if_sis.c revision 106936
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/pci/if_sis.c 106936 2002-11-14 23:49:09Z sam $
33 */
34
35/*
36 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
37 * available from http://www.sis.com.tw.
38 *
39 * This driver also supports the NatSemi DP83815. Datasheets are
40 * available from http://www.national.com.
41 *
42 * Written by Bill Paul <wpaul@ee.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
45 */
46
47/*
48 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
49 * simple TX and RX descriptors of 3 longwords in size. The receiver
50 * has a single perfect filter entry for the station address and a
51 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
52 * transceiver while the 7016 requires an external transceiver chip.
53 * Both chips offer the standard bit-bang MII interface as well as
54 * an enchanced PHY interface which simplifies accessing MII registers.
55 *
56 * The only downside to this chipset is that RX descriptors must be
57 * longword aligned.
58 */
59
60#include <sys/param.h>
61#include <sys/systm.h>
62#include <sys/sockio.h>
63#include <sys/mbuf.h>
64#include <sys/malloc.h>
65#include <sys/kernel.h>
66#include <sys/socket.h>
67#include <sys/sysctl.h>
68
69#include <net/if.h>
70#include <net/if_arp.h>
71#include <net/ethernet.h>
72#include <net/if_dl.h>
73#include <net/if_media.h>
74#include <net/if_types.h>
75#include <net/if_vlan_var.h>
76
77#include <net/bpf.h>
78
79#include <machine/bus_pio.h>
80#include <machine/bus_memio.h>
81#include <machine/bus.h>
82#include <machine/resource.h>
83#include <sys/bus.h>
84#include <sys/rman.h>
85
86#include <dev/mii/mii.h>
87#include <dev/mii/miivar.h>
88
89#include <pci/pcireg.h>
90#include <pci/pcivar.h>
91
92#define SIS_USEIOSPACE
93
94#include <pci/if_sisreg.h>
95
96MODULE_DEPEND(sis, miibus, 1, 1, 1);
97
98/* "controller miibus0" required.  See GENERIC if you get errors here. */
99#include "miibus_if.h"
100
101#ifndef lint
102static const char rcsid[] =
103  "$FreeBSD: head/sys/pci/if_sis.c 106936 2002-11-14 23:49:09Z sam $";
104#endif
105
106/*
107 * Various supported device vendors/types and their names.
108 */
109static struct sis_type sis_devs[] = {
110	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
111	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
112	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP83815 10/100BaseTX" },
113	{ 0, 0, NULL }
114};
115
116static int sis_probe		(device_t);
117static int sis_attach		(device_t);
118static int sis_detach		(device_t);
119
120static int sis_newbuf		(struct sis_softc *,
121					struct sis_desc *, struct mbuf *);
122static int sis_encap		(struct sis_softc *,
123					struct mbuf *, u_int32_t *);
124static void sis_rxeof		(struct sis_softc *);
125static void sis_rxeoc		(struct sis_softc *);
126static void sis_txeof		(struct sis_softc *);
127static void sis_intr		(void *);
128static void sis_tick		(void *);
129static void sis_start		(struct ifnet *);
130static int sis_ioctl		(struct ifnet *, u_long, caddr_t);
131static void sis_init		(void *);
132static void sis_stop		(struct sis_softc *);
133static void sis_watchdog		(struct ifnet *);
134static void sis_shutdown		(device_t);
135static int sis_ifmedia_upd	(struct ifnet *);
136static void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
137
138static u_int16_t sis_reverse	(u_int16_t);
139static void sis_delay		(struct sis_softc *);
140static void sis_eeprom_idle	(struct sis_softc *);
141static void sis_eeprom_putbyte	(struct sis_softc *, int);
142static void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
143static void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
144#ifdef __i386__
145static void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
146							int, int);
147static void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
148static device_t sis_find_bridge	(device_t);
149#endif
150
151static int sis_miibus_readreg	(device_t, int, int);
152static int sis_miibus_writereg	(device_t, int, int, int);
153static void sis_miibus_statchg	(device_t);
154
155static void sis_setmulti_sis	(struct sis_softc *);
156static void sis_setmulti_ns	(struct sis_softc *);
157static u_int32_t sis_crc	(struct sis_softc *, caddr_t);
158static void sis_reset		(struct sis_softc *);
159static int sis_list_rx_init	(struct sis_softc *);
160static int sis_list_tx_init	(struct sis_softc *);
161
162static void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
163static void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
164static void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
165#ifdef SIS_USEIOSPACE
166#define SIS_RES			SYS_RES_IOPORT
167#define SIS_RID			SIS_PCI_LOIO
168#else
169#define SIS_RES			SYS_RES_MEMORY
170#define SIS_RID			SIS_PCI_LOMEM
171#endif
172
173static device_method_t sis_methods[] = {
174	/* Device interface */
175	DEVMETHOD(device_probe,		sis_probe),
176	DEVMETHOD(device_attach,	sis_attach),
177	DEVMETHOD(device_detach,	sis_detach),
178	DEVMETHOD(device_shutdown,	sis_shutdown),
179
180	/* bus interface */
181	DEVMETHOD(bus_print_child,	bus_generic_print_child),
182	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
183
184	/* MII interface */
185	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
186	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
187	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
188
189	{ 0, 0 }
190};
191
192static driver_t sis_driver = {
193	"sis",
194	sis_methods,
195	sizeof(struct sis_softc)
196};
197
198static devclass_t sis_devclass;
199
200DRIVER_MODULE(if_sis, pci, sis_driver, sis_devclass, 0, 0);
201DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
202
203#define SIS_SETBIT(sc, reg, x)				\
204	CSR_WRITE_4(sc, reg,				\
205		CSR_READ_4(sc, reg) | (x))
206
207#define SIS_CLRBIT(sc, reg, x)				\
208	CSR_WRITE_4(sc, reg,				\
209		CSR_READ_4(sc, reg) & ~(x))
210
211#define SIO_SET(x)					\
212	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
213
214#define SIO_CLR(x)					\
215	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
216
217static void
218sis_dma_map_desc_next(arg, segs, nseg, error)
219	void *arg;
220	bus_dma_segment_t *segs;
221	int nseg, error;
222{
223	struct sis_desc	*r;
224
225	r = arg;
226	r->sis_next = segs->ds_addr;
227
228	return;
229}
230
231static void
232sis_dma_map_desc_ptr(arg, segs, nseg, error)
233	void *arg;
234	bus_dma_segment_t *segs;
235	int nseg, error;
236{
237	struct sis_desc	*r;
238
239	r = arg;
240	r->sis_ptr = segs->ds_addr;
241
242	return;
243}
244
245static void
246sis_dma_map_ring(arg, segs, nseg, error)
247	void *arg;
248	bus_dma_segment_t *segs;
249	int nseg, error;
250{
251	u_int32_t *p;
252
253	p = arg;
254	*p = segs->ds_addr;
255
256	return;
257}
258
259/*
260 * Routine to reverse the bits in a word. Stolen almost
261 * verbatim from /usr/games/fortune.
262 */
263static u_int16_t
264sis_reverse(n)
265	u_int16_t		n;
266{
267	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
268	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
269	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
270	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
271
272	return(n);
273}
274
275static void
276sis_delay(sc)
277	struct sis_softc	*sc;
278{
279	int			idx;
280
281	for (idx = (300 / 33) + 1; idx > 0; idx--)
282		CSR_READ_4(sc, SIS_CSR);
283
284	return;
285}
286
287static void
288sis_eeprom_idle(sc)
289	struct sis_softc	*sc;
290{
291	register int		i;
292
293	SIO_SET(SIS_EECTL_CSEL);
294	sis_delay(sc);
295	SIO_SET(SIS_EECTL_CLK);
296	sis_delay(sc);
297
298	for (i = 0; i < 25; i++) {
299		SIO_CLR(SIS_EECTL_CLK);
300		sis_delay(sc);
301		SIO_SET(SIS_EECTL_CLK);
302		sis_delay(sc);
303	}
304
305	SIO_CLR(SIS_EECTL_CLK);
306	sis_delay(sc);
307	SIO_CLR(SIS_EECTL_CSEL);
308	sis_delay(sc);
309	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
310
311	return;
312}
313
314/*
315 * Send a read command and address to the EEPROM, check for ACK.
316 */
317static void
318sis_eeprom_putbyte(sc, addr)
319	struct sis_softc	*sc;
320	int			addr;
321{
322	register int		d, i;
323
324	d = addr | SIS_EECMD_READ;
325
326	/*
327	 * Feed in each bit and stobe the clock.
328	 */
329	for (i = 0x400; i; i >>= 1) {
330		if (d & i) {
331			SIO_SET(SIS_EECTL_DIN);
332		} else {
333			SIO_CLR(SIS_EECTL_DIN);
334		}
335		sis_delay(sc);
336		SIO_SET(SIS_EECTL_CLK);
337		sis_delay(sc);
338		SIO_CLR(SIS_EECTL_CLK);
339		sis_delay(sc);
340	}
341
342	return;
343}
344
345/*
346 * Read a word of data stored in the EEPROM at address 'addr.'
347 */
348static void
349sis_eeprom_getword(sc, addr, dest)
350	struct sis_softc	*sc;
351	int			addr;
352	u_int16_t		*dest;
353{
354	register int		i;
355	u_int16_t		word = 0;
356
357	/* Force EEPROM to idle state. */
358	sis_eeprom_idle(sc);
359
360	/* Enter EEPROM access mode. */
361	sis_delay(sc);
362	SIO_CLR(SIS_EECTL_CLK);
363	sis_delay(sc);
364	SIO_SET(SIS_EECTL_CSEL);
365	sis_delay(sc);
366
367	/*
368	 * Send address of word we want to read.
369	 */
370	sis_eeprom_putbyte(sc, addr);
371
372	/*
373	 * Start reading bits from EEPROM.
374	 */
375	for (i = 0x8000; i; i >>= 1) {
376		SIO_SET(SIS_EECTL_CLK);
377		sis_delay(sc);
378		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
379			word |= i;
380		sis_delay(sc);
381		SIO_CLR(SIS_EECTL_CLK);
382		sis_delay(sc);
383	}
384
385	/* Turn off EEPROM access mode. */
386	sis_eeprom_idle(sc);
387
388	*dest = word;
389
390	return;
391}
392
393/*
394 * Read a sequence of words from the EEPROM.
395 */
396static void
397sis_read_eeprom(sc, dest, off, cnt, swap)
398	struct sis_softc	*sc;
399	caddr_t			dest;
400	int			off;
401	int			cnt;
402	int			swap;
403{
404	int			i;
405	u_int16_t		word = 0, *ptr;
406
407	for (i = 0; i < cnt; i++) {
408		sis_eeprom_getword(sc, off + i, &word);
409		ptr = (u_int16_t *)(dest + (i * 2));
410		if (swap)
411			*ptr = ntohs(word);
412		else
413			*ptr = word;
414	}
415
416	return;
417}
418
419#ifdef __i386__
420static device_t
421sis_find_bridge(dev)
422	device_t		dev;
423{
424	devclass_t		pci_devclass;
425	device_t		*pci_devices;
426	int			pci_count = 0;
427	device_t		*pci_children;
428	int			pci_childcount = 0;
429	device_t		*busp, *childp;
430	device_t		child = NULL;
431	int			i, j;
432
433	if ((pci_devclass = devclass_find("pci")) == NULL)
434		return(NULL);
435
436	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
437
438	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
439		pci_childcount = 0;
440		device_get_children(*busp, &pci_children, &pci_childcount);
441		for (j = 0, childp = pci_children;
442		    j < pci_childcount; j++, childp++) {
443			if (pci_get_vendor(*childp) == SIS_VENDORID &&
444			    pci_get_device(*childp) == 0x0008) {
445				child = *childp;
446				goto done;
447			}
448		}
449	}
450
451done:
452	free(pci_devices, M_TEMP);
453	free(pci_children, M_TEMP);
454	return(child);
455}
456
457static void
458sis_read_cmos(sc, dev, dest, off, cnt)
459	struct sis_softc	*sc;
460	device_t		dev;
461	caddr_t			dest;
462	int			off;
463	int			cnt;
464{
465	device_t		bridge;
466	u_int8_t		reg;
467	int			i;
468	bus_space_tag_t		btag;
469
470	bridge = sis_find_bridge(dev);
471	if (bridge == NULL)
472		return;
473	reg = pci_read_config(bridge, 0x48, 1);
474	pci_write_config(bridge, 0x48, reg|0x40, 1);
475
476	/* XXX */
477	btag = I386_BUS_SPACE_IO;
478
479	for (i = 0; i < cnt; i++) {
480		bus_space_write_1(btag, 0x0, 0x70, i + off);
481		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
482	}
483
484	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
485	return;
486}
487
488static void
489sis_read_mac(sc, dev, dest)
490	struct sis_softc	*sc;
491	device_t		dev;
492	caddr_t			dest;
493{
494	u_int32_t		filtsave, csrsave;
495
496	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
497	csrsave = CSR_READ_4(sc, SIS_CSR);
498
499	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
500	CSR_WRITE_4(sc, SIS_CSR, 0);
501
502	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
503
504	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
505	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
506	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
507	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
508	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
509	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
510
511	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
512	CSR_WRITE_4(sc, SIS_CSR, csrsave);
513	return;
514}
515#endif
516
517static int
518sis_miibus_readreg(dev, phy, reg)
519	device_t		dev;
520	int			phy, reg;
521{
522	struct sis_softc	*sc;
523	int			i, val = 0;
524
525	sc = device_get_softc(dev);
526
527	if (sc->sis_type == SIS_TYPE_83815) {
528		if (phy != 0)
529			return(0);
530		/*
531		 * The NatSemi chip can take a while after
532		 * a reset to come ready, during which the BMSR
533		 * returns a value of 0. This is *never* supposed
534		 * to happen: some of the BMSR bits are meant to
535		 * be hardwired in the on position, and this can
536		 * confuse the miibus code a bit during the probe
537		 * and attach phase. So we make an effort to check
538		 * for this condition and wait for it to clear.
539		 */
540		if (!CSR_READ_4(sc, NS_BMSR))
541			DELAY(1000);
542		val = CSR_READ_4(sc, NS_BMCR + (reg * 4));
543		return(val);
544	}
545
546	if (sc->sis_type == SIS_TYPE_900 &&
547	    sc->sis_rev < SIS_REV_635 && phy != 0)
548		return(0);
549
550	CSR_WRITE_4(sc, SIS_PHYCTL, (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
551	SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
552
553	for (i = 0; i < SIS_TIMEOUT; i++) {
554		if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
555			break;
556	}
557
558	if (i == SIS_TIMEOUT) {
559		printf("sis%d: PHY failed to come ready\n", sc->sis_unit);
560		return(0);
561	}
562
563	val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
564
565	if (val == 0xFFFF)
566		return(0);
567
568	return(val);
569}
570
571static int
572sis_miibus_writereg(dev, phy, reg, data)
573	device_t		dev;
574	int			phy, reg, data;
575{
576	struct sis_softc	*sc;
577	int			i;
578
579	sc = device_get_softc(dev);
580
581	if (sc->sis_type == SIS_TYPE_83815) {
582		if (phy != 0)
583			return(0);
584		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
585		return(0);
586	}
587
588	if (sc->sis_type == SIS_TYPE_900 && phy != 0)
589		return(0);
590
591	CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
592	    (reg << 6) | SIS_PHYOP_WRITE);
593	SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
594
595	for (i = 0; i < SIS_TIMEOUT; i++) {
596		if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
597			break;
598	}
599
600	if (i == SIS_TIMEOUT)
601		printf("sis%d: PHY failed to come ready\n", sc->sis_unit);
602
603	return(0);
604}
605
606static void
607sis_miibus_statchg(dev)
608	device_t		dev;
609{
610	struct sis_softc	*sc;
611
612	sc = device_get_softc(dev);
613	sis_init(sc);
614
615	return;
616}
617
618static u_int32_t
619sis_crc(sc, addr)
620	struct sis_softc	*sc;
621	caddr_t			addr;
622{
623	u_int32_t		crc, carry;
624	int			i, j;
625	u_int8_t		c;
626
627	/* Compute CRC for the address value. */
628	crc = 0xFFFFFFFF; /* initial value */
629
630	for (i = 0; i < 6; i++) {
631		c = *(addr + i);
632		for (j = 0; j < 8; j++) {
633			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
634			crc <<= 1;
635			c >>= 1;
636			if (carry)
637				crc = (crc ^ 0x04c11db6) | carry;
638		}
639	}
640
641	/*
642	 * return the filter bit position
643	 *
644	 * The NatSemi chip has a 512-bit filter, which is
645	 * different than the SiS, so we special-case it.
646	 */
647	if (sc->sis_type == SIS_TYPE_83815)
648		return((crc >> 23) & 0x1FF);
649
650	return((crc >> 25) & 0x0000007F);
651}
652
653static void
654sis_setmulti_ns(sc)
655	struct sis_softc	*sc;
656{
657	struct ifnet		*ifp;
658	struct ifmultiaddr	*ifma;
659	u_int32_t		h = 0, i, filtsave;
660	int			bit, index;
661
662	ifp = &sc->arpcom.ac_if;
663
664	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
665		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
666		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
667		return;
668	}
669
670	/*
671	 * We have to explicitly enable the multicast hash table
672	 * on the NatSemi chip if we want to use it, which we do.
673	 */
674	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
675	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
676
677	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
678
679	/* first, zot all the existing hash bits */
680	for (i = 0; i < 32; i++) {
681		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
682		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
683	}
684
685	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
686		if (ifma->ifma_addr->sa_family != AF_LINK)
687			continue;
688		h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
689		index = h >> 3;
690		bit = h & 0x1F;
691		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
692		if (bit > 0xF)
693			bit -= 0x10;
694		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
695	}
696
697	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
698
699	return;
700}
701
702static void
703sis_setmulti_sis(sc)
704	struct sis_softc	*sc;
705{
706	struct ifnet		*ifp;
707	struct ifmultiaddr	*ifma;
708	u_int32_t		h = 0, i, filtsave;
709
710	ifp = &sc->arpcom.ac_if;
711
712	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
713		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
714		return;
715	}
716
717	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
718
719	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
720
721	/* first, zot all the existing hash bits */
722	for (i = 0; i < 8; i++) {
723		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + ((i * 16) >> 4)) << 16);
724		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
725	}
726
727	/* now program new ones */
728	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
729		if (ifma->ifma_addr->sa_family != AF_LINK)
730			continue;
731		h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
732		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + (h >> 4)) << 16);
733		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << (h & 0xF)));
734	}
735
736	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
737
738	return;
739}
740
741static void
742sis_reset(sc)
743	struct sis_softc	*sc;
744{
745	register int		i;
746
747	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
748
749	for (i = 0; i < SIS_TIMEOUT; i++) {
750		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
751			break;
752	}
753
754	if (i == SIS_TIMEOUT)
755		printf("sis%d: reset never completed\n", sc->sis_unit);
756
757	/* Wait a little while for the chip to get its brains in order. */
758	DELAY(1000);
759
760	/*
761	 * If this is a NetSemi chip, make sure to clear
762	 * PME mode.
763	 */
764	if (sc->sis_type == SIS_TYPE_83815) {
765		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
766		CSR_WRITE_4(sc, NS_CLKRUN, 0);
767	}
768
769        return;
770}
771
772/*
773 * Probe for an SiS chip. Check the PCI vendor and device
774 * IDs against our list and return a device name if we find a match.
775 */
776static int
777sis_probe(dev)
778	device_t		dev;
779{
780	struct sis_type		*t;
781
782	t = sis_devs;
783
784	while(t->sis_name != NULL) {
785		if ((pci_get_vendor(dev) == t->sis_vid) &&
786		    (pci_get_device(dev) == t->sis_did)) {
787			device_set_desc(dev, t->sis_name);
788			return(0);
789		}
790		t++;
791	}
792
793	return(ENXIO);
794}
795
796/*
797 * Attach the interface. Allocate softc structures, do ifmedia
798 * setup and ethernet/BPF attach.
799 */
800static int
801sis_attach(dev)
802	device_t		dev;
803{
804	u_char			eaddr[ETHER_ADDR_LEN];
805	u_int32_t		command;
806	struct sis_softc	*sc;
807	struct ifnet		*ifp;
808	int			unit, error = 0, rid;
809
810	sc = device_get_softc(dev);
811	unit = device_get_unit(dev);
812	bzero(sc, sizeof(struct sis_softc));
813
814	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
815	    MTX_DEF | MTX_RECURSE);
816
817	if (pci_get_device(dev) == SIS_DEVICEID_900)
818		sc->sis_type = SIS_TYPE_900;
819	if (pci_get_device(dev) == SIS_DEVICEID_7016)
820		sc->sis_type = SIS_TYPE_7016;
821	if (pci_get_vendor(dev) == NS_VENDORID)
822		sc->sis_type = SIS_TYPE_83815;
823
824	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
825
826	/*
827	 * Handle power management nonsense.
828	 */
829	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
830		u_int32_t		iobase, membase, irq;
831
832		/* Save important PCI config data. */
833		iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
834		membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
835		irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
836
837		/* Reset the power state. */
838		printf("sis%d: chip is in D%d power mode "
839		    "-- setting to D0\n", unit,
840		    pci_get_powerstate(dev));
841		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
842
843		/* Restore PCI config data. */
844		pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
845		pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
846		pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
847	}
848
849	/*
850	 * Map control/status registers.
851	 */
852	pci_enable_busmaster(dev);
853	pci_enable_io(dev, SYS_RES_IOPORT);
854	pci_enable_io(dev, SYS_RES_MEMORY);
855	command = pci_read_config(dev, PCIR_COMMAND, 4);
856
857#ifdef SIS_USEIOSPACE
858	if (!(command & PCIM_CMD_PORTEN)) {
859		printf("sis%d: failed to enable I/O ports!\n", unit);
860		error = ENXIO;;
861		goto fail;
862	}
863#else
864	if (!(command & PCIM_CMD_MEMEN)) {
865		printf("sis%d: failed to enable memory mapping!\n", unit);
866		error = ENXIO;;
867		goto fail;
868	}
869#endif
870
871	rid = SIS_RID;
872	sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
873	    0, ~0, 1, RF_ACTIVE);
874
875	if (sc->sis_res == NULL) {
876		printf("sis%d: couldn't map ports/memory\n", unit);
877		error = ENXIO;
878		goto fail;
879	}
880
881	sc->sis_btag = rman_get_bustag(sc->sis_res);
882	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
883
884	/* Allocate interrupt */
885	rid = 0;
886	sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
887	    RF_SHAREABLE | RF_ACTIVE);
888
889	if (sc->sis_irq == NULL) {
890		printf("sis%d: couldn't map interrupt\n", unit);
891		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
892		error = ENXIO;
893		goto fail;
894	}
895
896	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
897	    sis_intr, sc, &sc->sis_intrhand);
898
899	if (error) {
900		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
901		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
902		printf("sis%d: couldn't set up irq\n", unit);
903		goto fail;
904	}
905
906	/* Reset the adapter. */
907	sis_reset(sc);
908
909	/*
910	 * Get station address from the EEPROM.
911	 */
912	switch (pci_get_vendor(dev)) {
913	case NS_VENDORID:
914		/*
915		 * Reading the MAC address out of the EEPROM on
916		 * the NatSemi chip takes a bit more work than
917		 * you'd expect. The address spans 4 16-bit words,
918		 * with the first word containing only a single bit.
919		 * You have to shift everything over one bit to
920		 * get it aligned properly. Also, the bits are
921		 * stored backwards (the LSB is really the MSB,
922		 * and so on) so you have to reverse them in order
923		 * to get the MAC address into the form we want.
924		 * Why? Who the hell knows.
925		 */
926		{
927			u_int16_t		tmp[4];
928
929			sis_read_eeprom(sc, (caddr_t)&tmp,
930			    NS_EE_NODEADDR, 4, 0);
931
932			/* Shift everything over one bit. */
933			tmp[3] = tmp[3] >> 1;
934			tmp[3] |= tmp[2] << 15;
935			tmp[2] = tmp[2] >> 1;
936			tmp[2] |= tmp[1] << 15;
937			tmp[1] = tmp[1] >> 1;
938			tmp[1] |= tmp[0] << 15;
939
940			/* Now reverse all the bits. */
941			tmp[3] = sis_reverse(tmp[3]);
942			tmp[2] = sis_reverse(tmp[2]);
943			tmp[1] = sis_reverse(tmp[1]);
944
945			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
946		}
947		break;
948	case SIS_VENDORID:
949	default:
950#ifdef __i386__
951		/*
952		 * If this is a SiS 630E chipset with an embedded
953		 * SiS 900 controller, we have to read the MAC address
954		 * from the APC CMOS RAM. Our method for doing this
955		 * is very ugly since we have to reach out and grab
956		 * ahold of hardware for which we cannot properly
957		 * allocate resources. This code is only compiled on
958		 * the i386 architecture since the SiS 630E chipset
959		 * is for x86 motherboards only. Note that there are
960		 * a lot of magic numbers in this hack. These are
961		 * taken from SiS's Linux driver. I'd like to replace
962		 * them with proper symbolic definitions, but that
963		 * requires some datasheets that I don't have access
964		 * to at the moment.
965		 */
966		if (sc->sis_rev == SIS_REV_630S ||
967		    sc->sis_rev == SIS_REV_630E ||
968		    sc->sis_rev == SIS_REV_630EA1)
969			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
970
971		else if (sc->sis_rev == SIS_REV_635 ||
972			 sc->sis_rev == SIS_REV_630ET)
973			sis_read_mac(sc, dev, (caddr_t)&eaddr);
974		else
975#endif
976			sis_read_eeprom(sc, (caddr_t)&eaddr,
977			    SIS_EE_NODEADDR, 3, 0);
978		break;
979	}
980
981	/*
982	 * A SiS chip was detected. Inform the world.
983	 */
984	printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
985
986	sc->sis_unit = unit;
987	callout_handle_init(&sc->sis_stat_ch);
988	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
989
990	/*
991	 * Allocate the parent bus DMA tag appropriate for PCI.
992	 */
993#define SIS_NSEG_NEW 32
994	 error = bus_dma_tag_create(NULL,	/* parent */
995			1, 0,			/* alignment, boundary */
996			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
997			BUS_SPACE_MAXADDR,	/* highaddr */
998			NULL, NULL,		/* filter, filterarg */
999			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1000			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1001			BUS_DMA_ALLOCNOW,	/* flags */
1002			&sc->sis_parent_tag);
1003
1004	/*
1005	 * Now allocate a tag for the DMA descriptor lists.
1006	 * All of our lists are allocated as a contiguous block
1007	 * of memory.
1008	 */
1009	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1010			1, 0,			/* alignment, boundary */
1011			BUS_SPACE_MAXADDR,	/* lowaddr */
1012			BUS_SPACE_MAXADDR,	/* highaddr */
1013			NULL, NULL,		/* filter, filterarg */
1014			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1015			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1016			0,			/* flags */
1017			&sc->sis_ldata.sis_rx_tag);
1018
1019	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1020			1, 0,			/* alignment, boundary */
1021			BUS_SPACE_MAXADDR,	/* lowaddr */
1022			BUS_SPACE_MAXADDR,	/* highaddr */
1023			NULL, NULL,		/* filter, filterarg */
1024			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1025			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1026			0,			/* flags */
1027			&sc->sis_ldata.sis_tx_tag);
1028
1029	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1030			1, 0,			/* alignment, boundary */
1031			BUS_SPACE_MAXADDR,	/* lowaddr */
1032			BUS_SPACE_MAXADDR,	/* highaddr */
1033			NULL, NULL,		/* filter, filterarg */
1034			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1035			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1036			0,			/* flags */
1037			&sc->sis_tag);
1038
1039	/*
1040	 * Now allocate a chunk of DMA-able memory based on the
1041	 * tag we just created.
1042	 */
1043	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1044	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT,
1045	    &sc->sis_ldata.sis_tx_dmamap);
1046
1047	if (error) {
1048		printf("sis%d: no memory for list buffers!\n", unit);
1049		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1050		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1051		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1052		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1053		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1054		error = ENXIO;
1055		goto fail;
1056	}
1057
1058	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1059	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT,
1060	    &sc->sis_ldata.sis_rx_dmamap);
1061
1062	if (error) {
1063		printf("sis%d: no memory for list buffers!\n", unit);
1064		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1065		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1066		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1067		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1068		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1069		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1070		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1071		error = ENXIO;
1072		goto fail;
1073	}
1074
1075
1076	bzero(sc->sis_ldata.sis_tx_list, SIS_TX_LIST_SZ);
1077	bzero(sc->sis_ldata.sis_rx_list, SIS_RX_LIST_SZ);
1078
1079	/*
1080	 * Obtain the physical addresses of the RX and TX
1081	 * rings which we'll need later in the init routine.
1082	 */
1083	bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1084	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1085	    sizeof(struct sis_desc), sis_dma_map_ring,
1086	    &sc->sis_cdata.sis_tx_paddr, 0);
1087	bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1088	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1089	    sizeof(struct sis_desc), sis_dma_map_ring,
1090	    &sc->sis_cdata.sis_rx_paddr, 0);
1091
1092	ifp = &sc->arpcom.ac_if;
1093	ifp->if_softc = sc;
1094	ifp->if_unit = unit;
1095	ifp->if_name = "sis";
1096	ifp->if_mtu = ETHERMTU;
1097	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1098	ifp->if_ioctl = sis_ioctl;
1099	ifp->if_output = ether_output;
1100	ifp->if_start = sis_start;
1101	ifp->if_watchdog = sis_watchdog;
1102	ifp->if_init = sis_init;
1103	ifp->if_baudrate = 10000000;
1104	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1105
1106	/*
1107	 * Do MII setup.
1108	 */
1109	if (mii_phy_probe(dev, &sc->sis_miibus,
1110	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1111		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1112		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1113		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1114		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1115		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1116		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1117		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1118		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1119		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1120		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1121		error = ENXIO;
1122		goto fail;
1123	}
1124
1125	/*
1126	 * Call MI attach routine.
1127	 */
1128	ether_ifattach(ifp, eaddr);
1129
1130	/*
1131	 * Tell the upper layer(s) we support long frames.
1132	 */
1133	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1134	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1135
1136	callout_handle_init(&sc->sis_stat_ch);
1137	return(0);
1138
1139fail:
1140	mtx_destroy(&sc->sis_mtx);
1141	return(error);
1142}
1143
1144static int
1145sis_detach(dev)
1146	device_t		dev;
1147{
1148	struct sis_softc	*sc;
1149	struct ifnet		*ifp;
1150
1151
1152	sc = device_get_softc(dev);
1153	SIS_LOCK(sc);
1154	ifp = &sc->arpcom.ac_if;
1155
1156	sis_reset(sc);
1157	sis_stop(sc);
1158	ether_ifdetach(ifp);
1159
1160	bus_generic_detach(dev);
1161	device_delete_child(dev, sc->sis_miibus);
1162
1163	bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1164	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1165	bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1166
1167	bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1168	    sc->sis_ldata.sis_rx_dmamap);
1169	bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1170	    sc->sis_ldata.sis_tx_dmamap);
1171	bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1172	    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1173	bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1174	    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1175	bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1176	bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1177	bus_dma_tag_destroy(sc->sis_parent_tag);
1178
1179	SIS_UNLOCK(sc);
1180	mtx_destroy(&sc->sis_mtx);
1181
1182	return(0);
1183}
1184
1185/*
1186 * Initialize the transmit descriptors.
1187 */
1188static int
1189sis_list_tx_init(sc)
1190	struct sis_softc	*sc;
1191{
1192	struct sis_list_data	*ld;
1193	struct sis_ring_data	*cd;
1194	int			i, nexti;
1195
1196	cd = &sc->sis_cdata;
1197	ld = &sc->sis_ldata;
1198
1199	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1200		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1201			ld->sis_tx_list[i].sis_nextdesc =
1202			    &ld->sis_tx_list[nexti];
1203			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1204			    sc->sis_ldata.sis_tx_dmamap,
1205			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1206			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1207		ld->sis_tx_list[i].sis_mbuf = NULL;
1208		ld->sis_tx_list[i].sis_ptr = 0;
1209		ld->sis_tx_list[i].sis_ctl = 0;
1210	}
1211
1212	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1213
1214	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1215	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1216
1217	return(0);
1218}
1219
1220/*
1221 * Initialize the RX descriptors and allocate mbufs for them. Note that
1222 * we arrange the descriptors in a closed ring, so that the last descriptor
1223 * points back to the first.
1224 */
1225static int
1226sis_list_rx_init(sc)
1227	struct sis_softc	*sc;
1228{
1229	struct sis_list_data	*ld;
1230	struct sis_ring_data	*cd;
1231	int			i,nexti;
1232
1233	ld = &sc->sis_ldata;
1234	cd = &sc->sis_cdata;
1235
1236	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1237		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1238			return(ENOBUFS);
1239		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1240			ld->sis_rx_list[i].sis_nextdesc =
1241			    &ld->sis_rx_list[nexti];
1242			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1243			    sc->sis_ldata.sis_rx_dmamap,
1244			    &ld->sis_rx_list[nexti],
1245			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1246			    &ld->sis_rx_list[i], 0);
1247		}
1248
1249	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1250	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1251
1252	cd->sis_rx_prod = 0;
1253
1254	return(0);
1255}
1256
1257/*
1258 * Initialize an RX descriptor and attach an MBUF cluster.
1259 */
1260static int
1261sis_newbuf(sc, c, m)
1262	struct sis_softc	*sc;
1263	struct sis_desc		*c;
1264	struct mbuf		*m;
1265{
1266
1267	if (c == NULL)
1268		return(EINVAL);
1269
1270	if (m == NULL) {
1271		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1272		if (m == NULL)
1273			return(ENOBUFS);
1274	} else
1275		m->m_data = m->m_ext.ext_buf;
1276
1277	c->sis_mbuf = m;
1278	c->sis_ctl = SIS_RXLEN;
1279
1280	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1281	bus_dmamap_load(sc->sis_tag, c->sis_map,
1282	    mtod(m, void *), MCLBYTES,
1283	    sis_dma_map_desc_ptr, c, 0);
1284	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1285
1286	return(0);
1287}
1288
1289/*
1290 * A frame has been uploaded: pass the resulting mbuf chain up to
1291 * the higher level protocols.
1292 */
1293static void
1294sis_rxeof(sc)
1295	struct sis_softc	*sc;
1296{
1297        struct mbuf		*m;
1298        struct ifnet		*ifp;
1299	struct sis_desc		*cur_rx;
1300	int			i, total_len = 0;
1301	u_int32_t		rxstat;
1302
1303	ifp = &sc->arpcom.ac_if;
1304	i = sc->sis_cdata.sis_rx_prod;
1305
1306	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1307
1308#ifdef DEVICE_POLLING
1309		if (ifp->if_flags & IFF_POLLING) {
1310			if (sc->rxcycles <= 0)
1311				break;
1312			sc->rxcycles--;
1313		}
1314#endif /* DEVICE_POLLING */
1315		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1316		rxstat = cur_rx->sis_rxstat;
1317		bus_dmamap_sync(sc->sis_tag,
1318		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1319		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1320		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1321		m = cur_rx->sis_mbuf;
1322		cur_rx->sis_mbuf = NULL;
1323		total_len = SIS_RXBYTES(cur_rx);
1324		SIS_INC(i, SIS_RX_LIST_CNT);
1325
1326		/*
1327		 * If an error occurs, update stats, clear the
1328		 * status word and leave the mbuf cluster in place:
1329		 * it should simply get re-used next time this descriptor
1330	 	 * comes up in the ring.
1331		 */
1332		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1333			ifp->if_ierrors++;
1334			if (rxstat & SIS_RXSTAT_COLL)
1335				ifp->if_collisions++;
1336			sis_newbuf(sc, cur_rx, m);
1337			continue;
1338		}
1339
1340		/* No errors; receive the packet. */
1341#ifdef __i386__
1342		/*
1343		 * On the x86 we do not have alignment problems, so try to
1344		 * allocate a new buffer for the receive ring, and pass up
1345		 * the one where the packet is already, saving the expensive
1346		 * copy done in m_devget().
1347		 * If we are on an architecture with alignment problems, or
1348		 * if the allocation fails, then use m_devget and leave the
1349		 * existing buffer in the receive ring.
1350		 */
1351		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1352			m->m_pkthdr.len = m->m_len = total_len;
1353		else
1354#endif
1355		{
1356			struct mbuf		*m0;
1357			m0 = m_devget(mtod(m, char *), total_len,
1358				ETHER_ALIGN, ifp, NULL);
1359			sis_newbuf(sc, cur_rx, m);
1360			if (m0 == NULL) {
1361				ifp->if_ierrors++;
1362				continue;
1363			}
1364			m = m0;
1365		}
1366
1367		ifp->if_ipackets++;
1368		m->m_pkthdr.rcvif = ifp;
1369
1370		(*ifp->if_input)(ifp, m);
1371	}
1372
1373	sc->sis_cdata.sis_rx_prod = i;
1374
1375	return;
1376}
1377
1378static void
1379sis_rxeoc(sc)
1380	struct sis_softc	*sc;
1381{
1382	sis_rxeof(sc);
1383	sis_init(sc);
1384	return;
1385}
1386
1387/*
1388 * A frame was downloaded to the chip. It's safe for us to clean up
1389 * the list buffers.
1390 */
1391
1392static void
1393sis_txeof(sc)
1394	struct sis_softc	*sc;
1395{
1396	struct ifnet		*ifp;
1397	u_int32_t		idx;
1398
1399	ifp = &sc->arpcom.ac_if;
1400
1401	/*
1402	 * Go through our tx list and free mbufs for those
1403	 * frames that have been transmitted.
1404	 */
1405	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1406	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1407		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1408
1409		if (SIS_OWNDESC(cur_tx))
1410			break;
1411
1412		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1413			continue;
1414
1415		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1416			ifp->if_oerrors++;
1417			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1418				ifp->if_collisions++;
1419			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1420				ifp->if_collisions++;
1421		}
1422
1423		ifp->if_collisions +=
1424		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1425
1426		ifp->if_opackets++;
1427		if (cur_tx->sis_mbuf != NULL) {
1428			m_freem(cur_tx->sis_mbuf);
1429			cur_tx->sis_mbuf = NULL;
1430			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1431			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1432		}
1433	}
1434
1435	if (idx != sc->sis_cdata.sis_tx_cons) {
1436		/* we freed up some buffers */
1437		sc->sis_cdata.sis_tx_cons = idx;
1438		ifp->if_flags &= ~IFF_OACTIVE;
1439	}
1440
1441	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1442
1443	return;
1444}
1445
1446static void
1447sis_tick(xsc)
1448	void			*xsc;
1449{
1450	struct sis_softc	*sc;
1451	struct mii_data		*mii;
1452	struct ifnet		*ifp;
1453
1454	sc = xsc;
1455	SIS_LOCK(sc);
1456	ifp = &sc->arpcom.ac_if;
1457
1458	mii = device_get_softc(sc->sis_miibus);
1459	mii_tick(mii);
1460
1461	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1462	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1463		sc->sis_link++;
1464		if (ifp->if_snd.ifq_head != NULL)
1465			sis_start(ifp);
1466	}
1467
1468	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
1469
1470	SIS_UNLOCK(sc);
1471
1472	return;
1473}
1474
1475#ifdef DEVICE_POLLING
1476static poll_handler_t sis_poll;
1477
1478static void
1479sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1480{
1481	struct	sis_softc *sc = ifp->if_softc;
1482
1483	SIS_LOCK(sc);
1484	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1485		CSR_WRITE_4(sc, SIS_IER, 1);
1486		goto done;
1487	}
1488
1489	/*
1490	 * On the sis, reading the status register also clears it.
1491	 * So before returning to intr mode we must make sure that all
1492	 * possible pending sources of interrupts have been served.
1493	 * In practice this means run to completion the *eof routines,
1494	 * and then call the interrupt routine
1495	 */
1496	sc->rxcycles = count;
1497	sis_rxeof(sc);
1498	sis_txeof(sc);
1499	if (ifp->if_snd.ifq_head != NULL)
1500		sis_start(ifp);
1501
1502	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1503		u_int32_t	status;
1504
1505		/* Reading the ISR register clears all interrupts. */
1506		status = CSR_READ_4(sc, SIS_ISR);
1507
1508		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1509			sis_rxeoc(sc);
1510
1511		if (status & (SIS_ISR_RX_IDLE))
1512			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1513
1514		if (status & SIS_ISR_SYSERR) {
1515			sis_reset(sc);
1516			sis_init(sc);
1517		}
1518	}
1519done:
1520	SIS_UNLOCK(sc);
1521	return;
1522}
1523#endif /* DEVICE_POLLING */
1524
1525static void
1526sis_intr(arg)
1527	void			*arg;
1528{
1529	struct sis_softc	*sc;
1530	struct ifnet		*ifp;
1531	u_int32_t		status;
1532
1533	sc = arg;
1534	ifp = &sc->arpcom.ac_if;
1535
1536	SIS_LOCK(sc);
1537#ifdef DEVICE_POLLING
1538	if (ifp->if_flags & IFF_POLLING)
1539		goto done;
1540	if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1541		CSR_WRITE_4(sc, SIS_IER, 0);
1542		goto done;
1543	}
1544#endif /* DEVICE_POLLING */
1545
1546	/* Supress unwanted interrupts */
1547	if (!(ifp->if_flags & IFF_UP)) {
1548		sis_stop(sc);
1549		goto done;
1550	}
1551
1552	/* Disable interrupts. */
1553	CSR_WRITE_4(sc, SIS_IER, 0);
1554
1555	for (;;) {
1556		/* Reading the ISR register clears all interrupts. */
1557		status = CSR_READ_4(sc, SIS_ISR);
1558
1559		if ((status & SIS_INTRS) == 0)
1560			break;
1561
1562		if (status &
1563		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1564		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1565			sis_txeof(sc);
1566
1567		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1568			sis_rxeof(sc);
1569
1570		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1571			sis_rxeoc(sc);
1572
1573		if (status & (SIS_ISR_RX_IDLE))
1574			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1575
1576		if (status & SIS_ISR_SYSERR) {
1577			sis_reset(sc);
1578			sis_init(sc);
1579		}
1580	}
1581
1582	/* Re-enable interrupts. */
1583	CSR_WRITE_4(sc, SIS_IER, 1);
1584
1585	if (ifp->if_snd.ifq_head != NULL)
1586		sis_start(ifp);
1587done:
1588	SIS_UNLOCK(sc);
1589
1590	return;
1591}
1592
1593/*
1594 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1595 * pointers to the fragment pointers.
1596 */
1597static int
1598sis_encap(sc, m_head, txidx)
1599	struct sis_softc	*sc;
1600	struct mbuf		*m_head;
1601	u_int32_t		*txidx;
1602{
1603	struct sis_desc		*f = NULL;
1604	struct mbuf		*m;
1605	int			frag, cur, cnt = 0;
1606
1607	/*
1608 	 * Start packing the mbufs in this chain into
1609	 * the fragment pointers. Stop when we run out
1610 	 * of fragments or hit the end of the mbuf chain.
1611	 */
1612	m = m_head;
1613	cur = frag = *txidx;
1614
1615	for (m = m_head; m != NULL; m = m->m_next) {
1616		if (m->m_len != 0) {
1617			if ((SIS_TX_LIST_CNT -
1618			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1619				return(ENOBUFS);
1620			f = &sc->sis_ldata.sis_tx_list[frag];
1621			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1622			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1623			bus_dmamap_load(sc->sis_tag, f->sis_map,
1624			    mtod(m, void *), m->m_len,
1625			    sis_dma_map_desc_ptr, f, 0);
1626			bus_dmamap_sync(sc->sis_tag,
1627			    f->sis_map, BUS_DMASYNC_PREREAD);
1628			if (cnt != 0)
1629				f->sis_ctl |= SIS_CMDSTS_OWN;
1630			cur = frag;
1631			SIS_INC(frag, SIS_TX_LIST_CNT);
1632			cnt++;
1633		}
1634	}
1635
1636	if (m != NULL)
1637		return(ENOBUFS);
1638
1639	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1640	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1641	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1642	sc->sis_cdata.sis_tx_cnt += cnt;
1643	*txidx = frag;
1644
1645	return(0);
1646}
1647
1648/*
1649 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1650 * to the mbuf data regions directly in the transmit lists. We also save a
1651 * copy of the pointers since the transmit list fragment pointers are
1652 * physical addresses.
1653 */
1654
1655static void
1656sis_start(ifp)
1657	struct ifnet		*ifp;
1658{
1659	struct sis_softc	*sc;
1660	struct mbuf		*m_head = NULL;
1661	u_int32_t		idx;
1662
1663	sc = ifp->if_softc;
1664	SIS_LOCK(sc);
1665
1666	if (!sc->sis_link) {
1667		SIS_UNLOCK(sc);
1668		return;
1669	}
1670
1671	idx = sc->sis_cdata.sis_tx_prod;
1672
1673	if (ifp->if_flags & IFF_OACTIVE) {
1674		SIS_UNLOCK(sc);
1675		return;
1676	}
1677
1678	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1679		IF_DEQUEUE(&ifp->if_snd, m_head);
1680		if (m_head == NULL)
1681			break;
1682
1683		if (sis_encap(sc, m_head, &idx)) {
1684			IF_PREPEND(&ifp->if_snd, m_head);
1685			ifp->if_flags |= IFF_OACTIVE;
1686			break;
1687		}
1688
1689		/*
1690		 * If there's a BPF listener, bounce a copy of this frame
1691		 * to him.
1692		 */
1693		BPF_MTAP(ifp, m_head);
1694
1695	}
1696
1697	/* Transmit */
1698	sc->sis_cdata.sis_tx_prod = idx;
1699	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
1700
1701	/*
1702	 * Set a timeout in case the chip goes out to lunch.
1703	 */
1704	ifp->if_timer = 5;
1705
1706	SIS_UNLOCK(sc);
1707
1708	return;
1709}
1710
1711static void
1712sis_init(xsc)
1713	void			*xsc;
1714{
1715	struct sis_softc	*sc = xsc;
1716	struct ifnet		*ifp = &sc->arpcom.ac_if;
1717	struct mii_data		*mii;
1718
1719	SIS_LOCK(sc);
1720
1721	/*
1722	 * Cancel pending I/O and free all RX/TX buffers.
1723	 */
1724	sis_stop(sc);
1725
1726	mii = device_get_softc(sc->sis_miibus);
1727
1728	/* Set MAC address */
1729	if (sc->sis_type == SIS_TYPE_83815) {
1730		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
1731		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1732		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1733		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
1734		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1735		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1736		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
1737		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1738		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1739	} else {
1740		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
1741		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1742		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
1743		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
1744		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1745		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
1746		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
1747		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
1748		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
1749	}
1750
1751	/* Init circular RX list. */
1752	if (sis_list_rx_init(sc) == ENOBUFS) {
1753		printf("sis%d: initialization failed: no "
1754			"memory for rx buffers\n", sc->sis_unit);
1755		sis_stop(sc);
1756		SIS_UNLOCK(sc);
1757		return;
1758	}
1759
1760	/*
1761	 * Init tx descriptors.
1762	 */
1763	sis_list_tx_init(sc);
1764
1765	/*
1766	 * For the NatSemi chip, we have to explicitly enable the
1767	 * reception of ARP frames, as well as turn on the 'perfect
1768	 * match' filter where we store the station address, otherwise
1769	 * we won't receive unicasts meant for this host.
1770	 */
1771	if (sc->sis_type == SIS_TYPE_83815) {
1772		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
1773		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
1774	}
1775
1776	 /* If we want promiscuous mode, set the allframes bit. */
1777	if (ifp->if_flags & IFF_PROMISC) {
1778		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1779	} else {
1780		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
1781	}
1782
1783	/*
1784	 * Set the capture broadcast bit to capture broadcast frames.
1785	 */
1786	if (ifp->if_flags & IFF_BROADCAST) {
1787		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1788	} else {
1789		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
1790	}
1791
1792	/*
1793	 * Load the multicast filter.
1794	 */
1795	if (sc->sis_type == SIS_TYPE_83815)
1796		sis_setmulti_ns(sc);
1797	else
1798		sis_setmulti_sis(sc);
1799
1800	/* Turn the receive filter on */
1801	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
1802
1803	/*
1804	 * Load the address of the RX and TX lists.
1805	 */
1806	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
1807	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
1808
1809	/* Set RX configuration */
1810	CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG);
1811
1812	/* Accept Long Packets for VLAN support */
1813	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
1814
1815	/* Set TX configuration */
1816	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
1817		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
1818	} else {
1819		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
1820	}
1821
1822	/* Set full/half duplex mode. */
1823	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1824		SIS_SETBIT(sc, SIS_TX_CFG,
1825		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1826		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1827	} else {
1828		SIS_CLRBIT(sc, SIS_TX_CFG,
1829		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
1830		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
1831	}
1832
1833	/*
1834	 * Enable interrupts.
1835	 */
1836	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
1837#ifdef DEVICE_POLLING
1838	/*
1839	 * ... only enable interrupts if we are not polling, make sure
1840	 * they are off otherwise.
1841	 */
1842	if (ifp->if_flags & IFF_POLLING)
1843		CSR_WRITE_4(sc, SIS_IER, 0);
1844	else
1845#endif /* DEVICE_POLLING */
1846	CSR_WRITE_4(sc, SIS_IER, 1);
1847
1848	/* Enable receiver and transmitter. */
1849	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
1850	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1851
1852#ifdef notdef
1853	mii_mediachg(mii);
1854#endif
1855
1856	/*
1857	 * Page 75 of the DP83815 manual recommends the
1858	 * following register settings "for optimum
1859	 * performance." Note however that at least three
1860	 * of the registers are listed as "reserved" in
1861	 * the register map, so who knows what they do.
1862	 */
1863	if (sc->sis_type == SIS_TYPE_83815) {
1864		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
1865		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
1866		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
1867		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
1868		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
1869	}
1870
1871	ifp->if_flags |= IFF_RUNNING;
1872	ifp->if_flags &= ~IFF_OACTIVE;
1873
1874	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
1875
1876	SIS_UNLOCK(sc);
1877
1878	return;
1879}
1880
1881/*
1882 * Set media options.
1883 */
1884static int
1885sis_ifmedia_upd(ifp)
1886	struct ifnet		*ifp;
1887{
1888	struct sis_softc	*sc;
1889	struct mii_data		*mii;
1890
1891	sc = ifp->if_softc;
1892
1893	mii = device_get_softc(sc->sis_miibus);
1894	sc->sis_link = 0;
1895	if (mii->mii_instance) {
1896		struct mii_softc	*miisc;
1897		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1898			mii_phy_reset(miisc);
1899	}
1900	mii_mediachg(mii);
1901
1902	return(0);
1903}
1904
1905/*
1906 * Report current media status.
1907 */
1908static void
1909sis_ifmedia_sts(ifp, ifmr)
1910	struct ifnet		*ifp;
1911	struct ifmediareq	*ifmr;
1912{
1913	struct sis_softc	*sc;
1914	struct mii_data		*mii;
1915
1916	sc = ifp->if_softc;
1917
1918	mii = device_get_softc(sc->sis_miibus);
1919	mii_pollstat(mii);
1920	ifmr->ifm_active = mii->mii_media_active;
1921	ifmr->ifm_status = mii->mii_media_status;
1922
1923	return;
1924}
1925
1926static int
1927sis_ioctl(ifp, command, data)
1928	struct ifnet		*ifp;
1929	u_long			command;
1930	caddr_t			data;
1931{
1932	struct sis_softc	*sc = ifp->if_softc;
1933	struct ifreq		*ifr = (struct ifreq *) data;
1934	struct mii_data		*mii;
1935	int			error = 0;
1936
1937	switch(command) {
1938	case SIOCSIFFLAGS:
1939		if (ifp->if_flags & IFF_UP) {
1940			sis_init(sc);
1941		} else {
1942			if (ifp->if_flags & IFF_RUNNING)
1943				sis_stop(sc);
1944		}
1945		error = 0;
1946		break;
1947	case SIOCADDMULTI:
1948	case SIOCDELMULTI:
1949		SIS_LOCK(sc);
1950		if (sc->sis_type == SIS_TYPE_83815)
1951			sis_setmulti_ns(sc);
1952		else
1953			sis_setmulti_sis(sc);
1954		SIS_UNLOCK(sc);
1955		error = 0;
1956		break;
1957	case SIOCGIFMEDIA:
1958	case SIOCSIFMEDIA:
1959		mii = device_get_softc(sc->sis_miibus);
1960		SIS_LOCK(sc);
1961		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1962		SIS_UNLOCK(sc);
1963		break;
1964	default:
1965		error = ether_ioctl(ifp, command, data);
1966		break;
1967	}
1968
1969	return(error);
1970}
1971
1972static void
1973sis_watchdog(ifp)
1974	struct ifnet		*ifp;
1975{
1976	struct sis_softc	*sc;
1977
1978	sc = ifp->if_softc;
1979
1980	SIS_LOCK(sc);
1981
1982	ifp->if_oerrors++;
1983	printf("sis%d: watchdog timeout\n", sc->sis_unit);
1984
1985	sis_stop(sc);
1986	sis_reset(sc);
1987	sis_init(sc);
1988
1989	if (ifp->if_snd.ifq_head != NULL)
1990		sis_start(ifp);
1991
1992	SIS_UNLOCK(sc);
1993
1994	return;
1995}
1996
1997/*
1998 * Stop the adapter and free any mbufs allocated to the
1999 * RX and TX lists.
2000 */
2001static void
2002sis_stop(sc)
2003	struct sis_softc	*sc;
2004{
2005	register int		i;
2006	struct ifnet		*ifp;
2007
2008	SIS_LOCK(sc);
2009	ifp = &sc->arpcom.ac_if;
2010	ifp->if_timer = 0;
2011
2012	untimeout(sis_tick, sc, sc->sis_stat_ch);
2013
2014	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2015#ifdef DEVICE_POLLING
2016	ether_poll_deregister(ifp);
2017#endif
2018	CSR_WRITE_4(sc, SIS_IER, 0);
2019	CSR_WRITE_4(sc, SIS_IMR, 0);
2020	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2021	DELAY(1000);
2022	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2023	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2024
2025	sc->sis_link = 0;
2026
2027	/*
2028	 * Free data in the RX lists.
2029	 */
2030	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2031		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2032			bus_dmamap_unload(sc->sis_tag,
2033			    sc->sis_ldata.sis_rx_list[i].sis_map);
2034			bus_dmamap_destroy(sc->sis_tag,
2035			    sc->sis_ldata.sis_rx_list[i].sis_map);
2036			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2037			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2038		}
2039	}
2040	bzero(sc->sis_ldata.sis_rx_list,
2041		sizeof(sc->sis_ldata.sis_rx_list));
2042
2043	/*
2044	 * Free the TX list buffers.
2045	 */
2046	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2047		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2048			bus_dmamap_unload(sc->sis_tag,
2049			    sc->sis_ldata.sis_tx_list[i].sis_map);
2050			bus_dmamap_destroy(sc->sis_tag,
2051			    sc->sis_ldata.sis_tx_list[i].sis_map);
2052			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2053			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2054		}
2055	}
2056
2057	bzero(sc->sis_ldata.sis_tx_list,
2058		sizeof(sc->sis_ldata.sis_tx_list));
2059
2060	SIS_UNLOCK(sc);
2061
2062	return;
2063}
2064
2065/*
2066 * Stop all chip I/O so that the kernel's probe routines don't
2067 * get confused by errant DMAs when rebooting.
2068 */
2069static void
2070sis_shutdown(dev)
2071	device_t		dev;
2072{
2073	struct sis_softc	*sc;
2074
2075	sc = device_get_softc(dev);
2076	SIS_LOCK(sc);
2077	sis_reset(sc);
2078	sis_stop(sc);
2079	SIS_UNLOCK(sc);
2080
2081	return;
2082}
2083