if_sis.c revision 163892
1/*-
2 * Copyright (c) 2005 Poul-Henning Kamp <phk@FreeBSD.org>
3 * Copyright (c) 1997, 1998, 1999
4 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/pci/if_sis.c 163892 2006-11-02 00:05:15Z marius $");
36
37/*
38 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
39 * available from http://www.sis.com.tw.
40 *
41 * This driver also supports the NatSemi DP83815. Datasheets are
42 * available from http://www.national.com.
43 *
44 * Written by Bill Paul <wpaul@ee.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48/*
49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
50 * simple TX and RX descriptors of 3 longwords in size. The receiver
51 * has a single perfect filter entry for the station address and a
52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
53 * transceiver while the 7016 requires an external transceiver chip.
54 * Both chips offer the standard bit-bang MII interface as well as
55 * an enchanced PHY interface which simplifies accessing MII registers.
56 *
57 * The only downside to this chipset is that RX descriptors must be
58 * longword aligned.
59 */
60
61#ifdef HAVE_KERNEL_OPTION_HEADERS
62#include "opt_device_polling.h"
63#endif
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/sockio.h>
68#include <sys/mbuf.h>
69#include <sys/malloc.h>
70#include <sys/kernel.h>
71#include <sys/module.h>
72#include <sys/socket.h>
73
74#include <net/if.h>
75#include <net/if_arp.h>
76#include <net/ethernet.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_vlan_var.h>
81
82#include <net/bpf.h>
83
84#include <machine/bus.h>
85#include <machine/resource.h>
86#include <sys/bus.h>
87#include <sys/rman.h>
88
89#include <dev/mii/mii.h>
90#include <dev/mii/miivar.h>
91
92#include <dev/pci/pcireg.h>
93#include <dev/pci/pcivar.h>
94
95#define SIS_USEIOSPACE
96
97#include <pci/if_sisreg.h>
98
99MODULE_DEPEND(sis, pci, 1, 1, 1);
100MODULE_DEPEND(sis, ether, 1, 1, 1);
101MODULE_DEPEND(sis, miibus, 1, 1, 1);
102
103/* "device miibus" required.  See GENERIC if you get errors here. */
104#include "miibus_if.h"
105
106#define	SIS_LOCK(_sc)		mtx_lock(&(_sc)->sis_mtx)
107#define	SIS_UNLOCK(_sc)		mtx_unlock(&(_sc)->sis_mtx)
108#define	SIS_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->sis_mtx, MA_OWNED)
109
110/*
111 * register space access macros
112 */
113#define CSR_WRITE_4(sc, reg, val)	bus_write_4(sc->sis_res[0], reg, val)
114
115#define CSR_READ_4(sc, reg)		bus_read_4(sc->sis_res[0], reg)
116
117#define CSR_READ_2(sc, reg)		bus_read_2(sc->sis_res[0], reg)
118
119/*
120 * Various supported device vendors/types and their names.
121 */
122static struct sis_type sis_devs[] = {
123	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
124	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
125	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
126	{ 0, 0, NULL }
127};
128
129static int sis_detach(device_t);
130static void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *);
131static int sis_ifmedia_upd(struct ifnet *);
132static void sis_init(void *);
133static void sis_initl(struct sis_softc *);
134static void sis_intr(void *);
135static int sis_ioctl(struct ifnet *, u_long, caddr_t);
136static int sis_newbuf(struct sis_softc *, struct sis_desc *, struct mbuf *);
137static void sis_start(struct ifnet *);
138static void sis_startl(struct ifnet *);
139static void sis_stop(struct sis_softc *);
140static void sis_watchdog(struct ifnet *);
141
142
143static struct resource_spec sis_res_spec[] = {
144#ifdef SIS_USEIOSPACE
145	{ SYS_RES_IOPORT,	SIS_PCI_LOIO,	RF_ACTIVE},
146#else
147	{ SYS_RES_MEMORY,	SIS_PCI_LOMEM,	RF_ACTIVE},
148#endif
149	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE},
150	{ -1, 0 }
151};
152
153#define SIS_SETBIT(sc, reg, x)				\
154	CSR_WRITE_4(sc, reg,				\
155		CSR_READ_4(sc, reg) | (x))
156
157#define SIS_CLRBIT(sc, reg, x)				\
158	CSR_WRITE_4(sc, reg,				\
159		CSR_READ_4(sc, reg) & ~(x))
160
161#define SIO_SET(x)					\
162	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
163
164#define SIO_CLR(x)					\
165	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
166
167static void
168sis_dma_map_desc_next(void *arg, bus_dma_segment_t *segs, int nseg, int error)
169{
170	struct sis_desc	*r;
171
172	r = arg;
173	r->sis_next = segs->ds_addr;
174}
175
176static void
177sis_dma_map_desc_ptr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
178{
179	struct sis_desc	*r;
180
181	r = arg;
182	r->sis_ptr = segs->ds_addr;
183}
184
185static void
186sis_dma_map_ring(void *arg, bus_dma_segment_t *segs, int nseg, int error)
187{
188	u_int32_t *p;
189
190	p = arg;
191	*p = segs->ds_addr;
192}
193
194/*
195 * Routine to reverse the bits in a word. Stolen almost
196 * verbatim from /usr/games/fortune.
197 */
198static uint16_t
199sis_reverse(uint16_t n)
200{
201	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
202	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
203	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
204	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
205
206	return(n);
207}
208
209static void
210sis_delay(struct sis_softc *sc)
211{
212	int			idx;
213
214	for (idx = (300 / 33) + 1; idx > 0; idx--)
215		CSR_READ_4(sc, SIS_CSR);
216}
217
218static void
219sis_eeprom_idle(struct sis_softc *sc)
220{
221	int		i;
222
223	SIO_SET(SIS_EECTL_CSEL);
224	sis_delay(sc);
225	SIO_SET(SIS_EECTL_CLK);
226	sis_delay(sc);
227
228	for (i = 0; i < 25; i++) {
229		SIO_CLR(SIS_EECTL_CLK);
230		sis_delay(sc);
231		SIO_SET(SIS_EECTL_CLK);
232		sis_delay(sc);
233	}
234
235	SIO_CLR(SIS_EECTL_CLK);
236	sis_delay(sc);
237	SIO_CLR(SIS_EECTL_CSEL);
238	sis_delay(sc);
239	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
240}
241
242/*
243 * Send a read command and address to the EEPROM, check for ACK.
244 */
245static void
246sis_eeprom_putbyte(struct sis_softc *sc, int addr)
247{
248	int		d, i;
249
250	d = addr | SIS_EECMD_READ;
251
252	/*
253	 * Feed in each bit and stobe the clock.
254	 */
255	for (i = 0x400; i; i >>= 1) {
256		if (d & i) {
257			SIO_SET(SIS_EECTL_DIN);
258		} else {
259			SIO_CLR(SIS_EECTL_DIN);
260		}
261		sis_delay(sc);
262		SIO_SET(SIS_EECTL_CLK);
263		sis_delay(sc);
264		SIO_CLR(SIS_EECTL_CLK);
265		sis_delay(sc);
266	}
267}
268
269/*
270 * Read a word of data stored in the EEPROM at address 'addr.'
271 */
272static void
273sis_eeprom_getword(struct sis_softc *sc, int addr, uint16_t *dest)
274{
275	int		i;
276	u_int16_t		word = 0;
277
278	/* Force EEPROM to idle state. */
279	sis_eeprom_idle(sc);
280
281	/* Enter EEPROM access mode. */
282	sis_delay(sc);
283	SIO_CLR(SIS_EECTL_CLK);
284	sis_delay(sc);
285	SIO_SET(SIS_EECTL_CSEL);
286	sis_delay(sc);
287
288	/*
289	 * Send address of word we want to read.
290	 */
291	sis_eeprom_putbyte(sc, addr);
292
293	/*
294	 * Start reading bits from EEPROM.
295	 */
296	for (i = 0x8000; i; i >>= 1) {
297		SIO_SET(SIS_EECTL_CLK);
298		sis_delay(sc);
299		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
300			word |= i;
301		sis_delay(sc);
302		SIO_CLR(SIS_EECTL_CLK);
303		sis_delay(sc);
304	}
305
306	/* Turn off EEPROM access mode. */
307	sis_eeprom_idle(sc);
308
309	*dest = word;
310}
311
312/*
313 * Read a sequence of words from the EEPROM.
314 */
315static void
316sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap)
317{
318	int			i;
319	u_int16_t		word = 0, *ptr;
320
321	for (i = 0; i < cnt; i++) {
322		sis_eeprom_getword(sc, off + i, &word);
323		ptr = (u_int16_t *)(dest + (i * 2));
324		if (swap)
325			*ptr = ntohs(word);
326		else
327			*ptr = word;
328	}
329}
330
331#if defined(__i386__) || defined(__amd64__)
332static device_t
333sis_find_bridge(device_t dev)
334{
335	devclass_t		pci_devclass;
336	device_t		*pci_devices;
337	int			pci_count = 0;
338	device_t		*pci_children;
339	int			pci_childcount = 0;
340	device_t		*busp, *childp;
341	device_t		child = NULL;
342	int			i, j;
343
344	if ((pci_devclass = devclass_find("pci")) == NULL)
345		return(NULL);
346
347	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
348
349	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
350		pci_childcount = 0;
351		device_get_children(*busp, &pci_children, &pci_childcount);
352		for (j = 0, childp = pci_children;
353		    j < pci_childcount; j++, childp++) {
354			if (pci_get_vendor(*childp) == SIS_VENDORID &&
355			    pci_get_device(*childp) == 0x0008) {
356				child = *childp;
357				goto done;
358			}
359		}
360	}
361
362done:
363	free(pci_devices, M_TEMP);
364	free(pci_children, M_TEMP);
365	return(child);
366}
367
368static void
369sis_read_cmos(struct sis_softc *sc, device_t dev, caddr_t dest, int off, int cnt)
370{
371	device_t		bridge;
372	u_int8_t		reg;
373	int			i;
374	bus_space_tag_t		btag;
375
376	bridge = sis_find_bridge(dev);
377	if (bridge == NULL)
378		return;
379	reg = pci_read_config(bridge, 0x48, 1);
380	pci_write_config(bridge, 0x48, reg|0x40, 1);
381
382	/* XXX */
383#if defined(__i386__)
384	btag = I386_BUS_SPACE_IO;
385#elif defined(__amd64__)
386	btag = AMD64_BUS_SPACE_IO;
387#endif
388
389	for (i = 0; i < cnt; i++) {
390		bus_space_write_1(btag, 0x0, 0x70, i + off);
391		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
392	}
393
394	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
395	return;
396}
397
398static void
399sis_read_mac(struct sis_softc *sc, device_t dev, caddr_t dest)
400{
401	u_int32_t		filtsave, csrsave;
402
403	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
404	csrsave = CSR_READ_4(sc, SIS_CSR);
405
406	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
407	CSR_WRITE_4(sc, SIS_CSR, 0);
408
409	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
410
411	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
412	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
413	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
414	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
415	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
416	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
417
418	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
419	CSR_WRITE_4(sc, SIS_CSR, csrsave);
420	return;
421}
422#endif
423
424/*
425 * Sync the PHYs by setting data bit and strobing the clock 32 times.
426 */
427static void
428sis_mii_sync(struct sis_softc *sc)
429{
430	int		i;
431
432 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
433
434 	for (i = 0; i < 32; i++) {
435 		SIO_SET(SIS_MII_CLK);
436 		DELAY(1);
437 		SIO_CLR(SIS_MII_CLK);
438 		DELAY(1);
439 	}
440}
441
442/*
443 * Clock a series of bits through the MII.
444 */
445static void
446sis_mii_send(struct sis_softc *sc, uint32_t bits, int cnt)
447{
448	int			i;
449
450	SIO_CLR(SIS_MII_CLK);
451
452	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
453		if (bits & i) {
454			SIO_SET(SIS_MII_DATA);
455		} else {
456			SIO_CLR(SIS_MII_DATA);
457		}
458		DELAY(1);
459		SIO_CLR(SIS_MII_CLK);
460		DELAY(1);
461		SIO_SET(SIS_MII_CLK);
462	}
463}
464
465/*
466 * Read an PHY register through the MII.
467 */
468static int
469sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame)
470{
471	int			i, ack;
472
473	/*
474	 * Set up frame for RX.
475	 */
476	frame->mii_stdelim = SIS_MII_STARTDELIM;
477	frame->mii_opcode = SIS_MII_READOP;
478	frame->mii_turnaround = 0;
479	frame->mii_data = 0;
480
481	/*
482 	 * Turn on data xmit.
483	 */
484	SIO_SET(SIS_MII_DIR);
485
486	sis_mii_sync(sc);
487
488	/*
489	 * Send command/address info.
490	 */
491	sis_mii_send(sc, frame->mii_stdelim, 2);
492	sis_mii_send(sc, frame->mii_opcode, 2);
493	sis_mii_send(sc, frame->mii_phyaddr, 5);
494	sis_mii_send(sc, frame->mii_regaddr, 5);
495
496	/* Idle bit */
497	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
498	DELAY(1);
499	SIO_SET(SIS_MII_CLK);
500	DELAY(1);
501
502	/* Turn off xmit. */
503	SIO_CLR(SIS_MII_DIR);
504
505	/* Check for ack */
506	SIO_CLR(SIS_MII_CLK);
507	DELAY(1);
508	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
509	SIO_SET(SIS_MII_CLK);
510	DELAY(1);
511
512	/*
513	 * Now try reading data bits. If the ack failed, we still
514	 * need to clock through 16 cycles to keep the PHY(s) in sync.
515	 */
516	if (ack) {
517		for(i = 0; i < 16; i++) {
518			SIO_CLR(SIS_MII_CLK);
519			DELAY(1);
520			SIO_SET(SIS_MII_CLK);
521			DELAY(1);
522		}
523		goto fail;
524	}
525
526	for (i = 0x8000; i; i >>= 1) {
527		SIO_CLR(SIS_MII_CLK);
528		DELAY(1);
529		if (!ack) {
530			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
531				frame->mii_data |= i;
532			DELAY(1);
533		}
534		SIO_SET(SIS_MII_CLK);
535		DELAY(1);
536	}
537
538fail:
539
540	SIO_CLR(SIS_MII_CLK);
541	DELAY(1);
542	SIO_SET(SIS_MII_CLK);
543	DELAY(1);
544
545	if (ack)
546		return(1);
547	return(0);
548}
549
550/*
551 * Write to a PHY register through the MII.
552 */
553static int
554sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame)
555{
556
557 	/*
558 	 * Set up frame for TX.
559 	 */
560
561 	frame->mii_stdelim = SIS_MII_STARTDELIM;
562 	frame->mii_opcode = SIS_MII_WRITEOP;
563 	frame->mii_turnaround = SIS_MII_TURNAROUND;
564
565 	/*
566  	 * Turn on data output.
567 	 */
568 	SIO_SET(SIS_MII_DIR);
569
570 	sis_mii_sync(sc);
571
572 	sis_mii_send(sc, frame->mii_stdelim, 2);
573 	sis_mii_send(sc, frame->mii_opcode, 2);
574 	sis_mii_send(sc, frame->mii_phyaddr, 5);
575 	sis_mii_send(sc, frame->mii_regaddr, 5);
576 	sis_mii_send(sc, frame->mii_turnaround, 2);
577 	sis_mii_send(sc, frame->mii_data, 16);
578
579 	/* Idle bit. */
580 	SIO_SET(SIS_MII_CLK);
581 	DELAY(1);
582 	SIO_CLR(SIS_MII_CLK);
583 	DELAY(1);
584
585 	/*
586 	 * Turn off xmit.
587 	 */
588 	SIO_CLR(SIS_MII_DIR);
589
590 	return(0);
591}
592
593static int
594sis_miibus_readreg(device_t dev, int phy, int reg)
595{
596	struct sis_softc	*sc;
597	struct sis_mii_frame    frame;
598
599	sc = device_get_softc(dev);
600
601	if (sc->sis_type == SIS_TYPE_83815) {
602		if (phy != 0)
603			return(0);
604		/*
605		 * The NatSemi chip can take a while after
606		 * a reset to come ready, during which the BMSR
607		 * returns a value of 0. This is *never* supposed
608		 * to happen: some of the BMSR bits are meant to
609		 * be hardwired in the on position, and this can
610		 * confuse the miibus code a bit during the probe
611		 * and attach phase. So we make an effort to check
612		 * for this condition and wait for it to clear.
613		 */
614		if (!CSR_READ_4(sc, NS_BMSR))
615			DELAY(1000);
616		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
617	}
618
619	/*
620	 * Chipsets < SIS_635 seem not to be able to read/write
621	 * through mdio. Use the enhanced PHY access register
622	 * again for them.
623	 */
624	if (sc->sis_type == SIS_TYPE_900 &&
625	    sc->sis_rev < SIS_REV_635) {
626		int i, val = 0;
627
628		if (phy != 0)
629			return(0);
630
631		CSR_WRITE_4(sc, SIS_PHYCTL,
632		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
633		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
634
635		for (i = 0; i < SIS_TIMEOUT; i++) {
636			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
637				break;
638		}
639
640		if (i == SIS_TIMEOUT) {
641			device_printf(sc->sis_dev, "PHY failed to come ready\n");
642			return(0);
643		}
644
645		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
646
647		if (val == 0xFFFF)
648			return(0);
649
650		return(val);
651	} else {
652		bzero((char *)&frame, sizeof(frame));
653
654		frame.mii_phyaddr = phy;
655		frame.mii_regaddr = reg;
656		sis_mii_readreg(sc, &frame);
657
658		return(frame.mii_data);
659	}
660}
661
662static int
663sis_miibus_writereg(device_t dev, int phy, int reg, int data)
664{
665	struct sis_softc	*sc;
666	struct sis_mii_frame	frame;
667
668	sc = device_get_softc(dev);
669
670	if (sc->sis_type == SIS_TYPE_83815) {
671		if (phy != 0)
672			return(0);
673		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
674		return(0);
675	}
676
677	/*
678	 * Chipsets < SIS_635 seem not to be able to read/write
679	 * through mdio. Use the enhanced PHY access register
680	 * again for them.
681	 */
682	if (sc->sis_type == SIS_TYPE_900 &&
683	    sc->sis_rev < SIS_REV_635) {
684		int i;
685
686		if (phy != 0)
687			return(0);
688
689		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
690		    (reg << 6) | SIS_PHYOP_WRITE);
691		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
692
693		for (i = 0; i < SIS_TIMEOUT; i++) {
694			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
695				break;
696		}
697
698		if (i == SIS_TIMEOUT)
699			device_printf(sc->sis_dev, "PHY failed to come ready\n");
700	} else {
701		bzero((char *)&frame, sizeof(frame));
702
703		frame.mii_phyaddr = phy;
704		frame.mii_regaddr = reg;
705		frame.mii_data = data;
706		sis_mii_writereg(sc, &frame);
707	}
708	return(0);
709}
710
711static void
712sis_miibus_statchg(device_t dev)
713{
714	struct sis_softc	*sc;
715
716	sc = device_get_softc(dev);
717	SIS_LOCK_ASSERT(sc);
718	sis_initl(sc);
719}
720
721static uint32_t
722sis_mchash(struct sis_softc *sc, const uint8_t *addr)
723{
724	uint32_t		crc;
725
726	/* Compute CRC for the address value. */
727	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
728
729	/*
730	 * return the filter bit position
731	 *
732	 * The NatSemi chip has a 512-bit filter, which is
733	 * different than the SiS, so we special-case it.
734	 */
735	if (sc->sis_type == SIS_TYPE_83815)
736		return (crc >> 23);
737	else if (sc->sis_rev >= SIS_REV_635 ||
738	    sc->sis_rev == SIS_REV_900B)
739		return (crc >> 24);
740	else
741		return (crc >> 25);
742}
743
744static void
745sis_setmulti_ns(struct sis_softc *sc)
746{
747	struct ifnet		*ifp;
748	struct ifmultiaddr	*ifma;
749	u_int32_t		h = 0, i, filtsave;
750	int			bit, index;
751
752	ifp = sc->sis_ifp;
753
754	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
755		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
756		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
757		return;
758	}
759
760	/*
761	 * We have to explicitly enable the multicast hash table
762	 * on the NatSemi chip if we want to use it, which we do.
763	 */
764	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
765	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
766
767	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
768
769	/* first, zot all the existing hash bits */
770	for (i = 0; i < 32; i++) {
771		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
772		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
773	}
774
775	IF_ADDR_LOCK(ifp);
776	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
777		if (ifma->ifma_addr->sa_family != AF_LINK)
778			continue;
779		h = sis_mchash(sc,
780		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
781		index = h >> 3;
782		bit = h & 0x1F;
783		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
784		if (bit > 0xF)
785			bit -= 0x10;
786		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
787	}
788	IF_ADDR_UNLOCK(ifp);
789
790	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
791
792	return;
793}
794
795static void
796sis_setmulti_sis(struct sis_softc *sc)
797{
798	struct ifnet		*ifp;
799	struct ifmultiaddr	*ifma;
800	u_int32_t		h, i, n, ctl;
801	u_int16_t		hashes[16];
802
803	ifp = sc->sis_ifp;
804
805	/* hash table size */
806	if (sc->sis_rev >= SIS_REV_635 ||
807	    sc->sis_rev == SIS_REV_900B)
808		n = 16;
809	else
810		n = 8;
811
812	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
813
814	if (ifp->if_flags & IFF_BROADCAST)
815		ctl |= SIS_RXFILTCTL_BROAD;
816
817	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
818		ctl |= SIS_RXFILTCTL_ALLMULTI;
819		if (ifp->if_flags & IFF_PROMISC)
820			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
821		for (i = 0; i < n; i++)
822			hashes[i] = ~0;
823	} else {
824		for (i = 0; i < n; i++)
825			hashes[i] = 0;
826		i = 0;
827		IF_ADDR_LOCK(ifp);
828		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
829			if (ifma->ifma_addr->sa_family != AF_LINK)
830			continue;
831			h = sis_mchash(sc,
832			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
833			hashes[h >> 4] |= 1 << (h & 0xf);
834			i++;
835		}
836		IF_ADDR_UNLOCK(ifp);
837		if (i > n) {
838			ctl |= SIS_RXFILTCTL_ALLMULTI;
839			for (i = 0; i < n; i++)
840				hashes[i] = ~0;
841		}
842	}
843
844	for (i = 0; i < n; i++) {
845		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
846		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
847	}
848
849	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
850}
851
852static void
853sis_reset(struct sis_softc *sc)
854{
855	int		i;
856
857	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
858
859	for (i = 0; i < SIS_TIMEOUT; i++) {
860		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
861			break;
862	}
863
864	if (i == SIS_TIMEOUT)
865		device_printf(sc->sis_dev, "reset never completed\n");
866
867	/* Wait a little while for the chip to get its brains in order. */
868	DELAY(1000);
869
870	/*
871	 * If this is a NetSemi chip, make sure to clear
872	 * PME mode.
873	 */
874	if (sc->sis_type == SIS_TYPE_83815) {
875		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
876		CSR_WRITE_4(sc, NS_CLKRUN, 0);
877	}
878
879        return;
880}
881
882/*
883 * Probe for an SiS chip. Check the PCI vendor and device
884 * IDs against our list and return a device name if we find a match.
885 */
886static int
887sis_probe(device_t dev)
888{
889	struct sis_type		*t;
890
891	t = sis_devs;
892
893	while(t->sis_name != NULL) {
894		if ((pci_get_vendor(dev) == t->sis_vid) &&
895		    (pci_get_device(dev) == t->sis_did)) {
896			device_set_desc(dev, t->sis_name);
897			return (BUS_PROBE_DEFAULT);
898		}
899		t++;
900	}
901
902	return(ENXIO);
903}
904
905/*
906 * Attach the interface. Allocate softc structures, do ifmedia
907 * setup and ethernet/BPF attach.
908 */
909static int
910sis_attach(device_t dev)
911{
912	u_char			eaddr[ETHER_ADDR_LEN];
913	struct sis_softc	*sc;
914	struct ifnet		*ifp;
915	int			error = 0, waittime = 0;
916
917	waittime = 0;
918	sc = device_get_softc(dev);
919
920	sc->sis_dev = dev;
921
922	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
923	    MTX_DEF);
924	callout_init_mtx(&sc->sis_stat_ch, &sc->sis_mtx, 0);
925
926	if (pci_get_device(dev) == SIS_DEVICEID_900)
927		sc->sis_type = SIS_TYPE_900;
928	if (pci_get_device(dev) == SIS_DEVICEID_7016)
929		sc->sis_type = SIS_TYPE_7016;
930	if (pci_get_vendor(dev) == NS_VENDORID)
931		sc->sis_type = SIS_TYPE_83815;
932
933	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
934	/*
935	 * Map control/status registers.
936	 */
937	pci_enable_busmaster(dev);
938
939	error = bus_alloc_resources(dev, sis_res_spec, sc->sis_res);
940	if (error) {
941		device_printf(dev, "couldn't allocate resources\n");
942		goto fail;
943	}
944
945	/* Reset the adapter. */
946	sis_reset(sc);
947
948	if (sc->sis_type == SIS_TYPE_900 &&
949            (sc->sis_rev == SIS_REV_635 ||
950            sc->sis_rev == SIS_REV_900B)) {
951		SIO_SET(SIS_CFG_RND_CNT);
952		SIO_SET(SIS_CFG_PERR_DETECT);
953	}
954
955	/*
956	 * Get station address from the EEPROM.
957	 */
958	switch (pci_get_vendor(dev)) {
959	case NS_VENDORID:
960		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
961
962		/* We can't update the device description, so spew */
963		if (sc->sis_srr == NS_SRR_15C)
964			device_printf(dev, "Silicon Revision: DP83815C\n");
965		else if (sc->sis_srr == NS_SRR_15D)
966			device_printf(dev, "Silicon Revision: DP83815D\n");
967		else if (sc->sis_srr == NS_SRR_16A)
968			device_printf(dev, "Silicon Revision: DP83816A\n");
969		else
970			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
971
972		/*
973		 * Reading the MAC address out of the EEPROM on
974		 * the NatSemi chip takes a bit more work than
975		 * you'd expect. The address spans 4 16-bit words,
976		 * with the first word containing only a single bit.
977		 * You have to shift everything over one bit to
978		 * get it aligned properly. Also, the bits are
979		 * stored backwards (the LSB is really the MSB,
980		 * and so on) so you have to reverse them in order
981		 * to get the MAC address into the form we want.
982		 * Why? Who the hell knows.
983		 */
984		{
985			u_int16_t		tmp[4];
986
987			sis_read_eeprom(sc, (caddr_t)&tmp,
988			    NS_EE_NODEADDR, 4, 0);
989
990			/* Shift everything over one bit. */
991			tmp[3] = tmp[3] >> 1;
992			tmp[3] |= tmp[2] << 15;
993			tmp[2] = tmp[2] >> 1;
994			tmp[2] |= tmp[1] << 15;
995			tmp[1] = tmp[1] >> 1;
996			tmp[1] |= tmp[0] << 15;
997
998			/* Now reverse all the bits. */
999			tmp[3] = sis_reverse(tmp[3]);
1000			tmp[2] = sis_reverse(tmp[2]);
1001			tmp[1] = sis_reverse(tmp[1]);
1002
1003			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1004		}
1005		break;
1006	case SIS_VENDORID:
1007	default:
1008#if defined(__i386__) || defined(__amd64__)
1009		/*
1010		 * If this is a SiS 630E chipset with an embedded
1011		 * SiS 900 controller, we have to read the MAC address
1012		 * from the APC CMOS RAM. Our method for doing this
1013		 * is very ugly since we have to reach out and grab
1014		 * ahold of hardware for which we cannot properly
1015		 * allocate resources. This code is only compiled on
1016		 * the i386 architecture since the SiS 630E chipset
1017		 * is for x86 motherboards only. Note that there are
1018		 * a lot of magic numbers in this hack. These are
1019		 * taken from SiS's Linux driver. I'd like to replace
1020		 * them with proper symbolic definitions, but that
1021		 * requires some datasheets that I don't have access
1022		 * to at the moment.
1023		 */
1024		if (sc->sis_rev == SIS_REV_630S ||
1025		    sc->sis_rev == SIS_REV_630E ||
1026		    sc->sis_rev == SIS_REV_630EA1)
1027			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1028
1029		else if (sc->sis_rev == SIS_REV_635 ||
1030			 sc->sis_rev == SIS_REV_630ET)
1031			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1032		else if (sc->sis_rev == SIS_REV_96x) {
1033			/* Allow to read EEPROM from LAN. It is shared
1034			 * between a 1394 controller and the NIC and each
1035			 * time we access it, we need to set SIS_EECMD_REQ.
1036			 */
1037			SIO_SET(SIS_EECMD_REQ);
1038			for (waittime = 0; waittime < SIS_TIMEOUT;
1039			    waittime++) {
1040				/* Force EEPROM to idle state. */
1041				sis_eeprom_idle(sc);
1042				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1043					sis_read_eeprom(sc, (caddr_t)&eaddr,
1044					    SIS_EE_NODEADDR, 3, 0);
1045					break;
1046				}
1047				DELAY(1);
1048			}
1049			/*
1050			 * Set SIS_EECTL_CLK to high, so a other master
1051			 * can operate on the i2c bus.
1052			 */
1053			SIO_SET(SIS_EECTL_CLK);
1054			/* Refuse EEPROM access by LAN */
1055			SIO_SET(SIS_EECMD_DONE);
1056		} else
1057#endif
1058			sis_read_eeprom(sc, (caddr_t)&eaddr,
1059			    SIS_EE_NODEADDR, 3, 0);
1060		break;
1061	}
1062
1063	/*
1064	 * Allocate the parent bus DMA tag appropriate for PCI.
1065	 */
1066#define SIS_NSEG_NEW 32
1067	 error = bus_dma_tag_create(NULL,	/* parent */
1068			1, 0,			/* alignment, boundary */
1069			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1070			BUS_SPACE_MAXADDR,	/* highaddr */
1071			NULL, NULL,		/* filter, filterarg */
1072			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1073			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1074			BUS_DMA_ALLOCNOW,	/* flags */
1075			NULL, NULL,		/* lockfunc, lockarg */
1076			&sc->sis_parent_tag);
1077	if (error)
1078		goto fail;
1079
1080	/*
1081	 * Now allocate a tag for the DMA descriptor lists and a chunk
1082	 * of DMA-able memory based on the tag.  Also obtain the physical
1083	 * addresses of the RX and TX ring, which we'll need later.
1084	 * All of our lists are allocated as a contiguous block
1085	 * of memory.
1086	 */
1087	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1088			1, 0,			/* alignment, boundary */
1089			BUS_SPACE_MAXADDR,	/* lowaddr */
1090			BUS_SPACE_MAXADDR,	/* highaddr */
1091			NULL, NULL,		/* filter, filterarg */
1092			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1093			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1094			0,			/* flags */
1095			busdma_lock_mutex,	/* lockfunc */
1096			&Giant,			/* lockarg */
1097			&sc->sis_rx_tag);
1098	if (error)
1099		goto fail;
1100
1101	error = bus_dmamem_alloc(sc->sis_rx_tag,
1102	    (void **)&sc->sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1103	    &sc->sis_rx_dmamap);
1104
1105	if (error) {
1106		device_printf(dev, "no memory for rx list buffers!\n");
1107		bus_dma_tag_destroy(sc->sis_rx_tag);
1108		sc->sis_rx_tag = NULL;
1109		goto fail;
1110	}
1111
1112	error = bus_dmamap_load(sc->sis_rx_tag,
1113	    sc->sis_rx_dmamap, &(sc->sis_rx_list[0]),
1114	    sizeof(struct sis_desc), sis_dma_map_ring,
1115	    &sc->sis_rx_paddr, 0);
1116
1117	if (error) {
1118		device_printf(dev, "cannot get address of the rx ring!\n");
1119		bus_dmamem_free(sc->sis_rx_tag,
1120		    sc->sis_rx_list, sc->sis_rx_dmamap);
1121		bus_dma_tag_destroy(sc->sis_rx_tag);
1122		sc->sis_rx_tag = NULL;
1123		goto fail;
1124	}
1125
1126	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1127			1, 0,			/* alignment, boundary */
1128			BUS_SPACE_MAXADDR,	/* lowaddr */
1129			BUS_SPACE_MAXADDR,	/* highaddr */
1130			NULL, NULL,		/* filter, filterarg */
1131			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1132			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1133			0,			/* flags */
1134			busdma_lock_mutex,	/* lockfunc */
1135			&Giant,			/* lockarg */
1136			&sc->sis_tx_tag);
1137	if (error)
1138		goto fail;
1139
1140	error = bus_dmamem_alloc(sc->sis_tx_tag,
1141	    (void **)&sc->sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1142	    &sc->sis_tx_dmamap);
1143
1144	if (error) {
1145		device_printf(dev, "no memory for tx list buffers!\n");
1146		bus_dma_tag_destroy(sc->sis_tx_tag);
1147		sc->sis_tx_tag = NULL;
1148		goto fail;
1149	}
1150
1151	error = bus_dmamap_load(sc->sis_tx_tag,
1152	    sc->sis_tx_dmamap, &(sc->sis_tx_list[0]),
1153	    sizeof(struct sis_desc), sis_dma_map_ring,
1154	    &sc->sis_tx_paddr, 0);
1155
1156	if (error) {
1157		device_printf(dev, "cannot get address of the tx ring!\n");
1158		bus_dmamem_free(sc->sis_tx_tag,
1159		    sc->sis_tx_list, sc->sis_tx_dmamap);
1160		bus_dma_tag_destroy(sc->sis_tx_tag);
1161		sc->sis_tx_tag = NULL;
1162		goto fail;
1163	}
1164
1165	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1166			1, 0,			/* alignment, boundary */
1167			BUS_SPACE_MAXADDR,	/* lowaddr */
1168			BUS_SPACE_MAXADDR,	/* highaddr */
1169			NULL, NULL,		/* filter, filterarg */
1170			MCLBYTES, 1,		/* maxsize,nsegments */
1171			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1172			0,			/* flags */
1173			busdma_lock_mutex,	/* lockfunc */
1174			&Giant,			/* lockarg */
1175			&sc->sis_tag);
1176	if (error)
1177		goto fail;
1178
1179	/*
1180	 * Obtain the physical addresses of the RX and TX
1181	 * rings which we'll need later in the init routine.
1182	 */
1183
1184	ifp = sc->sis_ifp = if_alloc(IFT_ETHER);
1185	if (ifp == NULL) {
1186		device_printf(dev, "can not if_alloc()\n");
1187		error = ENOSPC;
1188		goto fail;
1189	}
1190	ifp->if_softc = sc;
1191	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1192	ifp->if_mtu = ETHERMTU;
1193	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1194	ifp->if_ioctl = sis_ioctl;
1195	ifp->if_start = sis_start;
1196	ifp->if_watchdog = sis_watchdog;
1197	ifp->if_init = sis_init;
1198	IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1);
1199	ifp->if_snd.ifq_drv_maxlen = SIS_TX_LIST_CNT - 1;
1200	IFQ_SET_READY(&ifp->if_snd);
1201
1202	/*
1203	 * Do MII setup.
1204	 */
1205	if (mii_phy_probe(dev, &sc->sis_miibus,
1206	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1207		device_printf(dev, "MII without any PHY!\n");
1208		error = ENXIO;
1209		goto fail;
1210	}
1211
1212	/*
1213	 * Call MI attach routine.
1214	 */
1215	ether_ifattach(ifp, eaddr);
1216
1217	/*
1218	 * Tell the upper layer(s) we support long frames.
1219	 */
1220	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1221	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1222	ifp->if_capenable = ifp->if_capabilities;
1223#ifdef DEVICE_POLLING
1224	ifp->if_capabilities |= IFCAP_POLLING;
1225#endif
1226
1227	/* Hook interrupt last to avoid having to lock softc */
1228	error = bus_setup_intr(dev, sc->sis_res[1], INTR_TYPE_NET | INTR_MPSAFE,
1229	    sis_intr, sc, &sc->sis_intrhand);
1230
1231	if (error) {
1232		device_printf(dev, "couldn't set up irq\n");
1233		ether_ifdetach(ifp);
1234		goto fail;
1235	}
1236
1237fail:
1238	if (error)
1239		sis_detach(dev);
1240
1241	return(error);
1242}
1243
1244/*
1245 * Shutdown hardware and free up resources. This can be called any
1246 * time after the mutex has been initialized. It is called in both
1247 * the error case in attach and the normal detach case so it needs
1248 * to be careful about only freeing resources that have actually been
1249 * allocated.
1250 */
1251static int
1252sis_detach(device_t dev)
1253{
1254	struct sis_softc	*sc;
1255	struct ifnet		*ifp;
1256
1257	sc = device_get_softc(dev);
1258	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1259	ifp = sc->sis_ifp;
1260
1261#ifdef DEVICE_POLLING
1262	if (ifp->if_capenable & IFCAP_POLLING)
1263		ether_poll_deregister(ifp);
1264#endif
1265
1266	/* These should only be active if attach succeeded. */
1267	if (device_is_attached(dev)) {
1268		SIS_LOCK(sc);
1269		sis_reset(sc);
1270		sis_stop(sc);
1271		SIS_UNLOCK(sc);
1272		callout_drain(&sc->sis_stat_ch);
1273		ether_ifdetach(ifp);
1274	}
1275	if (sc->sis_miibus)
1276		device_delete_child(dev, sc->sis_miibus);
1277	bus_generic_detach(dev);
1278
1279	if (sc->sis_intrhand)
1280		bus_teardown_intr(dev, sc->sis_res[1], sc->sis_intrhand);
1281	bus_release_resources(dev, sis_res_spec, sc->sis_res);
1282
1283	if (ifp)
1284		if_free(ifp);
1285
1286	if (sc->sis_rx_tag) {
1287		bus_dmamap_unload(sc->sis_rx_tag,
1288		    sc->sis_rx_dmamap);
1289		bus_dmamem_free(sc->sis_rx_tag,
1290		    sc->sis_rx_list, sc->sis_rx_dmamap);
1291		bus_dma_tag_destroy(sc->sis_rx_tag);
1292	}
1293	if (sc->sis_tx_tag) {
1294		bus_dmamap_unload(sc->sis_tx_tag,
1295		    sc->sis_tx_dmamap);
1296		bus_dmamem_free(sc->sis_tx_tag,
1297		    sc->sis_tx_list, sc->sis_tx_dmamap);
1298		bus_dma_tag_destroy(sc->sis_tx_tag);
1299	}
1300	if (sc->sis_parent_tag)
1301		bus_dma_tag_destroy(sc->sis_parent_tag);
1302	if (sc->sis_tag)
1303		bus_dma_tag_destroy(sc->sis_tag);
1304
1305	mtx_destroy(&sc->sis_mtx);
1306
1307	return(0);
1308}
1309
1310/*
1311 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that
1312 * we arrange the descriptors in a closed ring, so that the last descriptor
1313 * points back to the first.
1314 */
1315static int
1316sis_ring_init(struct sis_softc *sc)
1317{
1318	int i, error;
1319	struct sis_desc *dp;
1320
1321	dp = &sc->sis_tx_list[0];
1322	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
1323		if (i == (SIS_TX_LIST_CNT - 1))
1324			dp->sis_nextdesc = &sc->sis_tx_list[0];
1325		else
1326			dp->sis_nextdesc = dp + 1;
1327		bus_dmamap_load(sc->sis_tx_tag,
1328		    sc->sis_tx_dmamap,
1329		    dp->sis_nextdesc, sizeof(struct sis_desc),
1330		    sis_dma_map_desc_next, dp, 0);
1331		dp->sis_mbuf = NULL;
1332		dp->sis_ptr = 0;
1333		dp->sis_ctl = 0;
1334	}
1335
1336	sc->sis_tx_prod = sc->sis_tx_cons = sc->sis_tx_cnt = 0;
1337
1338	bus_dmamap_sync(sc->sis_tx_tag,
1339	    sc->sis_tx_dmamap, BUS_DMASYNC_PREWRITE);
1340
1341	dp = &sc->sis_rx_list[0];
1342	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
1343		error = sis_newbuf(sc, dp, NULL);
1344		if (error)
1345			return(error);
1346		if (i == (SIS_RX_LIST_CNT - 1))
1347			dp->sis_nextdesc = &sc->sis_rx_list[0];
1348		else
1349			dp->sis_nextdesc = dp + 1;
1350		bus_dmamap_load(sc->sis_rx_tag,
1351		    sc->sis_rx_dmamap,
1352		    dp->sis_nextdesc, sizeof(struct sis_desc),
1353		    sis_dma_map_desc_next, dp, 0);
1354		}
1355
1356	bus_dmamap_sync(sc->sis_rx_tag,
1357	    sc->sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1358
1359	sc->sis_rx_pdsc = &sc->sis_rx_list[0];
1360
1361	return(0);
1362}
1363
1364/*
1365 * Initialize an RX descriptor and attach an MBUF cluster.
1366 */
1367static int
1368sis_newbuf(struct sis_softc *sc, struct sis_desc *c, struct mbuf *m)
1369{
1370
1371	if (c == NULL)
1372		return(EINVAL);
1373
1374	if (m == NULL) {
1375		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1376		if (m == NULL)
1377			return(ENOBUFS);
1378	} else
1379		m->m_data = m->m_ext.ext_buf;
1380
1381	c->sis_mbuf = m;
1382	c->sis_ctl = SIS_RXLEN;
1383
1384	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1385	bus_dmamap_load(sc->sis_tag, c->sis_map,
1386	    mtod(m, void *), MCLBYTES,
1387	    sis_dma_map_desc_ptr, c, 0);
1388	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREREAD);
1389
1390	return(0);
1391}
1392
1393/*
1394 * A frame has been uploaded: pass the resulting mbuf chain up to
1395 * the higher level protocols.
1396 */
1397static void
1398sis_rxeof(struct sis_softc *sc)
1399{
1400	struct mbuf		*m, *m0;
1401	struct ifnet		*ifp;
1402	struct sis_desc		*cur_rx;
1403	int			total_len = 0;
1404	u_int32_t		rxstat;
1405
1406	SIS_LOCK_ASSERT(sc);
1407
1408	ifp = sc->sis_ifp;
1409
1410	for(cur_rx = sc->sis_rx_pdsc; SIS_OWNDESC(cur_rx);
1411	    cur_rx = cur_rx->sis_nextdesc) {
1412
1413#ifdef DEVICE_POLLING
1414		if (ifp->if_capenable & IFCAP_POLLING) {
1415			if (sc->rxcycles <= 0)
1416				break;
1417			sc->rxcycles--;
1418		}
1419#endif
1420		rxstat = cur_rx->sis_rxstat;
1421		bus_dmamap_sync(sc->sis_tag,
1422		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1423		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1424		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1425		m = cur_rx->sis_mbuf;
1426		cur_rx->sis_mbuf = NULL;
1427		total_len = SIS_RXBYTES(cur_rx);
1428
1429		/*
1430		 * If an error occurs, update stats, clear the
1431		 * status word and leave the mbuf cluster in place:
1432		 * it should simply get re-used next time this descriptor
1433	 	 * comes up in the ring.
1434		 */
1435		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1436			ifp->if_ierrors++;
1437			if (rxstat & SIS_RXSTAT_COLL)
1438				ifp->if_collisions++;
1439			sis_newbuf(sc, cur_rx, m);
1440			continue;
1441		}
1442
1443		/* No errors; receive the packet. */
1444#ifdef __NO_STRICT_ALIGNMENT
1445		/*
1446		 * On architectures without alignment problems we try to
1447		 * allocate a new buffer for the receive ring, and pass up
1448		 * the one where the packet is already, saving the expensive
1449		 * copy done in m_devget().
1450		 * If we are on an architecture with alignment problems, or
1451		 * if the allocation fails, then use m_devget and leave the
1452		 * existing buffer in the receive ring.
1453		 */
1454		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1455			m->m_pkthdr.len = m->m_len = total_len;
1456		else
1457#endif
1458		{
1459			m0 = m_devget(mtod(m, char *), total_len,
1460				ETHER_ALIGN, ifp, NULL);
1461			sis_newbuf(sc, cur_rx, m);
1462			if (m0 == NULL) {
1463				ifp->if_ierrors++;
1464				continue;
1465			}
1466			m = m0;
1467		}
1468
1469		ifp->if_ipackets++;
1470		m->m_pkthdr.rcvif = ifp;
1471
1472		SIS_UNLOCK(sc);
1473		(*ifp->if_input)(ifp, m);
1474		SIS_LOCK(sc);
1475	}
1476
1477	sc->sis_rx_pdsc = cur_rx;
1478}
1479
1480static void
1481sis_rxeoc(struct sis_softc *sc)
1482{
1483
1484	SIS_LOCK_ASSERT(sc);
1485	sis_rxeof(sc);
1486	sis_initl(sc);
1487}
1488
1489/*
1490 * A frame was downloaded to the chip. It's safe for us to clean up
1491 * the list buffers.
1492 */
1493
1494static void
1495sis_txeof(struct sis_softc *sc)
1496{
1497	struct ifnet		*ifp;
1498	u_int32_t		idx;
1499
1500	SIS_LOCK_ASSERT(sc);
1501	ifp = sc->sis_ifp;
1502
1503	/*
1504	 * Go through our tx list and free mbufs for those
1505	 * frames that have been transmitted.
1506	 */
1507	for (idx = sc->sis_tx_cons; sc->sis_tx_cnt > 0;
1508	    sc->sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1509		struct sis_desc *cur_tx = &sc->sis_tx_list[idx];
1510
1511		if (SIS_OWNDESC(cur_tx))
1512			break;
1513
1514		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1515			continue;
1516
1517		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1518			ifp->if_oerrors++;
1519			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1520				ifp->if_collisions++;
1521			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1522				ifp->if_collisions++;
1523		}
1524
1525		ifp->if_collisions +=
1526		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1527
1528		ifp->if_opackets++;
1529		if (cur_tx->sis_mbuf != NULL) {
1530			m_freem(cur_tx->sis_mbuf);
1531			cur_tx->sis_mbuf = NULL;
1532			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1533			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1534		}
1535	}
1536
1537	if (idx != sc->sis_tx_cons) {
1538		/* we freed up some buffers */
1539		sc->sis_tx_cons = idx;
1540		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1541	}
1542
1543	ifp->if_timer = (sc->sis_tx_cnt == 0) ? 0 : 5;
1544
1545	return;
1546}
1547
1548static void
1549sis_tick(void *xsc)
1550{
1551	struct sis_softc	*sc;
1552	struct mii_data		*mii;
1553	struct ifnet		*ifp;
1554
1555	sc = xsc;
1556	SIS_LOCK_ASSERT(sc);
1557	sc->in_tick = 1;
1558	ifp = sc->sis_ifp;
1559
1560	mii = device_get_softc(sc->sis_miibus);
1561	mii_tick(mii);
1562
1563	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1564	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1565		sc->sis_link++;
1566		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1567			sis_startl(ifp);
1568	}
1569
1570	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1571	sc->in_tick = 0;
1572}
1573
1574#ifdef DEVICE_POLLING
1575static poll_handler_t sis_poll;
1576
1577static void
1578sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1579{
1580	struct	sis_softc *sc = ifp->if_softc;
1581
1582	SIS_LOCK(sc);
1583	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1584		SIS_UNLOCK(sc);
1585		return;
1586	}
1587
1588	/*
1589	 * On the sis, reading the status register also clears it.
1590	 * So before returning to intr mode we must make sure that all
1591	 * possible pending sources of interrupts have been served.
1592	 * In practice this means run to completion the *eof routines,
1593	 * and then call the interrupt routine
1594	 */
1595	sc->rxcycles = count;
1596	sis_rxeof(sc);
1597	sis_txeof(sc);
1598	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1599		sis_startl(ifp);
1600
1601	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1602		u_int32_t	status;
1603
1604		/* Reading the ISR register clears all interrupts. */
1605		status = CSR_READ_4(sc, SIS_ISR);
1606
1607		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1608			sis_rxeoc(sc);
1609
1610		if (status & (SIS_ISR_RX_IDLE))
1611			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1612
1613		if (status & SIS_ISR_SYSERR) {
1614			sis_reset(sc);
1615			sis_initl(sc);
1616		}
1617	}
1618
1619	SIS_UNLOCK(sc);
1620}
1621#endif /* DEVICE_POLLING */
1622
1623static void
1624sis_intr(void *arg)
1625{
1626	struct sis_softc	*sc;
1627	struct ifnet		*ifp;
1628	u_int32_t		status;
1629
1630	sc = arg;
1631	ifp = sc->sis_ifp;
1632
1633	if (sc->sis_stopped)	/* Most likely shared interrupt */
1634		return;
1635
1636	SIS_LOCK(sc);
1637#ifdef DEVICE_POLLING
1638	if (ifp->if_capenable & IFCAP_POLLING) {
1639		SIS_UNLOCK(sc);
1640		return;
1641	}
1642#endif
1643
1644	/* Disable interrupts. */
1645	CSR_WRITE_4(sc, SIS_IER, 0);
1646
1647	for (;;) {
1648		SIS_LOCK_ASSERT(sc);
1649		/* Reading the ISR register clears all interrupts. */
1650		status = CSR_READ_4(sc, SIS_ISR);
1651
1652		if ((status & SIS_INTRS) == 0)
1653			break;
1654
1655		if (status &
1656		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1657		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1658			sis_txeof(sc);
1659
1660		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1661			sis_rxeof(sc);
1662
1663		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1664			sis_rxeoc(sc);
1665
1666		if (status & (SIS_ISR_RX_IDLE))
1667			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1668
1669		if (status & SIS_ISR_SYSERR) {
1670			sis_reset(sc);
1671			sis_initl(sc);
1672		}
1673	}
1674
1675	/* Re-enable interrupts. */
1676	CSR_WRITE_4(sc, SIS_IER, 1);
1677
1678	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1679		sis_startl(ifp);
1680
1681	SIS_UNLOCK(sc);
1682}
1683
1684/*
1685 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1686 * pointers to the fragment pointers.
1687 */
1688static int
1689sis_encap(struct sis_softc *sc, struct mbuf **m_head, uint32_t *txidx)
1690{
1691	struct sis_desc		*f = NULL;
1692	struct mbuf		*m;
1693	int			frag, cur, cnt = 0, chainlen = 0;
1694
1695	/*
1696	 * If there's no way we can send any packets, return now.
1697	 */
1698	if (SIS_TX_LIST_CNT - sc->sis_tx_cnt < 2)
1699		return (ENOBUFS);
1700
1701	/*
1702	 * Count the number of frags in this chain to see if
1703	 * we need to m_defrag.  Since the descriptor list is shared
1704	 * by all packets, we'll m_defrag long chains so that they
1705	 * do not use up the entire list, even if they would fit.
1706	 */
1707
1708	for (m = *m_head; m != NULL; m = m->m_next)
1709		chainlen++;
1710
1711	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1712	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_tx_cnt)) < 2)) {
1713		m = m_defrag(*m_head, M_DONTWAIT);
1714		if (m == NULL)
1715			return (ENOBUFS);
1716		*m_head = m;
1717	}
1718
1719	/*
1720 	 * Start packing the mbufs in this chain into
1721	 * the fragment pointers. Stop when we run out
1722 	 * of fragments or hit the end of the mbuf chain.
1723	 */
1724	cur = frag = *txidx;
1725
1726	for (m = *m_head; m != NULL; m = m->m_next) {
1727		if (m->m_len != 0) {
1728			if ((SIS_TX_LIST_CNT -
1729			    (sc->sis_tx_cnt + cnt)) < 2)
1730				return(ENOBUFS);
1731			f = &sc->sis_tx_list[frag];
1732			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1733			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1734			bus_dmamap_load(sc->sis_tag, f->sis_map,
1735			    mtod(m, void *), m->m_len,
1736			    sis_dma_map_desc_ptr, f, 0);
1737			bus_dmamap_sync(sc->sis_tag,
1738			    f->sis_map, BUS_DMASYNC_PREREAD);
1739			if (cnt != 0)
1740				f->sis_ctl |= SIS_CMDSTS_OWN;
1741			cur = frag;
1742			SIS_INC(frag, SIS_TX_LIST_CNT);
1743			cnt++;
1744		}
1745	}
1746
1747	if (m != NULL)
1748		return(ENOBUFS);
1749
1750	sc->sis_tx_list[cur].sis_mbuf = *m_head;
1751	sc->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1752	sc->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1753	sc->sis_tx_cnt += cnt;
1754	*txidx = frag;
1755
1756	return(0);
1757}
1758
1759/*
1760 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1761 * to the mbuf data regions directly in the transmit lists. We also save a
1762 * copy of the pointers since the transmit list fragment pointers are
1763 * physical addresses.
1764 */
1765
1766static void
1767sis_start(struct ifnet *ifp)
1768{
1769	struct sis_softc	*sc;
1770
1771	sc = ifp->if_softc;
1772	SIS_LOCK(sc);
1773	sis_startl(ifp);
1774	SIS_UNLOCK(sc);
1775}
1776
1777static void
1778sis_startl(struct ifnet *ifp)
1779{
1780	struct sis_softc	*sc;
1781	struct mbuf		*m_head = NULL;
1782	u_int32_t		idx, queued = 0;
1783
1784	sc = ifp->if_softc;
1785
1786	SIS_LOCK_ASSERT(sc);
1787
1788	if (!sc->sis_link)
1789		return;
1790
1791	idx = sc->sis_tx_prod;
1792
1793	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1794		return;
1795
1796	while(sc->sis_tx_list[idx].sis_mbuf == NULL) {
1797		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1798		if (m_head == NULL)
1799			break;
1800
1801		if (sis_encap(sc, &m_head, &idx)) {
1802			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1803			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1804			break;
1805		}
1806
1807		queued++;
1808
1809		/*
1810		 * If there's a BPF listener, bounce a copy of this frame
1811		 * to him.
1812		 */
1813		BPF_MTAP(ifp, m_head);
1814
1815	}
1816
1817	if (queued) {
1818		/* Transmit */
1819		sc->sis_tx_prod = idx;
1820		SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1821
1822		/*
1823		 * Set a timeout in case the chip goes out to lunch.
1824		 */
1825		ifp->if_timer = 5;
1826	}
1827}
1828
1829static void
1830sis_init(void *xsc)
1831{
1832	struct sis_softc	*sc = xsc;
1833
1834	SIS_LOCK(sc);
1835	sis_initl(sc);
1836	SIS_UNLOCK(sc);
1837}
1838
1839static void
1840sis_initl(struct sis_softc *sc)
1841{
1842	struct ifnet		*ifp = sc->sis_ifp;
1843	struct mii_data		*mii;
1844
1845	SIS_LOCK_ASSERT(sc);
1846
1847	/*
1848	 * Cancel pending I/O and free all RX/TX buffers.
1849	 */
1850	sis_stop(sc);
1851	sc->sis_stopped = 0;
1852
1853#ifdef notyet
1854	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
1855		/*
1856		 * Configure 400usec of interrupt holdoff.  This is based
1857		 * on emperical tests on a Soekris 4801.
1858 		 */
1859		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
1860	}
1861#endif
1862
1863	mii = device_get_softc(sc->sis_miibus);
1864
1865	/* Set MAC address */
1866	if (sc->sis_type == SIS_TYPE_83815) {
1867		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1868		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1869		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1870		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1871		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1872		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1873		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1874		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1875		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1876	} else {
1877		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1878		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1879		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[0]);
1880		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1881		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1882		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[1]);
1883		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1884		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1885		    ((u_int16_t *)IF_LLADDR(sc->sis_ifp))[2]);
1886	}
1887
1888	/* Init circular TX/RX lists. */
1889	if (sis_ring_init(sc) != 0) {
1890		device_printf(sc->sis_dev,
1891		    "initialization failed: no memory for rx buffers\n");
1892		sis_stop(sc);
1893		return;
1894	}
1895
1896	/*
1897	 * Short Cable Receive Errors (MP21.E)
1898	 * also: Page 78 of the DP83815 data sheet (september 2002 version)
1899	 * recommends the following register settings "for optimum
1900	 * performance." for rev 15C.  The driver from NS also sets
1901	 * the PHY_CR register for later versions.
1902	 */
1903	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) {
1904		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1905		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1906		if (sc->sis_srr == NS_SRR_15C) {
1907			/* set val for c2 */
1908			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1909			/* load/kill c2 */
1910			CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1911			/* rais SD off, from 4 to c */
1912			CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1913		}
1914		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
1915	}
1916
1917
1918	/*
1919	 * For the NatSemi chip, we have to explicitly enable the
1920	 * reception of ARP frames, as well as turn on the 'perfect
1921	 * match' filter where we store the station address, otherwise
1922	 * we won't receive unicasts meant for this host.
1923	 */
1924	if (sc->sis_type == SIS_TYPE_83815) {
1925		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1926		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1927	}
1928
1929	 /* If we want promiscuous mode, set the allframes bit. */
1930	if (ifp->if_flags & IFF_PROMISC) {
1931		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1932	} else {
1933		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1934	}
1935
1936	/*
1937	 * Set the capture broadcast bit to capture broadcast frames.
1938	 */
1939	if (ifp->if_flags & IFF_BROADCAST) {
1940		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1941	} else {
1942		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1943	}
1944
1945	/*
1946	 * Load the multicast filter.
1947	 */
1948	if (sc->sis_type == SIS_TYPE_83815)
1949		sis_setmulti_ns(sc);
1950	else
1951		sis_setmulti_sis(sc);
1952
1953	/* Turn the receive filter on */
1954	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1955
1956	/*
1957	 * Load the address of the RX and TX lists.
1958	 */
1959	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_rx_paddr);
1960	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_tx_paddr);
1961
1962	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
1963	 * the PCI bus. When this bit is set, the Max DMA Burst Size
1964	 * for TX/RX DMA should be no larger than 16 double words.
1965	 */
1966	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
1967		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
1968	} else {
1969		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
1970	}
1971
1972	/* Accept Long Packets for VLAN support */
1973	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1974
1975	/* Set TX configuration */
1976	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
1977		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1978	} else {
1979		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1980	}
1981
1982	/* Set full/half duplex mode. */
1983	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1984		SIS_SETBIT(sc, SIS_TX_CFG,
1985		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1986		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1987	} else {
1988		SIS_CLRBIT(sc, SIS_TX_CFG,
1989		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1990		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1991	}
1992
1993	if (sc->sis_type == SIS_TYPE_83816) {
1994		/*
1995		 * MPII03.D: Half Duplex Excessive Collisions.
1996		 * Also page 49 in 83816 manual
1997		 */
1998		SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D);
1999	}
2000
2001	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2002	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2003		uint32_t reg;
2004
2005		/*
2006		 * Short Cable Receive Errors (MP21.E)
2007		 */
2008		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2009		reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff;
2010		CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000);
2011		DELAY(100000);
2012		reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff;
2013		if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) {
2014			device_printf(sc->sis_dev,
2015			    "Applying short cable fix (reg=%x)\n", reg);
2016			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2017			reg = CSR_READ_4(sc, NS_PHY_DSPCFG);
2018			SIS_SETBIT(sc, NS_PHY_DSPCFG, reg | 0x20);
2019		}
2020		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2021	}
2022
2023	/*
2024	 * Enable interrupts.
2025	 */
2026	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2027#ifdef DEVICE_POLLING
2028	/*
2029	 * ... only enable interrupts if we are not polling, make sure
2030	 * they are off otherwise.
2031	 */
2032	if (ifp->if_capenable & IFCAP_POLLING)
2033		CSR_WRITE_4(sc, SIS_IER, 0);
2034	else
2035#endif
2036	CSR_WRITE_4(sc, SIS_IER, 1);
2037
2038	/* Enable receiver and transmitter. */
2039	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2040	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2041
2042#ifdef notdef
2043	mii_mediachg(mii);
2044#endif
2045
2046	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2047	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2048
2049	if (!sc->in_tick)
2050		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2051}
2052
2053/*
2054 * Set media options.
2055 */
2056static int
2057sis_ifmedia_upd(struct ifnet *ifp)
2058{
2059	struct sis_softc	*sc;
2060	struct mii_data		*mii;
2061
2062	sc = ifp->if_softc;
2063
2064	SIS_LOCK(sc);
2065	mii = device_get_softc(sc->sis_miibus);
2066	sc->sis_link = 0;
2067	if (mii->mii_instance) {
2068		struct mii_softc	*miisc;
2069		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2070			mii_phy_reset(miisc);
2071	}
2072	mii_mediachg(mii);
2073	SIS_UNLOCK(sc);
2074
2075	return(0);
2076}
2077
2078/*
2079 * Report current media status.
2080 */
2081static void
2082sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2083{
2084	struct sis_softc	*sc;
2085	struct mii_data		*mii;
2086
2087	sc = ifp->if_softc;
2088
2089	SIS_LOCK(sc);
2090	mii = device_get_softc(sc->sis_miibus);
2091	mii_pollstat(mii);
2092	SIS_UNLOCK(sc);
2093	ifmr->ifm_active = mii->mii_media_active;
2094	ifmr->ifm_status = mii->mii_media_status;
2095}
2096
2097static int
2098sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2099{
2100	struct sis_softc	*sc = ifp->if_softc;
2101	struct ifreq		*ifr = (struct ifreq *) data;
2102	struct mii_data		*mii;
2103	int			error = 0;
2104
2105	switch(command) {
2106	case SIOCSIFFLAGS:
2107		SIS_LOCK(sc);
2108		if (ifp->if_flags & IFF_UP) {
2109			sis_initl(sc);
2110		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2111			sis_stop(sc);
2112		}
2113		SIS_UNLOCK(sc);
2114		error = 0;
2115		break;
2116	case SIOCADDMULTI:
2117	case SIOCDELMULTI:
2118		SIS_LOCK(sc);
2119		if (sc->sis_type == SIS_TYPE_83815)
2120			sis_setmulti_ns(sc);
2121		else
2122			sis_setmulti_sis(sc);
2123		SIS_UNLOCK(sc);
2124		error = 0;
2125		break;
2126	case SIOCGIFMEDIA:
2127	case SIOCSIFMEDIA:
2128		mii = device_get_softc(sc->sis_miibus);
2129		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2130		break;
2131	case SIOCSIFCAP:
2132		/* ok, disable interrupts */
2133#ifdef DEVICE_POLLING
2134		if (ifr->ifr_reqcap & IFCAP_POLLING &&
2135		    !(ifp->if_capenable & IFCAP_POLLING)) {
2136			error = ether_poll_register(sis_poll, ifp);
2137			if (error)
2138				return(error);
2139			SIS_LOCK(sc);
2140			/* Disable interrupts */
2141			CSR_WRITE_4(sc, SIS_IER, 0);
2142			ifp->if_capenable |= IFCAP_POLLING;
2143			SIS_UNLOCK(sc);
2144			return (error);
2145
2146		}
2147		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
2148		    ifp->if_capenable & IFCAP_POLLING) {
2149			error = ether_poll_deregister(ifp);
2150			/* Enable interrupts. */
2151			SIS_LOCK(sc);
2152			CSR_WRITE_4(sc, SIS_IER, 1);
2153			ifp->if_capenable &= ~IFCAP_POLLING;
2154			SIS_UNLOCK(sc);
2155			return (error);
2156		}
2157#endif /* DEVICE_POLLING */
2158		break;
2159	default:
2160		error = ether_ioctl(ifp, command, data);
2161		break;
2162	}
2163
2164	return(error);
2165}
2166
2167static void
2168sis_watchdog(struct ifnet *ifp)
2169{
2170	struct sis_softc *sc;
2171
2172	sc = ifp->if_softc;
2173
2174	SIS_LOCK(sc);
2175	if (sc->sis_stopped) {
2176		SIS_UNLOCK(sc);
2177		return;
2178	}
2179
2180	ifp->if_oerrors++;
2181	if_printf(ifp, "watchdog timeout\n");
2182
2183	sis_stop(sc);
2184	sis_reset(sc);
2185	sis_initl(sc);
2186
2187	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2188		sis_startl(ifp);
2189
2190	SIS_UNLOCK(sc);
2191}
2192
2193/*
2194 * Stop the adapter and free any mbufs allocated to the
2195 * RX and TX lists.
2196 */
2197static void
2198sis_stop(struct sis_softc *sc)
2199{
2200	int i;
2201	struct ifnet *ifp;
2202	struct sis_desc *dp;
2203
2204	if (sc->sis_stopped)
2205		return;
2206	SIS_LOCK_ASSERT(sc);
2207	ifp = sc->sis_ifp;
2208	ifp->if_timer = 0;
2209
2210	callout_stop(&sc->sis_stat_ch);
2211
2212	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2213	CSR_WRITE_4(sc, SIS_IER, 0);
2214	CSR_WRITE_4(sc, SIS_IMR, 0);
2215	CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */
2216	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2217	DELAY(1000);
2218	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2219	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2220
2221	sc->sis_link = 0;
2222
2223	/*
2224	 * Free data in the RX lists.
2225	 */
2226	dp = &sc->sis_rx_list[0];
2227	for (i = 0; i < SIS_RX_LIST_CNT; i++, dp++) {
2228		if (dp->sis_mbuf == NULL)
2229			continue;
2230		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2231		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2232		m_freem(dp->sis_mbuf);
2233		dp->sis_mbuf = NULL;
2234	}
2235	bzero(sc->sis_rx_list, SIS_RX_LIST_SZ);
2236
2237	/*
2238	 * Free the TX list buffers.
2239	 */
2240	dp = &sc->sis_tx_list[0];
2241	for (i = 0; i < SIS_TX_LIST_CNT; i++, dp++) {
2242		if (dp->sis_mbuf == NULL)
2243			continue;
2244		bus_dmamap_unload(sc->sis_tag, dp->sis_map);
2245		bus_dmamap_destroy(sc->sis_tag, dp->sis_map);
2246		m_freem(dp->sis_mbuf);
2247		dp->sis_mbuf = NULL;
2248	}
2249
2250	bzero(sc->sis_tx_list, SIS_TX_LIST_SZ);
2251
2252	sc->sis_stopped = 1;
2253}
2254
2255/*
2256 * Stop all chip I/O so that the kernel's probe routines don't
2257 * get confused by errant DMAs when rebooting.
2258 */
2259static void
2260sis_shutdown(device_t dev)
2261{
2262	struct sis_softc	*sc;
2263
2264	sc = device_get_softc(dev);
2265	SIS_LOCK(sc);
2266	sis_reset(sc);
2267	sis_stop(sc);
2268	SIS_UNLOCK(sc);
2269}
2270
2271static device_method_t sis_methods[] = {
2272	/* Device interface */
2273	DEVMETHOD(device_probe,		sis_probe),
2274	DEVMETHOD(device_attach,	sis_attach),
2275	DEVMETHOD(device_detach,	sis_detach),
2276	DEVMETHOD(device_shutdown,	sis_shutdown),
2277
2278	/* bus interface */
2279	DEVMETHOD(bus_print_child,	bus_generic_print_child),
2280	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
2281
2282	/* MII interface */
2283	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
2284	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
2285	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
2286
2287	{ 0, 0 }
2288};
2289
2290static driver_t sis_driver = {
2291	"sis",
2292	sis_methods,
2293	sizeof(struct sis_softc)
2294};
2295
2296static devclass_t sis_devclass;
2297
2298DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
2299DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
2300