if_sis.c revision 131253
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/pci/if_sis.c 131253 2004-06-28 20:07:03Z imp $");
35
36/*
37 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
38 * available from http://www.sis.com.tw.
39 *
40 * This driver also supports the NatSemi DP83815. Datasheets are
41 * available from http://www.national.com.
42 *
43 * Written by Bill Paul <wpaul@ee.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47/*
48 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
49 * simple TX and RX descriptors of 3 longwords in size. The receiver
50 * has a single perfect filter entry for the station address and a
51 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
52 * transceiver while the 7016 requires an external transceiver chip.
53 * Both chips offer the standard bit-bang MII interface as well as
54 * an enchanced PHY interface which simplifies accessing MII registers.
55 *
56 * The only downside to this chipset is that RX descriptors must be
57 * longword aligned.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/sockio.h>
63#include <sys/mbuf.h>
64#include <sys/malloc.h>
65#include <sys/kernel.h>
66#include <sys/module.h>
67#include <sys/socket.h>
68#include <sys/sysctl.h>
69
70#include <net/if.h>
71#include <net/if_arp.h>
72#include <net/ethernet.h>
73#include <net/if_dl.h>
74#include <net/if_media.h>
75#include <net/if_types.h>
76#include <net/if_vlan_var.h>
77
78#include <net/bpf.h>
79
80#include <machine/bus_pio.h>
81#include <machine/bus_memio.h>
82#include <machine/bus.h>
83#include <machine/resource.h>
84#include <sys/bus.h>
85#include <sys/rman.h>
86
87#include <dev/mii/mii.h>
88#include <dev/mii/miivar.h>
89
90#include <dev/pci/pcireg.h>
91#include <dev/pci/pcivar.h>
92
93#define SIS_USEIOSPACE
94
95#include <pci/if_sisreg.h>
96
97MODULE_DEPEND(sis, pci, 1, 1, 1);
98MODULE_DEPEND(sis, ether, 1, 1, 1);
99MODULE_DEPEND(sis, miibus, 1, 1, 1);
100
101/* "controller miibus0" required.  See GENERIC if you get errors here. */
102#include "miibus_if.h"
103
104/*
105 * Various supported device vendors/types and their names.
106 */
107static struct sis_type sis_devs[] = {
108	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
109	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
110	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP8381[56] 10/100BaseTX" },
111	{ 0, 0, NULL }
112};
113
114static int sis_probe		(device_t);
115static int sis_attach		(device_t);
116static int sis_detach		(device_t);
117
118static int sis_newbuf		(struct sis_softc *,
119					struct sis_desc *, struct mbuf *);
120static int sis_encap		(struct sis_softc *,
121					struct mbuf **, u_int32_t *);
122static void sis_rxeof		(struct sis_softc *);
123static void sis_rxeoc		(struct sis_softc *);
124static void sis_txeof		(struct sis_softc *);
125static void sis_intr		(void *);
126static void sis_tick		(void *);
127static void sis_start		(struct ifnet *);
128static int sis_ioctl		(struct ifnet *, u_long, caddr_t);
129static void sis_init		(void *);
130static void sis_stop		(struct sis_softc *);
131static void sis_watchdog		(struct ifnet *);
132static void sis_shutdown		(device_t);
133static int sis_ifmedia_upd	(struct ifnet *);
134static void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
135
136static u_int16_t sis_reverse	(u_int16_t);
137static void sis_delay		(struct sis_softc *);
138static void sis_eeprom_idle	(struct sis_softc *);
139static void sis_eeprom_putbyte	(struct sis_softc *, int);
140static void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
141static void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
142#ifdef __i386__
143static void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
144							int, int);
145static void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
146static device_t sis_find_bridge	(device_t);
147#endif
148
149static void sis_mii_sync	(struct sis_softc *);
150static void sis_mii_send	(struct sis_softc *, u_int32_t, int);
151static int sis_mii_readreg	(struct sis_softc *, struct sis_mii_frame *);
152static int sis_mii_writereg	(struct sis_softc *, struct sis_mii_frame *);
153static int sis_miibus_readreg	(device_t, int, int);
154static int sis_miibus_writereg	(device_t, int, int, int);
155static void sis_miibus_statchg	(device_t);
156
157static void sis_setmulti_sis	(struct sis_softc *);
158static void sis_setmulti_ns	(struct sis_softc *);
159static uint32_t sis_mchash	(struct sis_softc *, const uint8_t *);
160static void sis_reset		(struct sis_softc *);
161static int sis_list_rx_init	(struct sis_softc *);
162static int sis_list_tx_init	(struct sis_softc *);
163
164static void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
165static void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
166static void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
167#ifdef SIS_USEIOSPACE
168#define SIS_RES			SYS_RES_IOPORT
169#define SIS_RID			SIS_PCI_LOIO
170#else
171#define SIS_RES			SYS_RES_MEMORY
172#define SIS_RID			SIS_PCI_LOMEM
173#endif
174
175static device_method_t sis_methods[] = {
176	/* Device interface */
177	DEVMETHOD(device_probe,		sis_probe),
178	DEVMETHOD(device_attach,	sis_attach),
179	DEVMETHOD(device_detach,	sis_detach),
180	DEVMETHOD(device_shutdown,	sis_shutdown),
181
182	/* bus interface */
183	DEVMETHOD(bus_print_child,	bus_generic_print_child),
184	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
185
186	/* MII interface */
187	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
188	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
189	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
190
191	{ 0, 0 }
192};
193
194static driver_t sis_driver = {
195	"sis",
196	sis_methods,
197	sizeof(struct sis_softc)
198};
199
200static devclass_t sis_devclass;
201
202DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
203DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
204
205#define SIS_SETBIT(sc, reg, x)				\
206	CSR_WRITE_4(sc, reg,				\
207		CSR_READ_4(sc, reg) | (x))
208
209#define SIS_CLRBIT(sc, reg, x)				\
210	CSR_WRITE_4(sc, reg,				\
211		CSR_READ_4(sc, reg) & ~(x))
212
213#define SIO_SET(x)					\
214	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
215
216#define SIO_CLR(x)					\
217	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
218
219static void
220sis_dma_map_desc_next(arg, segs, nseg, error)
221	void *arg;
222	bus_dma_segment_t *segs;
223	int nseg, error;
224{
225	struct sis_desc	*r;
226
227	r = arg;
228	r->sis_next = segs->ds_addr;
229
230	return;
231}
232
233static void
234sis_dma_map_desc_ptr(arg, segs, nseg, error)
235	void *arg;
236	bus_dma_segment_t *segs;
237	int nseg, error;
238{
239	struct sis_desc	*r;
240
241	r = arg;
242	r->sis_ptr = segs->ds_addr;
243
244	return;
245}
246
247static void
248sis_dma_map_ring(arg, segs, nseg, error)
249	void *arg;
250	bus_dma_segment_t *segs;
251	int nseg, error;
252{
253	u_int32_t *p;
254
255	p = arg;
256	*p = segs->ds_addr;
257
258	return;
259}
260
261/*
262 * Routine to reverse the bits in a word. Stolen almost
263 * verbatim from /usr/games/fortune.
264 */
265static u_int16_t
266sis_reverse(n)
267	u_int16_t		n;
268{
269	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
270	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
271	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
272	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
273
274	return(n);
275}
276
277static void
278sis_delay(sc)
279	struct sis_softc	*sc;
280{
281	int			idx;
282
283	for (idx = (300 / 33) + 1; idx > 0; idx--)
284		CSR_READ_4(sc, SIS_CSR);
285
286	return;
287}
288
289static void
290sis_eeprom_idle(sc)
291	struct sis_softc	*sc;
292{
293	register int		i;
294
295	SIO_SET(SIS_EECTL_CSEL);
296	sis_delay(sc);
297	SIO_SET(SIS_EECTL_CLK);
298	sis_delay(sc);
299
300	for (i = 0; i < 25; i++) {
301		SIO_CLR(SIS_EECTL_CLK);
302		sis_delay(sc);
303		SIO_SET(SIS_EECTL_CLK);
304		sis_delay(sc);
305	}
306
307	SIO_CLR(SIS_EECTL_CLK);
308	sis_delay(sc);
309	SIO_CLR(SIS_EECTL_CSEL);
310	sis_delay(sc);
311	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
312
313	return;
314}
315
316/*
317 * Send a read command and address to the EEPROM, check for ACK.
318 */
319static void
320sis_eeprom_putbyte(sc, addr)
321	struct sis_softc	*sc;
322	int			addr;
323{
324	register int		d, i;
325
326	d = addr | SIS_EECMD_READ;
327
328	/*
329	 * Feed in each bit and stobe the clock.
330	 */
331	for (i = 0x400; i; i >>= 1) {
332		if (d & i) {
333			SIO_SET(SIS_EECTL_DIN);
334		} else {
335			SIO_CLR(SIS_EECTL_DIN);
336		}
337		sis_delay(sc);
338		SIO_SET(SIS_EECTL_CLK);
339		sis_delay(sc);
340		SIO_CLR(SIS_EECTL_CLK);
341		sis_delay(sc);
342	}
343
344	return;
345}
346
347/*
348 * Read a word of data stored in the EEPROM at address 'addr.'
349 */
350static void
351sis_eeprom_getword(sc, addr, dest)
352	struct sis_softc	*sc;
353	int			addr;
354	u_int16_t		*dest;
355{
356	register int		i;
357	u_int16_t		word = 0;
358
359	/* Force EEPROM to idle state. */
360	sis_eeprom_idle(sc);
361
362	/* Enter EEPROM access mode. */
363	sis_delay(sc);
364	SIO_CLR(SIS_EECTL_CLK);
365	sis_delay(sc);
366	SIO_SET(SIS_EECTL_CSEL);
367	sis_delay(sc);
368
369	/*
370	 * Send address of word we want to read.
371	 */
372	sis_eeprom_putbyte(sc, addr);
373
374	/*
375	 * Start reading bits from EEPROM.
376	 */
377	for (i = 0x8000; i; i >>= 1) {
378		SIO_SET(SIS_EECTL_CLK);
379		sis_delay(sc);
380		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
381			word |= i;
382		sis_delay(sc);
383		SIO_CLR(SIS_EECTL_CLK);
384		sis_delay(sc);
385	}
386
387	/* Turn off EEPROM access mode. */
388	sis_eeprom_idle(sc);
389
390	*dest = word;
391
392	return;
393}
394
395/*
396 * Read a sequence of words from the EEPROM.
397 */
398static void
399sis_read_eeprom(sc, dest, off, cnt, swap)
400	struct sis_softc	*sc;
401	caddr_t			dest;
402	int			off;
403	int			cnt;
404	int			swap;
405{
406	int			i;
407	u_int16_t		word = 0, *ptr;
408
409	for (i = 0; i < cnt; i++) {
410		sis_eeprom_getword(sc, off + i, &word);
411		ptr = (u_int16_t *)(dest + (i * 2));
412		if (swap)
413			*ptr = ntohs(word);
414		else
415			*ptr = word;
416	}
417
418	return;
419}
420
421#ifdef __i386__
422static device_t
423sis_find_bridge(dev)
424	device_t		dev;
425{
426	devclass_t		pci_devclass;
427	device_t		*pci_devices;
428	int			pci_count = 0;
429	device_t		*pci_children;
430	int			pci_childcount = 0;
431	device_t		*busp, *childp;
432	device_t		child = NULL;
433	int			i, j;
434
435	if ((pci_devclass = devclass_find("pci")) == NULL)
436		return(NULL);
437
438	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
439
440	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
441		pci_childcount = 0;
442		device_get_children(*busp, &pci_children, &pci_childcount);
443		for (j = 0, childp = pci_children;
444		    j < pci_childcount; j++, childp++) {
445			if (pci_get_vendor(*childp) == SIS_VENDORID &&
446			    pci_get_device(*childp) == 0x0008) {
447				child = *childp;
448				goto done;
449			}
450		}
451	}
452
453done:
454	free(pci_devices, M_TEMP);
455	free(pci_children, M_TEMP);
456	return(child);
457}
458
459static void
460sis_read_cmos(sc, dev, dest, off, cnt)
461	struct sis_softc	*sc;
462	device_t		dev;
463	caddr_t			dest;
464	int			off;
465	int			cnt;
466{
467	device_t		bridge;
468	u_int8_t		reg;
469	int			i;
470	bus_space_tag_t		btag;
471
472	bridge = sis_find_bridge(dev);
473	if (bridge == NULL)
474		return;
475	reg = pci_read_config(bridge, 0x48, 1);
476	pci_write_config(bridge, 0x48, reg|0x40, 1);
477
478	/* XXX */
479	btag = I386_BUS_SPACE_IO;
480
481	for (i = 0; i < cnt; i++) {
482		bus_space_write_1(btag, 0x0, 0x70, i + off);
483		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
484	}
485
486	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
487	return;
488}
489
490static void
491sis_read_mac(sc, dev, dest)
492	struct sis_softc	*sc;
493	device_t		dev;
494	caddr_t			dest;
495{
496	u_int32_t		filtsave, csrsave;
497
498	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
499	csrsave = CSR_READ_4(sc, SIS_CSR);
500
501	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
502	CSR_WRITE_4(sc, SIS_CSR, 0);
503
504	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
505
506	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
507	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
508	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
509	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
510	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
511	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
512
513	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
514	CSR_WRITE_4(sc, SIS_CSR, csrsave);
515	return;
516}
517#endif
518
519/*
520 * Sync the PHYs by setting data bit and strobing the clock 32 times.
521 */
522static void sis_mii_sync(sc)
523	struct sis_softc	*sc;
524{
525	register int		i;
526
527 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
528
529 	for (i = 0; i < 32; i++) {
530 		SIO_SET(SIS_MII_CLK);
531 		DELAY(1);
532 		SIO_CLR(SIS_MII_CLK);
533 		DELAY(1);
534 	}
535
536 	return;
537}
538
539/*
540 * Clock a series of bits through the MII.
541 */
542static void sis_mii_send(sc, bits, cnt)
543	struct sis_softc	*sc;
544	u_int32_t		bits;
545	int			cnt;
546{
547	int			i;
548
549	SIO_CLR(SIS_MII_CLK);
550
551	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
552		if (bits & i) {
553			SIO_SET(SIS_MII_DATA);
554		} else {
555			SIO_CLR(SIS_MII_DATA);
556		}
557		DELAY(1);
558		SIO_CLR(SIS_MII_CLK);
559		DELAY(1);
560		SIO_SET(SIS_MII_CLK);
561	}
562}
563
564/*
565 * Read an PHY register through the MII.
566 */
567static int sis_mii_readreg(sc, frame)
568	struct sis_softc	*sc;
569	struct sis_mii_frame	*frame;
570
571{
572	int			i, ack, s;
573
574	s = splimp();
575
576	/*
577	 * Set up frame for RX.
578	 */
579	frame->mii_stdelim = SIS_MII_STARTDELIM;
580	frame->mii_opcode = SIS_MII_READOP;
581	frame->mii_turnaround = 0;
582	frame->mii_data = 0;
583
584	/*
585 	 * Turn on data xmit.
586	 */
587	SIO_SET(SIS_MII_DIR);
588
589	sis_mii_sync(sc);
590
591	/*
592	 * Send command/address info.
593	 */
594	sis_mii_send(sc, frame->mii_stdelim, 2);
595	sis_mii_send(sc, frame->mii_opcode, 2);
596	sis_mii_send(sc, frame->mii_phyaddr, 5);
597	sis_mii_send(sc, frame->mii_regaddr, 5);
598
599	/* Idle bit */
600	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
601	DELAY(1);
602	SIO_SET(SIS_MII_CLK);
603	DELAY(1);
604
605	/* Turn off xmit. */
606	SIO_CLR(SIS_MII_DIR);
607
608	/* Check for ack */
609	SIO_CLR(SIS_MII_CLK);
610	DELAY(1);
611	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
612	SIO_SET(SIS_MII_CLK);
613	DELAY(1);
614
615	/*
616	 * Now try reading data bits. If the ack failed, we still
617	 * need to clock through 16 cycles to keep the PHY(s) in sync.
618	 */
619	if (ack) {
620		for(i = 0; i < 16; i++) {
621			SIO_CLR(SIS_MII_CLK);
622			DELAY(1);
623			SIO_SET(SIS_MII_CLK);
624			DELAY(1);
625		}
626		goto fail;
627	}
628
629	for (i = 0x8000; i; i >>= 1) {
630		SIO_CLR(SIS_MII_CLK);
631		DELAY(1);
632		if (!ack) {
633			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
634				frame->mii_data |= i;
635			DELAY(1);
636		}
637		SIO_SET(SIS_MII_CLK);
638		DELAY(1);
639	}
640
641fail:
642
643	SIO_CLR(SIS_MII_CLK);
644	DELAY(1);
645	SIO_SET(SIS_MII_CLK);
646	DELAY(1);
647
648	splx(s);
649
650	if (ack)
651		return(1);
652	return(0);
653}
654
655/*
656 * Write to a PHY register through the MII.
657 */
658static int sis_mii_writereg(sc, frame)
659	struct sis_softc	*sc;
660	struct sis_mii_frame	*frame;
661
662{
663	int			s;
664
665	 s = splimp();
666 	/*
667 	 * Set up frame for TX.
668 	 */
669
670 	frame->mii_stdelim = SIS_MII_STARTDELIM;
671 	frame->mii_opcode = SIS_MII_WRITEOP;
672 	frame->mii_turnaround = SIS_MII_TURNAROUND;
673
674 	/*
675  	 * Turn on data output.
676 	 */
677 	SIO_SET(SIS_MII_DIR);
678
679 	sis_mii_sync(sc);
680
681 	sis_mii_send(sc, frame->mii_stdelim, 2);
682 	sis_mii_send(sc, frame->mii_opcode, 2);
683 	sis_mii_send(sc, frame->mii_phyaddr, 5);
684 	sis_mii_send(sc, frame->mii_regaddr, 5);
685 	sis_mii_send(sc, frame->mii_turnaround, 2);
686 	sis_mii_send(sc, frame->mii_data, 16);
687
688 	/* Idle bit. */
689 	SIO_SET(SIS_MII_CLK);
690 	DELAY(1);
691 	SIO_CLR(SIS_MII_CLK);
692 	DELAY(1);
693
694 	/*
695 	 * Turn off xmit.
696 	 */
697 	SIO_CLR(SIS_MII_DIR);
698
699 	splx(s);
700
701 	return(0);
702}
703
704static int
705sis_miibus_readreg(dev, phy, reg)
706	device_t		dev;
707	int			phy, reg;
708{
709	struct sis_softc	*sc;
710	struct sis_mii_frame    frame;
711
712	sc = device_get_softc(dev);
713
714	if (sc->sis_type == SIS_TYPE_83815) {
715		if (phy != 0)
716			return(0);
717		/*
718		 * The NatSemi chip can take a while after
719		 * a reset to come ready, during which the BMSR
720		 * returns a value of 0. This is *never* supposed
721		 * to happen: some of the BMSR bits are meant to
722		 * be hardwired in the on position, and this can
723		 * confuse the miibus code a bit during the probe
724		 * and attach phase. So we make an effort to check
725		 * for this condition and wait for it to clear.
726		 */
727		if (!CSR_READ_4(sc, NS_BMSR))
728			DELAY(1000);
729		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
730	}
731
732	/*
733	 * Chipsets < SIS_635 seem not to be able to read/write
734	 * through mdio. Use the enhanced PHY access register
735	 * again for them.
736	 */
737	if (sc->sis_type == SIS_TYPE_900 &&
738	    sc->sis_rev < SIS_REV_635) {
739		int i, val = 0;
740
741		if (phy != 0)
742			return(0);
743
744		CSR_WRITE_4(sc, SIS_PHYCTL,
745		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
746		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
747
748		for (i = 0; i < SIS_TIMEOUT; i++) {
749			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
750				break;
751		}
752
753		if (i == SIS_TIMEOUT) {
754			printf("sis%d: PHY failed to come ready\n",
755			    sc->sis_unit);
756			return(0);
757		}
758
759		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
760
761		if (val == 0xFFFF)
762			return(0);
763
764		return(val);
765	} else {
766		bzero((char *)&frame, sizeof(frame));
767
768		frame.mii_phyaddr = phy;
769		frame.mii_regaddr = reg;
770		sis_mii_readreg(sc, &frame);
771
772		return(frame.mii_data);
773	}
774}
775
776static int
777sis_miibus_writereg(dev, phy, reg, data)
778	device_t		dev;
779	int			phy, reg, data;
780{
781	struct sis_softc	*sc;
782	struct sis_mii_frame	frame;
783
784	sc = device_get_softc(dev);
785
786	if (sc->sis_type == SIS_TYPE_83815) {
787		if (phy != 0)
788			return(0);
789		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
790		return(0);
791	}
792
793	/*
794	 * Chipsets < SIS_635 seem not to be able to read/write
795	 * through mdio. Use the enhanced PHY access register
796	 * again for them.
797	 */
798	if (sc->sis_type == SIS_TYPE_900 &&
799	    sc->sis_rev < SIS_REV_635) {
800		int i;
801
802		if (phy != 0)
803			return(0);
804
805		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
806		    (reg << 6) | SIS_PHYOP_WRITE);
807		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
808
809		for (i = 0; i < SIS_TIMEOUT; i++) {
810			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
811				break;
812		}
813
814		if (i == SIS_TIMEOUT)
815			printf("sis%d: PHY failed to come ready\n",
816			    sc->sis_unit);
817	} else {
818		bzero((char *)&frame, sizeof(frame));
819
820		frame.mii_phyaddr = phy;
821		frame.mii_regaddr = reg;
822		frame.mii_data = data;
823		sis_mii_writereg(sc, &frame);
824	}
825	return(0);
826}
827
828static void
829sis_miibus_statchg(dev)
830	device_t		dev;
831{
832	struct sis_softc	*sc;
833
834	sc = device_get_softc(dev);
835	sis_init(sc);
836
837	return;
838}
839
840static u_int32_t
841sis_mchash(sc, addr)
842	struct sis_softc	*sc;
843	const uint8_t		*addr;
844{
845	uint32_t		crc;
846
847	/* Compute CRC for the address value. */
848	crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
849
850	/*
851	 * return the filter bit position
852	 *
853	 * The NatSemi chip has a 512-bit filter, which is
854	 * different than the SiS, so we special-case it.
855	 */
856	if (sc->sis_type == SIS_TYPE_83815)
857		return (crc >> 23);
858	else if (sc->sis_rev >= SIS_REV_635 ||
859	    sc->sis_rev == SIS_REV_900B)
860		return (crc >> 24);
861	else
862		return (crc >> 25);
863}
864
865static void
866sis_setmulti_ns(sc)
867	struct sis_softc	*sc;
868{
869	struct ifnet		*ifp;
870	struct ifmultiaddr	*ifma;
871	u_int32_t		h = 0, i, filtsave;
872	int			bit, index;
873
874	ifp = &sc->arpcom.ac_if;
875
876	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
877		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
878		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
879		return;
880	}
881
882	/*
883	 * We have to explicitly enable the multicast hash table
884	 * on the NatSemi chip if we want to use it, which we do.
885	 */
886	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
887	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
888
889	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
890
891	/* first, zot all the existing hash bits */
892	for (i = 0; i < 32; i++) {
893		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
894		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
895	}
896
897	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
898		if (ifma->ifma_addr->sa_family != AF_LINK)
899			continue;
900		h = sis_mchash(sc,
901		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
902		index = h >> 3;
903		bit = h & 0x1F;
904		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
905		if (bit > 0xF)
906			bit -= 0x10;
907		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
908	}
909
910	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
911
912	return;
913}
914
915static void
916sis_setmulti_sis(sc)
917	struct sis_softc	*sc;
918{
919	struct ifnet		*ifp;
920	struct ifmultiaddr	*ifma;
921	u_int32_t		h, i, n, ctl;
922	u_int16_t		hashes[16];
923
924	ifp = &sc->arpcom.ac_if;
925
926	/* hash table size */
927	if (sc->sis_rev >= SIS_REV_635 ||
928	    sc->sis_rev == SIS_REV_900B)
929		n = 16;
930	else
931		n = 8;
932
933	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
934
935	if (ifp->if_flags & IFF_BROADCAST)
936		ctl |= SIS_RXFILTCTL_BROAD;
937
938	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
939		ctl |= SIS_RXFILTCTL_ALLMULTI;
940		if (ifp->if_flags & IFF_PROMISC)
941			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
942		for (i = 0; i < n; i++)
943			hashes[i] = ~0;
944	} else {
945		for (i = 0; i < n; i++)
946			hashes[i] = 0;
947		i = 0;
948		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
949			if (ifma->ifma_addr->sa_family != AF_LINK)
950			continue;
951			h = sis_mchash(sc,
952			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
953			hashes[h >> 4] |= 1 << (h & 0xf);
954			i++;
955		}
956		if (i > n) {
957			ctl |= SIS_RXFILTCTL_ALLMULTI;
958			for (i = 0; i < n; i++)
959				hashes[i] = ~0;
960		}
961	}
962
963	for (i = 0; i < n; i++) {
964		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
965		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
966	}
967
968	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
969}
970
971static void
972sis_reset(sc)
973	struct sis_softc	*sc;
974{
975	register int		i;
976
977	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
978
979	for (i = 0; i < SIS_TIMEOUT; i++) {
980		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
981			break;
982	}
983
984	if (i == SIS_TIMEOUT)
985		printf("sis%d: reset never completed\n", sc->sis_unit);
986
987	/* Wait a little while for the chip to get its brains in order. */
988	DELAY(1000);
989
990	/*
991	 * If this is a NetSemi chip, make sure to clear
992	 * PME mode.
993	 */
994	if (sc->sis_type == SIS_TYPE_83815) {
995		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
996		CSR_WRITE_4(sc, NS_CLKRUN, 0);
997	}
998
999        return;
1000}
1001
1002/*
1003 * Probe for an SiS chip. Check the PCI vendor and device
1004 * IDs against our list and return a device name if we find a match.
1005 */
1006static int
1007sis_probe(dev)
1008	device_t		dev;
1009{
1010	struct sis_type		*t;
1011
1012	t = sis_devs;
1013
1014	while(t->sis_name != NULL) {
1015		if ((pci_get_vendor(dev) == t->sis_vid) &&
1016		    (pci_get_device(dev) == t->sis_did)) {
1017			device_set_desc(dev, t->sis_name);
1018			return(0);
1019		}
1020		t++;
1021	}
1022
1023	return(ENXIO);
1024}
1025
1026/*
1027 * Attach the interface. Allocate softc structures, do ifmedia
1028 * setup and ethernet/BPF attach.
1029 */
1030static int
1031sis_attach(dev)
1032	device_t		dev;
1033{
1034	u_char			eaddr[ETHER_ADDR_LEN];
1035	struct sis_softc	*sc;
1036	struct ifnet		*ifp;
1037	int			unit, error = 0, rid, waittime = 0;
1038
1039	waittime = 0;
1040	sc = device_get_softc(dev);
1041	unit = device_get_unit(dev);
1042
1043	sc->sis_self = dev;
1044
1045	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1046	    MTX_DEF | MTX_RECURSE);
1047
1048	if (pci_get_device(dev) == SIS_DEVICEID_900)
1049		sc->sis_type = SIS_TYPE_900;
1050	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1051		sc->sis_type = SIS_TYPE_7016;
1052	if (pci_get_vendor(dev) == NS_VENDORID)
1053		sc->sis_type = SIS_TYPE_83815;
1054
1055	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1056	/*
1057	 * Map control/status registers.
1058	 */
1059	pci_enable_busmaster(dev);
1060
1061	rid = SIS_RID;
1062	sc->sis_res = bus_alloc_resource_any(dev, SIS_RES, &rid, RF_ACTIVE);
1063
1064	if (sc->sis_res == NULL) {
1065		printf("sis%d: couldn't map ports/memory\n", unit);
1066		error = ENXIO;
1067		goto fail;
1068	}
1069
1070	sc->sis_btag = rman_get_bustag(sc->sis_res);
1071	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1072
1073	/* Allocate interrupt */
1074	rid = 0;
1075	sc->sis_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1076	    RF_SHAREABLE | RF_ACTIVE);
1077
1078	if (sc->sis_irq == NULL) {
1079		printf("sis%d: couldn't map interrupt\n", unit);
1080		error = ENXIO;
1081		goto fail;
1082	}
1083
1084	/* Reset the adapter. */
1085	sis_reset(sc);
1086
1087	if (sc->sis_type == SIS_TYPE_900 &&
1088            (sc->sis_rev == SIS_REV_635 ||
1089            sc->sis_rev == SIS_REV_900B)) {
1090		SIO_SET(SIS_CFG_RND_CNT);
1091		SIO_SET(SIS_CFG_PERR_DETECT);
1092	}
1093
1094	/*
1095	 * Get station address from the EEPROM.
1096	 */
1097	switch (pci_get_vendor(dev)) {
1098	case NS_VENDORID:
1099		sc->sis_srr = CSR_READ_4(sc, NS_SRR);
1100
1101		/* We can't update the device description, so spew */
1102		if (sc->sis_srr == NS_SRR_15C)
1103			device_printf(dev, "Silicon Revision: DP83815C\n");
1104		else if (sc->sis_srr == NS_SRR_15D)
1105			device_printf(dev, "Silicon Revision: DP83815D\n");
1106		else if (sc->sis_srr == NS_SRR_16A)
1107			device_printf(dev, "Silicon Revision: DP83816A\n");
1108		else
1109			device_printf(dev, "Silicon Revision %x\n", sc->sis_srr);
1110
1111		/*
1112		 * Reading the MAC address out of the EEPROM on
1113		 * the NatSemi chip takes a bit more work than
1114		 * you'd expect. The address spans 4 16-bit words,
1115		 * with the first word containing only a single bit.
1116		 * You have to shift everything over one bit to
1117		 * get it aligned properly. Also, the bits are
1118		 * stored backwards (the LSB is really the MSB,
1119		 * and so on) so you have to reverse them in order
1120		 * to get the MAC address into the form we want.
1121		 * Why? Who the hell knows.
1122		 */
1123		{
1124			u_int16_t		tmp[4];
1125
1126			sis_read_eeprom(sc, (caddr_t)&tmp,
1127			    NS_EE_NODEADDR, 4, 0);
1128
1129			/* Shift everything over one bit. */
1130			tmp[3] = tmp[3] >> 1;
1131			tmp[3] |= tmp[2] << 15;
1132			tmp[2] = tmp[2] >> 1;
1133			tmp[2] |= tmp[1] << 15;
1134			tmp[1] = tmp[1] >> 1;
1135			tmp[1] |= tmp[0] << 15;
1136
1137			/* Now reverse all the bits. */
1138			tmp[3] = sis_reverse(tmp[3]);
1139			tmp[2] = sis_reverse(tmp[2]);
1140			tmp[1] = sis_reverse(tmp[1]);
1141
1142			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1143		}
1144		break;
1145	case SIS_VENDORID:
1146	default:
1147#ifdef __i386__
1148		/*
1149		 * If this is a SiS 630E chipset with an embedded
1150		 * SiS 900 controller, we have to read the MAC address
1151		 * from the APC CMOS RAM. Our method for doing this
1152		 * is very ugly since we have to reach out and grab
1153		 * ahold of hardware for which we cannot properly
1154		 * allocate resources. This code is only compiled on
1155		 * the i386 architecture since the SiS 630E chipset
1156		 * is for x86 motherboards only. Note that there are
1157		 * a lot of magic numbers in this hack. These are
1158		 * taken from SiS's Linux driver. I'd like to replace
1159		 * them with proper symbolic definitions, but that
1160		 * requires some datasheets that I don't have access
1161		 * to at the moment.
1162		 */
1163		if (sc->sis_rev == SIS_REV_630S ||
1164		    sc->sis_rev == SIS_REV_630E ||
1165		    sc->sis_rev == SIS_REV_630EA1)
1166			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1167
1168		else if (sc->sis_rev == SIS_REV_635 ||
1169			 sc->sis_rev == SIS_REV_630ET)
1170			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1171		else if (sc->sis_rev == SIS_REV_96x) {
1172			/* Allow to read EEPROM from LAN. It is shared
1173			 * between a 1394 controller and the NIC and each
1174			 * time we access it, we need to set SIS_EECMD_REQ.
1175			 */
1176			SIO_SET(SIS_EECMD_REQ);
1177			for (waittime = 0; waittime < SIS_TIMEOUT;
1178			    waittime++) {
1179				/* Force EEPROM to idle state. */
1180				sis_eeprom_idle(sc);
1181				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1182					sis_read_eeprom(sc, (caddr_t)&eaddr,
1183					    SIS_EE_NODEADDR, 3, 0);
1184					break;
1185				}
1186				DELAY(1);
1187			}
1188			/*
1189			 * Set SIS_EECTL_CLK to high, so a other master
1190			 * can operate on the i2c bus.
1191			 */
1192			SIO_SET(SIS_EECTL_CLK);
1193			/* Refuse EEPROM access by LAN */
1194			SIO_SET(SIS_EECMD_DONE);
1195		} else
1196#endif
1197			sis_read_eeprom(sc, (caddr_t)&eaddr,
1198			    SIS_EE_NODEADDR, 3, 0);
1199		break;
1200	}
1201
1202	sc->sis_unit = unit;
1203	if (debug_mpsafenet)
1204		callout_init(&sc->sis_stat_ch, CALLOUT_MPSAFE);
1205	else
1206		callout_init(&sc->sis_stat_ch, 0);
1207	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1208
1209	/*
1210	 * Allocate the parent bus DMA tag appropriate for PCI.
1211	 */
1212#define SIS_NSEG_NEW 32
1213	 error = bus_dma_tag_create(NULL,	/* parent */
1214			1, 0,			/* alignment, boundary */
1215			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1216			BUS_SPACE_MAXADDR,	/* highaddr */
1217			NULL, NULL,		/* filter, filterarg */
1218			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1219			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1220			BUS_DMA_ALLOCNOW,	/* flags */
1221			NULL, NULL,		/* lockfunc, lockarg */
1222			&sc->sis_parent_tag);
1223	if (error)
1224		goto fail;
1225
1226	/*
1227	 * Now allocate a tag for the DMA descriptor lists and a chunk
1228	 * of DMA-able memory based on the tag.  Also obtain the physical
1229	 * addresses of the RX and TX ring, which we'll need later.
1230	 * All of our lists are allocated as a contiguous block
1231	 * of memory.
1232	 */
1233	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1234			1, 0,			/* alignment, boundary */
1235			BUS_SPACE_MAXADDR,	/* lowaddr */
1236			BUS_SPACE_MAXADDR,	/* highaddr */
1237			NULL, NULL,		/* filter, filterarg */
1238			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1239			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1240			0,			/* flags */
1241			busdma_lock_mutex,	/* lockfunc */
1242			&Giant,			/* lockarg */
1243			&sc->sis_ldata.sis_rx_tag);
1244	if (error)
1245		goto fail;
1246
1247	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1248	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1249	    &sc->sis_ldata.sis_rx_dmamap);
1250
1251	if (error) {
1252		printf("sis%d: no memory for rx list buffers!\n", unit);
1253		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1254		sc->sis_ldata.sis_rx_tag = NULL;
1255		goto fail;
1256	}
1257
1258	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1259	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1260	    sizeof(struct sis_desc), sis_dma_map_ring,
1261	    &sc->sis_cdata.sis_rx_paddr, 0);
1262
1263	if (error) {
1264		printf("sis%d: cannot get address of the rx ring!\n", unit);
1265		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1266		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1267		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1268		sc->sis_ldata.sis_rx_tag = NULL;
1269		goto fail;
1270	}
1271
1272	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1273			1, 0,			/* alignment, boundary */
1274			BUS_SPACE_MAXADDR,	/* lowaddr */
1275			BUS_SPACE_MAXADDR,	/* highaddr */
1276			NULL, NULL,		/* filter, filterarg */
1277			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1278			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1279			0,			/* flags */
1280			busdma_lock_mutex,	/* lockfunc */
1281			&Giant,			/* lockarg */
1282			&sc->sis_ldata.sis_tx_tag);
1283	if (error)
1284		goto fail;
1285
1286	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1287	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1288	    &sc->sis_ldata.sis_tx_dmamap);
1289
1290	if (error) {
1291		printf("sis%d: no memory for tx list buffers!\n", unit);
1292		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1293		sc->sis_ldata.sis_tx_tag = NULL;
1294		goto fail;
1295	}
1296
1297	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1298	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1299	    sizeof(struct sis_desc), sis_dma_map_ring,
1300	    &sc->sis_cdata.sis_tx_paddr, 0);
1301
1302	if (error) {
1303		printf("sis%d: cannot get address of the tx ring!\n", unit);
1304		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1305		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1306		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1307		sc->sis_ldata.sis_tx_tag = NULL;
1308		goto fail;
1309	}
1310
1311	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1312			1, 0,			/* alignment, boundary */
1313			BUS_SPACE_MAXADDR,	/* lowaddr */
1314			BUS_SPACE_MAXADDR,	/* highaddr */
1315			NULL, NULL,		/* filter, filterarg */
1316			MCLBYTES, 1,		/* maxsize,nsegments */
1317			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1318			0,			/* flags */
1319			busdma_lock_mutex,	/* lockfunc */
1320			&Giant,			/* lockarg */
1321			&sc->sis_tag);
1322	if (error)
1323		goto fail;
1324
1325	/*
1326	 * Obtain the physical addresses of the RX and TX
1327	 * rings which we'll need later in the init routine.
1328	 */
1329
1330	ifp = &sc->arpcom.ac_if;
1331	ifp->if_softc = sc;
1332	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1333	ifp->if_mtu = ETHERMTU;
1334	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1335	ifp->if_ioctl = sis_ioctl;
1336	ifp->if_start = sis_start;
1337	ifp->if_watchdog = sis_watchdog;
1338	ifp->if_init = sis_init;
1339	ifp->if_baudrate = 10000000;
1340	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1341
1342	/*
1343	 * Do MII setup.
1344	 */
1345	if (mii_phy_probe(dev, &sc->sis_miibus,
1346	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1347		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1348		error = ENXIO;
1349		goto fail;
1350	}
1351
1352	/*
1353	 * Call MI attach routine.
1354	 */
1355	ether_ifattach(ifp, eaddr);
1356
1357	/*
1358	 * Tell the upper layer(s) we support long frames.
1359	 */
1360	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1361	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1362
1363#ifdef DEVICE_POLLING
1364	ifp->if_capabilities |= IFCAP_POLLING;
1365#endif
1366	ifp->if_capenable = ifp->if_capabilities;
1367
1368	/* Hook interrupt last to avoid having to lock softc */
1369	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET | INTR_MPSAFE,
1370	    sis_intr, sc, &sc->sis_intrhand);
1371
1372	if (error) {
1373		printf("sis%d: couldn't set up irq\n", unit);
1374		ether_ifdetach(ifp);
1375		goto fail;
1376	}
1377
1378fail:
1379	if (error)
1380		sis_detach(dev);
1381
1382	return(error);
1383}
1384
1385/*
1386 * Shutdown hardware and free up resources. This can be called any
1387 * time after the mutex has been initialized. It is called in both
1388 * the error case in attach and the normal detach case so it needs
1389 * to be careful about only freeing resources that have actually been
1390 * allocated.
1391 */
1392static int
1393sis_detach(dev)
1394	device_t		dev;
1395{
1396	struct sis_softc	*sc;
1397	struct ifnet		*ifp;
1398
1399	sc = device_get_softc(dev);
1400	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1401	SIS_LOCK(sc);
1402	ifp = &sc->arpcom.ac_if;
1403
1404	/* These should only be active if attach succeeded. */
1405	if (device_is_attached(dev)) {
1406		sis_reset(sc);
1407		sis_stop(sc);
1408		ether_ifdetach(ifp);
1409	}
1410	if (sc->sis_miibus)
1411		device_delete_child(dev, sc->sis_miibus);
1412	bus_generic_detach(dev);
1413
1414	if (sc->sis_intrhand)
1415		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1416	if (sc->sis_irq)
1417		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1418	if (sc->sis_res)
1419		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1420
1421	if (sc->sis_ldata.sis_rx_tag) {
1422		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1423		    sc->sis_ldata.sis_rx_dmamap);
1424		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1425		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1426		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1427	}
1428	if (sc->sis_ldata.sis_tx_tag) {
1429		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1430		    sc->sis_ldata.sis_tx_dmamap);
1431		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1432		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1433		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1434	}
1435	if (sc->sis_parent_tag)
1436		bus_dma_tag_destroy(sc->sis_parent_tag);
1437	if (sc->sis_tag)
1438		bus_dma_tag_destroy(sc->sis_tag);
1439
1440	SIS_UNLOCK(sc);
1441	mtx_destroy(&sc->sis_mtx);
1442
1443	return(0);
1444}
1445
1446/*
1447 * Initialize the transmit descriptors.
1448 */
1449static int
1450sis_list_tx_init(sc)
1451	struct sis_softc	*sc;
1452{
1453	struct sis_list_data	*ld;
1454	struct sis_ring_data	*cd;
1455	int			i, nexti;
1456
1457	cd = &sc->sis_cdata;
1458	ld = &sc->sis_ldata;
1459
1460	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1461		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1462			ld->sis_tx_list[i].sis_nextdesc =
1463			    &ld->sis_tx_list[nexti];
1464			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1465			    sc->sis_ldata.sis_tx_dmamap,
1466			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1467			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1468		ld->sis_tx_list[i].sis_mbuf = NULL;
1469		ld->sis_tx_list[i].sis_ptr = 0;
1470		ld->sis_tx_list[i].sis_ctl = 0;
1471	}
1472
1473	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1474
1475	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1476	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1477
1478	return(0);
1479}
1480
1481/*
1482 * Initialize the RX descriptors and allocate mbufs for them. Note that
1483 * we arrange the descriptors in a closed ring, so that the last descriptor
1484 * points back to the first.
1485 */
1486static int
1487sis_list_rx_init(sc)
1488	struct sis_softc	*sc;
1489{
1490	struct sis_list_data	*ld;
1491	struct sis_ring_data	*cd;
1492	int			i,nexti;
1493
1494	ld = &sc->sis_ldata;
1495	cd = &sc->sis_cdata;
1496
1497	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1498		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1499			return(ENOBUFS);
1500		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1501			ld->sis_rx_list[i].sis_nextdesc =
1502			    &ld->sis_rx_list[nexti];
1503			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1504			    sc->sis_ldata.sis_rx_dmamap,
1505			    &ld->sis_rx_list[nexti],
1506			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1507			    &ld->sis_rx_list[i], 0);
1508		}
1509
1510	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1511	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1512
1513	cd->sis_rx_prod = 0;
1514
1515	return(0);
1516}
1517
1518/*
1519 * Initialize an RX descriptor and attach an MBUF cluster.
1520 */
1521static int
1522sis_newbuf(sc, c, m)
1523	struct sis_softc	*sc;
1524	struct sis_desc		*c;
1525	struct mbuf		*m;
1526{
1527
1528	if (c == NULL)
1529		return(EINVAL);
1530
1531	if (m == NULL) {
1532		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1533		if (m == NULL)
1534			return(ENOBUFS);
1535	} else
1536		m->m_data = m->m_ext.ext_buf;
1537
1538	c->sis_mbuf = m;
1539	c->sis_ctl = SIS_RXLEN;
1540
1541	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1542	bus_dmamap_load(sc->sis_tag, c->sis_map,
1543	    mtod(m, void *), MCLBYTES,
1544	    sis_dma_map_desc_ptr, c, 0);
1545	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1546
1547	return(0);
1548}
1549
1550/*
1551 * A frame has been uploaded: pass the resulting mbuf chain up to
1552 * the higher level protocols.
1553 */
1554static void
1555sis_rxeof(sc)
1556	struct sis_softc	*sc;
1557{
1558        struct mbuf		*m;
1559        struct ifnet		*ifp;
1560	struct sis_desc		*cur_rx;
1561	int			i, total_len = 0;
1562	u_int32_t		rxstat;
1563
1564	SIS_LOCK_ASSERT(sc);
1565
1566	ifp = &sc->arpcom.ac_if;
1567	i = sc->sis_cdata.sis_rx_prod;
1568
1569	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1570
1571#ifdef DEVICE_POLLING
1572		if (ifp->if_flags & IFF_POLLING) {
1573			if (sc->rxcycles <= 0)
1574				break;
1575			sc->rxcycles--;
1576		}
1577#endif /* DEVICE_POLLING */
1578		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1579		rxstat = cur_rx->sis_rxstat;
1580		bus_dmamap_sync(sc->sis_tag,
1581		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1582		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1583		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1584		m = cur_rx->sis_mbuf;
1585		cur_rx->sis_mbuf = NULL;
1586		total_len = SIS_RXBYTES(cur_rx);
1587		SIS_INC(i, SIS_RX_LIST_CNT);
1588
1589		/*
1590		 * If an error occurs, update stats, clear the
1591		 * status word and leave the mbuf cluster in place:
1592		 * it should simply get re-used next time this descriptor
1593	 	 * comes up in the ring.
1594		 */
1595		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1596			ifp->if_ierrors++;
1597			if (rxstat & SIS_RXSTAT_COLL)
1598				ifp->if_collisions++;
1599			sis_newbuf(sc, cur_rx, m);
1600			continue;
1601		}
1602
1603		/* No errors; receive the packet. */
1604#ifdef __i386__
1605		/*
1606		 * On the x86 we do not have alignment problems, so try to
1607		 * allocate a new buffer for the receive ring, and pass up
1608		 * the one where the packet is already, saving the expensive
1609		 * copy done in m_devget().
1610		 * If we are on an architecture with alignment problems, or
1611		 * if the allocation fails, then use m_devget and leave the
1612		 * existing buffer in the receive ring.
1613		 */
1614		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1615			m->m_pkthdr.len = m->m_len = total_len;
1616		else
1617#endif
1618		{
1619			struct mbuf		*m0;
1620			m0 = m_devget(mtod(m, char *), total_len,
1621				ETHER_ALIGN, ifp, NULL);
1622			sis_newbuf(sc, cur_rx, m);
1623			if (m0 == NULL) {
1624				ifp->if_ierrors++;
1625				continue;
1626			}
1627			m = m0;
1628		}
1629
1630		ifp->if_ipackets++;
1631		m->m_pkthdr.rcvif = ifp;
1632
1633		SIS_UNLOCK(sc);
1634		(*ifp->if_input)(ifp, m);
1635		SIS_LOCK(sc);
1636	}
1637
1638	sc->sis_cdata.sis_rx_prod = i;
1639
1640	return;
1641}
1642
1643static void
1644sis_rxeoc(sc)
1645	struct sis_softc	*sc;
1646{
1647	sis_rxeof(sc);
1648	sis_init(sc);
1649	return;
1650}
1651
1652/*
1653 * A frame was downloaded to the chip. It's safe for us to clean up
1654 * the list buffers.
1655 */
1656
1657static void
1658sis_txeof(sc)
1659	struct sis_softc	*sc;
1660{
1661	struct ifnet		*ifp;
1662	u_int32_t		idx;
1663
1664	ifp = &sc->arpcom.ac_if;
1665
1666	/*
1667	 * Go through our tx list and free mbufs for those
1668	 * frames that have been transmitted.
1669	 */
1670	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1671	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1672		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1673
1674		if (SIS_OWNDESC(cur_tx))
1675			break;
1676
1677		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1678			continue;
1679
1680		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1681			ifp->if_oerrors++;
1682			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1683				ifp->if_collisions++;
1684			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1685				ifp->if_collisions++;
1686		}
1687
1688		ifp->if_collisions +=
1689		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1690
1691		ifp->if_opackets++;
1692		if (cur_tx->sis_mbuf != NULL) {
1693			m_freem(cur_tx->sis_mbuf);
1694			cur_tx->sis_mbuf = NULL;
1695			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1696			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1697		}
1698	}
1699
1700	if (idx != sc->sis_cdata.sis_tx_cons) {
1701		/* we freed up some buffers */
1702		sc->sis_cdata.sis_tx_cons = idx;
1703		ifp->if_flags &= ~IFF_OACTIVE;
1704	}
1705
1706	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1707
1708	return;
1709}
1710
1711static void
1712sis_tick(xsc)
1713	void			*xsc;
1714{
1715	struct sis_softc	*sc;
1716	struct mii_data		*mii;
1717	struct ifnet		*ifp;
1718
1719	sc = xsc;
1720	SIS_LOCK(sc);
1721	sc->in_tick = 1;
1722	ifp = &sc->arpcom.ac_if;
1723
1724	mii = device_get_softc(sc->sis_miibus);
1725	mii_tick(mii);
1726
1727	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1728	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1729		sc->sis_link++;
1730		if (ifp->if_snd.ifq_head != NULL)
1731			sis_start(ifp);
1732	}
1733
1734	callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
1735	sc->in_tick = 0;
1736	SIS_UNLOCK(sc);
1737
1738	return;
1739}
1740
1741#ifdef DEVICE_POLLING
1742static poll_handler_t sis_poll;
1743
1744static void
1745sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1746{
1747	struct	sis_softc *sc = ifp->if_softc;
1748
1749	SIS_LOCK(sc);
1750	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1751		ether_poll_deregister(ifp);
1752		cmd = POLL_DEREGISTER;
1753	}
1754	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1755		CSR_WRITE_4(sc, SIS_IER, 1);
1756		goto done;
1757	}
1758
1759	/*
1760	 * On the sis, reading the status register also clears it.
1761	 * So before returning to intr mode we must make sure that all
1762	 * possible pending sources of interrupts have been served.
1763	 * In practice this means run to completion the *eof routines,
1764	 * and then call the interrupt routine
1765	 */
1766	sc->rxcycles = count;
1767	sis_rxeof(sc);
1768	sis_txeof(sc);
1769	if (ifp->if_snd.ifq_head != NULL)
1770		sis_start(ifp);
1771
1772	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1773		u_int32_t	status;
1774
1775		/* Reading the ISR register clears all interrupts. */
1776		status = CSR_READ_4(sc, SIS_ISR);
1777
1778		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1779			sis_rxeoc(sc);
1780
1781		if (status & (SIS_ISR_RX_IDLE))
1782			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1783
1784		if (status & SIS_ISR_SYSERR) {
1785			sis_reset(sc);
1786			sis_init(sc);
1787		}
1788	}
1789done:
1790	SIS_UNLOCK(sc);
1791	return;
1792}
1793#endif /* DEVICE_POLLING */
1794
1795static void
1796sis_intr(arg)
1797	void			*arg;
1798{
1799	struct sis_softc	*sc;
1800	struct ifnet		*ifp;
1801	u_int32_t		status;
1802
1803	sc = arg;
1804	ifp = &sc->arpcom.ac_if;
1805
1806	SIS_LOCK(sc);
1807#ifdef DEVICE_POLLING
1808	if (ifp->if_flags & IFF_POLLING)
1809		goto done;
1810	if ((ifp->if_capenable & IFCAP_POLLING) &&
1811	    ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1812		CSR_WRITE_4(sc, SIS_IER, 0);
1813		goto done;
1814	}
1815#endif /* DEVICE_POLLING */
1816
1817	/* Supress unwanted interrupts */
1818	if (!(ifp->if_flags & IFF_UP)) {
1819		sis_stop(sc);
1820		goto done;
1821	}
1822
1823	/* Disable interrupts. */
1824	CSR_WRITE_4(sc, SIS_IER, 0);
1825
1826	for (;;) {
1827		/* Reading the ISR register clears all interrupts. */
1828		status = CSR_READ_4(sc, SIS_ISR);
1829
1830		if ((status & SIS_INTRS) == 0)
1831			break;
1832
1833		if (status &
1834		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1835		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1836			sis_txeof(sc);
1837
1838		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1839			sis_rxeof(sc);
1840
1841		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1842			sis_rxeoc(sc);
1843
1844		if (status & (SIS_ISR_RX_IDLE))
1845			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1846
1847		if (status & SIS_ISR_SYSERR) {
1848			sis_reset(sc);
1849			sis_init(sc);
1850		}
1851	}
1852
1853	/* Re-enable interrupts. */
1854	CSR_WRITE_4(sc, SIS_IER, 1);
1855
1856	if (ifp->if_snd.ifq_head != NULL)
1857		sis_start(ifp);
1858done:
1859	SIS_UNLOCK(sc);
1860
1861	return;
1862}
1863
1864/*
1865 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1866 * pointers to the fragment pointers.
1867 */
1868static int
1869sis_encap(sc, m_head, txidx)
1870	struct sis_softc	*sc;
1871	struct mbuf		**m_head;
1872	u_int32_t		*txidx;
1873{
1874	struct sis_desc		*f = NULL;
1875	struct mbuf		*m;
1876	int			frag, cur, cnt = 0, chainlen = 0;
1877
1878	/*
1879	 * If there's no way we can send any packets, return now.
1880	 */
1881	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1882		return (ENOBUFS);
1883
1884	/*
1885	 * Count the number of frags in this chain to see if
1886	 * we need to m_defrag.  Since the descriptor list is shared
1887	 * by all packets, we'll m_defrag long chains so that they
1888	 * do not use up the entire list, even if they would fit.
1889	 */
1890
1891	for (m = *m_head; m != NULL; m = m->m_next)
1892		chainlen++;
1893
1894	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1895	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
1896		m = m_defrag(*m_head, M_DONTWAIT);
1897		if (m == NULL)
1898			return (ENOBUFS);
1899		*m_head = m;
1900	}
1901
1902	/*
1903 	 * Start packing the mbufs in this chain into
1904	 * the fragment pointers. Stop when we run out
1905 	 * of fragments or hit the end of the mbuf chain.
1906	 */
1907	cur = frag = *txidx;
1908
1909	for (m = *m_head; m != NULL; m = m->m_next) {
1910		if (m->m_len != 0) {
1911			if ((SIS_TX_LIST_CNT -
1912			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1913				return(ENOBUFS);
1914			f = &sc->sis_ldata.sis_tx_list[frag];
1915			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1916			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1917			bus_dmamap_load(sc->sis_tag, f->sis_map,
1918			    mtod(m, void *), m->m_len,
1919			    sis_dma_map_desc_ptr, f, 0);
1920			bus_dmamap_sync(sc->sis_tag,
1921			    f->sis_map, BUS_DMASYNC_PREREAD);
1922			if (cnt != 0)
1923				f->sis_ctl |= SIS_CMDSTS_OWN;
1924			cur = frag;
1925			SIS_INC(frag, SIS_TX_LIST_CNT);
1926			cnt++;
1927		}
1928	}
1929
1930	if (m != NULL)
1931		return(ENOBUFS);
1932
1933	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = *m_head;
1934	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1935	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1936	sc->sis_cdata.sis_tx_cnt += cnt;
1937	*txidx = frag;
1938
1939	return(0);
1940}
1941
1942/*
1943 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1944 * to the mbuf data regions directly in the transmit lists. We also save a
1945 * copy of the pointers since the transmit list fragment pointers are
1946 * physical addresses.
1947 */
1948
1949static void
1950sis_start(ifp)
1951	struct ifnet		*ifp;
1952{
1953	struct sis_softc	*sc;
1954	struct mbuf		*m_head = NULL;
1955	u_int32_t		idx;
1956
1957	sc = ifp->if_softc;
1958	SIS_LOCK(sc);
1959
1960	if (!sc->sis_link) {
1961		SIS_UNLOCK(sc);
1962		return;
1963	}
1964
1965	idx = sc->sis_cdata.sis_tx_prod;
1966
1967	if (ifp->if_flags & IFF_OACTIVE) {
1968		SIS_UNLOCK(sc);
1969		return;
1970	}
1971
1972	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1973		IF_DEQUEUE(&ifp->if_snd, m_head);
1974		if (m_head == NULL)
1975			break;
1976
1977		if (sis_encap(sc, &m_head, &idx)) {
1978			IF_PREPEND(&ifp->if_snd, m_head);
1979			ifp->if_flags |= IFF_OACTIVE;
1980			break;
1981		}
1982
1983		/*
1984		 * If there's a BPF listener, bounce a copy of this frame
1985		 * to him.
1986		 */
1987		BPF_MTAP(ifp, m_head);
1988
1989	}
1990
1991	/* Transmit */
1992	sc->sis_cdata.sis_tx_prod = idx;
1993	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1994
1995	/*
1996	 * Set a timeout in case the chip goes out to lunch.
1997	 */
1998	ifp->if_timer = 5;
1999
2000	SIS_UNLOCK(sc);
2001
2002	return;
2003}
2004
2005static void
2006sis_init(xsc)
2007	void			*xsc;
2008{
2009	struct sis_softc	*sc = xsc;
2010	struct ifnet		*ifp = &sc->arpcom.ac_if;
2011	struct mii_data		*mii;
2012
2013	SIS_LOCK(sc);
2014
2015	/*
2016	 * Cancel pending I/O and free all RX/TX buffers.
2017	 */
2018	sis_stop(sc);
2019	sc->sis_stopped = 0;
2020
2021#ifdef notyet
2022	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) {
2023		/*
2024		 * Configure 400usec of interrupt holdoff.  This is based
2025		 * on emperical tests on a Soekris 4801.
2026 		 */
2027		CSR_WRITE_4(sc, NS_IHR, 0x100 | 4);
2028	}
2029#endif
2030
2031	mii = device_get_softc(sc->sis_miibus);
2032
2033	/* Set MAC address */
2034	if (sc->sis_type == SIS_TYPE_83815) {
2035		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2036		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2037		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2038		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2039		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2040		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2041		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2042		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2043		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2044	} else {
2045		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2046		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2047		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2048		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2049		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2050		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2051		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2052		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2053		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2054	}
2055
2056	/* Init circular RX list. */
2057	if (sis_list_rx_init(sc) == ENOBUFS) {
2058		printf("sis%d: initialization failed: no "
2059			"memory for rx buffers\n", sc->sis_unit);
2060		sis_stop(sc);
2061		SIS_UNLOCK(sc);
2062		return;
2063	}
2064
2065	/*
2066	 * Init tx descriptors.
2067	 */
2068	sis_list_tx_init(sc);
2069
2070	/*
2071	 * Page 78 of the DP83815 data sheet (september 2002 version)
2072	 * recommends the following register settings "for optimum
2073	 * performance." for rev 15C.  The driver from NS also sets
2074	 * the PHY_CR register for later versions.
2075	 */
2076	if (sc->sis_type == SIS_TYPE_83815) {
2077		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2078		/* DC speed = 01 */
2079		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2080		if (sc->sis_srr == NS_SRR_15C) {
2081			/* set val for c2 */
2082			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2083			/* load/kill c2 */
2084			CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2085			/* rais SD off, from 4 to c */
2086			CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2087		}
2088		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2089	}
2090
2091
2092	/*
2093	 * For the NatSemi chip, we have to explicitly enable the
2094	 * reception of ARP frames, as well as turn on the 'perfect
2095	 * match' filter where we store the station address, otherwise
2096	 * we won't receive unicasts meant for this host.
2097	 */
2098	if (sc->sis_type == SIS_TYPE_83815) {
2099		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
2100		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
2101	}
2102
2103	 /* If we want promiscuous mode, set the allframes bit. */
2104	if (ifp->if_flags & IFF_PROMISC) {
2105		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2106	} else {
2107		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2108	}
2109
2110	/*
2111	 * Set the capture broadcast bit to capture broadcast frames.
2112	 */
2113	if (ifp->if_flags & IFF_BROADCAST) {
2114		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2115	} else {
2116		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2117	}
2118
2119	/*
2120	 * Load the multicast filter.
2121	 */
2122	if (sc->sis_type == SIS_TYPE_83815)
2123		sis_setmulti_ns(sc);
2124	else
2125		sis_setmulti_sis(sc);
2126
2127	/* Turn the receive filter on */
2128	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2129
2130	/*
2131	 * Load the address of the RX and TX lists.
2132	 */
2133	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
2134	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
2135
2136	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2137	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2138	 * for TX/RX DMA should be no larger than 16 double words.
2139	 */
2140	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2141		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2142	} else {
2143		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2144	}
2145
2146	/* Accept Long Packets for VLAN support */
2147	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2148
2149	/* Set TX configuration */
2150	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
2151		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2152	} else {
2153		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2154	}
2155
2156	/* Set full/half duplex mode. */
2157	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2158		SIS_SETBIT(sc, SIS_TX_CFG,
2159		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2160		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2161	} else {
2162		SIS_CLRBIT(sc, SIS_TX_CFG,
2163		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2164		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2165	}
2166
2167	if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A &&
2168	     IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2169		uint32_t reg;
2170
2171		/*
2172		 * Some DP83815s experience problems when used with short
2173		 * (< 30m/100ft) Ethernet cables in 100BaseTX mode.  This
2174		 * sequence adjusts the DSP's signal attenuation to fix the
2175		 * problem.
2176		 */
2177		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2178
2179		reg = CSR_READ_4(sc, NS_PHY_DSPCFG);
2180		/* Allow coefficient to be read */
2181		CSR_WRITE_4(sc, NS_PHY_DSPCFG, (reg & 0xfff) | 0x1000);
2182		DELAY(100);
2183		reg = CSR_READ_4(sc, NS_PHY_TDATA);
2184		if ((reg & 0x0080) == 0 ||
2185		     (reg > 0xd8 && reg <= 0xff)) {
2186			device_printf(sc->sis_self, "Applying short cable fix (reg=%x)\n", reg);
2187			CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8);
2188			/* Adjust coefficient and prevent change */
2189			SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20);
2190		}
2191		CSR_WRITE_4(sc, NS_PHY_PAGE, 0);
2192	}
2193
2194	/*
2195	 * Enable interrupts.
2196	 */
2197	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2198#ifdef DEVICE_POLLING
2199	/*
2200	 * ... only enable interrupts if we are not polling, make sure
2201	 * they are off otherwise.
2202	 */
2203	if (ifp->if_flags & IFF_POLLING)
2204		CSR_WRITE_4(sc, SIS_IER, 0);
2205	else
2206#endif /* DEVICE_POLLING */
2207	CSR_WRITE_4(sc, SIS_IER, 1);
2208
2209	/* Enable receiver and transmitter. */
2210	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2211	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2212
2213#ifdef notdef
2214	mii_mediachg(mii);
2215#endif
2216
2217	ifp->if_flags |= IFF_RUNNING;
2218	ifp->if_flags &= ~IFF_OACTIVE;
2219
2220	if (!sc->in_tick)
2221		callout_reset(&sc->sis_stat_ch, hz,  sis_tick, sc);
2222
2223	SIS_UNLOCK(sc);
2224
2225	return;
2226}
2227
2228/*
2229 * Set media options.
2230 */
2231static int
2232sis_ifmedia_upd(ifp)
2233	struct ifnet		*ifp;
2234{
2235	struct sis_softc	*sc;
2236	struct mii_data		*mii;
2237
2238	sc = ifp->if_softc;
2239
2240	mii = device_get_softc(sc->sis_miibus);
2241	sc->sis_link = 0;
2242	if (mii->mii_instance) {
2243		struct mii_softc	*miisc;
2244		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2245			mii_phy_reset(miisc);
2246	}
2247	mii_mediachg(mii);
2248
2249	return(0);
2250}
2251
2252/*
2253 * Report current media status.
2254 */
2255static void
2256sis_ifmedia_sts(ifp, ifmr)
2257	struct ifnet		*ifp;
2258	struct ifmediareq	*ifmr;
2259{
2260	struct sis_softc	*sc;
2261	struct mii_data		*mii;
2262
2263	sc = ifp->if_softc;
2264
2265	mii = device_get_softc(sc->sis_miibus);
2266	mii_pollstat(mii);
2267	ifmr->ifm_active = mii->mii_media_active;
2268	ifmr->ifm_status = mii->mii_media_status;
2269
2270	return;
2271}
2272
2273static int
2274sis_ioctl(ifp, command, data)
2275	struct ifnet		*ifp;
2276	u_long			command;
2277	caddr_t			data;
2278{
2279	struct sis_softc	*sc = ifp->if_softc;
2280	struct ifreq		*ifr = (struct ifreq *) data;
2281	struct mii_data		*mii;
2282	int			error = 0;
2283
2284	switch(command) {
2285	case SIOCSIFFLAGS:
2286		if (ifp->if_flags & IFF_UP) {
2287			sis_init(sc);
2288		} else {
2289			if (ifp->if_flags & IFF_RUNNING)
2290				sis_stop(sc);
2291		}
2292		error = 0;
2293		break;
2294	case SIOCADDMULTI:
2295	case SIOCDELMULTI:
2296		SIS_LOCK(sc);
2297		if (sc->sis_type == SIS_TYPE_83815)
2298			sis_setmulti_ns(sc);
2299		else
2300			sis_setmulti_sis(sc);
2301		SIS_UNLOCK(sc);
2302		error = 0;
2303		break;
2304	case SIOCGIFMEDIA:
2305	case SIOCSIFMEDIA:
2306		mii = device_get_softc(sc->sis_miibus);
2307		SIS_LOCK(sc);
2308		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2309		SIS_UNLOCK(sc);
2310		break;
2311	case SIOCSIFCAP:
2312		ifp->if_capenable &= ~IFCAP_POLLING;
2313		ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
2314		break;
2315	default:
2316		error = ether_ioctl(ifp, command, data);
2317		break;
2318	}
2319
2320	return(error);
2321}
2322
2323static void
2324sis_watchdog(ifp)
2325	struct ifnet		*ifp;
2326{
2327	struct sis_softc	*sc;
2328
2329	sc = ifp->if_softc;
2330
2331	SIS_LOCK(sc);
2332
2333	ifp->if_oerrors++;
2334	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2335
2336	sis_stop(sc);
2337	sis_reset(sc);
2338	sis_init(sc);
2339
2340	if (ifp->if_snd.ifq_head != NULL)
2341		sis_start(ifp);
2342
2343	SIS_UNLOCK(sc);
2344
2345	return;
2346}
2347
2348/*
2349 * Stop the adapter and free any mbufs allocated to the
2350 * RX and TX lists.
2351 */
2352static void
2353sis_stop(sc)
2354	struct sis_softc	*sc;
2355{
2356	register int		i;
2357	struct ifnet		*ifp;
2358
2359	if (sc->sis_stopped)
2360		return;
2361	SIS_LOCK(sc);
2362	ifp = &sc->arpcom.ac_if;
2363	ifp->if_timer = 0;
2364
2365	callout_stop(&sc->sis_stat_ch);
2366
2367	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2368#ifdef DEVICE_POLLING
2369	ether_poll_deregister(ifp);
2370#endif
2371	CSR_WRITE_4(sc, SIS_IER, 0);
2372	CSR_WRITE_4(sc, SIS_IMR, 0);
2373	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2374	DELAY(1000);
2375	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2376	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2377
2378	sc->sis_link = 0;
2379
2380	/*
2381	 * Free data in the RX lists.
2382	 */
2383	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2384		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2385			bus_dmamap_unload(sc->sis_tag,
2386			    sc->sis_ldata.sis_rx_list[i].sis_map);
2387			bus_dmamap_destroy(sc->sis_tag,
2388			    sc->sis_ldata.sis_rx_list[i].sis_map);
2389			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2390			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2391		}
2392	}
2393	bzero(sc->sis_ldata.sis_rx_list,
2394		sizeof(sc->sis_ldata.sis_rx_list));
2395
2396	/*
2397	 * Free the TX list buffers.
2398	 */
2399	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2400		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2401			bus_dmamap_unload(sc->sis_tag,
2402			    sc->sis_ldata.sis_tx_list[i].sis_map);
2403			bus_dmamap_destroy(sc->sis_tag,
2404			    sc->sis_ldata.sis_tx_list[i].sis_map);
2405			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2406			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2407		}
2408	}
2409
2410	bzero(sc->sis_ldata.sis_tx_list,
2411		sizeof(sc->sis_ldata.sis_tx_list));
2412
2413	sc->sis_stopped = 1;
2414	SIS_UNLOCK(sc);
2415
2416	return;
2417}
2418
2419/*
2420 * Stop all chip I/O so that the kernel's probe routines don't
2421 * get confused by errant DMAs when rebooting.
2422 */
2423static void
2424sis_shutdown(dev)
2425	device_t		dev;
2426{
2427	struct sis_softc	*sc;
2428
2429	sc = device_get_softc(dev);
2430	SIS_LOCK(sc);
2431	sis_reset(sc);
2432	sis_stop(sc);
2433	SIS_UNLOCK(sc);
2434
2435	return;
2436}
2437