge_shutdown:
1111 *
1112 *	Make sure the interface is stopped at reboot time.
1113 */
1114static int
1115stge_shutdown(device_t dev)
1116{
1117
1118	return (stge_suspend(dev));
1119}
1120
1121static void
1122stge_setwol(struct stge_softc *sc)
1123{
1124	struct ifnet *ifp;
1125	uint8_t v;
1126
1127	STGE_LOCK_ASSERT(sc);
1128
1129	ifp = sc->sc_ifp;
1130	v = CSR_READ_1(sc, STGE_WakeEvent);
1131	/* Disable all WOL bits. */
1132	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1133	    WE_WakeOnLanEnable);
1134	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1135		v |= WE_MagicPktEnable | WE_WakeOnLanEnable;
1136	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1137	/* Reset Tx and prevent transmission. */
1138	CSR_WRITE_4(sc, STGE_AsicCtrl,
1139	    CSR_READ_4(sc, STGE_AsicCtrl) | AC_TxReset);
1140	/*
1141	 * TC9021 automatically reset link speed to 100Mbps when it's put
1142	 * into sleep so there is no need to try to resetting link speed.
1143	 */
1144}
1145
1146static int
1147stge_suspend(device_t dev)
1148{
1149	struct stge_softc *sc;
1150
1151	sc = device_get_softc(dev);
1152
1153	STGE_LOCK(sc);
1154	stge_stop(sc);
1155	sc->sc_suspended = 1;
1156	stge_setwol(sc);
1157	STGE_UNLOCK(sc);
1158
1159	return (0);
1160}
1161
1162static int
1163stge_resume(device_t dev)
1164{
1165	struct stge_softc *sc;
1166	struct ifnet *ifp;
1167	uint8_t v;
1168
1169	sc = device_get_softc(dev);
1170
1171	STGE_LOCK(sc);
1172	/*
1173	 * Clear WOL bits, so special frames wouldn't interfere
1174	 * normal Rx operation anymore.
1175	 */
1176	v = CSR_READ_1(sc, STGE_WakeEvent);
1177	v &= ~(WE_WakePktEnable | WE_MagicPktEnable | WE_LinkEventEnable |
1178	    WE_WakeOnLanEnable);
1179	CSR_WRITE_1(sc, STGE_WakeEvent, v);
1180	ifp = sc->sc_ifp;
1181	if (ifp->if_flags & IFF_UP)
1182		stge_init_locked(sc);
1183
1184	sc->sc_suspended = 0;
1185	STGE_UNLOCK(sc);
1186
1187	return (0);
1188}
1189
1190static void
1191stge_dma_wait(struct stge_softc *sc)
1192{
1193	int i;
1194
1195	for (i = 0; i < STGE_TIMEOUT; i++) {
1196		DELAY(2);
1197		if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0)
1198			break;
1199	}
1200
1201	if (i == STGE_TIMEOUT)
1202		device_printf(sc->sc_dev, "DMA wait timed out\n");
1203}
1204
1205static int
1206stge_encap(struct stge_softc *sc, struct mbuf **m_head)
1207{
1208	struct stge_txdesc *txd;
1209	struct stge_tfd *tfd;
1210	struct mbuf *m;
1211	bus_dma_segment_t txsegs[STGE_MAXTXSEGS];
1212	int error, i, nsegs, si;
1213	uint64_t csum_flags, tfc;
1214
1215	STGE_LOCK_ASSERT(sc);
1216
1217	if ((txd = STAILQ_FIRST(&sc->sc_cdata.stge_txfreeq)) == NULL)
1218		return (ENOBUFS);
1219
1220	error =  bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1221	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1222	if (error == EFBIG) {
1223		m = m_collapse(*m_head, M_DONTWAIT, STGE_MAXTXSEGS);
1224		if (m == NULL) {
1225			m_freem(*m_head);
1226			*m_head = NULL;
1227			return (ENOMEM);
1228		}
1229		*m_head = m;
1230		error = bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_tx_tag,
1231		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1232		if (error != 0) {
1233			m_freem(*m_head);
1234			*m_head = NULL;
1235			return (error);
1236		}
1237	} else if (error != 0)
1238		return (error);
1239	if (nsegs == 0) {
1240		m_freem(*m_head);
1241		*m_head = NULL;
1242		return (EIO);
1243	}
1244
1245	m = *m_head;
1246	csum_flags = 0;
1247	if ((m->m_pkthdr.csum_flags & STGE_CSUM_FEATURES) != 0) {
1248		if (m->m_pkthdr.csum_flags & CSUM_IP)
1249			csum_flags |= TFD_IPChecksumEnable;
1250		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1251			csum_flags |= TFD_TCPChecksumEnable;
1252		else if (m->m_pkthdr.csum_flags & CSUM_UDP)
1253			csum_flags |= TFD_UDPChecksumEnable;
1254	}
1255
1256	si = sc->sc_cdata.stge_tx_prod;
1257	tfd = &sc->sc_rdata.stge_tx_ring[si];
1258	for (i = 0; i < nsegs; i++)
1259		tfd->tfd_frags[i].frag_word0 =
1260		    htole64(FRAG_ADDR(txsegs[i].ds_addr) |
1261		    FRAG_LEN(txsegs[i].ds_len));
1262	sc->sc_cdata.stge_tx_cnt++;
1263
1264	tfc = TFD_FrameId(si) | TFD_WordAlign(TFD_WordAlign_disable) |
1265	    TFD_FragCount(nsegs) | csum_flags;
1266	if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT)
1267		tfc |= TFD_TxDMAIndicate;
1268
1269	/* Update producer index. */
1270	sc->sc_cdata.stge_tx_prod = (si + 1) % STGE_TX_RING_CNT;
1271
1272	/* Check if we have a VLAN tag to insert. */
1273	if (m->m_flags & M_VLANTAG)
1274		tfc |= (TFD_VLANTagInsert | TFD_VID(m->m_pkthdr.ether_vtag));
1275	tfd->tfd_control = htole64(tfc);
1276
1277	/* Update Tx Queue. */
1278	STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txfreeq, tx_q);
1279	STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txbusyq, txd, tx_q);
1280	txd->tx_m = m;
1281
1282	/* Sync descriptors. */
1283	bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1284	    BUS_DMASYNC_PREWRITE);
1285	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1286	    sc->sc_cdata.stge_tx_ring_map,
1287	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1288
1289	return (0);
1290}
1291
1292/*
1293 * stge_start:		[ifnet interface function]
1294 *
1295 *	Start packet transmission on the interface.
1296 */
1297static void
1298stge_start(struct ifnet *ifp)
1299{
1300	struct stge_softc *sc;
1301
1302	sc = ifp->if_softc;
1303	STGE_LOCK(sc);
1304	stge_start_locked(ifp);
1305	STGE_UNLOCK(sc);
1306}
1307
1308static void
1309stge_start_locked(struct ifnet *ifp)
1310{
1311        struct stge_softc *sc;
1312        struct mbuf *m_head;
1313	int enq;
1314
1315	sc = ifp->if_softc;
1316
1317	STGE_LOCK_ASSERT(sc);
1318
1319	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
1320	    IFF_DRV_RUNNING || sc->sc_link == 0)
1321		return;
1322
1323	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1324		if (sc->sc_cdata.stge_tx_cnt >= STGE_TX_HIWAT) {
1325			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1326			break;
1327		}
1328
1329		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1330		if (m_head == NULL)
1331			break;
1332		/*
1333		 * Pack the data into the transmit ring. If we
1334		 * don't have room, set the OACTIVE flag and wait
1335		 * for the NIC to drain the ring.
1336		 */
1337		if (stge_encap(sc, &m_head)) {
1338			if (m_head == NULL)
1339				break;
1340			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1341			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1342			break;
1343		}
1344
1345		enq++;
1346		/*
1347		 * If there's a BPF listener, bounce a copy of this frame
1348		 * to him.
1349		 */
1350		ETHER_BPF_MTAP(ifp, m_head);
1351	}
1352
1353	if (enq > 0) {
1354		/* Transmit */
1355		CSR_WRITE_4(sc, STGE_DMACtrl, DMAC_TxDMAPollNow);
1356
1357		/* Set a timeout in case the chip goes out to lunch. */
1358		sc->sc_watchdog_timer = 5;
1359	}
1360}
1361
1362/*
1363 * stge_watchdog:
1364 *
1365 *	Watchdog timer handler.
1366 */
1367static void
1368stge_watchdog(struct stge_softc *sc)
1369{
1370	struct ifnet *ifp;
1371
1372	STGE_LOCK_ASSERT(sc);
1373
1374	if (sc->sc_watchdog_timer == 0 || --sc->sc_watchdog_timer)
1375		return;
1376
1377	ifp = sc->sc_ifp;
1378	if_printf(sc->sc_ifp, "device timeout\n");
1379	ifp->if_oerrors++;
1380	stge_init_locked(sc);
1381	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1382		stge_start_locked(ifp);
1383}
1384
1385/*
1386 * stge_ioctl:		[ifnet interface function]
1387 *
1388 *	Handle control requests from the operator.
1389 */
1390static int
1391stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1392{
1393	struct stge_softc *sc;
1394	struct ifreq *ifr;
1395	struct mii_data *mii;
1396	int error, mask;
1397
1398	sc = ifp->if_softc;
1399	ifr = (struct ifreq *)data;
1400	error = 0;
1401	switch (cmd) {
1402	case SIOCSIFMTU:
1403		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > STGE_JUMBO_MTU)
1404			error = EINVAL;
1405		else if (ifp->if_mtu != ifr->ifr_mtu) {
1406			ifp->if_mtu = ifr->ifr_mtu;
1407			STGE_LOCK(sc);
1408			stge_init_locked(sc);
1409			STGE_UNLOCK(sc);
1410		}
1411		break;
1412	case SIOCSIFFLAGS:
1413		STGE_LOCK(sc);
1414		if ((ifp->if_flags & IFF_UP) != 0) {
1415			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1416				if (((ifp->if_flags ^ sc->sc_if_flags)
1417				    & IFF_PROMISC) != 0)
1418					stge_set_filter(sc);
1419			} else {
1420				if (sc->sc_detach == 0)
1421					stge_init_locked(sc);
1422			}
1423		} else {
1424			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1425				stge_stop(sc);
1426		}
1427		sc->sc_if_flags = ifp->if_flags;
1428		STGE_UNLOCK(sc);
1429		break;
1430	case SIOCADDMULTI:
1431	case SIOCDELMULTI:
1432		STGE_LOCK(sc);
1433		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1434			stge_set_multi(sc);
1435		STGE_UNLOCK(sc);
1436		break;
1437	case SIOCSIFMEDIA:
1438	case SIOCGIFMEDIA:
1439		mii = device_get_softc(sc->sc_miibus);
1440		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1441		break;
1442	case SIOCSIFCAP:
1443		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1444#ifdef DEVICE_POLLING
1445		if ((mask & IFCAP_POLLING) != 0) {
1446			if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
1447				error = ether_poll_register(stge_poll, ifp);
1448				if (error != 0)
1449					break;
1450				STGE_LOCK(sc);
1451				CSR_WRITE_2(sc, STGE_IntEnable, 0);
1452				ifp->if_capenable |= IFCAP_POLLING;
1453				STGE_UNLOCK(sc);
1454			} else {
1455				error = ether_poll_deregister(ifp);
1456				if (error != 0)
1457					break;
1458				STGE_LOCK(sc);
1459				CSR_WRITE_2(sc, STGE_IntEnable,
1460				    sc->sc_IntEnable);
1461				ifp->if_capenable &= ~IFCAP_POLLING;
1462				STGE_UNLOCK(sc);
1463			}
1464		}
1465#endif
1466		if ((mask & IFCAP_HWCSUM) != 0) {
1467			ifp->if_capenable ^= IFCAP_HWCSUM;
1468			if ((IFCAP_HWCSUM & ifp->if_capenable) != 0 &&
1469			    (IFCAP_HWCSUM & ifp->if_capabilities) != 0)
1470				ifp->if_hwassist = STGE_CSUM_FEATURES;
1471			else
1472				ifp->if_hwassist = 0;
1473		}
1474		if ((mask & IFCAP_WOL) != 0 &&
1475		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1476			if ((mask & IFCAP_WOL_MAGIC) != 0)
1477				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1478		}
1479		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
1480			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1481			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1482				STGE_LOCK(sc);
1483				stge_vlan_setup(sc);
1484				STGE_UNLOCK(sc);
1485			}
1486		}
1487		VLAN_CAPABILITIES(ifp);
1488		break;
1489	default:
1490		error = ether_ioctl(ifp, cmd, data);
1491		break;
1492	}
1493
1494	return (error);
1495}
1496
1497static void
1498stge_link_task(void *arg, int pending)
1499{
1500	struct stge_softc *sc;
1501	struct mii_data *mii;
1502	uint32_t v, ac;
1503	int i;
1504
1505	sc = (struct stge_softc *)arg;
1506	STGE_LOCK(sc);
1507
1508	mii = device_get_softc(sc->sc_miibus);
1509	if (mii->mii_media_status & IFM_ACTIVE) {
1510		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1511			sc->sc_link = 1;
1512	} else
1513		sc->sc_link = 0;
1514
1515	sc->sc_MACCtrl = 0;
1516	if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
1517		sc->sc_MACCtrl |= MC_DuplexSelect;
1518	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) != 0)
1519		sc->sc_MACCtrl |= MC_RxFlowControlEnable;
1520	if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) != 0)
1521		sc->sc_MACCtrl |= MC_TxFlowControlEnable;
1522	/*
1523	 * Update STGE_MACCtrl register depending on link status.
1524	 * (duplex, flow control etc)
1525	 */
1526	v = ac = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
1527	v &= ~(MC_DuplexSelect|MC_RxFlowControlEnable|MC_TxFlowControlEnable);
1528	v |= sc->sc_MACCtrl;
1529	CSR_WRITE_4(sc, STGE_MACCtrl, v);
1530	if (((ac ^ sc->sc_MACCtrl) & MC_DuplexSelect) != 0) {
1531		/* Duplex setting changed, reset Tx/Rx functions. */
1532		ac = CSR_READ_4(sc, STGE_AsicCtrl);
1533		ac |= AC_TxReset | AC_RxReset;
1534		CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
1535		for (i = 0; i < STGE_TIMEOUT; i++) {
1536			DELAY(100);
1537			if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
1538				break;
1539		}
1540		if (i == STGE_TIMEOUT)
1541			device_printf(sc->sc_dev, "reset failed to complete\n");
1542	}
1543	STGE_UNLOCK(sc);
1544}
1545
1546static __inline int
1547stge_tx_error(struct stge_softc *sc)
1548{
1549	uint32_t txstat;
1550	int error;
1551
1552	for (error = 0;;) {
1553		txstat = CSR_READ_4(sc, STGE_TxStatus);
1554		if ((txstat & TS_TxComplete) == 0)
1555			break;
1556		/* Tx underrun */
1557		if ((txstat & TS_TxUnderrun) != 0) {
1558			/*
1559			 * XXX
1560			 * There should be a more better way to recover
1561			 * from Tx underrun instead of a full reset.
1562			 */
1563			if (sc->sc_nerr++ < STGE_MAXERR)
1564				device_printf(sc->sc_dev, "Tx underrun, "
1565				    "resetting...\n");
1566			if (sc->sc_nerr == STGE_MAXERR)
1567				device_printf(sc->sc_dev, "too many errors; "
1568				    "not reporting any more\n");
1569			error = -1;
1570			break;
1571		}
1572		/* Maximum/Late collisions, Re-enable Tx MAC. */
1573		if ((txstat & (TS_MaxCollisions|TS_LateCollision)) != 0)
1574			CSR_WRITE_4(sc, STGE_MACCtrl,
1575			    (CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK) |
1576			    MC_TxEnable);
1577	}
1578
1579	return (error);
1580}
1581
1582/*
1583 * stge_intr:
1584 *
1585 *	Interrupt service routine.
1586 */
1587static void
1588stge_intr(void *arg)
1589{
1590	struct stge_softc *sc;
1591	struct ifnet *ifp;
1592	int reinit;
1593	uint16_t status;
1594
1595	sc = (struct stge_softc *)arg;
1596	ifp = sc->sc_ifp;
1597
1598	STGE_LOCK(sc);
1599
1600#ifdef DEVICE_POLLING
1601	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
1602		goto done_locked;
1603#endif
1604	status = CSR_READ_2(sc, STGE_IntStatus);
1605	if (sc->sc_suspended || (status & IS_InterruptStatus) == 0)
1606		goto done_locked;
1607
1608	/* Disable interrupts. */
1609	for (reinit = 0;;) {
1610		status = CSR_READ_2(sc, STGE_IntStatusAck);
1611		status &= sc->sc_IntEnable;
1612		if (status == 0)
1613			break;
1614		/* Host interface errors. */
1615		if ((status & IS_HostError) != 0) {
1616			device_printf(sc->sc_dev,
1617			    "Host interface error, resetting...\n");
1618			reinit = 1;
1619			goto force_init;
1620		}
1621
1622		/* Receive interrupts. */
1623		if ((status & IS_RxDMAComplete) != 0) {
1624			stge_rxeof(sc);
1625			if ((status & IS_RFDListEnd) != 0)
1626				CSR_WRITE_4(sc, STGE_DMACtrl,
1627				    DMAC_RxDMAPollNow);
1628		}
1629
1630		/* Transmit interrupts. */
1631		if ((status & (IS_TxDMAComplete | IS_TxComplete)) != 0)
1632			stge_txeof(sc);
1633
1634		/* Transmission errors.*/
1635		if ((status & IS_TxComplete) != 0) {
1636			if ((reinit = stge_tx_error(sc)) != 0)
1637				break;
1638		}
1639	}
1640
1641force_init:
1642	if (reinit != 0)
1643		stge_init_locked(sc);
1644
1645	/* Re-enable interrupts. */
1646	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
1647
1648	/* Try to get more packets going. */
1649	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1650		stge_start_locked(ifp);
1651
1652done_locked:
1653	STGE_UNLOCK(sc);
1654}
1655
1656/*
1657 * stge_txeof:
1658 *
1659 *	Helper; handle transmit interrupts.
1660 */
1661static void
1662stge_txeof(struct stge_softc *sc)
1663{
1664	struct ifnet *ifp;
1665	struct stge_txdesc *txd;
1666	uint64_t control;
1667	int cons;
1668
1669	STGE_LOCK_ASSERT(sc);
1670
1671	ifp = sc->sc_ifp;
1672
1673	txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1674	if (txd == NULL)
1675		return;
1676	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1677	    sc->sc_cdata.stge_tx_ring_map, BUS_DMASYNC_POSTREAD);
1678
1679	/*
1680	 * Go through our Tx list and free mbufs for those
1681	 * frames which have been transmitted.
1682	 */
1683	for (cons = sc->sc_cdata.stge_tx_cons;;
1684	    cons = (cons + 1) % STGE_TX_RING_CNT) {
1685		if (sc->sc_cdata.stge_tx_cnt <= 0)
1686			break;
1687		control = le64toh(sc->sc_rdata.stge_tx_ring[cons].tfd_control);
1688		if ((control & TFD_TFDDone) == 0)
1689			break;
1690		sc->sc_cdata.stge_tx_cnt--;
1691		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1692
1693		bus_dmamap_sync(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap,
1694		    BUS_DMASYNC_POSTWRITE);
1695		bus_dmamap_unload(sc->sc_cdata.stge_tx_tag, txd->tx_dmamap);
1696
1697		/* Output counter is updated with statistics register */
1698		m_freem(txd->tx_m);
1699		txd->tx_m = NULL;
1700		STAILQ_REMOVE_HEAD(&sc->sc_cdata.stge_txbusyq, tx_q);
1701		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
1702		txd = STAILQ_FIRST(&sc->sc_cdata.stge_txbusyq);
1703	}
1704	sc->sc_cdata.stge_tx_cons = cons;
1705	if (sc->sc_cdata.stge_tx_cnt == 0)
1706		sc->sc_watchdog_timer = 0;
1707
1708        bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
1709	    sc->sc_cdata.stge_tx_ring_map,
1710	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1711}
1712
1713static __inline void
1714stge_discard_rxbuf(struct stge_softc *sc, int idx)
1715{
1716	struct stge_rfd *rfd;
1717
1718	rfd = &sc->sc_rdata.stge_rx_ring[idx];
1719	rfd->rfd_status = 0;
1720}
1721
1722#ifndef __NO_STRICT_ALIGNMENT
1723/*
1724 * It seems that TC9021's DMA engine has alignment restrictions in
1725 * DMA scatter operations. The first DMA segment has no address
1726 * alignment restrictins but the rest should be aligned on 4(?) bytes
1727 * boundary. Otherwise it would corrupt random memory. Since we don't
1728 * know which one is used for the first segment in advance we simply
1729 * don't align at all.
1730 * To avoid copying over an entire frame to align, we allocate a new
1731 * mbuf and copy ethernet header to the new mbuf. The new mbuf is
1732 * prepended into the existing mbuf chain.
1733 */
1734static __inline struct mbuf *
1735stge_fixup_rx(struct stge_softc *sc, struct mbuf *m)
1736{
1737	struct mbuf *n;
1738
1739	n = NULL;
1740	if (m->m_len <= (MCLBYTES - ETHER_HDR_LEN)) {
1741		bcopy(m->m_data, m->m_data + ETHER_HDR_LEN, m->m_len);
1742		m->m_data += ETHER_HDR_LEN;
1743		n = m;
1744	} else {
1745		MGETHDR(n, M_DONTWAIT, MT_DATA);
1746		if (n != NULL) {
1747			bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
1748			m->m_data += ETHER_HDR_LEN;
1749			m->m_len -= ETHER_HDR_LEN;
1750			n->m_len = ETHER_HDR_LEN;
1751			M_MOVE_PKTHDR(n, m);
1752			n->m_next = m;
1753		} else
1754			m_freem(m);
1755	}
1756
1757	return (n);
1758}
1759#endif
1760
1761/*
1762 * stge_rxeof:
1763 *
1764 *	Helper; handle receive interrupts.
1765 */
1766static int
1767stge_rxeof(struct stge_softc *sc)
1768{
1769	struct ifnet *ifp;
1770	struct stge_rxdesc *rxd;
1771	struct mbuf *mp, *m;
1772	uint64_t status64;
1773	uint32_t status;
1774	int cons, prog, rx_npkts;
1775
1776	STGE_LOCK_ASSERT(sc);
1777
1778	rx_npkts = 0;
1779	ifp = sc->sc_ifp;
1780
1781	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1782	    sc->sc_cdata.stge_rx_ring_map, BUS_DMASYNC_POSTREAD);
1783
1784	prog = 0;
1785	for (cons = sc->sc_cdata.stge_rx_cons; prog < STGE_RX_RING_CNT;
1786	    prog++, cons = (cons + 1) % STGE_RX_RING_CNT) {
1787		status64 = le64toh(sc->sc_rdata.stge_rx_ring[cons].rfd_status);
1788		status = RFD_RxStatus(status64);
1789		if ((status & RFD_RFDDone) == 0)
1790			break;
1791#ifdef DEVICE_POLLING
1792		if (ifp->if_capenable & IFCAP_POLLING) {
1793			if (sc->sc_cdata.stge_rxcycles <= 0)
1794				break;
1795			sc->sc_cdata.stge_rxcycles--;
1796		}
1797#endif
1798		prog++;
1799		rxd = &sc->sc_cdata.stge_rxdesc[cons];
1800		mp = rxd->rx_m;
1801
1802		/*
1803		 * If the packet had an error, drop it.  Note we count
1804		 * the error later in the periodic stats update.
1805		 */
1806		if ((status & RFD_FrameEnd) != 0 && (status &
1807		    (RFD_RxFIFOOverrun | RFD_RxRuntFrame |
1808		    RFD_RxAlignmentError | RFD_RxFCSError |
1809		    RFD_RxLengthError)) != 0) {
1810			stge_discard_rxbuf(sc, cons);
1811			if (sc->sc_cdata.stge_rxhead != NULL) {
1812				m_freem(sc->sc_cdata.stge_rxhead);
1813				STGE_RXCHAIN_RESET(sc);
1814			}
1815			continue;
1816		}
1817		/*
1818		 * Add a new receive buffer to the ring.
1819		 */
1820		if (stge_newbuf(sc, cons) != 0) {
1821			ifp->if_iqdrops++;
1822			stge_discard_rxbuf(sc, cons);
1823			if (sc->sc_cdata.stge_rxhead != NULL) {
1824				m_freem(sc->sc_cdata.stge_rxhead);
1825				STGE_RXCHAIN_RESET(sc);
1826			}
1827			continue;
1828		}
1829
1830		if ((status & RFD_FrameEnd) != 0)
1831			mp->m_len = RFD_RxDMAFrameLen(status) -
1832			    sc->sc_cdata.stge_rxlen;
1833		sc->sc_cdata.stge_rxlen += mp->m_len;
1834
1835		/* Chain mbufs. */
1836		if (sc->sc_cdata.stge_rxhead == NULL) {
1837			sc->sc_cdata.stge_rxhead = mp;
1838			sc->sc_cdata.stge_rxtail = mp;
1839		} else {
1840			mp->m_flags &= ~M_PKTHDR;
1841			sc->sc_cdata.stge_rxtail->m_next = mp;
1842			sc->sc_cdata.stge_rxtail = mp;
1843		}
1844
1845		if ((status & RFD_FrameEnd) != 0) {
1846			m = sc->sc_cdata.stge_rxhead;
1847			m->m_pkthdr.rcvif = ifp;
1848			m->m_pkthdr.len = sc->sc_cdata.stge_rxlen;
1849
1850			if (m->m_pkthdr.len > sc->sc_if_framesize) {
1851				m_freem(m);
1852				STGE_RXCHAIN_RESET(sc);
1853				continue;
1854			}
1855			/*
1856			 * Set the incoming checksum information for
1857			 * the packet.
1858			 */
1859			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1860				if ((status & RFD_IPDetected) != 0) {
1861					m->m_pkthdr.csum_flags |=
1862						CSUM_IP_CHECKED;
1863					if ((status & RFD_IPError) == 0)
1864						m->m_pkthdr.csum_flags |=
1865						    CSUM_IP_VALID;
1866				}
1867				if (((status & RFD_TCPDetected) != 0 &&
1868				    (status & RFD_TCPError) == 0) ||
1869				    ((status & RFD_UDPDetected) != 0 &&
1870				    (status & RFD_UDPError) == 0)) {
1871					m->m_pkthdr.csum_flags |=
1872					    (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1873					m->m_pkthdr.csum_data = 0xffff;
1874				}
1875			}
1876
1877#ifndef __NO_STRICT_ALIGNMENT
1878			if (sc->sc_if_framesize > (MCLBYTES - ETHER_ALIGN)) {
1879				if ((m = stge_fixup_rx(sc, m)) == NULL) {
1880					STGE_RXCHAIN_RESET(sc);
1881					continue;
1882				}
1883			}
1884#endif
1885			/* Check for VLAN tagged packets. */
1886			if ((status & RFD_VLANDetected) != 0 &&
1887			    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
1888				m->m_pkthdr.ether_vtag = RFD_TCI(status64);
1889				m->m_flags |= M_VLANTAG;
1890			}
1891
1892			STGE_UNLOCK(sc);
1893			/* Pass it on. */
1894			(*ifp->if_input)(ifp, m);
1895			STGE_LOCK(sc);
1896			rx_npkts++;
1897
1898			STGE_RXCHAIN_RESET(sc);
1899		}
1900	}
1901
1902	if (prog > 0) {
1903		/* Update the consumer index. */
1904		sc->sc_cdata.stge_rx_cons = cons;
1905		bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
1906		    sc->sc_cdata.stge_rx_ring_map,
1907		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1908	}
1909	return (rx_npkts);
1910}
1911
1912#ifdef DEVICE_POLLING
1913static int
1914stge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1915{
1916	struct stge_softc *sc;
1917	uint16_t status;
1918	int rx_npkts;
1919
1920	rx_npkts = 0;
1921	sc = ifp->if_softc;
1922	STGE_LOCK(sc);
1923	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1924		STGE_UNLOCK(sc);
1925		return (rx_npkts);
1926	}
1927
1928	sc->sc_cdata.stge_rxcycles = count;
1929	rx_npkts = stge_rxeof(sc);
1930	stge_txeof(sc);
1931
1932	if (cmd == POLL_AND_CHECK_STATUS) {
1933		status = CSR_READ_2(sc, STGE_IntStatus);
1934		status &= sc->sc_IntEnable;
1935		if (status != 0) {
1936			if ((status & IS_HostError) != 0) {
1937				device_printf(sc->sc_dev,
1938				    "Host interface error, resetting...\n");
1939				stge_init_locked(sc);
1940			}
1941			if ((status & IS_TxComplete) != 0) {
1942				if (stge_tx_error(sc) != 0)
1943					stge_init_locked(sc);
1944			}
1945		}
1946
1947	}
1948
1949	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1950		stge_start_locked(ifp);
1951
1952	STGE_UNLOCK(sc);
1953	return (rx_npkts);
1954}
1955#endif	/* DEVICE_POLLING */
1956
1957/*
1958 * stge_tick:
1959 *
1960 *	One second timer, used to tick the MII.
1961 */
1962static void
1963stge_tick(void *arg)
1964{
1965	struct stge_softc *sc;
1966	struct mii_data *mii;
1967
1968	sc = (struct stge_softc *)arg;
1969
1970	STGE_LOCK_ASSERT(sc);
1971
1972	mii = device_get_softc(sc->sc_miibus);
1973	mii_tick(mii);
1974
1975	/* Update statistics counters. */
1976	stge_stats_update(sc);
1977
1978	/*
1979	 * Relcaim any pending Tx descriptors to release mbufs in a
1980	 * timely manner as we don't generate Tx completion interrupts
1981	 * for every frame. This limits the delay to a maximum of one
1982	 * second.
1983	 */
1984	if (sc->sc_cdata.stge_tx_cnt != 0)
1985		stge_txeof(sc);
1986
1987	stge_watchdog(sc);
1988
1989	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
1990}
1991
1992/*
1993 * stge_stats_update:
1994 *
1995 *	Read the TC9021 statistics counters.
1996 */
1997static void
1998stge_stats_update(struct stge_softc *sc)
1999{
2000	struct ifnet *ifp;
2001
2002	STGE_LOCK_ASSERT(sc);
2003
2004	ifp = sc->sc_ifp;
2005
2006	CSR_READ_4(sc,STGE_OctetRcvOk);
2007
2008	ifp->if_ipackets += CSR_READ_4(sc, STGE_FramesRcvdOk);
2009
2010	ifp->if_ierrors += CSR_READ_2(sc, STGE_FramesLostRxErrors);
2011
2012	CSR_READ_4(sc, STGE_OctetXmtdOk);
2013
2014	ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk);
2015
2016	ifp->if_collisions +=
2017	    CSR_READ_4(sc, STGE_LateCollisions) +
2018	    CSR_READ_4(sc, STGE_MultiColFrames) +
2019	    CSR_READ_4(sc, STGE_SingleColFrames);
2020
2021	ifp->if_oerrors +=
2022	    CSR_READ_2(sc, STGE_FramesAbortXSColls) +
2023	    CSR_READ_2(sc, STGE_FramesWEXDeferal);
2024}
2025
2026/*
2027 * stge_reset:
2028 *
2029 *	Perform a soft reset on the TC9021.
2030 */
2031static void
2032stge_reset(struct stge_softc *sc, uint32_t how)
2033{
2034	uint32_t ac;
2035	uint8_t v;
2036	int i, dv;
2037
2038	STGE_LOCK_ASSERT(sc);
2039
2040	dv = 5000;
2041	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2042	switch (how) {
2043	case STGE_RESET_TX:
2044		ac |= AC_TxReset | AC_FIFO;
2045		dv = 100;
2046		break;
2047	case STGE_RESET_RX:
2048		ac |= AC_RxReset | AC_FIFO;
2049		dv = 100;
2050		break;
2051	case STGE_RESET_FULL:
2052	default:
2053		/*
2054		 * Only assert RstOut if we're fiber.  We need GMII clocks
2055		 * to be present in order for the reset to complete on fiber
2056		 * cards.
2057		 */
2058		ac |= AC_GlobalReset | AC_RxReset | AC_TxReset |
2059		    AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit |
2060		    (sc->sc_usefiber ? AC_RstOut : 0);
2061		break;
2062	}
2063
2064	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2065
2066	/* Account for reset problem at 10Mbps. */
2067	DELAY(dv);
2068
2069	for (i = 0; i < STGE_TIMEOUT; i++) {
2070		if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0)
2071			break;
2072		DELAY(dv);
2073	}
2074
2075	if (i == STGE_TIMEOUT)
2076		device_printf(sc->sc_dev, "reset failed to complete\n");
2077
2078	/* Set LED, from Linux IPG driver. */
2079	ac = CSR_READ_4(sc, STGE_AsicCtrl);
2080	ac &= ~(AC_LEDMode | AC_LEDSpeed | AC_LEDModeBit1);
2081	if ((sc->sc_led & 0x01) != 0)
2082		ac |= AC_LEDMode;
2083	if ((sc->sc_led & 0x03) != 0)
2084		ac |= AC_LEDModeBit1;
2085	if ((sc->sc_led & 0x08) != 0)
2086		ac |= AC_LEDSpeed;
2087	CSR_WRITE_4(sc, STGE_AsicCtrl, ac);
2088
2089	/* Set PHY, from Linux IPG driver */
2090	v = CSR_READ_1(sc, STGE_PhySet);
2091	v &= ~(PS_MemLenb9b | PS_MemLen | PS_NonCompdet);
2092	v |= ((sc->sc_led & 0x70) >> 4);
2093	CSR_WRITE_1(sc, STGE_PhySet, v);
2094}
2095
2096/*
2097 * stge_init:		[ ifnet interface function ]
2098 *
2099 *	Initialize the interface.
2100 */
2101static void
2102stge_init(void *xsc)
2103{
2104	struct stge_softc *sc;
2105
2106	sc = (struct stge_softc *)xsc;
2107	STGE_LOCK(sc);
2108	stge_init_locked(sc);
2109	STGE_UNLOCK(sc);
2110}
2111
2112static void
2113stge_init_locked(struct stge_softc *sc)
2114{
2115	struct ifnet *ifp;
2116	struct mii_data *mii;
2117	uint16_t eaddr[3];
2118	uint32_t v;
2119	int error;
2120
2121	STGE_LOCK_ASSERT(sc);
2122
2123	ifp = sc->sc_ifp;
2124	mii = device_get_softc(sc->sc_miibus);
2125
2126	/*
2127	 * Cancel any pending I/O.
2128	 */
2129	stge_stop(sc);
2130
2131	/*
2132	 * Reset the chip to a known state.
2133	 */
2134	stge_reset(sc, STGE_RESET_FULL);
2135
2136	/* Init descriptors. */
2137	error = stge_init_rx_ring(sc);
2138        if (error != 0) {
2139                device_printf(sc->sc_dev,
2140                    "initialization failed: no memory for rx buffers\n");
2141                stge_stop(sc);
2142		goto out;
2143        }
2144	stge_init_tx_ring(sc);
2145
2146	/* Set the station address. */
2147	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2148	CSR_WRITE_2(sc, STGE_StationAddress0, htole16(eaddr[0]));
2149	CSR_WRITE_2(sc, STGE_StationAddress1, htole16(eaddr[1]));
2150	CSR_WRITE_2(sc, STGE_StationAddress2, htole16(eaddr[2]));
2151
2152	/*
2153	 * Set the statistics masks.  Disable all the RMON stats,
2154	 * and disable selected stats in the non-RMON stats registers.
2155	 */
2156	CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff);
2157	CSR_WRITE_4(sc, STGE_StatisticsMask,
2158	    (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) |
2159	    (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) |
2160	    (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) |
2161	    (1U << 21));
2162
2163	/* Set up the receive filter. */
2164	stge_set_filter(sc);
2165	/* Program multicast filter. */
2166	stge_set_multi(sc);
2167
2168	/*
2169	 * Give the transmit and receive ring to the chip.
2170	 */
2171	CSR_WRITE_4(sc, STGE_TFDListPtrHi,
2172	    STGE_ADDR_HI(STGE_TX_RING_ADDR(sc, 0)));
2173	CSR_WRITE_4(sc, STGE_TFDListPtrLo,
2174	    STGE_ADDR_LO(STGE_TX_RING_ADDR(sc, 0)));
2175
2176	CSR_WRITE_4(sc, STGE_RFDListPtrHi,
2177	    STGE_ADDR_HI(STGE_RX_RING_ADDR(sc, 0)));
2178	CSR_WRITE_4(sc, STGE_RFDListPtrLo,
2179	    STGE_ADDR_LO(STGE_RX_RING_ADDR(sc, 0)));
2180
2181	/*
2182	 * Initialize the Tx auto-poll period.  It's OK to make this number
2183	 * large (255 is the max, but we use 127) -- we explicitly kick the
2184	 * transmit engine when there's actually a packet.
2185	 */
2186	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2187
2188	/* ..and the Rx auto-poll period. */
2189	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2190
2191	/* Initialize the Tx start threshold. */
2192	CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh);
2193
2194	/* Rx DMA thresholds, from Linux */
2195	CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30);
2196	CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30);
2197
2198	/* Rx early threhold, from Linux */
2199	CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff);
2200
2201	/* Tx DMA thresholds, from Linux */
2202	CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30);
2203	CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04);
2204
2205	/*
2206	 * Initialize the Rx DMA interrupt control register.  We
2207	 * request an interrupt after every incoming packet, but
2208	 * defer it for sc_rxint_dmawait us. When the number of
2209	 * interrupts pending reaches STGE_RXINT_NFRAME, we stop
2210	 * deferring the interrupt, and signal it immediately.
2211	 */
2212	CSR_WRITE_4(sc, STGE_RxDMAIntCtrl,
2213	    RDIC_RxFrameCount(sc->sc_rxint_nframe) |
2214	    RDIC_RxDMAWaitTime(STGE_RXINT_USECS2TICK(sc->sc_rxint_dmawait)));
2215
2216	/*
2217	 * Initialize the interrupt mask.
2218	 */
2219	sc->sc_IntEnable = IS_HostError | IS_TxComplete |
2220	    IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd;
2221#ifdef DEVICE_POLLING
2222	/* Disable interrupts if we are polling. */
2223	if ((ifp->if_capenable & IFCAP_POLLING) != 0)
2224		CSR_WRITE_2(sc, STGE_IntEnable, 0);
2225	else
2226#endif
2227	CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable);
2228
2229	/*
2230	 * Configure the DMA engine.
2231	 * XXX Should auto-tune TxBurstLimit.
2232	 */
2233	CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3));
2234
2235	/*
2236	 * Send a PAUSE frame when we reach 29,696 bytes in the Rx
2237	 * FIFO, and send an un-PAUSE frame when we reach 3056 bytes
2238	 * in the Rx FIFO.
2239	 */
2240	CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16);
2241	CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16);
2242
2243	/*
2244	 * Set the maximum frame size.
2245	 */
2246	sc->sc_if_framesize = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2247	CSR_WRITE_2(sc, STGE_MaxFrameSize, sc->sc_if_framesize);
2248
2249	/*
2250	 * Initialize MacCtrl -- do it before setting the media,
2251	 * as setting the media will actually program the register.
2252	 *
2253	 * Note: We have to poke the IFS value before poking
2254	 * anything else.
2255	 */
2256	/* Tx/Rx MAC should be disabled before programming IFS.*/
2257	CSR_WRITE_4(sc, STGE_MACCtrl, MC_IFSSelect(MC_IFS96bit));
2258
2259	stge_vlan_setup(sc);
2260
2261	if (sc->sc_rev >= 6) {		/* >= B.2 */
2262		/* Multi-frag frame bug work-around. */
2263		CSR_WRITE_2(sc, STGE_DebugCtrl,
2264		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200);
2265
2266		/* Tx Poll Now bug work-around. */
2267		CSR_WRITE_2(sc, STGE_DebugCtrl,
2268		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010);
2269		/* Tx Poll Now bug work-around. */
2270		CSR_WRITE_2(sc, STGE_DebugCtrl,
2271		    CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020);
2272	}
2273
2274	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2275	v |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable;
2276	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2277	/*
2278	 * It seems that transmitting frames without checking the state of
2279	 * Rx/Tx MAC wedge the hardware.
2280	 */
2281	stge_start_tx(sc);
2282	stge_start_rx(sc);
2283
2284	sc->sc_link = 0;
2285	/*
2286	 * Set the current media.
2287	 */
2288	mii_mediachg(mii);
2289
2290	/*
2291	 * Start the one second MII clock.
2292	 */
2293	callout_reset(&sc->sc_tick_ch, hz, stge_tick, sc);
2294
2295	/*
2296	 * ...all done!
2297	 */
2298	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2299	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2300
2301 out:
2302	if (error != 0)
2303		device_printf(sc->sc_dev, "interface not running\n");
2304}
2305
2306static void
2307stge_vlan_setup(struct stge_softc *sc)
2308{
2309	struct ifnet *ifp;
2310	uint32_t v;
2311
2312	ifp = sc->sc_ifp;
2313	/*
2314	 * The NIC always copy a VLAN tag regardless of STGE_MACCtrl
2315	 * MC_AutoVLANuntagging bit.
2316	 * MC_AutoVLANtagging bit selects which VLAN source to use
2317	 * between STGE_VLANTag and TFC. However TFC TFD_VLANTagInsert
2318	 * bit has priority over MC_AutoVLANtagging bit. So we always
2319	 * use TFC instead of STGE_VLANTag register.
2320	 */
2321	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2322	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2323		v |= MC_AutoVLANuntagging;
2324	else
2325		v &= ~MC_AutoVLANuntagging;
2326	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2327}
2328
2329/*
2330 *	Stop transmission on the interface.
2331 */
2332static void
2333stge_stop(struct stge_softc *sc)
2334{
2335	struct ifnet *ifp;
2336	struct stge_txdesc *txd;
2337	struct stge_rxdesc *rxd;
2338	uint32_t v;
2339	int i;
2340
2341	STGE_LOCK_ASSERT(sc);
2342	/*
2343	 * Stop the one second clock.
2344	 */
2345	callout_stop(&sc->sc_tick_ch);
2346	sc->sc_watchdog_timer = 0;
2347
2348	/*
2349	 * Disable interrupts.
2350	 */
2351	CSR_WRITE_2(sc, STGE_IntEnable, 0);
2352
2353	/*
2354	 * Stop receiver, transmitter, and stats update.
2355	 */
2356	stge_stop_rx(sc);
2357	stge_stop_tx(sc);
2358	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2359	v |= MC_StatisticsDisable;
2360	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2361
2362	/*
2363	 * Stop the transmit and receive DMA.
2364	 */
2365	stge_dma_wait(sc);
2366	CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0);
2367	CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0);
2368	CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0);
2369	CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0);
2370
2371	/*
2372	 * Free RX and TX mbufs still in the queues.
2373	 */
2374	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2375		rxd = &sc->sc_cdata.stge_rxdesc[i];
2376		if (rxd->rx_m != NULL) {
2377			bus_dmamap_sync(sc->sc_cdata.stge_rx_tag,
2378			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2379			bus_dmamap_unload(sc->sc_cdata.stge_rx_tag,
2380			    rxd->rx_dmamap);
2381			m_freem(rxd->rx_m);
2382			rxd->rx_m = NULL;
2383		}
2384        }
2385	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2386		txd = &sc->sc_cdata.stge_txdesc[i];
2387		if (txd->tx_m != NULL) {
2388			bus_dmamap_sync(sc->sc_cdata.stge_tx_tag,
2389			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2390			bus_dmamap_unload(sc->sc_cdata.stge_tx_tag,
2391			    txd->tx_dmamap);
2392			m_freem(txd->tx_m);
2393			txd->tx_m = NULL;
2394		}
2395        }
2396
2397	/*
2398	 * Mark the interface down and cancel the watchdog timer.
2399	 */
2400	ifp = sc->sc_ifp;
2401	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2402	sc->sc_link = 0;
2403}
2404
2405static void
2406stge_start_tx(struct stge_softc *sc)
2407{
2408	uint32_t v;
2409	int i;
2410
2411	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2412	if ((v & MC_TxEnabled) != 0)
2413		return;
2414	v |= MC_TxEnable;
2415	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2416	CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127);
2417	for (i = STGE_TIMEOUT; i > 0; i--) {
2418		DELAY(10);
2419		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2420		if ((v & MC_TxEnabled) != 0)
2421			break;
2422	}
2423	if (i == 0)
2424		device_printf(sc->sc_dev, "Starting Tx MAC timed out\n");
2425}
2426
2427static void
2428stge_start_rx(struct stge_softc *sc)
2429{
2430	uint32_t v;
2431	int i;
2432
2433	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2434	if ((v & MC_RxEnabled) != 0)
2435		return;
2436	v |= MC_RxEnable;
2437	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2438	CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 1);
2439	for (i = STGE_TIMEOUT; i > 0; i--) {
2440		DELAY(10);
2441		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2442		if ((v & MC_RxEnabled) != 0)
2443			break;
2444	}
2445	if (i == 0)
2446		device_printf(sc->sc_dev, "Starting Rx MAC timed out\n");
2447}
2448
2449static void
2450stge_stop_tx(struct stge_softc *sc)
2451{
2452	uint32_t v;
2453	int i;
2454
2455	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2456	if ((v & MC_TxEnabled) == 0)
2457		return;
2458	v |= MC_TxDisable;
2459	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2460	for (i = STGE_TIMEOUT; i > 0; i--) {
2461		DELAY(10);
2462		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2463		if ((v & MC_TxEnabled) == 0)
2464			break;
2465	}
2466	if (i == 0)
2467		device_printf(sc->sc_dev, "Stopping Tx MAC timed out\n");
2468}
2469
2470static void
2471stge_stop_rx(struct stge_softc *sc)
2472{
2473	uint32_t v;
2474	int i;
2475
2476	v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2477	if ((v & MC_RxEnabled) == 0)
2478		return;
2479	v |= MC_RxDisable;
2480	CSR_WRITE_4(sc, STGE_MACCtrl, v);
2481	for (i = STGE_TIMEOUT; i > 0; i--) {
2482		DELAY(10);
2483		v = CSR_READ_4(sc, STGE_MACCtrl) & MC_MASK;
2484		if ((v & MC_RxEnabled) == 0)
2485			break;
2486	}
2487	if (i == 0)
2488		device_printf(sc->sc_dev, "Stopping Rx MAC timed out\n");
2489}
2490
2491static void
2492stge_init_tx_ring(struct stge_softc *sc)
2493{
2494	struct stge_ring_data *rd;
2495	struct stge_txdesc *txd;
2496	bus_addr_t addr;
2497	int i;
2498
2499	STAILQ_INIT(&sc->sc_cdata.stge_txfreeq);
2500	STAILQ_INIT(&sc->sc_cdata.stge_txbusyq);
2501
2502	sc->sc_cdata.stge_tx_prod = 0;
2503	sc->sc_cdata.stge_tx_cons = 0;
2504	sc->sc_cdata.stge_tx_cnt = 0;
2505
2506	rd = &sc->sc_rdata;
2507	bzero(rd->stge_tx_ring, STGE_TX_RING_SZ);
2508	for (i = 0; i < STGE_TX_RING_CNT; i++) {
2509		if (i == (STGE_TX_RING_CNT - 1))
2510			addr = STGE_TX_RING_ADDR(sc, 0);
2511		else
2512			addr = STGE_TX_RING_ADDR(sc, i + 1);
2513		rd->stge_tx_ring[i].tfd_next = htole64(addr);
2514		rd->stge_tx_ring[i].tfd_control = htole64(TFD_TFDDone);
2515		txd = &sc->sc_cdata.stge_txdesc[i];
2516		STAILQ_INSERT_TAIL(&sc->sc_cdata.stge_txfreeq, txd, tx_q);
2517	}
2518
2519	bus_dmamap_sync(sc->sc_cdata.stge_tx_ring_tag,
2520	    sc->sc_cdata.stge_tx_ring_map,
2521	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2522
2523}
2524
2525static int
2526stge_init_rx_ring(struct stge_softc *sc)
2527{
2528	struct stge_ring_data *rd;
2529	bus_addr_t addr;
2530	int i;
2531
2532	sc->sc_cdata.stge_rx_cons = 0;
2533	STGE_RXCHAIN_RESET(sc);
2534
2535	rd = &sc->sc_rdata;
2536	bzero(rd->stge_rx_ring, STGE_RX_RING_SZ);
2537	for (i = 0; i < STGE_RX_RING_CNT; i++) {
2538		if (stge_newbuf(sc, i) != 0)
2539			return (ENOBUFS);
2540		if (i == (STGE_RX_RING_CNT - 1))
2541			addr = STGE_RX_RING_ADDR(sc, 0);
2542		else
2543			addr = STGE_RX_RING_ADDR(sc, i + 1);
2544		rd->stge_rx_ring[i].rfd_next = htole64(addr);
2545		rd->stge_rx_ring[i].rfd_status = 0;
2546	}
2547
2548	bus_dmamap_sync(sc->sc_cdata.stge_rx_ring_tag,
2549	    sc->sc_cdata.stge_rx_ring_map,
2550	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2551
2552	return (0);
2553}
2554
2555/*
2556 * stge_newbuf:
2557 *
2558 *	Add a receive buffer to the indicated descriptor.
2559 */
2560static int
2561stge_newbuf(struct stge_softc *sc, int idx)
2562{
2563	struct stge_rxdesc *rxd;
2564	struct stge_rfd *rfd;
2565	struct mbuf *m;
2566	bus_dma_segment_t segs[1];
2567	bus_dmamap_t map;
2568	int nsegs;
2569
2570	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2571	if (m == NULL)
2572		return (ENOBUFS);
2573	m->m_len = m->m_pkthdr.len = MCLBYTES;
2574	/*
2575	 * The hardware requires 4bytes aligned DMA address when JUMBO
2576	 * frame is used.
2577	 */
2578	if (sc->sc_if_framesize <= (MCLBYTES - ETHER_ALIGN))
2579		m_adj(m, ETHER_ALIGN);
2580
2581	if (bus_dmamap_load_mbuf_sg(sc->sc_cdata.stge_rx_tag,
2582	    sc->sc_cdata.stge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
2583		m_freem(m);
2584		return (ENOBUFS);
2585	}
2586	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
2587
2588	rxd = &sc->sc_cdata.stge_rxdesc[idx];
2589	if (rxd->rx_m != NULL) {
2590		bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2591		    BUS_DMASYNC_POSTREAD);
2592		bus_dmamap_unload(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap);
2593	}
2594	map = rxd->rx_dmamap;
2595	rxd->rx_dmamap = sc->sc_cdata.stge_rx_sparemap;
2596	sc->sc_cdata.stge_rx_sparemap = map;
2597	bus_dmamap_sync(sc->sc_cdata.stge_rx_tag, rxd->rx_dmamap,
2598	    BUS_DMASYNC_PREREAD);
2599	rxd->rx_m = m;
2600
2601	rfd = &sc->sc_rdata.stge_rx_ring[idx];
2602	rfd->rfd_frag.frag_word0 =
2603	    htole64(FRAG_ADDR(segs[0].ds_addr) | FRAG_LEN(segs[0].ds_len));
2604	rfd->rfd_status = 0;
2605
2606	return (0);
2607}
2608
2609/*
2610 * stge_set_filter:
2611 *
2612 *	Set up the receive filter.
2613 */
2614static void
2615stge_set_filter(struct stge_softc *sc)
2616{
2617	struct ifnet *ifp;
2618	uint16_t mode;
2619
2620	STGE_LOCK_ASSERT(sc);
2621
2622	ifp = sc->sc_ifp;
2623
2624	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2625	mode |= RM_ReceiveUnicast;
2626	if ((ifp->if_flags & IFF_BROADCAST) != 0)
2627		mode |= RM_ReceiveBroadcast;
2628	else
2629		mode &= ~RM_ReceiveBroadcast;
2630	if ((ifp->if_flags & IFF_PROMISC) != 0)
2631		mode |= RM_ReceiveAllFrames;
2632	else
2633		mode &= ~RM_ReceiveAllFrames;
2634
2635	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2636}
2637
2638static void
2639stge_set_multi(struct stge_softc *sc)
2640{
2641	struct ifnet *ifp;
2642	struct ifmultiaddr *ifma;
2643	uint32_t crc;
2644	uint32_t mchash[2];
2645	uint16_t mode;
2646	int count;
2647
2648	STGE_LOCK_ASSERT(sc);
2649
2650	ifp = sc->sc_ifp;
2651
2652	mode = CSR_READ_2(sc, STGE_ReceiveMode);
2653	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2654		if ((ifp->if_flags & IFF_PROMISC) != 0)
2655			mode |= RM_ReceiveAllFrames;
2656		else if ((ifp->if_flags & IFF_ALLMULTI) != 0)
2657			mode |= RM_ReceiveMulticast;
2658		CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2659		return;
2660	}
2661
2662	/* clear existing filters. */
2663	CSR_WRITE_4(sc, STGE_HashTable0, 0);
2664	CSR_WRITE_4(sc, STGE_HashTable1, 0);
2665
2666	/*
2667	 * Set up the multicast address filter by passing all multicast
2668	 * addresses through a CRC generator, and then using the low-order
2669	 * 6 bits as an index into the 64 bit multicast hash table.  The
2670	 * high order bits select the register, while the rest of the bits
2671	 * select the bit within the register.
2672	 */
2673
2674	bzero(mchash, sizeof(mchash));
2675
2676	count = 0;
2677	if_maddr_rlock(sc->sc_ifp);
2678	TAILQ_FOREACH(ifma, &sc->sc_ifp->if_multiaddrs, ifma_link) {
2679		if (ifma->ifma_addr->sa_family != AF_LINK)
2680			continue;
2681		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
2682		    ifma->ifma_addr), ETHER_ADDR_LEN);
2683
2684		/* Just want the 6 least significant bits. */
2685		crc &= 0x3f;
2686
2687		/* Set the corresponding bit in the hash table. */
2688		mchash[crc >> 5] |= 1 << (crc & 0x1f);
2689		count++;
2690	}
2691	if_maddr_runlock(ifp);
2692
2693	mode &= ~(RM_ReceiveMulticast | RM_ReceiveAllFrames);
2694	if (count > 0)
2695		mode |= RM_ReceiveMulticastHash;
2696	else
2697		mode &= ~RM_ReceiveMulticastHash;
2698
2699	CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]);
2700	CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]);
2701	CSR_WRITE_2(sc, STGE_ReceiveMode, mode);
2702}
2703
2704static int
2705sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
2706{
2707	int error, value;
2708
2709	if (!arg1)
2710		return (EINVAL);
2711	value = *(int *)arg1;
2712	error = sysctl_handle_int(oidp, &value, 0, req);
2713	if (error || !req->newptr)
2714		return (error);
2715	if (value < low || value > high)
2716		return (EINVAL);
2717        *(int *)arg1 = value;
2718
2719        return (0);
2720}
2721
2722static int
2723sysctl_hw_stge_rxint_nframe(SYSCTL_HANDLER_ARGS)
2724{
2725	return (sysctl_int_range(oidp, arg1, arg2, req,
2726	    STGE_RXINT_NFRAME_MIN, STGE_RXINT_NFRAME_MAX));
2727}
2728
2729static int
2730sysctl_hw_stge_rxint_dmawait(SYSCTL_HANDLER_ARGS)
2731{
2732	return (sysctl_int_range(oidp, arg1, arg2, req,
2733	    STGE_RXINT_DMAWAIT_MIN, STGE_RXINT_DMAWAIT_MAX));
2734}
2735