if_sis.c revision 117126
1/*
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are
35 * available from http://www.sis.com.tw.
36 *
37 * This driver also supports the NatSemi DP83815. Datasheets are
38 * available from http://www.national.com.
39 *
40 * Written by Bill Paul <wpaul@ee.columbia.edu>
41 * Electrical Engineering Department
42 * Columbia University, New York City
43 */
44
45/*
46 * The SiS 900 is a fairly simple chip. It uses bus master DMA with
47 * simple TX and RX descriptors of 3 longwords in size. The receiver
48 * has a single perfect filter entry for the station address and a
49 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based
50 * transceiver while the 7016 requires an external transceiver chip.
51 * Both chips offer the standard bit-bang MII interface as well as
52 * an enchanced PHY interface which simplifies accessing MII registers.
53 *
54 * The only downside to this chipset is that RX descriptors must be
55 * longword aligned.
56 */
57
58#include <sys/cdefs.h>
59__FBSDID("$FreeBSD: head/sys/pci/if_sis.c 117126 2003-07-01 15:52:06Z scottl $");
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/sockio.h>
64#include <sys/mbuf.h>
65#include <sys/malloc.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/sysctl.h>
69
70#include <net/if.h>
71#include <net/if_arp.h>
72#include <net/ethernet.h>
73#include <net/if_dl.h>
74#include <net/if_media.h>
75#include <net/if_types.h>
76#include <net/if_vlan_var.h>
77
78#include <net/bpf.h>
79
80#include <machine/bus_pio.h>
81#include <machine/bus_memio.h>
82#include <machine/bus.h>
83#include <machine/resource.h>
84#include <sys/bus.h>
85#include <sys/rman.h>
86
87#include <dev/mii/mii.h>
88#include <dev/mii/miivar.h>
89
90#include <pci/pcireg.h>
91#include <pci/pcivar.h>
92
93#define SIS_USEIOSPACE
94
95#include <pci/if_sisreg.h>
96
97MODULE_DEPEND(sis, pci, 1, 1, 1);
98MODULE_DEPEND(sis, ether, 1, 1, 1);
99MODULE_DEPEND(sis, miibus, 1, 1, 1);
100
101/* "controller miibus0" required.  See GENERIC if you get errors here. */
102#include "miibus_if.h"
103
104/*
105 * Various supported device vendors/types and their names.
106 */
107static struct sis_type sis_devs[] = {
108	{ SIS_VENDORID, SIS_DEVICEID_900, "SiS 900 10/100BaseTX" },
109	{ SIS_VENDORID, SIS_DEVICEID_7016, "SiS 7016 10/100BaseTX" },
110	{ NS_VENDORID, NS_DEVICEID_DP83815, "NatSemi DP83815 10/100BaseTX" },
111	{ 0, 0, NULL }
112};
113
114static int sis_probe		(device_t);
115static int sis_attach		(device_t);
116static int sis_detach		(device_t);
117
118static int sis_newbuf		(struct sis_softc *,
119					struct sis_desc *, struct mbuf *);
120static int sis_encap		(struct sis_softc *,
121					struct mbuf *, u_int32_t *);
122static void sis_rxeof		(struct sis_softc *);
123static void sis_rxeoc		(struct sis_softc *);
124static void sis_txeof		(struct sis_softc *);
125static void sis_intr		(void *);
126static void sis_tick		(void *);
127static void sis_start		(struct ifnet *);
128static int sis_ioctl		(struct ifnet *, u_long, caddr_t);
129static void sis_init		(void *);
130static void sis_stop		(struct sis_softc *);
131static void sis_watchdog		(struct ifnet *);
132static void sis_shutdown		(device_t);
133static int sis_ifmedia_upd	(struct ifnet *);
134static void sis_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
135
136static u_int16_t sis_reverse	(u_int16_t);
137static void sis_delay		(struct sis_softc *);
138static void sis_eeprom_idle	(struct sis_softc *);
139static void sis_eeprom_putbyte	(struct sis_softc *, int);
140static void sis_eeprom_getword	(struct sis_softc *, int, u_int16_t *);
141static void sis_read_eeprom	(struct sis_softc *, caddr_t, int, int, int);
142#ifdef __i386__
143static void sis_read_cmos	(struct sis_softc *, device_t, caddr_t,
144							int, int);
145static void sis_read_mac	(struct sis_softc *, device_t, caddr_t);
146static device_t sis_find_bridge	(device_t);
147#endif
148
149static void sis_mii_sync	(struct sis_softc *);
150static void sis_mii_send	(struct sis_softc *, u_int32_t, int);
151static int sis_mii_readreg	(struct sis_softc *, struct sis_mii_frame *);
152static int sis_mii_writereg	(struct sis_softc *, struct sis_mii_frame *);
153static int sis_miibus_readreg	(device_t, int, int);
154static int sis_miibus_writereg	(device_t, int, int, int);
155static void sis_miibus_statchg	(device_t);
156
157static void sis_setmulti_sis	(struct sis_softc *);
158static void sis_setmulti_ns	(struct sis_softc *);
159static u_int32_t sis_crc	(struct sis_softc *, caddr_t);
160static void sis_reset		(struct sis_softc *);
161static int sis_list_rx_init	(struct sis_softc *);
162static int sis_list_tx_init	(struct sis_softc *);
163
164static void sis_dma_map_desc_ptr	(void *, bus_dma_segment_t *, int, int);
165static void sis_dma_map_desc_next	(void *, bus_dma_segment_t *, int, int);
166static void sis_dma_map_ring		(void *, bus_dma_segment_t *, int, int);
167#ifdef SIS_USEIOSPACE
168#define SIS_RES			SYS_RES_IOPORT
169#define SIS_RID			SIS_PCI_LOIO
170#else
171#define SIS_RES			SYS_RES_MEMORY
172#define SIS_RID			SIS_PCI_LOMEM
173#endif
174
175static device_method_t sis_methods[] = {
176	/* Device interface */
177	DEVMETHOD(device_probe,		sis_probe),
178	DEVMETHOD(device_attach,	sis_attach),
179	DEVMETHOD(device_detach,	sis_detach),
180	DEVMETHOD(device_shutdown,	sis_shutdown),
181
182	/* bus interface */
183	DEVMETHOD(bus_print_child,	bus_generic_print_child),
184	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
185
186	/* MII interface */
187	DEVMETHOD(miibus_readreg,	sis_miibus_readreg),
188	DEVMETHOD(miibus_writereg,	sis_miibus_writereg),
189	DEVMETHOD(miibus_statchg,	sis_miibus_statchg),
190
191	{ 0, 0 }
192};
193
194static driver_t sis_driver = {
195	"sis",
196	sis_methods,
197	sizeof(struct sis_softc)
198};
199
200static devclass_t sis_devclass;
201
202DRIVER_MODULE(sis, pci, sis_driver, sis_devclass, 0, 0);
203DRIVER_MODULE(miibus, sis, miibus_driver, miibus_devclass, 0, 0);
204
205#define SIS_SETBIT(sc, reg, x)				\
206	CSR_WRITE_4(sc, reg,				\
207		CSR_READ_4(sc, reg) | (x))
208
209#define SIS_CLRBIT(sc, reg, x)				\
210	CSR_WRITE_4(sc, reg,				\
211		CSR_READ_4(sc, reg) & ~(x))
212
213#define SIO_SET(x)					\
214	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x)
215
216#define SIO_CLR(x)					\
217	CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x)
218
219static void
220sis_dma_map_desc_next(arg, segs, nseg, error)
221	void *arg;
222	bus_dma_segment_t *segs;
223	int nseg, error;
224{
225	struct sis_desc	*r;
226
227	r = arg;
228	r->sis_next = segs->ds_addr;
229
230	return;
231}
232
233static void
234sis_dma_map_desc_ptr(arg, segs, nseg, error)
235	void *arg;
236	bus_dma_segment_t *segs;
237	int nseg, error;
238{
239	struct sis_desc	*r;
240
241	r = arg;
242	r->sis_ptr = segs->ds_addr;
243
244	return;
245}
246
247static void
248sis_dma_map_ring(arg, segs, nseg, error)
249	void *arg;
250	bus_dma_segment_t *segs;
251	int nseg, error;
252{
253	u_int32_t *p;
254
255	p = arg;
256	*p = segs->ds_addr;
257
258	return;
259}
260
261/*
262 * Routine to reverse the bits in a word. Stolen almost
263 * verbatim from /usr/games/fortune.
264 */
265static u_int16_t
266sis_reverse(n)
267	u_int16_t		n;
268{
269	n = ((n >>  1) & 0x5555) | ((n <<  1) & 0xaaaa);
270	n = ((n >>  2) & 0x3333) | ((n <<  2) & 0xcccc);
271	n = ((n >>  4) & 0x0f0f) | ((n <<  4) & 0xf0f0);
272	n = ((n >>  8) & 0x00ff) | ((n <<  8) & 0xff00);
273
274	return(n);
275}
276
277static void
278sis_delay(sc)
279	struct sis_softc	*sc;
280{
281	int			idx;
282
283	for (idx = (300 / 33) + 1; idx > 0; idx--)
284		CSR_READ_4(sc, SIS_CSR);
285
286	return;
287}
288
289static void
290sis_eeprom_idle(sc)
291	struct sis_softc	*sc;
292{
293	register int		i;
294
295	SIO_SET(SIS_EECTL_CSEL);
296	sis_delay(sc);
297	SIO_SET(SIS_EECTL_CLK);
298	sis_delay(sc);
299
300	for (i = 0; i < 25; i++) {
301		SIO_CLR(SIS_EECTL_CLK);
302		sis_delay(sc);
303		SIO_SET(SIS_EECTL_CLK);
304		sis_delay(sc);
305	}
306
307	SIO_CLR(SIS_EECTL_CLK);
308	sis_delay(sc);
309	SIO_CLR(SIS_EECTL_CSEL);
310	sis_delay(sc);
311	CSR_WRITE_4(sc, SIS_EECTL, 0x00000000);
312
313	return;
314}
315
316/*
317 * Send a read command and address to the EEPROM, check for ACK.
318 */
319static void
320sis_eeprom_putbyte(sc, addr)
321	struct sis_softc	*sc;
322	int			addr;
323{
324	register int		d, i;
325
326	d = addr | SIS_EECMD_READ;
327
328	/*
329	 * Feed in each bit and stobe the clock.
330	 */
331	for (i = 0x400; i; i >>= 1) {
332		if (d & i) {
333			SIO_SET(SIS_EECTL_DIN);
334		} else {
335			SIO_CLR(SIS_EECTL_DIN);
336		}
337		sis_delay(sc);
338		SIO_SET(SIS_EECTL_CLK);
339		sis_delay(sc);
340		SIO_CLR(SIS_EECTL_CLK);
341		sis_delay(sc);
342	}
343
344	return;
345}
346
347/*
348 * Read a word of data stored in the EEPROM at address 'addr.'
349 */
350static void
351sis_eeprom_getword(sc, addr, dest)
352	struct sis_softc	*sc;
353	int			addr;
354	u_int16_t		*dest;
355{
356	register int		i;
357	u_int16_t		word = 0;
358
359	/* Force EEPROM to idle state. */
360	sis_eeprom_idle(sc);
361
362	/* Enter EEPROM access mode. */
363	sis_delay(sc);
364	SIO_CLR(SIS_EECTL_CLK);
365	sis_delay(sc);
366	SIO_SET(SIS_EECTL_CSEL);
367	sis_delay(sc);
368
369	/*
370	 * Send address of word we want to read.
371	 */
372	sis_eeprom_putbyte(sc, addr);
373
374	/*
375	 * Start reading bits from EEPROM.
376	 */
377	for (i = 0x8000; i; i >>= 1) {
378		SIO_SET(SIS_EECTL_CLK);
379		sis_delay(sc);
380		if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT)
381			word |= i;
382		sis_delay(sc);
383		SIO_CLR(SIS_EECTL_CLK);
384		sis_delay(sc);
385	}
386
387	/* Turn off EEPROM access mode. */
388	sis_eeprom_idle(sc);
389
390	*dest = word;
391
392	return;
393}
394
395/*
396 * Read a sequence of words from the EEPROM.
397 */
398static void
399sis_read_eeprom(sc, dest, off, cnt, swap)
400	struct sis_softc	*sc;
401	caddr_t			dest;
402	int			off;
403	int			cnt;
404	int			swap;
405{
406	int			i;
407	u_int16_t		word = 0, *ptr;
408
409	for (i = 0; i < cnt; i++) {
410		sis_eeprom_getword(sc, off + i, &word);
411		ptr = (u_int16_t *)(dest + (i * 2));
412		if (swap)
413			*ptr = ntohs(word);
414		else
415			*ptr = word;
416	}
417
418	return;
419}
420
421#ifdef __i386__
422static device_t
423sis_find_bridge(dev)
424	device_t		dev;
425{
426	devclass_t		pci_devclass;
427	device_t		*pci_devices;
428	int			pci_count = 0;
429	device_t		*pci_children;
430	int			pci_childcount = 0;
431	device_t		*busp, *childp;
432	device_t		child = NULL;
433	int			i, j;
434
435	if ((pci_devclass = devclass_find("pci")) == NULL)
436		return(NULL);
437
438	devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
439
440	for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
441		pci_childcount = 0;
442		device_get_children(*busp, &pci_children, &pci_childcount);
443		for (j = 0, childp = pci_children;
444		    j < pci_childcount; j++, childp++) {
445			if (pci_get_vendor(*childp) == SIS_VENDORID &&
446			    pci_get_device(*childp) == 0x0008) {
447				child = *childp;
448				goto done;
449			}
450		}
451	}
452
453done:
454	free(pci_devices, M_TEMP);
455	free(pci_children, M_TEMP);
456	return(child);
457}
458
459static void
460sis_read_cmos(sc, dev, dest, off, cnt)
461	struct sis_softc	*sc;
462	device_t		dev;
463	caddr_t			dest;
464	int			off;
465	int			cnt;
466{
467	device_t		bridge;
468	u_int8_t		reg;
469	int			i;
470	bus_space_tag_t		btag;
471
472	bridge = sis_find_bridge(dev);
473	if (bridge == NULL)
474		return;
475	reg = pci_read_config(bridge, 0x48, 1);
476	pci_write_config(bridge, 0x48, reg|0x40, 1);
477
478	/* XXX */
479	btag = I386_BUS_SPACE_IO;
480
481	for (i = 0; i < cnt; i++) {
482		bus_space_write_1(btag, 0x0, 0x70, i + off);
483		*(dest + i) = bus_space_read_1(btag, 0x0, 0x71);
484	}
485
486	pci_write_config(bridge, 0x48, reg & ~0x40, 1);
487	return;
488}
489
490static void
491sis_read_mac(sc, dev, dest)
492	struct sis_softc	*sc;
493	device_t		dev;
494	caddr_t			dest;
495{
496	u_int32_t		filtsave, csrsave;
497
498	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
499	csrsave = CSR_READ_4(sc, SIS_CSR);
500
501	CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | filtsave);
502	CSR_WRITE_4(sc, SIS_CSR, 0);
503
504	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave & ~SIS_RXFILTCTL_ENABLE);
505
506	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
507	((u_int16_t *)dest)[0] = CSR_READ_2(sc, SIS_RXFILT_DATA);
508	CSR_WRITE_4(sc, SIS_RXFILT_CTL,SIS_FILTADDR_PAR1);
509	((u_int16_t *)dest)[1] = CSR_READ_2(sc, SIS_RXFILT_DATA);
510	CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
511	((u_int16_t *)dest)[2] = CSR_READ_2(sc, SIS_RXFILT_DATA);
512
513	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
514	CSR_WRITE_4(sc, SIS_CSR, csrsave);
515	return;
516}
517#endif
518
519/*
520 * Sync the PHYs by setting data bit and strobing the clock 32 times.
521 */
522static void sis_mii_sync(sc)
523	struct sis_softc	*sc;
524{
525	register int		i;
526
527 	SIO_SET(SIS_MII_DIR|SIS_MII_DATA);
528
529 	for (i = 0; i < 32; i++) {
530 		SIO_SET(SIS_MII_CLK);
531 		DELAY(1);
532 		SIO_CLR(SIS_MII_CLK);
533 		DELAY(1);
534 	}
535
536 	return;
537}
538
539/*
540 * Clock a series of bits through the MII.
541 */
542static void sis_mii_send(sc, bits, cnt)
543	struct sis_softc	*sc;
544	u_int32_t		bits;
545	int			cnt;
546{
547	int			i;
548
549	SIO_CLR(SIS_MII_CLK);
550
551	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
552		if (bits & i) {
553			SIO_SET(SIS_MII_DATA);
554		} else {
555			SIO_CLR(SIS_MII_DATA);
556		}
557		DELAY(1);
558		SIO_CLR(SIS_MII_CLK);
559		DELAY(1);
560		SIO_SET(SIS_MII_CLK);
561	}
562}
563
564/*
565 * Read an PHY register through the MII.
566 */
567static int sis_mii_readreg(sc, frame)
568	struct sis_softc	*sc;
569	struct sis_mii_frame	*frame;
570
571{
572	int			i, ack, s;
573
574	s = splimp();
575
576	/*
577	 * Set up frame for RX.
578	 */
579	frame->mii_stdelim = SIS_MII_STARTDELIM;
580	frame->mii_opcode = SIS_MII_READOP;
581	frame->mii_turnaround = 0;
582	frame->mii_data = 0;
583
584	/*
585 	 * Turn on data xmit.
586	 */
587	SIO_SET(SIS_MII_DIR);
588
589	sis_mii_sync(sc);
590
591	/*
592	 * Send command/address info.
593	 */
594	sis_mii_send(sc, frame->mii_stdelim, 2);
595	sis_mii_send(sc, frame->mii_opcode, 2);
596	sis_mii_send(sc, frame->mii_phyaddr, 5);
597	sis_mii_send(sc, frame->mii_regaddr, 5);
598
599	/* Idle bit */
600	SIO_CLR((SIS_MII_CLK|SIS_MII_DATA));
601	DELAY(1);
602	SIO_SET(SIS_MII_CLK);
603	DELAY(1);
604
605	/* Turn off xmit. */
606	SIO_CLR(SIS_MII_DIR);
607
608	/* Check for ack */
609	SIO_CLR(SIS_MII_CLK);
610	DELAY(1);
611	ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA;
612	SIO_SET(SIS_MII_CLK);
613	DELAY(1);
614
615	/*
616	 * Now try reading data bits. If the ack failed, we still
617	 * need to clock through 16 cycles to keep the PHY(s) in sync.
618	 */
619	if (ack) {
620		for(i = 0; i < 16; i++) {
621			SIO_CLR(SIS_MII_CLK);
622			DELAY(1);
623			SIO_SET(SIS_MII_CLK);
624			DELAY(1);
625		}
626		goto fail;
627	}
628
629	for (i = 0x8000; i; i >>= 1) {
630		SIO_CLR(SIS_MII_CLK);
631		DELAY(1);
632		if (!ack) {
633			if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA)
634				frame->mii_data |= i;
635			DELAY(1);
636		}
637		SIO_SET(SIS_MII_CLK);
638		DELAY(1);
639	}
640
641fail:
642
643	SIO_CLR(SIS_MII_CLK);
644	DELAY(1);
645	SIO_SET(SIS_MII_CLK);
646	DELAY(1);
647
648	splx(s);
649
650	if (ack)
651		return(1);
652	return(0);
653}
654
655/*
656 * Write to a PHY register through the MII.
657 */
658static int sis_mii_writereg(sc, frame)
659	struct sis_softc	*sc;
660	struct sis_mii_frame	*frame;
661
662{
663	int			s;
664
665	 s = splimp();
666 	/*
667 	 * Set up frame for TX.
668 	 */
669
670 	frame->mii_stdelim = SIS_MII_STARTDELIM;
671 	frame->mii_opcode = SIS_MII_WRITEOP;
672 	frame->mii_turnaround = SIS_MII_TURNAROUND;
673
674 	/*
675  	 * Turn on data output.
676 	 */
677 	SIO_SET(SIS_MII_DIR);
678
679 	sis_mii_sync(sc);
680
681 	sis_mii_send(sc, frame->mii_stdelim, 2);
682 	sis_mii_send(sc, frame->mii_opcode, 2);
683 	sis_mii_send(sc, frame->mii_phyaddr, 5);
684 	sis_mii_send(sc, frame->mii_regaddr, 5);
685 	sis_mii_send(sc, frame->mii_turnaround, 2);
686 	sis_mii_send(sc, frame->mii_data, 16);
687
688 	/* Idle bit. */
689 	SIO_SET(SIS_MII_CLK);
690 	DELAY(1);
691 	SIO_CLR(SIS_MII_CLK);
692 	DELAY(1);
693
694 	/*
695 	 * Turn off xmit.
696 	 */
697 	SIO_CLR(SIS_MII_DIR);
698
699 	splx(s);
700
701 	return(0);
702}
703
704static int
705sis_miibus_readreg(dev, phy, reg)
706	device_t		dev;
707	int			phy, reg;
708{
709	struct sis_softc	*sc;
710	struct sis_mii_frame    frame;
711
712	sc = device_get_softc(dev);
713
714	if (sc->sis_type == SIS_TYPE_83815) {
715		if (phy != 0)
716			return(0);
717		/*
718		 * The NatSemi chip can take a while after
719		 * a reset to come ready, during which the BMSR
720		 * returns a value of 0. This is *never* supposed
721		 * to happen: some of the BMSR bits are meant to
722		 * be hardwired in the on position, and this can
723		 * confuse the miibus code a bit during the probe
724		 * and attach phase. So we make an effort to check
725		 * for this condition and wait for it to clear.
726		 */
727		if (!CSR_READ_4(sc, NS_BMSR))
728			DELAY(1000);
729		return CSR_READ_4(sc, NS_BMCR + (reg * 4));
730	}
731
732	/*
733	 * Chipsets < SIS_635 seem not to be able to read/write
734	 * through mdio. Use the enhanced PHY access register
735	 * again for them.
736	 */
737	if (sc->sis_type == SIS_TYPE_900 &&
738	    sc->sis_rev < SIS_REV_635) {
739		int i, val = 0;
740
741		if (phy != 0)
742			return(0);
743
744		CSR_WRITE_4(sc, SIS_PHYCTL,
745		    (phy << 11) | (reg << 6) | SIS_PHYOP_READ);
746		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
747
748		for (i = 0; i < SIS_TIMEOUT; i++) {
749			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
750				break;
751		}
752
753		if (i == SIS_TIMEOUT) {
754			printf("sis%d: PHY failed to come ready\n",
755			    sc->sis_unit);
756			return(0);
757		}
758
759		val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF;
760
761		if (val == 0xFFFF)
762			return(0);
763
764		return(val);
765	} else {
766		bzero((char *)&frame, sizeof(frame));
767
768		frame.mii_phyaddr = phy;
769		frame.mii_regaddr = reg;
770		sis_mii_readreg(sc, &frame);
771
772		return(frame.mii_data);
773	}
774}
775
776static int
777sis_miibus_writereg(dev, phy, reg, data)
778	device_t		dev;
779	int			phy, reg, data;
780{
781	struct sis_softc	*sc;
782	struct sis_mii_frame	frame;
783
784	sc = device_get_softc(dev);
785
786	if (sc->sis_type == SIS_TYPE_83815) {
787		if (phy != 0)
788			return(0);
789		CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data);
790		return(0);
791	}
792
793	/*
794	 * Chipsets < SIS_635 seem not to be able to read/write
795	 * through mdio. Use the enhanced PHY access register
796	 * again for them.
797	 */
798	if (sc->sis_type == SIS_TYPE_900 &&
799	    sc->sis_rev < SIS_REV_635) {
800		int i;
801
802		if (phy != 0)
803			return(0);
804
805		CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) |
806		    (reg << 6) | SIS_PHYOP_WRITE);
807		SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS);
808
809		for (i = 0; i < SIS_TIMEOUT; i++) {
810			if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS))
811				break;
812		}
813
814		if (i == SIS_TIMEOUT)
815			printf("sis%d: PHY failed to come ready\n",
816			    sc->sis_unit);
817	} else {
818		bzero((char *)&frame, sizeof(frame));
819
820		frame.mii_phyaddr = phy;
821		frame.mii_regaddr = reg;
822		frame.mii_data = data;
823		sis_mii_writereg(sc, &frame);
824	}
825	return(0);
826}
827
828static void
829sis_miibus_statchg(dev)
830	device_t		dev;
831{
832	struct sis_softc	*sc;
833
834	sc = device_get_softc(dev);
835	sis_init(sc);
836
837	return;
838}
839
840static u_int32_t
841sis_crc(sc, addr)
842	struct sis_softc	*sc;
843	caddr_t			addr;
844{
845	u_int32_t		crc, carry;
846	int			i, j;
847	u_int8_t		c;
848
849	/* Compute CRC for the address value. */
850	crc = 0xFFFFFFFF; /* initial value */
851
852	for (i = 0; i < 6; i++) {
853		c = *(addr + i);
854		for (j = 0; j < 8; j++) {
855			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
856			crc <<= 1;
857			c >>= 1;
858			if (carry)
859				crc = (crc ^ 0x04c11db6) | carry;
860		}
861	}
862
863	/*
864	 * return the filter bit position
865	 *
866	 * The NatSemi chip has a 512-bit filter, which is
867	 * different than the SiS, so we special-case it.
868	 */
869	if (sc->sis_type == SIS_TYPE_83815)
870		return (crc >> 23);
871	else if (sc->sis_rev >= SIS_REV_635 ||
872	    sc->sis_rev == SIS_REV_900B)
873		return (crc >> 24);
874	else
875		return (crc >> 25);
876}
877
878static void
879sis_setmulti_ns(sc)
880	struct sis_softc	*sc;
881{
882	struct ifnet		*ifp;
883	struct ifmultiaddr	*ifma;
884	u_int32_t		h = 0, i, filtsave;
885	int			bit, index;
886
887	ifp = &sc->arpcom.ac_if;
888
889	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
890		SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
891		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
892		return;
893	}
894
895	/*
896	 * We have to explicitly enable the multicast hash table
897	 * on the NatSemi chip if we want to use it, which we do.
898	 */
899	SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH);
900	SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI);
901
902	filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL);
903
904	/* first, zot all the existing hash bits */
905	for (i = 0; i < 32; i++) {
906		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2));
907		CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0);
908	}
909
910	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
911		if (ifma->ifma_addr->sa_family != AF_LINK)
912			continue;
913		h = sis_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
914		index = h >> 3;
915		bit = h & 0x1F;
916		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index);
917		if (bit > 0xF)
918			bit -= 0x10;
919		SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit));
920	}
921
922	CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave);
923
924	return;
925}
926
927static void
928sis_setmulti_sis(sc)
929	struct sis_softc	*sc;
930{
931	struct ifnet		*ifp;
932	struct ifmultiaddr	*ifma;
933	u_int32_t		h, i, n, ctl;
934	u_int16_t		hashes[16];
935
936	ifp = &sc->arpcom.ac_if;
937
938	/* hash table size */
939	if (sc->sis_rev >= SIS_REV_635 ||
940	    sc->sis_rev == SIS_REV_900B)
941		n = 16;
942	else
943		n = 8;
944
945	ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE;
946
947	if (ifp->if_flags & IFF_BROADCAST)
948		ctl |= SIS_RXFILTCTL_BROAD;
949
950	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
951		ctl |= SIS_RXFILTCTL_ALLMULTI;
952		if (ifp->if_flags & IFF_PROMISC)
953			ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS;
954		for (i = 0; i < n; i++)
955			hashes[i] = ~0;
956	} else {
957		for (i = 0; i < n; i++)
958			hashes[i] = 0;
959		i = 0;
960		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
961			if (ifma->ifma_addr->sa_family != AF_LINK)
962			continue;
963			h = sis_crc(sc,
964			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
965			hashes[h >> 4] |= 1 << (h & 0xf);
966			i++;
967		}
968		if (i > n) {
969			ctl |= SIS_RXFILTCTL_ALLMULTI;
970			for (i = 0; i < n; i++)
971				hashes[i] = ~0;
972		}
973	}
974
975	for (i = 0; i < n; i++) {
976		CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16);
977		CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]);
978	}
979
980	CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl);
981}
982
983static void
984sis_reset(sc)
985	struct sis_softc	*sc;
986{
987	register int		i;
988
989	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET);
990
991	for (i = 0; i < SIS_TIMEOUT; i++) {
992		if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET))
993			break;
994	}
995
996	if (i == SIS_TIMEOUT)
997		printf("sis%d: reset never completed\n", sc->sis_unit);
998
999	/* Wait a little while for the chip to get its brains in order. */
1000	DELAY(1000);
1001
1002	/*
1003	 * If this is a NetSemi chip, make sure to clear
1004	 * PME mode.
1005	 */
1006	if (sc->sis_type == SIS_TYPE_83815) {
1007		CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS);
1008		CSR_WRITE_4(sc, NS_CLKRUN, 0);
1009	}
1010
1011        return;
1012}
1013
1014/*
1015 * Probe for an SiS chip. Check the PCI vendor and device
1016 * IDs against our list and return a device name if we find a match.
1017 */
1018static int
1019sis_probe(dev)
1020	device_t		dev;
1021{
1022	struct sis_type		*t;
1023
1024	t = sis_devs;
1025
1026	while(t->sis_name != NULL) {
1027		if ((pci_get_vendor(dev) == t->sis_vid) &&
1028		    (pci_get_device(dev) == t->sis_did)) {
1029			device_set_desc(dev, t->sis_name);
1030			return(0);
1031		}
1032		t++;
1033	}
1034
1035	return(ENXIO);
1036}
1037
1038/*
1039 * Attach the interface. Allocate softc structures, do ifmedia
1040 * setup and ethernet/BPF attach.
1041 */
1042static int
1043sis_attach(dev)
1044	device_t		dev;
1045{
1046	u_char			eaddr[ETHER_ADDR_LEN];
1047	struct sis_softc	*sc;
1048	struct ifnet		*ifp;
1049	int			unit, error = 0, rid, waittime = 0;
1050
1051	waittime = 0;
1052	sc = device_get_softc(dev);
1053	unit = device_get_unit(dev);
1054
1055	mtx_init(&sc->sis_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1056	    MTX_DEF | MTX_RECURSE);
1057
1058	if (pci_get_device(dev) == SIS_DEVICEID_900)
1059		sc->sis_type = SIS_TYPE_900;
1060	if (pci_get_device(dev) == SIS_DEVICEID_7016)
1061		sc->sis_type = SIS_TYPE_7016;
1062	if (pci_get_vendor(dev) == NS_VENDORID)
1063		sc->sis_type = SIS_TYPE_83815;
1064
1065	sc->sis_rev = pci_read_config(dev, PCIR_REVID, 1);
1066
1067	/*
1068	 * Handle power management nonsense.
1069	 */
1070	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1071		u_int32_t		iobase, membase, irq;
1072
1073		/* Save important PCI config data. */
1074		iobase = pci_read_config(dev, SIS_PCI_LOIO, 4);
1075		membase = pci_read_config(dev, SIS_PCI_LOMEM, 4);
1076		irq = pci_read_config(dev, SIS_PCI_INTLINE, 4);
1077
1078		/* Reset the power state. */
1079		printf("sis%d: chip is in D%d power mode "
1080		    "-- setting to D0\n", unit,
1081		    pci_get_powerstate(dev));
1082		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1083
1084		/* Restore PCI config data. */
1085		pci_write_config(dev, SIS_PCI_LOIO, iobase, 4);
1086		pci_write_config(dev, SIS_PCI_LOMEM, membase, 4);
1087		pci_write_config(dev, SIS_PCI_INTLINE, irq, 4);
1088	}
1089
1090	/*
1091	 * Map control/status registers.
1092	 */
1093	pci_enable_busmaster(dev);
1094
1095	rid = SIS_RID;
1096	sc->sis_res = bus_alloc_resource(dev, SIS_RES, &rid,
1097	    0, ~0, 1, RF_ACTIVE);
1098
1099	if (sc->sis_res == NULL) {
1100		printf("sis%d: couldn't map ports/memory\n", unit);
1101		error = ENXIO;
1102		goto fail;
1103	}
1104
1105	sc->sis_btag = rman_get_bustag(sc->sis_res);
1106	sc->sis_bhandle = rman_get_bushandle(sc->sis_res);
1107
1108	/* Allocate interrupt */
1109	rid = 0;
1110	sc->sis_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1111	    RF_SHAREABLE | RF_ACTIVE);
1112
1113	if (sc->sis_irq == NULL) {
1114		printf("sis%d: couldn't map interrupt\n", unit);
1115		error = ENXIO;
1116		goto fail;
1117	}
1118
1119	/* Reset the adapter. */
1120	sis_reset(sc);
1121
1122	if (sc->sis_type == SIS_TYPE_900 &&
1123            (sc->sis_rev == SIS_REV_635 ||
1124            sc->sis_rev == SIS_REV_900B)) {
1125		SIO_SET(SIS_CFG_RND_CNT);
1126		SIO_SET(SIS_CFG_PERR_DETECT);
1127	}
1128
1129	/*
1130	 * Get station address from the EEPROM.
1131	 */
1132	switch (pci_get_vendor(dev)) {
1133	case NS_VENDORID:
1134		/*
1135		 * Reading the MAC address out of the EEPROM on
1136		 * the NatSemi chip takes a bit more work than
1137		 * you'd expect. The address spans 4 16-bit words,
1138		 * with the first word containing only a single bit.
1139		 * You have to shift everything over one bit to
1140		 * get it aligned properly. Also, the bits are
1141		 * stored backwards (the LSB is really the MSB,
1142		 * and so on) so you have to reverse them in order
1143		 * to get the MAC address into the form we want.
1144		 * Why? Who the hell knows.
1145		 */
1146		{
1147			u_int16_t		tmp[4];
1148
1149			sis_read_eeprom(sc, (caddr_t)&tmp,
1150			    NS_EE_NODEADDR, 4, 0);
1151
1152			/* Shift everything over one bit. */
1153			tmp[3] = tmp[3] >> 1;
1154			tmp[3] |= tmp[2] << 15;
1155			tmp[2] = tmp[2] >> 1;
1156			tmp[2] |= tmp[1] << 15;
1157			tmp[1] = tmp[1] >> 1;
1158			tmp[1] |= tmp[0] << 15;
1159
1160			/* Now reverse all the bits. */
1161			tmp[3] = sis_reverse(tmp[3]);
1162			tmp[2] = sis_reverse(tmp[2]);
1163			tmp[1] = sis_reverse(tmp[1]);
1164
1165			bcopy((char *)&tmp[1], eaddr, ETHER_ADDR_LEN);
1166		}
1167		break;
1168	case SIS_VENDORID:
1169	default:
1170#ifdef __i386__
1171		/*
1172		 * If this is a SiS 630E chipset with an embedded
1173		 * SiS 900 controller, we have to read the MAC address
1174		 * from the APC CMOS RAM. Our method for doing this
1175		 * is very ugly since we have to reach out and grab
1176		 * ahold of hardware for which we cannot properly
1177		 * allocate resources. This code is only compiled on
1178		 * the i386 architecture since the SiS 630E chipset
1179		 * is for x86 motherboards only. Note that there are
1180		 * a lot of magic numbers in this hack. These are
1181		 * taken from SiS's Linux driver. I'd like to replace
1182		 * them with proper symbolic definitions, but that
1183		 * requires some datasheets that I don't have access
1184		 * to at the moment.
1185		 */
1186		if (sc->sis_rev == SIS_REV_630S ||
1187		    sc->sis_rev == SIS_REV_630E ||
1188		    sc->sis_rev == SIS_REV_630EA1)
1189			sis_read_cmos(sc, dev, (caddr_t)&eaddr, 0x9, 6);
1190
1191		else if (sc->sis_rev == SIS_REV_635 ||
1192			 sc->sis_rev == SIS_REV_630ET)
1193			sis_read_mac(sc, dev, (caddr_t)&eaddr);
1194		else if (sc->sis_rev == SIS_REV_96x) {
1195			/* Allow to read EEPROM from LAN. It is shared
1196			 * between a 1394 controller and the NIC and each
1197			 * time we access it, we need to set SIS_EECMD_REQ.
1198			 */
1199			SIO_SET(SIS_EECMD_REQ);
1200			for (waittime = 0; waittime < SIS_TIMEOUT;
1201			    waittime++) {
1202				/* Force EEPROM to idle state. */
1203				sis_eeprom_idle(sc);
1204				if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECMD_GNT) {
1205					sis_read_eeprom(sc, (caddr_t)&eaddr,
1206					    SIS_EE_NODEADDR, 3, 0);
1207					break;
1208				}
1209				DELAY(1);
1210			}
1211			/*
1212			 * Set SIS_EECTL_CLK to high, so a other master
1213			 * can operate on the i2c bus.
1214			 */
1215			SIO_SET(SIS_EECTL_CLK);
1216			/* Refuse EEPROM access by LAN */
1217			SIO_SET(SIS_EECMD_DONE);
1218		} else
1219#endif
1220			sis_read_eeprom(sc, (caddr_t)&eaddr,
1221			    SIS_EE_NODEADDR, 3, 0);
1222		break;
1223	}
1224
1225	/*
1226	 * A SiS chip was detected. Inform the world.
1227	 */
1228	printf("sis%d: Ethernet address: %6D\n", unit, eaddr, ":");
1229
1230	sc->sis_unit = unit;
1231	callout_handle_init(&sc->sis_stat_ch);
1232	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1233
1234	/*
1235	 * Allocate the parent bus DMA tag appropriate for PCI.
1236	 */
1237#define SIS_NSEG_NEW 32
1238	 error = bus_dma_tag_create(NULL,	/* parent */
1239			1, 0,			/* alignment, boundary */
1240			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1241			BUS_SPACE_MAXADDR,	/* highaddr */
1242			NULL, NULL,		/* filter, filterarg */
1243			MAXBSIZE, SIS_NSEG_NEW,	/* maxsize, nsegments */
1244			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1245			BUS_DMA_ALLOCNOW,	/* flags */
1246			NULL, NULL,		/* lockfunc, lockarg */
1247			&sc->sis_parent_tag);
1248	if (error)
1249		goto fail;
1250
1251	/*
1252	 * Now allocate a tag for the DMA descriptor lists and a chunk
1253	 * of DMA-able memory based on the tag.  Also obtain the physical
1254	 * addresses of the RX and TX ring, which we'll need later.
1255	 * All of our lists are allocated as a contiguous block
1256	 * of memory.
1257	 */
1258	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1259			1, 0,			/* alignment, boundary */
1260			BUS_SPACE_MAXADDR,	/* lowaddr */
1261			BUS_SPACE_MAXADDR,	/* highaddr */
1262			NULL, NULL,		/* filter, filterarg */
1263			SIS_RX_LIST_SZ, 1,	/* maxsize,nsegments */
1264			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1265			0,			/* flags */
1266			busdma_lock_mutex,	/* lockfunc */
1267			&Giant,			/* lockarg */
1268			&sc->sis_ldata.sis_rx_tag);
1269	if (error)
1270		goto fail;
1271
1272	error = bus_dmamem_alloc(sc->sis_ldata.sis_rx_tag,
1273	    (void **)&sc->sis_ldata.sis_rx_list, BUS_DMA_NOWAIT,
1274	    &sc->sis_ldata.sis_rx_dmamap);
1275
1276	if (error) {
1277		printf("sis%d: no memory for rx list buffers!\n", unit);
1278		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1279		sc->sis_ldata.sis_rx_tag = NULL;
1280		goto fail;
1281	}
1282
1283	error = bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1284	    sc->sis_ldata.sis_rx_dmamap, &(sc->sis_ldata.sis_rx_list[0]),
1285	    sizeof(struct sis_desc), sis_dma_map_ring,
1286	    &sc->sis_cdata.sis_rx_paddr, 0);
1287
1288	if (error) {
1289		printf("sis%d: cannot get address of the rx ring!\n", unit);
1290		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1291		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1292		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1293		sc->sis_ldata.sis_rx_tag = NULL;
1294		goto fail;
1295	}
1296
1297	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1298			1, 0,			/* alignment, boundary */
1299			BUS_SPACE_MAXADDR,	/* lowaddr */
1300			BUS_SPACE_MAXADDR,	/* highaddr */
1301			NULL, NULL,		/* filter, filterarg */
1302			SIS_TX_LIST_SZ, 1,	/* maxsize,nsegments */
1303			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1304			0,			/* flags */
1305			busdma_lock_mutex,	/* lockfunc */
1306			&Giant,			/* lockarg */
1307			&sc->sis_ldata.sis_tx_tag);
1308	if (error)
1309		goto fail;
1310
1311	error = bus_dmamem_alloc(sc->sis_ldata.sis_tx_tag,
1312	    (void **)&sc->sis_ldata.sis_tx_list, BUS_DMA_NOWAIT,
1313	    &sc->sis_ldata.sis_tx_dmamap);
1314
1315	if (error) {
1316		printf("sis%d: no memory for tx list buffers!\n", unit);
1317		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1318		sc->sis_ldata.sis_tx_tag = NULL;
1319		goto fail;
1320	}
1321
1322	error = bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1323	    sc->sis_ldata.sis_tx_dmamap, &(sc->sis_ldata.sis_tx_list[0]),
1324	    sizeof(struct sis_desc), sis_dma_map_ring,
1325	    &sc->sis_cdata.sis_tx_paddr, 0);
1326
1327	if (error) {
1328		printf("sis%d: cannot get address of the tx ring!\n", unit);
1329		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1330		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1331		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1332		sc->sis_ldata.sis_tx_tag = NULL;
1333		goto fail;
1334	}
1335
1336	error = bus_dma_tag_create(sc->sis_parent_tag,	/* parent */
1337			1, 0,			/* alignment, boundary */
1338			BUS_SPACE_MAXADDR,	/* lowaddr */
1339			BUS_SPACE_MAXADDR,	/* highaddr */
1340			NULL, NULL,		/* filter, filterarg */
1341			MCLBYTES, 1,		/* maxsize,nsegments */
1342			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1343			0,			/* flags */
1344			busdma_lock_mutex,	/* lockfunc */
1345			&Giant,			/* lockarg */
1346			&sc->sis_tag);
1347	if (error)
1348		goto fail;
1349
1350	bzero(sc->sis_ldata.sis_tx_list, SIS_TX_LIST_SZ);
1351	bzero(sc->sis_ldata.sis_rx_list, SIS_RX_LIST_SZ);
1352
1353	/*
1354	 * Obtain the physical addresses of the RX and TX
1355	 * rings which we'll need later in the init routine.
1356	 */
1357
1358	ifp = &sc->arpcom.ac_if;
1359	ifp->if_softc = sc;
1360	ifp->if_unit = unit;
1361	ifp->if_name = "sis";
1362	ifp->if_mtu = ETHERMTU;
1363	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1364	ifp->if_ioctl = sis_ioctl;
1365	ifp->if_output = ether_output;
1366	ifp->if_start = sis_start;
1367	ifp->if_watchdog = sis_watchdog;
1368	ifp->if_init = sis_init;
1369	ifp->if_baudrate = 10000000;
1370	ifp->if_snd.ifq_maxlen = SIS_TX_LIST_CNT - 1;
1371
1372	/*
1373	 * Do MII setup.
1374	 */
1375	if (mii_phy_probe(dev, &sc->sis_miibus,
1376	    sis_ifmedia_upd, sis_ifmedia_sts)) {
1377		printf("sis%d: MII without any PHY!\n", sc->sis_unit);
1378		error = ENXIO;
1379		goto fail;
1380	}
1381
1382	/*
1383	 * Call MI attach routine.
1384	 */
1385	ether_ifattach(ifp, eaddr);
1386
1387	/*
1388	 * Tell the upper layer(s) we support long frames.
1389	 */
1390	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1391	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1392
1393	/* Hook interrupt last to avoid having to lock softc */
1394	error = bus_setup_intr(dev, sc->sis_irq, INTR_TYPE_NET,
1395	    sis_intr, sc, &sc->sis_intrhand);
1396
1397	if (error) {
1398		printf("sis%d: couldn't set up irq\n", unit);
1399		ether_ifdetach(ifp);
1400		goto fail;
1401	}
1402
1403fail:
1404	if (error)
1405		sis_detach(dev);
1406
1407	return(error);
1408}
1409
1410/*
1411 * Shutdown hardware and free up resources. This can be called any
1412 * time after the mutex has been initialized. It is called in both
1413 * the error case in attach and the normal detach case so it needs
1414 * to be careful about only freeing resources that have actually been
1415 * allocated.
1416 */
1417static int
1418sis_detach(dev)
1419	device_t		dev;
1420{
1421	struct sis_softc	*sc;
1422	struct ifnet		*ifp;
1423
1424	sc = device_get_softc(dev);
1425	KASSERT(mtx_initialized(&sc->sis_mtx), ("sis mutex not initialized"));
1426	SIS_LOCK(sc);
1427	ifp = &sc->arpcom.ac_if;
1428
1429	/* These should only be active if attach succeeded */
1430	if (device_is_attached(dev)) {
1431		sis_reset(sc);
1432		sis_stop(sc);
1433		ether_ifdetach(ifp);
1434	}
1435	if (sc->sis_miibus)
1436		device_delete_child(dev, sc->sis_miibus);
1437	bus_generic_detach(dev);
1438
1439	if (sc->sis_intrhand)
1440		bus_teardown_intr(dev, sc->sis_irq, sc->sis_intrhand);
1441	if (sc->sis_irq)
1442		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sis_irq);
1443	if (sc->sis_res)
1444		bus_release_resource(dev, SIS_RES, SIS_RID, sc->sis_res);
1445
1446	if (sc->sis_ldata.sis_rx_tag) {
1447		bus_dmamap_unload(sc->sis_ldata.sis_rx_tag,
1448		    sc->sis_ldata.sis_rx_dmamap);
1449		bus_dmamem_free(sc->sis_ldata.sis_rx_tag,
1450		    sc->sis_ldata.sis_rx_list, sc->sis_ldata.sis_rx_dmamap);
1451		bus_dma_tag_destroy(sc->sis_ldata.sis_rx_tag);
1452	}
1453	if (sc->sis_ldata.sis_tx_tag) {
1454		bus_dmamap_unload(sc->sis_ldata.sis_tx_tag,
1455		    sc->sis_ldata.sis_tx_dmamap);
1456		bus_dmamem_free(sc->sis_ldata.sis_tx_tag,
1457		    sc->sis_ldata.sis_tx_list, sc->sis_ldata.sis_tx_dmamap);
1458		bus_dma_tag_destroy(sc->sis_ldata.sis_tx_tag);
1459	}
1460	if (sc->sis_parent_tag)
1461		bus_dma_tag_destroy(sc->sis_parent_tag);
1462	if (sc->sis_tag)
1463		bus_dma_tag_destroy(sc->sis_tag);
1464
1465	SIS_UNLOCK(sc);
1466	mtx_destroy(&sc->sis_mtx);
1467
1468	return(0);
1469}
1470
1471/*
1472 * Initialize the transmit descriptors.
1473 */
1474static int
1475sis_list_tx_init(sc)
1476	struct sis_softc	*sc;
1477{
1478	struct sis_list_data	*ld;
1479	struct sis_ring_data	*cd;
1480	int			i, nexti;
1481
1482	cd = &sc->sis_cdata;
1483	ld = &sc->sis_ldata;
1484
1485	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
1486		nexti = (i == (SIS_TX_LIST_CNT - 1)) ? 0 : i+1;
1487			ld->sis_tx_list[i].sis_nextdesc =
1488			    &ld->sis_tx_list[nexti];
1489			bus_dmamap_load(sc->sis_ldata.sis_tx_tag,
1490			    sc->sis_ldata.sis_tx_dmamap,
1491			    &ld->sis_tx_list[nexti], sizeof(struct sis_desc),
1492			    sis_dma_map_desc_next, &ld->sis_tx_list[i], 0);
1493		ld->sis_tx_list[i].sis_mbuf = NULL;
1494		ld->sis_tx_list[i].sis_ptr = 0;
1495		ld->sis_tx_list[i].sis_ctl = 0;
1496	}
1497
1498	cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0;
1499
1500	bus_dmamap_sync(sc->sis_ldata.sis_tx_tag,
1501	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1502
1503	return(0);
1504}
1505
1506/*
1507 * Initialize the RX descriptors and allocate mbufs for them. Note that
1508 * we arrange the descriptors in a closed ring, so that the last descriptor
1509 * points back to the first.
1510 */
1511static int
1512sis_list_rx_init(sc)
1513	struct sis_softc	*sc;
1514{
1515	struct sis_list_data	*ld;
1516	struct sis_ring_data	*cd;
1517	int			i,nexti;
1518
1519	ld = &sc->sis_ldata;
1520	cd = &sc->sis_cdata;
1521
1522	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
1523		if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS)
1524			return(ENOBUFS);
1525		nexti = (i == (SIS_RX_LIST_CNT - 1)) ? 0 : i+1;
1526			ld->sis_rx_list[i].sis_nextdesc =
1527			    &ld->sis_rx_list[nexti];
1528			bus_dmamap_load(sc->sis_ldata.sis_rx_tag,
1529			    sc->sis_ldata.sis_rx_dmamap,
1530			    &ld->sis_rx_list[nexti],
1531			    sizeof(struct sis_desc), sis_dma_map_desc_next,
1532			    &ld->sis_rx_list[i], 0);
1533		}
1534
1535	bus_dmamap_sync(sc->sis_ldata.sis_rx_tag,
1536	    sc->sis_ldata.sis_rx_dmamap, BUS_DMASYNC_PREWRITE);
1537
1538	cd->sis_rx_prod = 0;
1539
1540	return(0);
1541}
1542
1543/*
1544 * Initialize an RX descriptor and attach an MBUF cluster.
1545 */
1546static int
1547sis_newbuf(sc, c, m)
1548	struct sis_softc	*sc;
1549	struct sis_desc		*c;
1550	struct mbuf		*m;
1551{
1552
1553	if (c == NULL)
1554		return(EINVAL);
1555
1556	if (m == NULL) {
1557		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1558		if (m == NULL)
1559			return(ENOBUFS);
1560	} else
1561		m->m_data = m->m_ext.ext_buf;
1562
1563	c->sis_mbuf = m;
1564	c->sis_ctl = SIS_RXLEN;
1565
1566	bus_dmamap_create(sc->sis_tag, 0, &c->sis_map);
1567	bus_dmamap_load(sc->sis_tag, c->sis_map,
1568	    mtod(m, void *), MCLBYTES,
1569	    sis_dma_map_desc_ptr, c, 0);
1570	bus_dmamap_sync(sc->sis_tag, c->sis_map, BUS_DMASYNC_PREWRITE);
1571
1572	return(0);
1573}
1574
1575/*
1576 * A frame has been uploaded: pass the resulting mbuf chain up to
1577 * the higher level protocols.
1578 */
1579static void
1580sis_rxeof(sc)
1581	struct sis_softc	*sc;
1582{
1583        struct mbuf		*m;
1584        struct ifnet		*ifp;
1585	struct sis_desc		*cur_rx;
1586	int			i, total_len = 0;
1587	u_int32_t		rxstat;
1588
1589	ifp = &sc->arpcom.ac_if;
1590	i = sc->sis_cdata.sis_rx_prod;
1591
1592	while(SIS_OWNDESC(&sc->sis_ldata.sis_rx_list[i])) {
1593
1594#ifdef DEVICE_POLLING
1595		if (ifp->if_flags & IFF_POLLING) {
1596			if (sc->rxcycles <= 0)
1597				break;
1598			sc->rxcycles--;
1599		}
1600#endif /* DEVICE_POLLING */
1601		cur_rx = &sc->sis_ldata.sis_rx_list[i];
1602		rxstat = cur_rx->sis_rxstat;
1603		bus_dmamap_sync(sc->sis_tag,
1604		    cur_rx->sis_map, BUS_DMASYNC_POSTWRITE);
1605		bus_dmamap_unload(sc->sis_tag, cur_rx->sis_map);
1606		bus_dmamap_destroy(sc->sis_tag, cur_rx->sis_map);
1607		m = cur_rx->sis_mbuf;
1608		cur_rx->sis_mbuf = NULL;
1609		total_len = SIS_RXBYTES(cur_rx);
1610		SIS_INC(i, SIS_RX_LIST_CNT);
1611
1612		/*
1613		 * If an error occurs, update stats, clear the
1614		 * status word and leave the mbuf cluster in place:
1615		 * it should simply get re-used next time this descriptor
1616	 	 * comes up in the ring.
1617		 */
1618		if (!(rxstat & SIS_CMDSTS_PKT_OK)) {
1619			ifp->if_ierrors++;
1620			if (rxstat & SIS_RXSTAT_COLL)
1621				ifp->if_collisions++;
1622			sis_newbuf(sc, cur_rx, m);
1623			continue;
1624		}
1625
1626		/* No errors; receive the packet. */
1627#ifdef __i386__
1628		/*
1629		 * On the x86 we do not have alignment problems, so try to
1630		 * allocate a new buffer for the receive ring, and pass up
1631		 * the one where the packet is already, saving the expensive
1632		 * copy done in m_devget().
1633		 * If we are on an architecture with alignment problems, or
1634		 * if the allocation fails, then use m_devget and leave the
1635		 * existing buffer in the receive ring.
1636		 */
1637		if (sis_newbuf(sc, cur_rx, NULL) == 0)
1638			m->m_pkthdr.len = m->m_len = total_len;
1639		else
1640#endif
1641		{
1642			struct mbuf		*m0;
1643			m0 = m_devget(mtod(m, char *), total_len,
1644				ETHER_ALIGN, ifp, NULL);
1645			sis_newbuf(sc, cur_rx, m);
1646			if (m0 == NULL) {
1647				ifp->if_ierrors++;
1648				continue;
1649			}
1650			m = m0;
1651		}
1652
1653		ifp->if_ipackets++;
1654		m->m_pkthdr.rcvif = ifp;
1655
1656		(*ifp->if_input)(ifp, m);
1657	}
1658
1659	sc->sis_cdata.sis_rx_prod = i;
1660
1661	return;
1662}
1663
1664static void
1665sis_rxeoc(sc)
1666	struct sis_softc	*sc;
1667{
1668	sis_rxeof(sc);
1669	sis_init(sc);
1670	return;
1671}
1672
1673/*
1674 * A frame was downloaded to the chip. It's safe for us to clean up
1675 * the list buffers.
1676 */
1677
1678static void
1679sis_txeof(sc)
1680	struct sis_softc	*sc;
1681{
1682	struct ifnet		*ifp;
1683	u_int32_t		idx;
1684
1685	ifp = &sc->arpcom.ac_if;
1686
1687	/*
1688	 * Go through our tx list and free mbufs for those
1689	 * frames that have been transmitted.
1690	 */
1691	for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0;
1692	    sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT) ) {
1693		struct sis_desc *cur_tx = &sc->sis_ldata.sis_tx_list[idx];
1694
1695		if (SIS_OWNDESC(cur_tx))
1696			break;
1697
1698		if (cur_tx->sis_ctl & SIS_CMDSTS_MORE)
1699			continue;
1700
1701		if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) {
1702			ifp->if_oerrors++;
1703			if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS)
1704				ifp->if_collisions++;
1705			if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL)
1706				ifp->if_collisions++;
1707		}
1708
1709		ifp->if_collisions +=
1710		    (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16;
1711
1712		ifp->if_opackets++;
1713		if (cur_tx->sis_mbuf != NULL) {
1714			m_freem(cur_tx->sis_mbuf);
1715			cur_tx->sis_mbuf = NULL;
1716			bus_dmamap_unload(sc->sis_tag, cur_tx->sis_map);
1717			bus_dmamap_destroy(sc->sis_tag, cur_tx->sis_map);
1718		}
1719	}
1720
1721	if (idx != sc->sis_cdata.sis_tx_cons) {
1722		/* we freed up some buffers */
1723		sc->sis_cdata.sis_tx_cons = idx;
1724		ifp->if_flags &= ~IFF_OACTIVE;
1725	}
1726
1727	ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5;
1728
1729	return;
1730}
1731
1732static void
1733sis_tick(xsc)
1734	void			*xsc;
1735{
1736	struct sis_softc	*sc;
1737	struct mii_data		*mii;
1738	struct ifnet		*ifp;
1739
1740	sc = xsc;
1741	SIS_LOCK(sc);
1742	ifp = &sc->arpcom.ac_if;
1743
1744	mii = device_get_softc(sc->sis_miibus);
1745	mii_tick(mii);
1746
1747	if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE &&
1748	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1749		sc->sis_link++;
1750		if (ifp->if_snd.ifq_head != NULL)
1751			sis_start(ifp);
1752	}
1753
1754	SIS_UNLOCK(sc);
1755
1756	return;
1757}
1758
1759#ifdef DEVICE_POLLING
1760static poll_handler_t sis_poll;
1761
1762static void
1763sis_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1764{
1765	struct	sis_softc *sc = ifp->if_softc;
1766
1767	SIS_LOCK(sc);
1768	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1769		CSR_WRITE_4(sc, SIS_IER, 1);
1770		goto done;
1771	}
1772
1773	/*
1774	 * On the sis, reading the status register also clears it.
1775	 * So before returning to intr mode we must make sure that all
1776	 * possible pending sources of interrupts have been served.
1777	 * In practice this means run to completion the *eof routines,
1778	 * and then call the interrupt routine
1779	 */
1780	sc->rxcycles = count;
1781	sis_rxeof(sc);
1782	sis_txeof(sc);
1783	if (ifp->if_snd.ifq_head != NULL)
1784		sis_start(ifp);
1785
1786	if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
1787		u_int32_t	status;
1788
1789		/* Reading the ISR register clears all interrupts. */
1790		status = CSR_READ_4(sc, SIS_ISR);
1791
1792		if (status & (SIS_ISR_RX_ERR|SIS_ISR_RX_OFLOW))
1793			sis_rxeoc(sc);
1794
1795		if (status & (SIS_ISR_RX_IDLE))
1796			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1797
1798		if (status & SIS_ISR_SYSERR) {
1799			sis_reset(sc);
1800			sis_init(sc);
1801		}
1802	}
1803done:
1804	SIS_UNLOCK(sc);
1805	return;
1806}
1807#endif /* DEVICE_POLLING */
1808
1809static void
1810sis_intr(arg)
1811	void			*arg;
1812{
1813	struct sis_softc	*sc;
1814	struct ifnet		*ifp;
1815	u_int32_t		status;
1816
1817	sc = arg;
1818	ifp = &sc->arpcom.ac_if;
1819
1820	SIS_LOCK(sc);
1821#ifdef DEVICE_POLLING
1822	if (ifp->if_flags & IFF_POLLING)
1823		goto done;
1824	if (ether_poll_register(sis_poll, ifp)) { /* ok, disable interrupts */
1825		CSR_WRITE_4(sc, SIS_IER, 0);
1826		goto done;
1827	}
1828#endif /* DEVICE_POLLING */
1829
1830	/* Supress unwanted interrupts */
1831	if (!(ifp->if_flags & IFF_UP)) {
1832		sis_stop(sc);
1833		goto done;
1834	}
1835
1836	/* Disable interrupts. */
1837	CSR_WRITE_4(sc, SIS_IER, 0);
1838
1839	for (;;) {
1840		/* Reading the ISR register clears all interrupts. */
1841		status = CSR_READ_4(sc, SIS_ISR);
1842
1843		if ((status & SIS_INTRS) == 0)
1844			break;
1845
1846		if (status &
1847		    (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR |
1848		     SIS_ISR_TX_OK | SIS_ISR_TX_IDLE) )
1849			sis_txeof(sc);
1850
1851		if (status & (SIS_ISR_RX_DESC_OK|SIS_ISR_RX_OK|SIS_ISR_RX_IDLE))
1852			sis_rxeof(sc);
1853
1854		if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW))
1855			sis_rxeoc(sc);
1856
1857		if (status & (SIS_ISR_RX_IDLE))
1858			SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
1859
1860		if (status & SIS_ISR_SYSERR) {
1861			sis_reset(sc);
1862			sis_init(sc);
1863		}
1864	}
1865
1866	/* Re-enable interrupts. */
1867	CSR_WRITE_4(sc, SIS_IER, 1);
1868
1869	if (ifp->if_snd.ifq_head != NULL)
1870		sis_start(ifp);
1871done:
1872	SIS_UNLOCK(sc);
1873
1874	return;
1875}
1876
1877/*
1878 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1879 * pointers to the fragment pointers.
1880 */
1881static int
1882sis_encap(sc, m_head, txidx)
1883	struct sis_softc	*sc;
1884	struct mbuf		*m_head;
1885	u_int32_t		*txidx;
1886{
1887	struct sis_desc		*f = NULL;
1888	struct mbuf		*m;
1889	int			frag, cur, cnt = 0, chainlen = 0;
1890
1891	/*
1892	 * If there's no way we can send any packets, return now.
1893	 */
1894	if (SIS_TX_LIST_CNT - sc->sis_cdata.sis_tx_cnt < 2)
1895		return (ENOBUFS);
1896
1897	/*
1898	 * Count the number of frags in this chain to see if
1899	 * we need to m_defrag.  Since the descriptor list is shared
1900	 * by all packets, we'll m_defrag long chains so that they
1901	 * do not use up the entire list, even if they would fit.
1902	 */
1903
1904	for (m = m_head; m != NULL; m = m->m_next)
1905		chainlen++;
1906
1907	if ((chainlen > SIS_TX_LIST_CNT / 4) ||
1908	    ((SIS_TX_LIST_CNT - (chainlen + sc->sis_cdata.sis_tx_cnt)) < 2)) {
1909		m = m_defrag(m_head, M_DONTWAIT);
1910		if (m == NULL)
1911			return (ENOBUFS);
1912		m_head = m;
1913	}
1914
1915	/*
1916 	 * Start packing the mbufs in this chain into
1917	 * the fragment pointers. Stop when we run out
1918 	 * of fragments or hit the end of the mbuf chain.
1919	 */
1920	m = m_head;
1921	cur = frag = *txidx;
1922
1923	for (m = m_head; m != NULL; m = m->m_next) {
1924		if (m->m_len != 0) {
1925			if ((SIS_TX_LIST_CNT -
1926			    (sc->sis_cdata.sis_tx_cnt + cnt)) < 2)
1927				return(ENOBUFS);
1928			f = &sc->sis_ldata.sis_tx_list[frag];
1929			f->sis_ctl = SIS_CMDSTS_MORE | m->m_len;
1930			bus_dmamap_create(sc->sis_tag, 0, &f->sis_map);
1931			bus_dmamap_load(sc->sis_tag, f->sis_map,
1932			    mtod(m, void *), m->m_len,
1933			    sis_dma_map_desc_ptr, f, 0);
1934			bus_dmamap_sync(sc->sis_tag,
1935			    f->sis_map, BUS_DMASYNC_PREREAD);
1936			if (cnt != 0)
1937				f->sis_ctl |= SIS_CMDSTS_OWN;
1938			cur = frag;
1939			SIS_INC(frag, SIS_TX_LIST_CNT);
1940			cnt++;
1941		}
1942	}
1943
1944	if (m != NULL)
1945		return(ENOBUFS);
1946
1947	sc->sis_ldata.sis_tx_list[cur].sis_mbuf = m_head;
1948	sc->sis_ldata.sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE;
1949	sc->sis_ldata.sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN;
1950	sc->sis_cdata.sis_tx_cnt += cnt;
1951	*txidx = frag;
1952
1953	return(0);
1954}
1955
1956/*
1957 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1958 * to the mbuf data regions directly in the transmit lists. We also save a
1959 * copy of the pointers since the transmit list fragment pointers are
1960 * physical addresses.
1961 */
1962
1963static void
1964sis_start(ifp)
1965	struct ifnet		*ifp;
1966{
1967	struct sis_softc	*sc;
1968	struct mbuf		*m_head = NULL;
1969	u_int32_t		idx;
1970
1971	sc = ifp->if_softc;
1972	SIS_LOCK(sc);
1973
1974	if (!sc->sis_link) {
1975		SIS_UNLOCK(sc);
1976		return;
1977	}
1978
1979	idx = sc->sis_cdata.sis_tx_prod;
1980
1981	if (ifp->if_flags & IFF_OACTIVE) {
1982		SIS_UNLOCK(sc);
1983		return;
1984	}
1985
1986	while(sc->sis_ldata.sis_tx_list[idx].sis_mbuf == NULL) {
1987		IF_DEQUEUE(&ifp->if_snd, m_head);
1988		if (m_head == NULL)
1989			break;
1990
1991		if (sis_encap(sc, m_head, &idx)) {
1992			IF_PREPEND(&ifp->if_snd, m_head);
1993			ifp->if_flags |= IFF_OACTIVE;
1994			break;
1995		}
1996
1997		/*
1998		 * If there's a BPF listener, bounce a copy of this frame
1999		 * to him.
2000		 */
2001		BPF_MTAP(ifp, m_head);
2002
2003	}
2004
2005	/* Transmit */
2006	sc->sis_cdata.sis_tx_prod = idx;
2007	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE);
2008
2009	/*
2010	 * Set a timeout in case the chip goes out to lunch.
2011	 */
2012	ifp->if_timer = 5;
2013
2014	SIS_UNLOCK(sc);
2015
2016	return;
2017}
2018
2019static void
2020sis_init(xsc)
2021	void			*xsc;
2022{
2023	struct sis_softc	*sc = xsc;
2024	struct ifnet		*ifp = &sc->arpcom.ac_if;
2025	struct mii_data		*mii;
2026
2027	SIS_LOCK(sc);
2028
2029	/*
2030	 * Cancel pending I/O and free all RX/TX buffers.
2031	 */
2032	sis_stop(sc);
2033
2034	mii = device_get_softc(sc->sis_miibus);
2035
2036	/* Set MAC address */
2037	if (sc->sis_type == SIS_TYPE_83815) {
2038		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0);
2039		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2040		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2041		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1);
2042		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2043		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2044		CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2);
2045		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2046		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2047	} else {
2048		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0);
2049		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2050		    ((u_int16_t *)sc->arpcom.ac_enaddr)[0]);
2051		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1);
2052		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2053		    ((u_int16_t *)sc->arpcom.ac_enaddr)[1]);
2054		CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2);
2055		CSR_WRITE_4(sc, SIS_RXFILT_DATA,
2056		    ((u_int16_t *)sc->arpcom.ac_enaddr)[2]);
2057	}
2058
2059	/* Init circular RX list. */
2060	if (sis_list_rx_init(sc) == ENOBUFS) {
2061		printf("sis%d: initialization failed: no "
2062			"memory for rx buffers\n", sc->sis_unit);
2063		sis_stop(sc);
2064		SIS_UNLOCK(sc);
2065		return;
2066	}
2067
2068	/*
2069	 * Init tx descriptors.
2070	 */
2071	sis_list_tx_init(sc);
2072
2073	/*
2074	 * For the NatSemi chip, we have to explicitly enable the
2075	 * reception of ARP frames, as well as turn on the 'perfect
2076	 * match' filter where we store the station address, otherwise
2077	 * we won't receive unicasts meant for this host.
2078	 */
2079	if (sc->sis_type == SIS_TYPE_83815) {
2080		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP);
2081		SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT);
2082	}
2083
2084	 /* If we want promiscuous mode, set the allframes bit. */
2085	if (ifp->if_flags & IFF_PROMISC) {
2086		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2087	} else {
2088		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS);
2089	}
2090
2091	/*
2092	 * Set the capture broadcast bit to capture broadcast frames.
2093	 */
2094	if (ifp->if_flags & IFF_BROADCAST) {
2095		SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2096	} else {
2097		SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD);
2098	}
2099
2100	/*
2101	 * Load the multicast filter.
2102	 */
2103	if (sc->sis_type == SIS_TYPE_83815)
2104		sis_setmulti_ns(sc);
2105	else
2106		sis_setmulti_sis(sc);
2107
2108	/* Turn the receive filter on */
2109	SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE);
2110
2111	/*
2112	 * Load the address of the RX and TX lists.
2113	 */
2114	CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sis_cdata.sis_rx_paddr);
2115	CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sis_cdata.sis_tx_paddr);
2116
2117	/* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of
2118	 * the PCI bus. When this bit is set, the Max DMA Burst Size
2119	 * for TX/RX DMA should be no larger than 16 double words.
2120	 */
2121	if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) {
2122		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64);
2123	} else {
2124		CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256);
2125	}
2126
2127
2128	/* Accept Long Packets for VLAN support */
2129	SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER);
2130
2131	/* Set TX configuration */
2132	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
2133		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10);
2134	} else {
2135		CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100);
2136	}
2137
2138	/* Set full/half duplex mode. */
2139	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
2140		SIS_SETBIT(sc, SIS_TX_CFG,
2141		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2142		SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2143	} else {
2144		SIS_CLRBIT(sc, SIS_TX_CFG,
2145		    (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR));
2146		SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS);
2147	}
2148
2149	/*
2150	 * Enable interrupts.
2151	 */
2152	CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS);
2153#ifdef DEVICE_POLLING
2154	/*
2155	 * ... only enable interrupts if we are not polling, make sure
2156	 * they are off otherwise.
2157	 */
2158	if (ifp->if_flags & IFF_POLLING)
2159		CSR_WRITE_4(sc, SIS_IER, 0);
2160	else
2161#endif /* DEVICE_POLLING */
2162	CSR_WRITE_4(sc, SIS_IER, 1);
2163
2164	/* Enable receiver and transmitter. */
2165	SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2166	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE);
2167
2168#ifdef notdef
2169	mii_mediachg(mii);
2170#endif
2171
2172	/*
2173	 * Page 75 of the DP83815 manual recommends the
2174	 * following register settings "for optimum
2175	 * performance." Note however that at least three
2176	 * of the registers are listed as "reserved" in
2177	 * the register map, so who knows what they do.
2178	 */
2179	if (sc->sis_type == SIS_TYPE_83815) {
2180		CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001);
2181		CSR_WRITE_4(sc, NS_PHY_CR, 0x189C);
2182		CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000);
2183		CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040);
2184		CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C);
2185	}
2186
2187	ifp->if_flags |= IFF_RUNNING;
2188	ifp->if_flags &= ~IFF_OACTIVE;
2189
2190	sc->sis_stat_ch = timeout(sis_tick, sc, hz);
2191
2192	SIS_UNLOCK(sc);
2193
2194	return;
2195}
2196
2197/*
2198 * Set media options.
2199 */
2200static int
2201sis_ifmedia_upd(ifp)
2202	struct ifnet		*ifp;
2203{
2204	struct sis_softc	*sc;
2205	struct mii_data		*mii;
2206
2207	sc = ifp->if_softc;
2208
2209	mii = device_get_softc(sc->sis_miibus);
2210	sc->sis_link = 0;
2211	if (mii->mii_instance) {
2212		struct mii_softc	*miisc;
2213		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2214			mii_phy_reset(miisc);
2215	}
2216	mii_mediachg(mii);
2217
2218	return(0);
2219}
2220
2221/*
2222 * Report current media status.
2223 */
2224static void
2225sis_ifmedia_sts(ifp, ifmr)
2226	struct ifnet		*ifp;
2227	struct ifmediareq	*ifmr;
2228{
2229	struct sis_softc	*sc;
2230	struct mii_data		*mii;
2231
2232	sc = ifp->if_softc;
2233
2234	mii = device_get_softc(sc->sis_miibus);
2235	mii_pollstat(mii);
2236	ifmr->ifm_active = mii->mii_media_active;
2237	ifmr->ifm_status = mii->mii_media_status;
2238
2239	return;
2240}
2241
2242static int
2243sis_ioctl(ifp, command, data)
2244	struct ifnet		*ifp;
2245	u_long			command;
2246	caddr_t			data;
2247{
2248	struct sis_softc	*sc = ifp->if_softc;
2249	struct ifreq		*ifr = (struct ifreq *) data;
2250	struct mii_data		*mii;
2251	int			error = 0;
2252
2253	switch(command) {
2254	case SIOCSIFFLAGS:
2255		if (ifp->if_flags & IFF_UP) {
2256			sis_init(sc);
2257		} else {
2258			if (ifp->if_flags & IFF_RUNNING)
2259				sis_stop(sc);
2260		}
2261		error = 0;
2262		break;
2263	case SIOCADDMULTI:
2264	case SIOCDELMULTI:
2265		SIS_LOCK(sc);
2266		if (sc->sis_type == SIS_TYPE_83815)
2267			sis_setmulti_ns(sc);
2268		else
2269			sis_setmulti_sis(sc);
2270		SIS_UNLOCK(sc);
2271		error = 0;
2272		break;
2273	case SIOCGIFMEDIA:
2274	case SIOCSIFMEDIA:
2275		mii = device_get_softc(sc->sis_miibus);
2276		SIS_LOCK(sc);
2277		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2278		SIS_UNLOCK(sc);
2279		break;
2280	default:
2281		error = ether_ioctl(ifp, command, data);
2282		break;
2283	}
2284
2285	return(error);
2286}
2287
2288static void
2289sis_watchdog(ifp)
2290	struct ifnet		*ifp;
2291{
2292	struct sis_softc	*sc;
2293
2294	sc = ifp->if_softc;
2295
2296	SIS_LOCK(sc);
2297
2298	ifp->if_oerrors++;
2299	printf("sis%d: watchdog timeout\n", sc->sis_unit);
2300
2301	sis_stop(sc);
2302	sis_reset(sc);
2303	sis_init(sc);
2304
2305	if (ifp->if_snd.ifq_head != NULL)
2306		sis_start(ifp);
2307
2308	SIS_UNLOCK(sc);
2309
2310	return;
2311}
2312
2313/*
2314 * Stop the adapter and free any mbufs allocated to the
2315 * RX and TX lists.
2316 */
2317static void
2318sis_stop(sc)
2319	struct sis_softc	*sc;
2320{
2321	register int		i;
2322	struct ifnet		*ifp;
2323
2324	SIS_LOCK(sc);
2325	ifp = &sc->arpcom.ac_if;
2326	ifp->if_timer = 0;
2327
2328	untimeout(sis_tick, sc, sc->sis_stat_ch);
2329
2330	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2331#ifdef DEVICE_POLLING
2332	ether_poll_deregister(ifp);
2333#endif
2334	CSR_WRITE_4(sc, SIS_IER, 0);
2335	CSR_WRITE_4(sc, SIS_IMR, 0);
2336	SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE);
2337	DELAY(1000);
2338	CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0);
2339	CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0);
2340
2341	sc->sis_link = 0;
2342
2343	/*
2344	 * Free data in the RX lists.
2345	 */
2346	for (i = 0; i < SIS_RX_LIST_CNT; i++) {
2347		if (sc->sis_ldata.sis_rx_list[i].sis_mbuf != NULL) {
2348			bus_dmamap_unload(sc->sis_tag,
2349			    sc->sis_ldata.sis_rx_list[i].sis_map);
2350			bus_dmamap_destroy(sc->sis_tag,
2351			    sc->sis_ldata.sis_rx_list[i].sis_map);
2352			m_freem(sc->sis_ldata.sis_rx_list[i].sis_mbuf);
2353			sc->sis_ldata.sis_rx_list[i].sis_mbuf = NULL;
2354		}
2355	}
2356	bzero(sc->sis_ldata.sis_rx_list,
2357		sizeof(sc->sis_ldata.sis_rx_list));
2358
2359	/*
2360	 * Free the TX list buffers.
2361	 */
2362	for (i = 0; i < SIS_TX_LIST_CNT; i++) {
2363		if (sc->sis_ldata.sis_tx_list[i].sis_mbuf != NULL) {
2364			bus_dmamap_unload(sc->sis_tag,
2365			    sc->sis_ldata.sis_tx_list[i].sis_map);
2366			bus_dmamap_destroy(sc->sis_tag,
2367			    sc->sis_ldata.sis_tx_list[i].sis_map);
2368			m_freem(sc->sis_ldata.sis_tx_list[i].sis_mbuf);
2369			sc->sis_ldata.sis_tx_list[i].sis_mbuf = NULL;
2370		}
2371	}
2372
2373	bzero(sc->sis_ldata.sis_tx_list,
2374		sizeof(sc->sis_ldata.sis_tx_list));
2375
2376	SIS_UNLOCK(sc);
2377
2378	return;
2379}
2380
2381/*
2382 * Stop all chip I/O so that the kernel's probe routines don't
2383 * get confused by errant DMAs when rebooting.
2384 */
2385static void
2386sis_shutdown(dev)
2387	device_t		dev;
2388{
2389	struct sis_softc	*sc;
2390
2391	sc = device_get_softc(dev);
2392	SIS_LOCK(sc);
2393	sis_reset(sc);
2394	sis_stop(sc);
2395	SIS_UNLOCK(sc);
2396
2397	return;
2398}
2399