if_sis.c revision 113038
146432Sphk/*
246432Sphk * Copyright (c) 1997, 1998, 1999
346432Sphk *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
446432Sphk *
546432Sphk * Redistribution and use in source and binary forms, with or without
646432Sphk * modification, are permitted provided that the following conditions
746432Sphk * are met:
846432Sphk * 1. Redistributions of source code must retain the above copyright
946432Sphk *    notice, this list of conditions and the following disclaimer.
10117280Scharnier * 2. Redistributions in binary form must reproduce the above copyright
11117280Scharnier *    notice, this list of conditions and the following disclaimer in the
12117280Scharnier *    documentation and/or other materials provided with the distribution.
13112705Smaxim * 3. All advertising materials mentioning features or use of this software
1446155Sphk *    must display the following acknowledgement:
1578723Sdd *	This product includes software developed by Bill Paul.
1646155Sphk * 4. Neither the name of the author nor the names of any co-contributors
1778723Sdd *    may be used to endorse or promote products derived from this software
1846155Sphk *    without specific prior written permission.
1978723Sdd *
20129848Smaxim * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21112705Smaxim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22112705Smaxim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23133743Smaxim * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24112705Smaxim * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2578723Sdd * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2678723Sdd * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2778723Sdd * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
2878723Sdd * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
2978723Sdd * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30112705Smaxim * THE POSSIBILITY OF SUCH DAMAGE.
31133743Smaxim *
32112705Smaxim * $FreeBSD: head/sys/pci/if_sis.c 113038 2003-04-03 21:36:33Z obrien $
33129848Smaxim */
34129848Smaxim
35129848Smaxim/*
36129848Smaxim * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
37129848Smaxim * available from http://www.sis.com.tw.
38129848Smaxim *
39129848Smaxim * This driver also supports the NatSemi DP83815. Datasheets are
40129848Smaxim * available from http://www.national.com.
41129848Smaxim *
42129848Smaxim * Written by Bill Paul <wpaul@ee.columbia.edu>
43129848Smaxim * Electrical Engineering Department
44129848Smaxim * Columbia University, New York City
45129848Smaxim */
46129848Smaxim
47129848Smaxim/*
48129848Smaxim * The SiS 900 is a fairly simple chip. It uses bus master DMA with
4946155Sphk * simple TX and RX descriptors of 3 longwords in size. The receiver
5046155Sphk * has a single perfect filter entry for the station address and a
5146155Sphk * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
52137808Sdelphij * transceiver while the 7016 requires an external transceiver chip.
5346155Sphk * Both chips offer the standard bit-bang MII interface as well as
54137808Sdelphij * an enchanced PHY interface which simplifies accessing MII registers.
5546155Sphk *
56136051Sstefanf * The only downside to this chipset is that RX descriptors must be
57153056Sphilip * longword aligned.
58153056Sphilip */
59133743Smaxim
60137807Sdelphij#include <sys/cdefs.h>
61153056Sphilip__FBSDID("$FreeBSD: head/sys/pci/if_sis.c 113038 2003-04-03 21:36:33Z obrien $");
6246155Sphk
63153056Sphilip#include <sys/param.h>
64153056Sphilip#include <sys/systm.h>
65153056Sphilip#include <sys/sockio.h>
66112705Smaxim#include <sys/mbuf.h>
67153056Sphilip#include <sys/malloc.h>
68112705Smaxim#include <sys/kernel.h>
69113277Smike#include <sys/socket.h>
70113277Smike#include <sys/sysctl.h>
71113277Smike
72153056Sphilip#include <net/if.h>
73153056Sphilip#include <net/if_arp.h>
74153056Sphilip#include <net/ethernet.h>
75153056Sphilip#include <net/if_dl.h>
76112705Smaxim#include <net/if_media.h>
77112705Smaxim#include <net/if_types.h>
78129848Smaxim#include <net/if_vlan_var.h>
79112705Smaxim
80129848Smaxim#include <net/bpf.h>
81129848Smaxim
82129848Smaxim#include <machine/bus_pio.h>
83129848Smaxim#include <machine/bus_memio.h>
84133743Smaxim#include <machine/bus.h>
85133743Smaxim#include <machine/resource.h>
86133743Smaxim#include <sys/bus.h>
87112705Smaxim#include <sys/rman.h>
88112705Smaxim
89112705Smaxim#include <dev/mii/mii.h>
90113277Smike#include <dev/mii/miivar.h>
91112705Smaxim
92112705Smaxim#include <pci/pcireg.h>
93112705Smaxim#include <pci/pcivar.h>
94112705Smaxim
95129848Smaxim#define SIS_USEIOSPACE
96129848Smaxim
97133743Smaxim#include <pci/if_sisreg.h>
98133743Smaxim
99129848SmaximMODULE_DEPEND(sis, miibus, 1, 1, 1);
100129848Smaxim
101131182Spjd/* "controller miibus0" required.  See GENERIC if you get errors here. */
102131182Spjd#include "miibus_if.h"
103131182Spjd
104131182Spjd/*
10551399Sphk * Various supported device vendors/types and their names.
10651399Sphk */
107131182Spjdstatic struct sis_type sis_devs[] = {
108112705Smaxim	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
109112972Smaxim	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
110112972Smaxim	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP83815 10/100BaseTX" },
11146432Sphk	{ 0, 0, NULL }
112153056Sphilip};
113153056Sphilip
114153056Sphilipstatic int sis_probe		(device_t);
115153056Sphilipstatic int sis_attach		(device_t);
116153056Sphilipstatic int sis_detach		(device_t);
117113277Smike
118113277Smikestatic int sis_newbuf		(struct sis_softc *,
119112972Smaxim					struct sis_desc *, struct mbuf *);
120113804Smikestatic int sis_encap		(struct sis_softc *,
121113277Smike					struct mbuf *, u_int32_t *);
122113804Smikestatic void sis_rxeof		(struct sis_softc *);
123113804Smikestatic void sis_rxeoc		(struct sis_softc *);
124153056Sphilipstatic void sis_txeof		(struct sis_softc *);
125153056Sphilipstatic void sis_intr		(void *);
126153056Sphilipstatic void sis_tick		(void *);
127153056Sphilipstatic void sis_start		(struct ifnet *);
128153056Sphilipstatic int sis_ioctl		(struct ifnet *, u_long, caddr_t);
129153056Sphilipstatic void sis_init		(void *);
130153056Sphilipstatic void sis_stop		(struct sis_softc *);
131153056Sphilipstatic void sis_watchdog		(struct ifnet *);
132153056Sphilipstatic void sis_shutdown		(device_t);
133112705Smaximstatic int sis_ifmedia_upd	(struct ifnet *);
134129848Smaximstatic void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
135129848Smaxim
136133743Smaximstatic u_int16_t sis_reverse	(u_int16_t);
137133743Smaximstatic void sis_delay		(struct sis_softc *);
138133743Smaximstatic void sis_eeprom_idle	(struct sis_softc *);
139133743Smaximstatic void sis_eeprom_putbyte	(struct sis_softc *, int);
140112972Smaximstatic void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
141112972Smaximstatic void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
142112972Smaxim#ifdef __i386__
143112972Smaximstatic void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
144112972Smaxim							int, int);
145157790Smaximstatic void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
146112972Smaximstatic device_t sis_find_bridge	(device_t);
147113206Smaxim#endif
148112705Smaxim
149133743Smaximstatic void sis_mii_sync	(struct sis_softc *);
150133743Smaximstatic void sis_mii_send	(struct sis_softc *, u_int32_t, int);
151133743Smaximstatic int sis_mii_readreg	(struct sis_softc *, struct sis_mii_frame *);
152133743Smaximstatic int sis_mii_writereg	(struct sis_softc *, struct sis_mii_frame *);
153133743Smaximstatic int sis_miibus_readreg	(device_t, int, int);
154133743Smaximstatic int sis_miibus_writereg	(device_t, int, int, int);
155133743Smaximstatic void sis_miibus_statchg	(device_t);
156133743Smaxim
157133743Smaximstatic void sis_setmulti_sis	(struct sis_softc *);
158133743Smaximstatic void sis_setmulti_ns	(struct sis_softc *);
159133743Smaximstatic u_int32_t sis_crc	(struct sis_softc *, caddr_t);
160133743Smaximstatic void sis_reset		(struct sis_softc *);
161133743Smaximstatic int sis_list_rx_init	(struct sis_softc *);
162112972Smaximstatic int sis_list_tx_init	(struct sis_softc *);
163112972Smaxim
164113277Smikestatic void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
16546155Sphkstatic void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
166112705Smaximstatic void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
167112705Smaxim#ifdef SIS_USEIOSPACE
168112705Smaxim#define SIS_RES			SYS_RES_IOPORT
169112705Smaxim#define SIS_RID			SIS_PCI_LOIO
170112705Smaxim#else
171129848Smaxim#define SIS_RES			SYS_RES_MEMORY
172153056Sphilip#define SIS_RID			SIS_PCI_LOMEM
173129848Smaxim#endif
174112972Smaxim
175112705Smaximstatic device_method_t sis_methods[] = {
176	/* Device interface */
177	DEVMETHOD(device_probe,		sis_probe),
178	DEVMETHOD(device_attach,	sis_attach),
179	DEVMETHOD(device_detach,	sis_detach),
180	DEVMETHOD(device_shutdown,	sis_shutdown),
181
182	/* bus interface */
183	DEVMETHOD(bus_print_child,	bus_generic_print_child),
184	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
185
186	/* MII interface */
187	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
188	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
189	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
190
191	{ 0, 0 }
192};
193
194static driver_t sis_driver = {
195	"sis",
196	sis_methods,
197	sizeof(struct sis_softc)
198};
199
200static devclass_t sis_devclass;
201
202DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
203DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
204
205#define SIS_SETBIT(sc, reg, x)				\
206	CSR_WRITE_4(sc, reg,				\
207		CSR_READ_4(sc, reg) | (x))
208
209#define SIS_CLRBIT(sc, reg, x)				\
210	CSR_WRITE_4(sc, reg,				\
211		CSR_READ_4(sc, reg) & ~(x))
212
213#define SIO_SET(x)					\
214	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
215
216#define SIO_CLR(x)					\
217	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
218
219static void
220sis_dma_map_desc_next(arg, segs, nseg, error)
221	void *arg;
222	bus_dma_segment_t *segs;
223	int nseg, error;
224{
225	struct sis_desc	*r;
226
227	r = arg;
228	r->sis_next = segs->ds_addr;
229
230	return;
231}
232
233static void
234sis_dma_map_desc_ptr(arg, segs, nseg, error)
235	void *arg;
236	bus_dma_segment_t *segs;
237	int nseg, error;
238{
239	struct sis_desc	*r;
240
241	r = arg;
242	r->sis_ptr = segs->ds_addr;
243
244	return;
245}
246
247static void
248sis_dma_map_ring(arg, segs, nseg, error)
249	void *arg;
250	bus_dma_segment_t *segs;
251	int nseg, error;
252{
253	u_int32_t *p;
254
255	p = arg;
256	*p = segs->ds_addr;
257
258	return;
259}
260
261/*
262 * Routine to reverse the bits in a word. Stolen almost
263 * verbatim from /usr/games/fortune.
264 */
265static u_int16_t
266sis_reverse(n)
267	u_int16_t		n;
268{
269	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
270	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
271	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
272	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
273
274	return(n);
275}
276
277static void
278sis_delay(sc)
279	struct sis_softc	*sc;
280{
281	int			idx;
282
283	for (idx = (300 / 33) + 1; idx > 0; idx--)
284		CSR_READ_4(sc, SIS_CSR);
285
286	return;
287}
288
289static void
290sis_eeprom_idle(sc)
291	struct sis_softc	*sc;
292{
293	register int		i;
294
295	SIO_SET(SIS_EECTL_CSEL);
296	sis_delay(sc);
297	SIO_SET(SIS_EECTL_CLK);
298	sis_delay(sc);
299
300	for (i = 0; i < 25; i++) {
301		SIO_CLR(SIS_EECTL_CLK);
302		sis_delay(sc);
303		SIO_SET(SIS_EECTL_CLK);
304		sis_delay(sc);
305	}
306
307	SIO_CLR(SIS_EECTL_CLK);
308	sis_delay(sc);
309	SIO_CLR(SIS_EECTL_CSEL);
310	sis_delay(sc);
311	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
312
313	return;
314}
315
316/*
317 * Send a read command and address to the EEPROM, check for ACK.
318 */
319static void
320sis_eeprom_putbyte(sc, addr)
321	struct sis_softc	*sc;
322	int			addr;
323{
324	register int		d, i;
325
326	d = addr | SIS_EECMD_READ;
327
328	/*
329	 * Feed in each bit and stobe the clock.
330	 */
331	for (i = 0x400; i; i >>= 1) {
332		if (d & i) {
333			SIO_SET(SIS_EECTL_DIN);
334		} else {
335			SIO_CLR(SIS_EECTL_DIN);
336		}
337		sis_delay(sc);
338		SIO_SET(SIS_EECTL_CLK);
339		sis_delay(sc);
340		SIO_CLR(SIS_EECTL_CLK);
341		sis_delay(sc);
342	}
343
344	return;
345}
346
347/*
348 * Read a word of data stored in the EEPROM at address 'addr.'
349 */
350static void
351sis_eeprom_getword(sc, addr, dest)
352	struct sis_softc	*sc;
353	int			addr;
354	u_int16_t		*dest;
355{
356	register int		i;
357	u_int16_t		word = 0;
358
359	/* Force EEPROM to idle state. */
360	sis_eeprom_idle(sc);
361
362	/* Enter EEPROM access mode. */
363	sis_delay(sc);
364	SIO_CLR(SIS_EECTL_CLK);
365	sis_delay(sc);
366	SIO_SET(SIS_EECTL_CSEL);
367	sis_delay(sc);
368
369	/*
370	 * Send address of word we want to read.
371	 */
372	sis_eeprom_putbyte(sc, addr);
373
374	/*
375	 * Start reading bits from EEPROM.
376	 */
377	for (i = 0x8000; i; i >>= 1) {
378		SIO_SET(SIS_EECTL_CLK);
379		sis_delay(sc);
380		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
381			word |= i;
382		sis_delay(sc);
383		SIO_CLR(SIS_EECTL_CLK);
384		sis_delay(sc);
385	}
386
387	/* Turn off EEPROM access mode. */
388	sis_eeprom_idle(sc);
389
390	*dest = word;
391
392	return;
393}
394
395/*
396 * Read a sequence of words from the EEPROM.
397 */
398static void
399sis_read_eeprom(sc, dest, off, cnt, swap)
400	struct sis_softc	*sc;
401	caddr_t			dest;
402	int			off;
403	int			cnt;
404	int			swap;
405{
406	int			i;
407	u_int16_t		word = 0, *ptr;
408
409	for (i = 0; i < cnt; i++) {
410		sis_eeprom_getword(sc, off + i, &word);
411		ptr = (u_int16_t *)(dest + (i * 2));
412		if (swap)
413			*ptr = ntohs(word);
414		else
415			*ptr = word;
416	}
417
418	return;
419}
420
421#ifdef __i386__
422static device_t
423sis_find_bridge(dev)
424	device_t		dev;
425{
426	devclass_t		pci_devclass;
427	device_t		*pci_devices;
428	int			pci_count = 0;
429	device_t		*pci_children;
430	int			pci_childcount = 0;
431	device_t		*busp, *childp;
432	device_t		child = NULL;
433	int			i, j;
434
435	if ((pci_devclass = devclass_find("pci")) == NULL)
436		return(NULL);
437
438	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
439
440	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
441		pci_childcount = 0;
442		device_get_children(*busp, &pci_children, &pci_childcount);
443		for (j = 0, childp = pci_children;
444		    j < pci_childcount; j++, childp++) {
445			if (pci_get_vendor(*childp) == SIS_VENDORID &&
446			    pci_get_device(*childp) == 0x0008) {
447				child = *childp;
448				goto done;
449			}
450		}
451	}
452
453done:
454	free(pci_devices, M_TEMP);
455	free(pci_children, M_TEMP);
456	return(child);
457}
458
459static void
460sis_read_cmos(sc, dev, dest, off, cnt)
461	struct sis_softc	*sc;
462	device_t		dev;
463	caddr_t			dest;
464	int			off;
465	int			cnt;
466{
467	device_t		bridge;
468	u_int8_t		reg;
469	int			i;
470	bus_space_tag_t		btag;
471
472	bridge = sis_find_bridge(dev);
473	if (bridge == NULL)
474		return;
475	reg = pci_read_config(bridge, 0x48, 1);
476	pci_write_config(bridge, 0x48, reg|0x40, 1);
477
478	/* XXX */
479	btag = I386_BUS_SPACE_IO;
480
481	for (i = 0; i < cnt; i++) {
482		bus_space_write_1(btag, 0x0, 0x70, i + off);
483		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
484	}
485
486	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
487	return;
488}
489
490static void
491sis_read_mac(sc, dev, dest)
492	struct sis_softc	*sc;
493	device_t		dev;
494	caddr_t			dest;
495{
496	u_int32_t		filtsave, csrsave;
497
498	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
499	csrsave = CSR_READ_4(sc, SIS_CSR);
500
501	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
502	CSR_WRITE_4(sc, SIS_CSR, 0);
503
504	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
505
506	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
507	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
508	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
509	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
510	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
511	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
512
513	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
514	CSR_WRITE_4(sc, SIS_CSR, csrsave);
515	return;
516}
517#endif
518
519/*
520 * Sync the PHYs by setting data bit and strobing the clock 32 times.
521 */
522static void sis_mii_sync(sc)
523	struct sis_softc	*sc;
524{
525	register int		i;
526
527 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
528
529 	for (i = 0; i < 32; i++) {
530 		SIO_SET(SIS_MII_CLK);
531 		DELAY(1);
532 		SIO_CLR(SIS_MII_CLK);
533 		DELAY(1);
534 	}
535
536 	return;
537}
538
539/*
540 * Clock a series of bits through the MII.
541 */
542static void sis_mii_send(sc, bits, cnt)
543	struct sis_softc	*sc;
544	u_int32_t		bits;
545	int			cnt;
546{
547	int			i;
548
549	SIO_CLR(SIS_MII_CLK);
550
551	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
552		if (bits & i) {
553			SIO_SET(SIS_MII_DATA);
554		} else {
555			SIO_CLR(SIS_MII_DATA);
556		}
557		DELAY(1);
558		SIO_CLR(SIS_MII_CLK);
559		DELAY(1);
560		SIO_SET(SIS_MII_CLK);
561	}
562}
563
564/*
565 * Read an PHY register through the MII.
566 */
567static int sis_mii_readreg(sc, frame)
568	struct sis_softc	*sc;
569	struct sis_mii_frame	*frame;
570
571{
572	int			i, ack, s;
573
574	s = splimp();
575
576	/*
577	 * Set up frame for RX.
578	 */
579	frame->mii_stdelim = SIS_MII_STARTDELIM;
580	frame->mii_opcode = SIS_MII_READOP;
581	frame->mii_turnaround = 0;
582	frame->mii_data = 0;
583
584	/*
585 	 * Turn on data xmit.
586	 */
587	SIO_SET(SIS_MII_DIR);
588
589	sis_mii_sync(sc);
590
591	/*
592	 * Send command/address info.
593	 */
594	sis_mii_send(sc, frame->mii_stdelim, 2);
595	sis_mii_send(sc, frame->mii_opcode, 2);
596	sis_mii_send(sc, frame->mii_phyaddr, 5);
597	sis_mii_send(sc, frame->mii_regaddr, 5);
598
599	/* Idle bit */
600	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
601	DELAY(1);
602	SIO_SET(SIS_MII_CLK);
603	DELAY(1);
604
605	/* Turn off xmit. */
606	SIO_CLR(SIS_MII_DIR);
607
608	/* Check for ack */
609	SIO_CLR(SIS_MII_CLK);
610	DELAY(1);
611	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
612	SIO_SET(SIS_MII_CLK);
613	DELAY(1);
614
615	/*
616	 * Now try reading data bits. If the ack failed, we still
617	 * need to clock through 16 cycles to keep the PHY(s) in sync.
618	 */
619	if (ack) {
620		for(i = 0; i < 16; i++) {
621			SIO_CLR(SIS_MII_CLK);
622			DELAY(1);
623			SIO_SET(SIS_MII_CLK);
624			DELAY(1);
625		}
626		goto fail;
627	}
628
629	for (i = 0x8000; i; i >>= 1) {
630		SIO_CLR(SIS_MII_CLK);
631		DELAY(1);
632		if (!ack) {
633			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
634				frame->mii_data |= i;
635			DELAY(1);
636		}
637		SIO_SET(SIS_MII_CLK);
638		DELAY(1);
639	}
640
641fail:
642
643	SIO_CLR(SIS_MII_CLK);
644	DELAY(1);
645	SIO_SET(SIS_MII_CLK);
646	DELAY(1);
647
648	splx(s);
649
650	if (ack)
651		return(1);
652	return(0);
653}
654
655/*
656 * Write to a PHY register through the MII.
657 */
658static int sis_mii_writereg(sc, frame)
659	struct sis_softc	*sc;
660	struct sis_mii_frame	*frame;
661
662{
663	int			s;
664
665	 s = splimp();
666 	/*
667 	 * Set up frame for TX.
668 	 */
669
670 	frame->mii_stdelim = SIS_MII_STARTDELIM;
671 	frame->mii_opcode = SIS_MII_WRITEOP;
672 	frame->mii_turnaround = SIS_MII_TURNAROUND;
673
674 	/*
675  	 * Turn on data output.
676 	 */
677 	SIO_SET(SIS_MII_DIR);
678
679 	sis_mii_sync(sc);
680
681 	sis_mii_send(sc, frame->mii_stdelim, 2);
682 	sis_mii_send(sc, frame->mii_opcode, 2);
683 	sis_mii_send(sc, frame->mii_phyaddr, 5);
684 	sis_mii_send(sc, frame->mii_regaddr, 5);
685 	sis_mii_send(sc, frame->mii_turnaround, 2);
686 	sis_mii_send(sc, frame->mii_data, 16);
687
688 	/* Idle bit. */
689 	SIO_SET(SIS_MII_CLK);
690 	DELAY(1);
691 	SIO_CLR(SIS_MII_CLK);
692 	DELAY(1);
693
694 	/*
695 	 * Turn off xmit.
696 	 */
697 	SIO_CLR(SIS_MII_DIR);
698
699 	splx(s);
700
701 	return(0);
702}
703
704static int
705sis_miibus_readreg(dev, phy, reg)
706	device_t		dev;
707	int			phy, reg;
708{
709	struct sis_softc	*sc;
710	struct sis_mii_frame    frame;
711
712	sc = device_get_softc(dev);
713
714	if (sc->sis_type == SIS_TYPE_83815) {
715		if (phy != 0)
716			return(0);
717		/*
718		 * The NatSemi chip can take a while after
719		 * a reset to come ready, during which the BMSR
720		 * returns a value of 0. This is *never* supposed
721		 * to happen: some of the BMSR bits are meant to
722		 * be hardwired in the on position, and this can
723		 * confuse the miibus code a bit during the probe
724		 * and attach phase. So we make an effort to check
725		 * for this condition and wait for it to clear.
726		 */
727		if (!CSR_READ_4(sc, NS_BMSR))
728			DELAY(1000);
729		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
730	}
731
732	/*
733	 * Chipsets < SIS_635 seem not to be able to read/write
734	 * through mdio. Use the enhanced PHY access register
735	 * again for them.
736	 */
737	if (sc->sis_type == SIS_TYPE_900 &&
738	    sc->sis_rev < SIS_REV_635) {
739		int i, val = 0;
740
741		if (phy != 0)
742			return(0);
743
744		CSR_WRITE_4(sc, SIS_PHYCTL,
745		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
746		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
747
748		for (i = 0; i < SIS_TIMEOUT; i++) {
749			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
750				break;
751		}
752
753		if (i == SIS_TIMEOUT) {
754			printf("sis%d: PHY failed to come ready\n",
755			    sc->sis_unit);
756			return(0);
757		}
758
759		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
760
761		if (val == 0xFFFF)
762			return(0);
763
764		return(val);
765	} else {
766		bzero((char *)&frame, sizeof(frame));
767
768		frame.mii_phyaddr = phy;
769		frame.mii_regaddr = reg;
770		sis_mii_readreg(sc, &frame);
771
772		return(frame.mii_data);
773	}
774}
775
776static int
777sis_miibus_writereg(dev, phy, reg, data)
778	device_t		dev;
779	int			phy, reg, data;
780{
781	struct sis_softc	*sc;
782	struct sis_mii_frame	frame;
783
784	sc = device_get_softc(dev);
785
786	if (sc->sis_type == SIS_TYPE_83815) {
787		if (phy != 0)
788			return(0);
789		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
790		return(0);
791	}
792
793	/*
794	 * Chipsets < SIS_635 seem not to be able to read/write
795	 * through mdio. Use the enhanced PHY access register
796	 * again for them.
797	 */
798	if (sc->sis_type == SIS_TYPE_900 &&
799	    sc->sis_rev < SIS_REV_635) {
800		int i;
801
802		if (phy != 0)
803			return(0);
804
805		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
806		    (reg << 6) | SIS_PHYOP_WRITE);
807		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
808
809		for (i = 0; i < SIS_TIMEOUT; i++) {
810			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
811				break;
812		}
813
814		if (i == SIS_TIMEOUT)
815			printf("sis%d: PHY failed to come ready\n",
816			    sc->sis_unit);
817	} else {
818		bzero((char *)&frame, sizeof(frame));
819
820		frame.mii_phyaddr = phy;
821		frame.mii_regaddr = reg;
822		frame.mii_data = data;
823		sis_mii_writereg(sc, &frame);
824	}
825	return(0);
826}
827
828static void
829sis_miibus_statchg(dev)
830	device_t		dev;
831{
832	struct sis_softc	*sc;
833
834	sc = device_get_softc(dev);
835	sis_init(sc);
836
837	return;
838}
839
840static u_int32_t
841sis_crc(sc, addr)
842	struct sis_softc	*sc;
843	caddr_t			addr;
844{
845	u_int32_t		crc, carry;
846	int			i, j;
847	u_int8_t		c;
848
849	/* Compute CRC for the address value. */
850	crc = 0xFFFFFFFF; /* initial value */
851
852	for (i = 0; i < 6; i++) {
853		c = *(addr + i);
854		for (j = 0; j < 8; j++) {
855			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
856			crc <<= 1;
857			c >>= 1;
858			if (carry)
859				crc = (crc ^ 0x04c11db6) | carry;
860		}
861	}
862
863	/*
864	 * return the filter bit position
865	 *
866	 * The NatSemi chip has a 512-bit filter, which is
867	 * different than the SiS, so we special-case it.
868	 */
869	if (sc->sis_type == SIS_TYPE_83815)
870		return (crc >> 23);
871	else if (sc->sis_rev >= SIS_REV_635 ||
872	    sc->sis_rev == SIS_REV_900B)
873		return (crc >> 24);
874	else
875		return (crc >> 25);
876}
877
878static void
879sis_setmulti_ns(sc)
880	struct sis_softc	*sc;
881{
882	struct ifnet		*ifp;
883	struct ifmultiaddr	*ifma;
884	u_int32_t		h = 0, i, filtsave;
885	int			bit, index;
886
887	ifp = &sc->arpcom.ac_if;
888
889	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
890		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
891		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
892		return;
893	}
894
895	/*
896	 * We have to explicitly enable the multicast hash table
897	 * on the NatSemi chip if we want to use it, which we do.
898	 */
899	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
900	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
901
902	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
903
904	/* first, zot all the existing hash bits */
905	for (i = 0; i < 32; i++) {
906		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
907		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
908	}
909
910	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
911		if (ifma->ifma_addr->sa_family != AF_LINK)
912			continue;
913		h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
914		index = h >> 3;
915		bit = h & 0x1F;
916		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
917		if (bit > 0xF)
918			bit -= 0x10;
919		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
920	}
921
922	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
923
924	return;
925}
926
927static void
928sis_setmulti_sis(sc)
929	struct sis_softc	*sc;
930{
931	struct ifnet		*ifp;
932	struct ifmultiaddr	*ifma;
933	u_int32_t		h, i, n, ctl;
934	u_int16_t		hashes[16];
935
936	ifp = &sc->arpcom.ac_if;
937
938	/* hash table size */
939	if (sc->sis_rev >= SIS_REV_635 ||
940	    sc->sis_rev == SIS_REV_900B)
941		n = 16;
942	else
943		n = 8;
944
945	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
946
947	if (ifp->if_flags & IFF_BROADCAST)
948		ctl |= SIS_RXFILTCTL_BROAD;
949
950	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
951		ctl |= SIS_RXFILTCTL_ALLMULTI;
952		if (ifp->if_flags & IFF_PROMISC)
953			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
954		for (i = 0; i < n; i++)
955			hashes[i] = ~0;
956	} else {
957		for (i = 0; i < n; i++)
958			hashes[i] = 0;
959		i = 0;
960		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
961			if (ifma->ifma_addr->sa_family != AF_LINK)
962			continue;
963			h = sis_crc(sc,
964			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
965			hashes[h >> 4] |= 1 << (h & 0xf);
966			i++;
967		}
968		if (i > n) {
969			ctl |= SIS_RXFILTCTL_ALLMULTI;
970			for (i = 0; i < n; i++)
971				hashes[i] = ~0;
972		}
973	}
974
975	for (i = 0; i < n; i++) {
976		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
977		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
978	}
979
980	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
981}
982
983static void
984sis_reset(sc)
985	struct sis_softc	*sc;
986{
987	register int		i;
988
989	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
990
991	for (i = 0; i < SIS_TIMEOUT; i++) {
992		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
993			break;
994	}
995
996	if (i == SIS_TIMEOUT)
997		printf("sis%d: reset never completed\n", sc->sis_unit);
998
999	/* Wait a little while for the chip to get its brains in order. */
1000	DELAY(1000);
1001
1002	/*
1003	 * If this is a NetSemi chip, make sure to clear
1004	 * PME mode.
1005	 */
1006	if (sc->sis_type == SIS_TYPE_83815) {
1007		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
1008		CSR_WRITE_4(sc, NS_CLKRUN, 0);
1009	}
1010
1011        return;
1012}
1013
1014/*
1015 * Probe for an SiS chip. Check the PCI vendor and device
1016 * IDs against our list and return a device name if we find a match.
1017 */
1018static int
1019sis_probe(dev)
1020	device_t		dev;
1021{
1022	struct sis_type		*t;
1023
1024	t = sis_devs;
1025
1026	while(t->sis_name != NULL) {
1027		if ((pci_get_vendor(dev) == t->sis_vid) &&
1028		    (pci_get_device(dev) == t->sis_did)) {
1029			device_set_desc(dev, t->sis_name);
1030			return(0);
1031		}
1032		t++;
1033	}
1034
1035	return(ENXIO);
1036}
1037
1038/*
1039 * Attach the interface. Allocate softc structures, do ifmedia
1040 * setup and ethernet/BPF attach.
1041 */
1042static int
1043sis_attach(dev)
1044	device_t		dev;
1045{
1046	u_char			eaddr[ETHER_ADDR_LEN];
1047	u_int32_t		command;
1048	struct sis_softc	*sc;
1049	struct ifnet		*ifp;
1050	int			unit, error = 0, rid, waittime = 0;
1051
1052	waittime = 0;
1053	sc = device_get_softc(dev);
1054	unit = device_get_unit(dev);
1055
1056	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1057	    MTX_DEF | MTX_RECURSE);
1058
1059	if (pci_get_device(dev) == SIS_DEVICEID_900)
1060		sc->sis_type = SIS_TYPE_900;
1061	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1062		sc->sis_type = SIS_TYPE_7016;
1063	if (pci_get_vendor(dev) == NS_VENDORID)
1064		sc->sis_type = SIS_TYPE_83815;
1065
1066	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1067
1068	/*
1069	 * Handle power management nonsense.
1070	 */
1071	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1072		u_int32_t		iobase, membase, irq;
1073
1074		/* Save important PCI config data. */
1075		iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
1076		membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
1077		irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
1078
1079		/* Reset the power state. */
1080		printf("sis%d: chip is in D%d power mode "
1081		    "-- setting to D0\n", unit,
1082		    pci_get_powerstate(dev));
1083		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1084
1085		/* Restore PCI config data. */
1086		pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
1087		pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
1088		pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
1089	}
1090
1091	/*
1092	 * Map control/status registers.
1093	 */
1094	pci_enable_busmaster(dev);
1095	pci_enable_io(dev, SYS_RES_IOPORT);
1096	pci_enable_io(dev, SYS_RES_MEMORY);
1097	command = pci_read_config(dev, PCIR_COMMAND, 4);
1098
1099#ifdef SIS_USEIOSPACE
1100	if (!(command & PCIM_CMD_PORTEN)) {
1101		printf("sis%d: failed to enable I/O ports!\n", unit);
1102		error = ENXIO;
1103		goto fail;
1104	}
1105#else
1106	if (!(command & PCIM_CMD_MEMEN)) {
1107		printf("sis%d: failed to enable memory mapping!\n", unit);
1108		error = ENXIO;
1109		goto fail;
1110	}
1111#endif
1112
1113	rid = SIS_RID;
1114	sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
1115	    0, ~0, 1, RF_ACTIVE);
1116
1117	if (sc->sis_res == NULL) {
1118		printf("sis%d: couldn't map ports/memory\n", unit);
1119		error = ENXIO;
1120		goto fail;
1121	}
1122
1123	sc->sis_btag = rman_get_bustag(sc->sis_res);
1124	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1125
1126	/* Allocate interrupt */
1127	rid = 0;
1128	sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1129	    RF_SHAREABLE | RF_ACTIVE);
1130
1131	if (sc->sis_irq == NULL) {
1132		printf("sis%d: couldn't map interrupt\n", unit);
1133		error = ENXIO;
1134		goto fail;
1135	}
1136
1137	/* Reset the adapter. */
1138	sis_reset(sc);
1139
1140	if (sc->sis_type == SIS_TYPE_900 &&
1141            (sc->sis_rev == SIS_REV_635 ||
1142            sc->sis_rev == SIS_REV_900B)) {
1143		SIO_SET(SIS_CFG_RND_CNT);
1144		SIO_SET(SIS_CFG_PERR_DETECT);
1145	}
1146
1147	/*
1148	 * Get station address from the EEPROM.
1149	 */
1150	switch (pci_get_vendor(dev)) {
1151	case NS_VENDORID:
1152		/*
1153		 * Reading the MAC address out of the EEPROM on
1154		 * the NatSemi chip takes a bit more work than
1155		 * you'd expect. The address spans 4 16-bit words,
1156		 * with the first word containing only a single bit.
1157		 * You have to shift everything over one bit to
1158		 * get it aligned properly. Also, the bits are
1159		 * stored backwards (the LSB is really the MSB,
1160		 * and so on) so you have to reverse them in order
1161		 * to get the MAC address into the form we want.
1162		 * Why? Who the hell knows.
1163		 */
1164		{
1165			u_int16_t		tmp[4];
1166
1167			sis_read_eeprom(sc, (caddr_t)&tmp,
1168			    NS_EE_NODEADDR, 4, 0);
1169
1170			/* Shift everything over one bit. */
1171			tmp[3] = tmp[3] >> 1;
1172			tmp[3] |= tmp[2] << 15;
1173			tmp[2] = tmp[2] >> 1;
1174			tmp[2] |= tmp[1] << 15;
1175			tmp[1] = tmp[1] >> 1;
1176			tmp[1] |= tmp[0] << 15;
1177
1178			/* Now reverse all the bits. */
1179			tmp[3] = sis_reverse(tmp[3]);
1180			tmp[2] = sis_reverse(tmp[2]);
1181			tmp[1] = sis_reverse(tmp[1]);
1182
1183			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1184		}
1185		break;
1186	case SIS_VENDORID:
1187	default:
1188#ifdef __i386__
1189		/*
1190		 * If this is a SiS 630E chipset with an embedded
1191		 * SiS 900 controller, we have to read the MAC address
1192		 * from the APC CMOS RAM. Our method for doing this
1193		 * is very ugly since we have to reach out and grab
1194		 * ahold of hardware for which we cannot properly
1195		 * allocate resources. This code is only compiled on
1196		 * the i386 architecture since the SiS 630E chipset
1197		 * is for x86 motherboards only. Note that there are
1198		 * a lot of magic numbers in this hack. These are
1199		 * taken from SiS's Linux driver. I'd like to replace
1200		 * them with proper symbolic definitions, but that
1201		 * requires some datasheets that I don't have access
1202		 * to at the moment.
1203		 */
1204		if (sc->sis_rev == SIS_REV_630S ||
1205		    sc->sis_rev == SIS_REV_630E ||
1206		    sc->sis_rev == SIS_REV_630EA1)
1207			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1208
1209		else if (sc->sis_rev == SIS_REV_635 ||
1210			 sc->sis_rev == SIS_REV_630ET)
1211			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1212		else if (sc->sis_rev == SIS_REV_96x) {
1213			/* Allow to read EEPROM from LAN. It is shared
1214			 * between a 1394 controller and the NIC and each
1215			 * time we access it, we need to set SIS_EECMD_REQ.
1216			 */
1217			SIO_SET(SIS_EECMD_REQ);
1218			for (waittime = 0; waittime < SIS_TIMEOUT;
1219			    waittime++) {
1220				/* Force EEPROM to idle state. */
1221				sis_eeprom_idle(sc);
1222				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1223					sis_read_eeprom(sc, (caddr_t)&eaddr,
1224					    SIS_EE_NODEADDR, 3, 0);
1225					break;
1226				}
1227				DELAY(1);
1228			}
1229			/*
1230			 * Set SIS_EECTL_CLK to high, so a other master
1231			 * can operate on the i2c bus.
1232			 */
1233			SIO_SET(SIS_EECTL_CLK);
1234			/* Refuse EEPROM access by LAN */
1235			SIO_SET(SIS_EECMD_DONE);
1236		} else
1237#endif
1238			sis_read_eeprom(sc, (caddr_t)&eaddr,
1239			    SIS_EE_NODEADDR, 3, 0);
1240		break;
1241	}
1242
1243	/*
1244	 * A SiS chip was detected. Inform the world.
1245	 */
1246	printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
1247
1248	sc->sis_unit = unit;
1249	callout_handle_init(&sc->sis_stat_ch);
1250	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1251
1252	/*
1253	 * Allocate the parent bus DMA tag appropriate for PCI.
1254	 */
1255#define SIS_NSEG_NEW 32
1256	 error = bus_dma_tag_create(NULL,	/* parent */
1257			1, 0,			/* alignment, boundary */
1258			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1259			BUS_SPACE_MAXADDR,	/* highaddr */
1260			NULL, NULL,		/* filter, filterarg */
1261			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1262			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1263			BUS_DMA_ALLOCNOW,	/* flags */
1264			&sc->sis_parent_tag);
1265	if (error)
1266		goto fail;
1267
1268	/*
1269	 * Now allocate a tag for the DMA descriptor lists and a chunk
1270	 * of DMA-able memory based on the tag.  Also obtain the physical
1271	 * addresses of the RX and TX ring, which we'll need later.
1272	 * All of our lists are allocated as a contiguous block
1273	 * of memory.
1274	 */
1275	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1276			1, 0,			/* alignment, boundary */
1277			BUS_SPACE_MAXADDR,	/* lowaddr */
1278			BUS_SPACE_MAXADDR,	/* highaddr */
1279			NULL, NULL,		/* filter, filterarg */
1280			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1281			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1282			0,			/* flags */
1283			&sc->sis_ldata.sis_rx_tag);
1284	if (error)
1285		goto fail;
1286
1287	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1288	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT,
1289	    &sc->sis_ldata.sis_rx_dmamap);
1290
1291	if (error) {
1292		printf("sis%d: no memory for rx list buffers!\n", unit);
1293		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1294		sc->sis_ldata.sis_rx_tag = NULL;
1295		goto fail;
1296	}
1297
1298	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1299	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1300	    sizeof(struct sis_desc), sis_dma_map_ring,
1301	    &sc->sis_cdata.sis_rx_paddr, 0);
1302
1303	if (error) {
1304		printf("sis%d: cannot get address of the rx ring!\n", unit);
1305		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1306		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1307		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1308		sc->sis_ldata.sis_rx_tag = NULL;
1309		goto fail;
1310	}
1311
1312	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1313			1, 0,			/* alignment, boundary */
1314			BUS_SPACE_MAXADDR,	/* lowaddr */
1315			BUS_SPACE_MAXADDR,	/* highaddr */
1316			NULL, NULL,		/* filter, filterarg */
1317			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1318			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1319			0,			/* flags */
1320			&sc->sis_ldata.sis_tx_tag);
1321	if (error)
1322		goto fail;
1323
1324	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1325	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT,
1326	    &sc->sis_ldata.sis_tx_dmamap);
1327
1328	if (error) {
1329		printf("sis%d: no memory for tx list buffers!\n", unit);
1330		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1331		sc->sis_ldata.sis_tx_tag = NULL;
1332		goto fail;
1333	}
1334
1335	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1336	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1337	    sizeof(struct sis_desc), sis_dma_map_ring,
1338	    &sc->sis_cdata.sis_tx_paddr, 0);
1339
1340	if (error) {
1341		printf("sis%d: cannot get address of the tx ring!\n", unit);
1342		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1343		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1344		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1345		sc->sis_ldata.sis_tx_tag = NULL;
1346		goto fail;
1347	}
1348
1349	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1350			1, 0,			/* alignment, boundary */
1351			BUS_SPACE_MAXADDR,	/* lowaddr */
1352			BUS_SPACE_MAXADDR,	/* highaddr */
1353			NULL, NULL,		/* filter, filterarg */
1354			MCLBYTES, 1,		/* maxsize,nsegments */
1355			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1356			0,			/* flags */
1357			&sc->sis_tag);
1358	if (error)
1359		goto fail;
1360
1361	bzero(sc->sis_ldata.sis_tx_list, SIS_TX_LIST_SZ);
1362	bzero(sc->sis_ldata.sis_rx_list, SIS_RX_LIST_SZ);
1363
1364	/*
1365	 * Obtain the physical addresses of the RX and TX
1366	 * rings which we'll need later in the init routine.
1367	 */
1368
1369	ifp = &sc->arpcom.ac_if;
1370	ifp->if_softc = sc;
1371	ifp->if_unit = unit;
1372	ifp->if_name = "sis";
1373	ifp->if_mtu = ETHERMTU;
1374	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1375	ifp->if_ioctl = sis_ioctl;
1376	ifp->if_output = ether_output;
1377	ifp->if_start = sis_start;
1378	ifp->if_watchdog = sis_watchdog;
1379	ifp->if_init = sis_init;
1380	ifp->if_baudrate = 10000000;
1381	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1382
1383	/*
1384	 * Do MII setup.
1385	 */
1386	if (mii_phy_probe(dev, &sc->sis_miibus,
1387	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1388		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1389		error = ENXIO;
1390		goto fail;
1391	}
1392
1393	callout_handle_init(&sc->sis_stat_ch);
1394
1395	/*
1396	 * Call MI attach routine.
1397	 */
1398	ether_ifattach(ifp, eaddr);
1399
1400	/*
1401	 * Tell the upper layer(s) we support long frames.
1402	 */
1403	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1404	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1405
1406	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
1407	    sis_intr, sc, &sc->sis_intrhand);
1408
1409	if (error) {
1410		printf("sis%d: couldn't set up irq\n", unit);
1411		goto fail;
1412	}
1413
1414fail:
1415	if (error)
1416		sis_detach(dev);
1417
1418	return(error);
1419}
1420
1421static int
1422sis_detach(dev)
1423	device_t		dev;
1424{
1425	struct sis_softc	*sc;
1426	struct ifnet		*ifp;
1427
1428	sc = device_get_softc(dev);
1429	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1430	SIS_LOCK(sc);
1431	ifp = &sc->arpcom.ac_if;
1432
1433	if (device_is_alive(dev)) {
1434		if (bus_child_present(dev)) {
1435			sis_reset(sc);
1436			sis_stop(sc);
1437		}
1438		ether_ifdetach(ifp);
1439		device_delete_child(dev, sc->sis_miibus);
1440		bus_generic_detach(dev);
1441	}
1442
1443	if (sc->sis_intrhand)
1444		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1445	if (sc->sis_irq)
1446		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1447	if (sc->sis_res)
1448		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1449
1450	if (sc->sis_ldata.sis_rx_tag) {
1451		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1452		    sc->sis_ldata.sis_rx_dmamap);
1453		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1454		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1455		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1456	}
1457	if (sc->sis_ldata.sis_tx_tag) {
1458		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1459		    sc->sis_ldata.sis_tx_dmamap);
1460		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1461		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1462		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1463	}
1464	if (sc->sis_parent_tag)
1465		bus_dma_tag_destroy(sc->sis_parent_tag);
1466	if (sc->sis_tag)
1467		bus_dma_tag_destroy(sc->sis_tag);
1468
1469	SIS_UNLOCK(sc);
1470	mtx_destroy(&sc->sis_mtx);
1471
1472	return(0);
1473}
1474
1475/*
1476 * Initialize the transmit descriptors.
1477 */
1478static int
1479sis_list_tx_init(sc)
1480	struct sis_softc	*sc;
1481{
1482	struct sis_list_data	*ld;
1483	struct sis_ring_data	*cd;
1484	int			i, nexti;
1485
1486	cd = &sc->sis_cdata;
1487	ld = &sc->sis_ldata;
1488
1489	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1490		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1491			ld->sis_tx_list[i].sis_nextdesc =
1492			    &ld->sis_tx_list[nexti];
1493			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1494			    sc->sis_ldata.sis_tx_dmamap,
1495			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1496			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1497		ld->sis_tx_list[i].sis_mbuf = NULL;
1498		ld->sis_tx_list[i].sis_ptr = 0;
1499		ld->sis_tx_list[i].sis_ctl = 0;
1500	}
1501
1502	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1503
1504	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1505	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1506
1507	return(0);
1508}
1509
1510/*
1511 * Initialize the RX descriptors and allocate mbufs for them. Note that
1512 * we arrange the descriptors in a closed ring, so that the last descriptor
1513 * points back to the first.
1514 */
1515static int
1516sis_list_rx_init(sc)
1517	struct sis_softc	*sc;
1518{
1519	struct sis_list_data	*ld;
1520	struct sis_ring_data	*cd;
1521	int			i,nexti;
1522
1523	ld = &sc->sis_ldata;
1524	cd = &sc->sis_cdata;
1525
1526	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1527		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1528			return(ENOBUFS);
1529		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1530			ld->sis_rx_list[i].sis_nextdesc =
1531			    &ld->sis_rx_list[nexti];
1532			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1533			    sc->sis_ldata.sis_rx_dmamap,
1534			    &ld->sis_rx_list[nexti],
1535			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1536			    &ld->sis_rx_list[i], 0);
1537		}
1538
1539	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1540	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1541
1542	cd->sis_rx_prod = 0;
1543
1544	return(0);
1545}
1546
1547/*
1548 * Initialize an RX descriptor and attach an MBUF cluster.
1549 */
1550static int
1551sis_newbuf(sc, c, m)
1552	struct sis_softc	*sc;
1553	struct sis_desc		*c;
1554	struct mbuf		*m;
1555{
1556
1557	if (c == NULL)
1558		return(EINVAL);
1559
1560	if (m == NULL) {
1561		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1562		if (m == NULL)
1563			return(ENOBUFS);
1564	} else
1565		m->m_data = m->m_ext.ext_buf;
1566
1567	c->sis_mbuf = m;
1568	c->sis_ctl = SIS_RXLEN;
1569
1570	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1571	bus_dmamap_load(sc->sis_tag, c->sis_map,
1572	    mtod(m, void *), MCLBYTES,
1573	    sis_dma_map_desc_ptr, c, 0);
1574	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1575
1576	return(0);
1577}
1578
1579/*
1580 * A frame has been uploaded: pass the resulting mbuf chain up to
1581 * the higher level protocols.
1582 */
1583static void
1584sis_rxeof(sc)
1585	struct sis_softc	*sc;
1586{
1587        struct mbuf		*m;
1588        struct ifnet		*ifp;
1589	struct sis_desc		*cur_rx;
1590	int			i, total_len = 0;
1591	u_int32_t		rxstat;
1592
1593	ifp = &sc->arpcom.ac_if;
1594	i = sc->sis_cdata.sis_rx_prod;
1595
1596	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1597
1598#ifdef DEVICE_POLLING
1599		if (ifp->if_flags & IFF_POLLING) {
1600			if (sc->rxcycles <= 0)
1601				break;
1602			sc->rxcycles--;
1603		}
1604#endif /* DEVICE_POLLING */
1605		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1606		rxstat = cur_rx->sis_rxstat;
1607		bus_dmamap_sync(sc->sis_tag,
1608		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1609		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1610		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1611		m = cur_rx->sis_mbuf;
1612		cur_rx->sis_mbuf = NULL;
1613		total_len = SIS_RXBYTES(cur_rx);
1614		SIS_INC(i, SIS_RX_LIST_CNT);
1615
1616		/*
1617		 * If an error occurs, update stats, clear the
1618		 * status word and leave the mbuf cluster in place:
1619		 * it should simply get re-used next time this descriptor
1620	 	 * comes up in the ring.
1621		 */
1622		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1623			ifp->if_ierrors++;
1624			if (rxstat & SIS_RXSTAT_COLL)
1625				ifp->if_collisions++;
1626			sis_newbuf(sc, cur_rx, m);
1627			continue;
1628		}
1629
1630		/* No errors; receive the packet. */
1631#ifdef __i386__
1632		/*
1633		 * On the x86 we do not have alignment problems, so try to
1634		 * allocate a new buffer for the receive ring, and pass up
1635		 * the one where the packet is already, saving the expensive
1636		 * copy done in m_devget().
1637		 * If we are on an architecture with alignment problems, or
1638		 * if the allocation fails, then use m_devget and leave the
1639		 * existing buffer in the receive ring.
1640		 */
1641		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1642			m->m_pkthdr.len = m->m_len = total_len;
1643		else
1644#endif
1645		{
1646			struct mbuf		*m0;
1647			m0 = m_devget(mtod(m, char *), total_len,
1648				ETHER_ALIGN, ifp, NULL);
1649			sis_newbuf(sc, cur_rx, m);
1650			if (m0 == NULL) {
1651				ifp->if_ierrors++;
1652				continue;
1653			}
1654			m = m0;
1655		}
1656
1657		ifp->if_ipackets++;
1658		m->m_pkthdr.rcvif = ifp;
1659
1660		(*ifp->if_input)(ifp, m);
1661	}
1662
1663	sc->sis_cdata.sis_rx_prod = i;
1664
1665	return;
1666}
1667
1668static void
1669sis_rxeoc(sc)
1670	struct sis_softc	*sc;
1671{
1672	sis_rxeof(sc);
1673	sis_init(sc);
1674	return;
1675}
1676
1677/*
1678 * A frame was downloaded to the chip. It's safe for us to clean up
1679 * the list buffers.
1680 */
1681
1682static void
1683sis_txeof(sc)
1684	struct sis_softc	*sc;
1685{
1686	struct ifnet		*ifp;
1687	u_int32_t		idx;
1688
1689	ifp = &sc->arpcom.ac_if;
1690
1691	/*
1692	 * Go through our tx list and free mbufs for those
1693	 * frames that have been transmitted.
1694	 */
1695	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1696	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1697		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1698
1699		if (SIS_OWNDESC(cur_tx))
1700			break;
1701
1702		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1703			continue;
1704
1705		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1706			ifp->if_oerrors++;
1707			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1708				ifp->if_collisions++;
1709			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1710				ifp->if_collisions++;
1711		}
1712
1713		ifp->if_collisions +=
1714		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1715
1716		ifp->if_opackets++;
1717		if (cur_tx->sis_mbuf != NULL) {
1718			m_freem(cur_tx->sis_mbuf);
1719			cur_tx->sis_mbuf = NULL;
1720			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1721			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1722		}
1723	}
1724
1725	if (idx != sc->sis_cdata.sis_tx_cons) {
1726		/* we freed up some buffers */
1727		sc->sis_cdata.sis_tx_cons = idx;
1728		ifp->if_flags &= ~IFF_OACTIVE;
1729	}
1730
1731	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1732
1733	return;
1734}
1735
1736static void
1737sis_tick(xsc)
1738	void			*xsc;
1739{
1740	struct sis_softc	*sc;
1741	struct mii_data		*mii;
1742	struct ifnet		*ifp;
1743
1744	sc = xsc;
1745	SIS_LOCK(sc);
1746	ifp = &sc->arpcom.ac_if;
1747
1748	mii = device_get_softc(sc->sis_miibus);
1749	mii_tick(mii);
1750
1751	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1752	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1753		sc->sis_link++;
1754		if (ifp->if_snd.ifq_head != NULL)
1755			sis_start(ifp);
1756	}
1757
1758	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
1759
1760	SIS_UNLOCK(sc);
1761
1762	return;
1763}
1764
1765#ifdef DEVICE_POLLING
1766static poll_handler_t sis_poll;
1767
1768static void
1769sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1770{
1771	struct	sis_softc *sc = ifp->if_softc;
1772
1773	SIS_LOCK(sc);
1774	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1775		CSR_WRITE_4(sc, SIS_IER, 1);
1776		goto done;
1777	}
1778
1779	/*
1780	 * On the sis, reading the status register also clears it.
1781	 * So before returning to intr mode we must make sure that all
1782	 * possible pending sources of interrupts have been served.
1783	 * In practice this means run to completion the *eof routines,
1784	 * and then call the interrupt routine
1785	 */
1786	sc->rxcycles = count;
1787	sis_rxeof(sc);
1788	sis_txeof(sc);
1789	if (ifp->if_snd.ifq_head != NULL)
1790		sis_start(ifp);
1791
1792	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1793		u_int32_t	status;
1794
1795		/* Reading the ISR register clears all interrupts. */
1796		status = CSR_READ_4(sc, SIS_ISR);
1797
1798		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1799			sis_rxeoc(sc);
1800
1801		if (status & (SIS_ISR_RX_IDLE))
1802			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1803
1804		if (status & SIS_ISR_SYSERR) {
1805			sis_reset(sc);
1806			sis_init(sc);
1807		}
1808	}
1809done:
1810	SIS_UNLOCK(sc);
1811	return;
1812}
1813#endif /* DEVICE_POLLING */
1814
1815static void
1816sis_intr(arg)
1817	void			*arg;
1818{
1819	struct sis_softc	*sc;
1820	struct ifnet		*ifp;
1821	u_int32_t		status;
1822
1823	sc = arg;
1824	ifp = &sc->arpcom.ac_if;
1825
1826	SIS_LOCK(sc);
1827#ifdef DEVICE_POLLING
1828	if (ifp->if_flags & IFF_POLLING)
1829		goto done;
1830	if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1831		CSR_WRITE_4(sc, SIS_IER, 0);
1832		goto done;
1833	}
1834#endif /* DEVICE_POLLING */
1835
1836	/* Supress unwanted interrupts */
1837	if (!(ifp->if_flags & IFF_UP)) {
1838		sis_stop(sc);
1839		goto done;
1840	}
1841
1842	/* Disable interrupts. */
1843	CSR_WRITE_4(sc, SIS_IER, 0);
1844
1845	for (;;) {
1846		/* Reading the ISR register clears all interrupts. */
1847		status = CSR_READ_4(sc, SIS_ISR);
1848
1849		if ((status & SIS_INTRS) == 0)
1850			break;
1851
1852		if (status &
1853		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1854		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1855			sis_txeof(sc);
1856
1857		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1858			sis_rxeof(sc);
1859
1860		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1861			sis_rxeoc(sc);
1862
1863		if (status & (SIS_ISR_RX_IDLE))
1864			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1865
1866		if (status & SIS_ISR_SYSERR) {
1867			sis_reset(sc);
1868			sis_init(sc);
1869		}
1870	}
1871
1872	/* Re-enable interrupts. */
1873	CSR_WRITE_4(sc, SIS_IER, 1);
1874
1875	if (ifp->if_snd.ifq_head != NULL)
1876		sis_start(ifp);
1877done:
1878	SIS_UNLOCK(sc);
1879
1880	return;
1881}
1882
1883/*
1884 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1885 * pointers to the fragment pointers.
1886 */
1887static int
1888sis_encap(sc, m_head, txidx)
1889	struct sis_softc	*sc;
1890	struct mbuf		*m_head;
1891	u_int32_t		*txidx;
1892{
1893	struct sis_desc		*f = NULL;
1894	struct mbuf		*m;
1895	int			frag, cur, cnt = 0, chainlen = 0;
1896
1897	/*
1898	 * If there's no way we can send any packets, return now.
1899	 */
1900	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1901		return (ENOBUFS);
1902
1903	/*
1904	 * Count the number of frags in this chain to see if
1905	 * we need to m_defrag.  Since the descriptor list is shared
1906	 * by all packets, we'll m_defrag long chains so that they
1907	 * do not use up the entire list, even if they would fit.
1908	 */
1909
1910	for (m = m_head; m != NULL; m = m->m_next)
1911		chainlen++;
1912
1913	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1914	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
1915		m = m_defrag(m_head, M_DONTWAIT);
1916		if (m == NULL)
1917			return (ENOBUFS);
1918		m_head = m;
1919	}
1920
1921	/*
1922 	 * Start packing the mbufs in this chain into
1923	 * the fragment pointers. Stop when we run out
1924 	 * of fragments or hit the end of the mbuf chain.
1925	 */
1926	m = m_head;
1927	cur = frag = *txidx;
1928
1929	for (m = m_head; m != NULL; m = m->m_next) {
1930		if (m->m_len != 0) {
1931			if ((SIS_TX_LIST_CNT -
1932			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1933				return(ENOBUFS);
1934			f = &sc->sis_ldata.sis_tx_list[frag];
1935			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1936			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1937			bus_dmamap_load(sc->sis_tag, f->sis_map,
1938			    mtod(m, void *), m->m_len,
1939			    sis_dma_map_desc_ptr, f, 0);
1940			bus_dmamap_sync(sc->sis_tag,
1941			    f->sis_map, BUS_DMASYNC_PREREAD);
1942			if (cnt != 0)
1943				f->sis_ctl |= SIS_CMDSTS_OWN;
1944			cur = frag;
1945			SIS_INC(frag, SIS_TX_LIST_CNT);
1946			cnt++;
1947		}
1948	}
1949
1950	if (m != NULL)
1951		return(ENOBUFS);
1952
1953	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1954	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1955	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1956	sc->sis_cdata.sis_tx_cnt += cnt;
1957	*txidx = frag;
1958
1959	return(0);
1960}
1961
1962/*
1963 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1964 * to the mbuf data regions directly in the transmit lists. We also save a
1965 * copy of the pointers since the transmit list fragment pointers are
1966 * physical addresses.
1967 */
1968
1969static void
1970sis_start(ifp)
1971	struct ifnet		*ifp;
1972{
1973	struct sis_softc	*sc;
1974	struct mbuf		*m_head = NULL;
1975	u_int32_t		idx;
1976
1977	sc = ifp->if_softc;
1978	SIS_LOCK(sc);
1979
1980	if (!sc->sis_link) {
1981		SIS_UNLOCK(sc);
1982		return;
1983	}
1984
1985	idx = sc->sis_cdata.sis_tx_prod;
1986
1987	if (ifp->if_flags & IFF_OACTIVE) {
1988		SIS_UNLOCK(sc);
1989		return;
1990	}
1991
1992	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1993		IF_DEQUEUE(&ifp->if_snd, m_head);
1994		if (m_head == NULL)
1995			break;
1996
1997		if (sis_encap(sc, m_head, &idx)) {
1998			IF_PREPEND(&ifp->if_snd, m_head);
1999			ifp->if_flags |= IFF_OACTIVE;
2000			break;
2001		}
2002
2003		/*
2004		 * If there's a BPF listener, bounce a copy of this frame
2005		 * to him.
2006		 */
2007		BPF_MTAP(ifp, m_head);
2008
2009	}
2010
2011	/* Transmit */
2012	sc->sis_cdata.sis_tx_prod = idx;
2013	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
2014
2015	/*
2016	 * Set a timeout in case the chip goes out to lunch.
2017	 */
2018	ifp->if_timer = 5;
2019
2020	SIS_UNLOCK(sc);
2021
2022	return;
2023}
2024
2025static void
2026sis_init(xsc)
2027	void			*xsc;
2028{
2029	struct sis_softc	*sc = xsc;
2030	struct ifnet		*ifp = &sc->arpcom.ac_if;
2031	struct mii_data		*mii;
2032
2033	SIS_LOCK(sc);
2034
2035	/*
2036	 * Cancel pending I/O and free all RX/TX buffers.
2037	 */
2038	sis_stop(sc);
2039
2040	mii = device_get_softc(sc->sis_miibus);
2041
2042	/* Set MAC address */
2043	if (sc->sis_type == SIS_TYPE_83815) {
2044		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2045		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2046		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2047		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2048		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2049		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2050		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2051		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2052		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2053	} else {
2054		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2055		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2056		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2057		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2058		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2059		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2060		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2061		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2062		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2063	}
2064
2065	/* Init circular RX list. */
2066	if (sis_list_rx_init(sc) == ENOBUFS) {
2067		printf("sis%d: initialization failed: no "
2068			"memory for rx buffers\n", sc->sis_unit);
2069		sis_stop(sc);
2070		SIS_UNLOCK(sc);
2071		return;
2072	}
2073
2074	/*
2075	 * Init tx descriptors.
2076	 */
2077	sis_list_tx_init(sc);
2078
2079	/*
2080	 * For the NatSemi chip, we have to explicitly enable the
2081	 * reception of ARP frames, as well as turn on the 'perfect
2082	 * match' filter where we store the station address, otherwise
2083	 * we won't receive unicasts meant for this host.
2084	 */
2085	if (sc->sis_type == SIS_TYPE_83815) {
2086		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
2087		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
2088	}
2089
2090	 /* If we want promiscuous mode, set the allframes bit. */
2091	if (ifp->if_flags & IFF_PROMISC) {
2092		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2093	} else {
2094		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2095	}
2096
2097	/*
2098	 * Set the capture broadcast bit to capture broadcast frames.
2099	 */
2100	if (ifp->if_flags & IFF_BROADCAST) {
2101		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2102	} else {
2103		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2104	}
2105
2106	/*
2107	 * Load the multicast filter.
2108	 */
2109	if (sc->sis_type == SIS_TYPE_83815)
2110		sis_setmulti_ns(sc);
2111	else
2112		sis_setmulti_sis(sc);
2113
2114	/* Turn the receive filter on */
2115	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2116
2117	/*
2118	 * Load the address of the RX and TX lists.
2119	 */
2120	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
2121	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
2122
2123	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2124	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2125	 * for TX/RX DMA should be no larger than 16 double words.
2126	 */
2127	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2128		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2129	} else {
2130		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2131	}
2132
2133
2134	/* Accept Long Packets for VLAN support */
2135	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2136
2137	/* Set TX configuration */
2138	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
2139		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2140	} else {
2141		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2142	}
2143
2144	/* Set full/half duplex mode. */
2145	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2146		SIS_SETBIT(sc, SIS_TX_CFG,
2147		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2148		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2149	} else {
2150		SIS_CLRBIT(sc, SIS_TX_CFG,
2151		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2152		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2153	}
2154
2155	/*
2156	 * Enable interrupts.
2157	 */
2158	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2159#ifdef DEVICE_POLLING
2160	/*
2161	 * ... only enable interrupts if we are not polling, make sure
2162	 * they are off otherwise.
2163	 */
2164	if (ifp->if_flags & IFF_POLLING)
2165		CSR_WRITE_4(sc, SIS_IER, 0);
2166	else
2167#endif /* DEVICE_POLLING */
2168	CSR_WRITE_4(sc, SIS_IER, 1);
2169
2170	/* Enable receiver and transmitter. */
2171	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2172	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2173
2174#ifdef notdef
2175	mii_mediachg(mii);
2176#endif
2177
2178	/*
2179	 * Page 75 of the DP83815 manual recommends the
2180	 * following register settings "for optimum
2181	 * performance." Note however that at least three
2182	 * of the registers are listed as "reserved" in
2183	 * the register map, so who knows what they do.
2184	 */
2185	if (sc->sis_type == SIS_TYPE_83815) {
2186		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2187		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2188		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2189		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2190		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2191	}
2192
2193	ifp->if_flags |= IFF_RUNNING;
2194	ifp->if_flags &= ~IFF_OACTIVE;
2195
2196	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
2197
2198	SIS_UNLOCK(sc);
2199
2200	return;
2201}
2202
2203/*
2204 * Set media options.
2205 */
2206static int
2207sis_ifmedia_upd(ifp)
2208	struct ifnet		*ifp;
2209{
2210	struct sis_softc	*sc;
2211	struct mii_data		*mii;
2212
2213	sc = ifp->if_softc;
2214
2215	mii = device_get_softc(sc->sis_miibus);
2216	sc->sis_link = 0;
2217	if (mii->mii_instance) {
2218		struct mii_softc	*miisc;
2219		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2220			mii_phy_reset(miisc);
2221	}
2222	mii_mediachg(mii);
2223
2224	return(0);
2225}
2226
2227/*
2228 * Report current media status.
2229 */
2230static void
2231sis_ifmedia_sts(ifp, ifmr)
2232	struct ifnet		*ifp;
2233	struct ifmediareq	*ifmr;
2234{
2235	struct sis_softc	*sc;
2236	struct mii_data		*mii;
2237
2238	sc = ifp->if_softc;
2239
2240	mii = device_get_softc(sc->sis_miibus);
2241	mii_pollstat(mii);
2242	ifmr->ifm_active = mii->mii_media_active;
2243	ifmr->ifm_status = mii->mii_media_status;
2244
2245	return;
2246}
2247
2248static int
2249sis_ioctl(ifp, command, data)
2250	struct ifnet		*ifp;
2251	u_long			command;
2252	caddr_t			data;
2253{
2254	struct sis_softc	*sc = ifp->if_softc;
2255	struct ifreq		*ifr = (struct ifreq *) data;
2256	struct mii_data		*mii;
2257	int			error = 0;
2258
2259	switch(command) {
2260	case SIOCSIFFLAGS:
2261		if (ifp->if_flags & IFF_UP) {
2262			sis_init(sc);
2263		} else {
2264			if (ifp->if_flags & IFF_RUNNING)
2265				sis_stop(sc);
2266		}
2267		error = 0;
2268		break;
2269	case SIOCADDMULTI:
2270	case SIOCDELMULTI:
2271		SIS_LOCK(sc);
2272		if (sc->sis_type == SIS_TYPE_83815)
2273			sis_setmulti_ns(sc);
2274		else
2275			sis_setmulti_sis(sc);
2276		SIS_UNLOCK(sc);
2277		error = 0;
2278		break;
2279	case SIOCGIFMEDIA:
2280	case SIOCSIFMEDIA:
2281		mii = device_get_softc(sc->sis_miibus);
2282		SIS_LOCK(sc);
2283		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2284		SIS_UNLOCK(sc);
2285		break;
2286	default:
2287		error = ether_ioctl(ifp, command, data);
2288		break;
2289	}
2290
2291	return(error);
2292}
2293
2294static void
2295sis_watchdog(ifp)
2296	struct ifnet		*ifp;
2297{
2298	struct sis_softc	*sc;
2299
2300	sc = ifp->if_softc;
2301
2302	SIS_LOCK(sc);
2303
2304	ifp->if_oerrors++;
2305	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2306
2307	sis_stop(sc);
2308	sis_reset(sc);
2309	sis_init(sc);
2310
2311	if (ifp->if_snd.ifq_head != NULL)
2312		sis_start(ifp);
2313
2314	SIS_UNLOCK(sc);
2315
2316	return;
2317}
2318
2319/*
2320 * Stop the adapter and free any mbufs allocated to the
2321 * RX and TX lists.
2322 */
2323static void
2324sis_stop(sc)
2325	struct sis_softc	*sc;
2326{
2327	register int		i;
2328	struct ifnet		*ifp;
2329
2330	SIS_LOCK(sc);
2331	ifp = &sc->arpcom.ac_if;
2332	ifp->if_timer = 0;
2333
2334	untimeout(sis_tick, sc, sc->sis_stat_ch);
2335
2336	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2337#ifdef DEVICE_POLLING
2338	ether_poll_deregister(ifp);
2339#endif
2340	CSR_WRITE_4(sc, SIS_IER, 0);
2341	CSR_WRITE_4(sc, SIS_IMR, 0);
2342	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2343	DELAY(1000);
2344	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2345	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2346
2347	sc->sis_link = 0;
2348
2349	/*
2350	 * Free data in the RX lists.
2351	 */
2352	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2353		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2354			bus_dmamap_unload(sc->sis_tag,
2355			    sc->sis_ldata.sis_rx_list[i].sis_map);
2356			bus_dmamap_destroy(sc->sis_tag,
2357			    sc->sis_ldata.sis_rx_list[i].sis_map);
2358			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2359			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2360		}
2361	}
2362	bzero(sc->sis_ldata.sis_rx_list,
2363		sizeof(sc->sis_ldata.sis_rx_list));
2364
2365	/*
2366	 * Free the TX list buffers.
2367	 */
2368	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2369		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2370			bus_dmamap_unload(sc->sis_tag,
2371			    sc->sis_ldata.sis_tx_list[i].sis_map);
2372			bus_dmamap_destroy(sc->sis_tag,
2373			    sc->sis_ldata.sis_tx_list[i].sis_map);
2374			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2375			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2376		}
2377	}
2378
2379	bzero(sc->sis_ldata.sis_tx_list,
2380		sizeof(sc->sis_ldata.sis_tx_list));
2381
2382	SIS_UNLOCK(sc);
2383
2384	return;
2385}
2386
2387/*
2388 * Stop all chip I/O so that the kernel's probe routines don't
2389 * get confused by errant DMAs when rebooting.
2390 */
2391static void
2392sis_shutdown(dev)
2393	device_t		dev;
2394{
2395	struct sis_softc	*sc;
2396
2397	sc = device_get_softc(dev);
2398	SIS_LOCK(sc);
2399	sis_reset(sc);
2400	sis_stop(sc);
2401	SIS_UNLOCK(sc);
2402
2403	return;
2404}
2405