nvme_ctrlr.c revision 249422
1/*-
2 * Copyright (C) 2012 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/dev/nvme/nvme_ctrlr.c 249422 2013-04-12 17:56:47Z jimharris $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/bus.h>
34#include <sys/conf.h>
35#include <sys/ioccom.h>
36#include <sys/proc.h>
37#include <sys/smp.h>
38#include <sys/uio.h>
39
40#include <dev/pci/pcireg.h>
41#include <dev/pci/pcivar.h>
42
43#include "nvme_private.h"
44
45static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46						struct nvme_async_event_request *aer);
47
48static int
49nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50{
51
52	/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
53	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
54		ctrlr->resource_id = PCIR_BAR(2);
55	else
56		ctrlr->resource_id = PCIR_BAR(0);
57
58	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
59	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
60
61	if(ctrlr->resource == NULL) {
62		nvme_printf(ctrlr, "unable to allocate pci resource\n");
63		return (ENOMEM);
64	}
65
66	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
67	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
68	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
69
70	/*
71	 * The NVMe spec allows for the MSI-X table to be placed behind
72	 *  BAR 4/5, separate from the control/doorbell registers.  Always
73	 *  try to map this bar, because it must be mapped prior to calling
74	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
75	 *  bus_alloc_resource() will just return NULL which is OK.
76	 */
77	ctrlr->bar4_resource_id = PCIR_BAR(4);
78	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
79	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
80
81	return (0);
82}
83
84#ifdef CHATHAM2
85static int
86nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
87{
88
89	ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
90	ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
91	    SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
92	    RF_ACTIVE);
93
94	if(ctrlr->chatham_resource == NULL) {
95		nvme_printf(ctrlr, "unable to alloc pci resource\n");
96		return (ENOMEM);
97	}
98
99	ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
100	ctrlr->chatham_bus_handle =
101	    rman_get_bushandle(ctrlr->chatham_resource);
102
103	return (0);
104}
105
106static void
107nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
108{
109	uint64_t reg1, reg2, reg3;
110	uint64_t temp1, temp2;
111	uint32_t temp3;
112	uint32_t use_flash_timings = 0;
113
114	DELAY(10000);
115
116	temp3 = chatham_read_4(ctrlr, 0x8080);
117
118	device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
119
120	ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
121	ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
122
123	device_printf(ctrlr->dev, "Chatham size: %jd\n",
124	    (intmax_t)ctrlr->chatham_size);
125
126	reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
127
128	TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
129	if (use_flash_timings) {
130		device_printf(ctrlr->dev, "Chatham: using flash timings\n");
131		temp1 = 0x00001b58000007d0LL;
132		temp2 = 0x000000cb00000131LL;
133	} else {
134		device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
135		temp1 = temp2 = 0x0LL;
136	}
137
138	chatham_write_8(ctrlr, 0x8000, reg1);
139	chatham_write_8(ctrlr, 0x8008, reg2);
140	chatham_write_8(ctrlr, 0x8010, reg3);
141
142	chatham_write_8(ctrlr, 0x8020, temp1);
143	temp3 = chatham_read_4(ctrlr, 0x8020);
144
145	chatham_write_8(ctrlr, 0x8028, temp2);
146	temp3 = chatham_read_4(ctrlr, 0x8028);
147
148	chatham_write_8(ctrlr, 0x8030, temp1);
149	chatham_write_8(ctrlr, 0x8038, temp2);
150	chatham_write_8(ctrlr, 0x8040, temp1);
151	chatham_write_8(ctrlr, 0x8048, temp2);
152	chatham_write_8(ctrlr, 0x8050, temp1);
153	chatham_write_8(ctrlr, 0x8058, temp2);
154
155	DELAY(10000);
156}
157
158static void
159nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
160{
161	struct nvme_controller_data *cdata;
162
163	cdata = &ctrlr->cdata;
164
165	cdata->vid = 0x8086;
166	cdata->ssvid = 0x2011;
167
168	/*
169	 * Chatham2 puts garbage data in these fields when we
170	 *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
171	 *  the fields before calling bcopy().
172	 */
173	memset(cdata->sn, 0, sizeof(cdata->sn));
174	memcpy(cdata->sn, "2012", strlen("2012"));
175	memset(cdata->mn, 0, sizeof(cdata->mn));
176	memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
177	memset(cdata->fr, 0, sizeof(cdata->fr));
178	memcpy(cdata->fr, "0", strlen("0"));
179	cdata->rab = 8;
180	cdata->aerl = 3;
181	cdata->lpa.ns_smart = 1;
182	cdata->sqes.min = 6;
183	cdata->sqes.max = 6;
184	cdata->sqes.min = 4;
185	cdata->sqes.max = 4;
186	cdata->nn = 1;
187
188	/* Chatham2 doesn't support DSM command */
189	cdata->oncs.dsm = 0;
190
191	cdata->vwc.present = 1;
192}
193#endif /* CHATHAM2 */
194
195static void
196nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
197{
198	struct nvme_qpair	*qpair;
199	uint32_t		num_entries;
200
201	qpair = &ctrlr->adminq;
202
203	num_entries = NVME_ADMIN_ENTRIES;
204	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
205	/*
206	 * If admin_entries was overridden to an invalid value, revert it
207	 *  back to our default value.
208	 */
209	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
210	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
211		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
212		    "specified\n", num_entries);
213		num_entries = NVME_ADMIN_ENTRIES;
214	}
215
216	/*
217	 * The admin queue's max xfer size is treated differently than the
218	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
219	 */
220	nvme_qpair_construct(qpair,
221			     0, /* qpair ID */
222			     0, /* vector */
223			     num_entries,
224			     NVME_ADMIN_TRACKERS,
225			     16*1024, /* max xfer size */
226			     ctrlr);
227}
228
229static int
230nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
231{
232	struct nvme_qpair	*qpair;
233	union cap_lo_register	cap_lo;
234	int			i, num_entries, num_trackers;
235
236	num_entries = NVME_IO_ENTRIES;
237	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
238
239	/*
240	 * NVMe spec sets a hard limit of 64K max entries, but
241	 *  devices may specify a smaller limit, so we need to check
242	 *  the MQES field in the capabilities register.
243	 */
244	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
245	num_entries = min(num_entries, cap_lo.bits.mqes+1);
246
247	num_trackers = NVME_IO_TRACKERS;
248	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
249
250	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
251	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
252	/*
253	 * No need to have more trackers than entries in the submit queue.
254	 *  Note also that for a queue size of N, we can only have (N-1)
255	 *  commands outstanding, hence the "-1" here.
256	 */
257	num_trackers = min(num_trackers, (num_entries-1));
258
259	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
260	TUNABLE_INT_FETCH("hw.nvme.max_xfer_size", &ctrlr->max_xfer_size);
261	/*
262	 * Check that tunable doesn't specify a size greater than what our
263	 *  driver supports, and is an even PAGE_SIZE multiple.
264	 */
265	if (ctrlr->max_xfer_size > NVME_MAX_XFER_SIZE ||
266	    ctrlr->max_xfer_size % PAGE_SIZE)
267		ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
268
269	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
270	    M_NVME, M_ZERO | M_WAITOK);
271
272	for (i = 0; i < ctrlr->num_io_queues; i++) {
273		qpair = &ctrlr->ioq[i];
274
275		/*
276		 * Admin queue has ID=0. IO queues start at ID=1 -
277		 *  hence the 'i+1' here.
278		 *
279		 * For I/O queues, use the controller-wide max_xfer_size
280		 *  calculated in nvme_attach().
281		 */
282		nvme_qpair_construct(qpair,
283				     i+1, /* qpair ID */
284				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
285				     num_entries,
286				     num_trackers,
287				     ctrlr->max_xfer_size,
288				     ctrlr);
289
290		if (ctrlr->per_cpu_io_queues)
291			bus_bind_intr(ctrlr->dev, qpair->res, i);
292	}
293
294	return (0);
295}
296
297static void
298nvme_ctrlr_fail(struct nvme_controller *ctrlr)
299{
300	int i;
301
302	ctrlr->is_failed = TRUE;
303	nvme_qpair_fail(&ctrlr->adminq);
304	for (i = 0; i < ctrlr->num_io_queues; i++)
305		nvme_qpair_fail(&ctrlr->ioq[i]);
306	nvme_notify_fail_consumers(ctrlr);
307}
308
309void
310nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
311    struct nvme_request *req)
312{
313
314	mtx_lock(&ctrlr->lock);
315	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
316	mtx_unlock(&ctrlr->lock);
317	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
318}
319
320static void
321nvme_ctrlr_fail_req_task(void *arg, int pending)
322{
323	struct nvme_controller	*ctrlr = arg;
324	struct nvme_request	*req;
325
326	mtx_lock(&ctrlr->lock);
327	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
328		req = STAILQ_FIRST(&ctrlr->fail_req);
329		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
330		nvme_qpair_manual_complete_request(req->qpair, req,
331		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
332	}
333	mtx_unlock(&ctrlr->lock);
334}
335
336static int
337nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
338{
339	int ms_waited;
340	union cc_register cc;
341	union csts_register csts;
342
343	cc.raw = nvme_mmio_read_4(ctrlr, cc);
344	csts.raw = nvme_mmio_read_4(ctrlr, csts);
345
346	if (!cc.bits.en) {
347		nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
348		return (ENXIO);
349	}
350
351	ms_waited = 0;
352
353	while (!csts.bits.rdy) {
354		DELAY(1000);
355		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
356			nvme_printf(ctrlr, "controller did not become ready "
357			    "within %d ms\n", ctrlr->ready_timeout_in_ms);
358			return (ENXIO);
359		}
360		csts.raw = nvme_mmio_read_4(ctrlr, csts);
361	}
362
363	return (0);
364}
365
366static void
367nvme_ctrlr_disable(struct nvme_controller *ctrlr)
368{
369	union cc_register cc;
370	union csts_register csts;
371
372	cc.raw = nvme_mmio_read_4(ctrlr, cc);
373	csts.raw = nvme_mmio_read_4(ctrlr, csts);
374
375	if (cc.bits.en == 1 && csts.bits.rdy == 0)
376		nvme_ctrlr_wait_for_ready(ctrlr);
377
378	cc.bits.en = 0;
379	nvme_mmio_write_4(ctrlr, cc, cc.raw);
380	DELAY(5000);
381}
382
383static int
384nvme_ctrlr_enable(struct nvme_controller *ctrlr)
385{
386	union cc_register	cc;
387	union csts_register	csts;
388	union aqa_register	aqa;
389
390	cc.raw = nvme_mmio_read_4(ctrlr, cc);
391	csts.raw = nvme_mmio_read_4(ctrlr, csts);
392
393	if (cc.bits.en == 1) {
394		if (csts.bits.rdy == 1)
395			return (0);
396		else
397			return (nvme_ctrlr_wait_for_ready(ctrlr));
398	}
399
400	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
401	DELAY(5000);
402	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
403	DELAY(5000);
404
405	aqa.raw = 0;
406	/* acqs and asqs are 0-based. */
407	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
408	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
409	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
410	DELAY(5000);
411
412	cc.bits.en = 1;
413	cc.bits.css = 0;
414	cc.bits.ams = 0;
415	cc.bits.shn = 0;
416	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
417	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
418
419	/* This evaluates to 0, which is according to spec. */
420	cc.bits.mps = (PAGE_SIZE >> 13);
421
422	nvme_mmio_write_4(ctrlr, cc, cc.raw);
423	DELAY(5000);
424
425	return (nvme_ctrlr_wait_for_ready(ctrlr));
426}
427
428int
429nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
430{
431	int i;
432
433	nvme_admin_qpair_disable(&ctrlr->adminq);
434	for (i = 0; i < ctrlr->num_io_queues; i++)
435		nvme_io_qpair_disable(&ctrlr->ioq[i]);
436
437	DELAY(100*1000);
438
439	nvme_ctrlr_disable(ctrlr);
440	return (nvme_ctrlr_enable(ctrlr));
441}
442
443void
444nvme_ctrlr_reset(struct nvme_controller *ctrlr)
445{
446	int cmpset;
447
448	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
449
450	if (cmpset == 0 || ctrlr->is_failed)
451		/*
452		 * Controller is already resetting or has failed.  Return
453		 *  immediately since there is no need to kick off another
454		 *  reset in these cases.
455		 */
456		return;
457
458	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
459}
460
461static int
462nvme_ctrlr_identify(struct nvme_controller *ctrlr)
463{
464	struct nvme_completion_poll_status	status;
465
466	status.done = FALSE;
467	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
468	    nvme_completion_poll_cb, &status);
469	while (status.done == FALSE)
470		DELAY(5);
471	if (nvme_completion_is_error(&status.cpl)) {
472		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
473		return (ENXIO);
474	}
475
476#ifdef CHATHAM2
477	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
478		nvme_chatham_populate_cdata(ctrlr);
479#endif
480
481	/*
482	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
483	 *  controller supports.
484	 */
485	if (ctrlr->cdata.mdts > 0)
486		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
487		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
488
489	return (0);
490}
491
492static int
493nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
494{
495	struct nvme_completion_poll_status	status;
496	int					cq_allocated, i, sq_allocated;
497
498	status.done = FALSE;
499	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
500	    nvme_completion_poll_cb, &status);
501	while (status.done == FALSE)
502		DELAY(5);
503	if (nvme_completion_is_error(&status.cpl)) {
504		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
505		return (ENXIO);
506	}
507
508	/*
509	 * Data in cdw0 is 0-based.
510	 * Lower 16-bits indicate number of submission queues allocated.
511	 * Upper 16-bits indicate number of completion queues allocated.
512	 */
513	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
514	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
515
516	/*
517	 * Check that the controller was able to allocate the number of
518	 *  queues we requested.  If not, revert to one IO queue pair.
519	 */
520	if (sq_allocated < ctrlr->num_io_queues ||
521	    cq_allocated < ctrlr->num_io_queues) {
522
523		/*
524		 * Destroy extra IO queue pairs that were created at
525		 *  controller construction time but are no longer
526		 *  needed.  This will only happen when a controller
527		 *  supports fewer queues than MSI-X vectors.  This
528		 *  is not the normal case, but does occur with the
529		 *  Chatham prototype board.
530		 */
531		for (i = 1; i < ctrlr->num_io_queues; i++)
532			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
533
534		ctrlr->num_io_queues = 1;
535		ctrlr->per_cpu_io_queues = 0;
536	}
537
538	return (0);
539}
540
541static int
542nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
543{
544	struct nvme_completion_poll_status	status;
545	struct nvme_qpair			*qpair;
546	int					i;
547
548	for (i = 0; i < ctrlr->num_io_queues; i++) {
549		qpair = &ctrlr->ioq[i];
550
551		status.done = FALSE;
552		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
553		    nvme_completion_poll_cb, &status);
554		while (status.done == FALSE)
555			DELAY(5);
556		if (nvme_completion_is_error(&status.cpl)) {
557			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
558			return (ENXIO);
559		}
560
561		status.done = FALSE;
562		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
563		    nvme_completion_poll_cb, &status);
564		while (status.done == FALSE)
565			DELAY(5);
566		if (nvme_completion_is_error(&status.cpl)) {
567			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
568			return (ENXIO);
569		}
570	}
571
572	return (0);
573}
574
575static int
576nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
577{
578	struct nvme_namespace	*ns;
579	int			i, status;
580
581	for (i = 0; i < ctrlr->cdata.nn; i++) {
582		ns = &ctrlr->ns[i];
583		status = nvme_ns_construct(ns, i+1, ctrlr);
584		if (status != 0)
585			return (status);
586	}
587
588	return (0);
589}
590
591static boolean_t
592is_log_page_id_valid(uint8_t page_id)
593{
594
595	switch (page_id) {
596	case NVME_LOG_ERROR:
597	case NVME_LOG_HEALTH_INFORMATION:
598	case NVME_LOG_FIRMWARE_SLOT:
599		return (TRUE);
600	}
601
602	return (FALSE);
603}
604
605static uint32_t
606nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
607{
608	uint32_t	log_page_size;
609
610	switch (page_id) {
611	case NVME_LOG_ERROR:
612		log_page_size = min(
613		    sizeof(struct nvme_error_information_entry) *
614		    ctrlr->cdata.elpe,
615		    NVME_MAX_AER_LOG_SIZE);
616		break;
617	case NVME_LOG_HEALTH_INFORMATION:
618		log_page_size = sizeof(struct nvme_health_information_page);
619		break;
620	case NVME_LOG_FIRMWARE_SLOT:
621		log_page_size = sizeof(struct nvme_firmware_page);
622		break;
623	default:
624		log_page_size = 0;
625		break;
626	}
627
628	return (log_page_size);
629}
630
631static void
632nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
633{
634	struct nvme_async_event_request	*aer = arg;
635
636	/*
637	 * If the log page fetch for some reason completed with an error,
638	 *  don't pass log page data to the consumers.  In practice, this case
639	 *  should never happen.
640	 */
641	if (nvme_completion_is_error(cpl))
642		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
643		    aer->log_page_id, NULL, 0);
644	else
645		/*
646		 * Pass the cpl data from the original async event completion,
647		 *  not the log page fetch.
648		 */
649		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
650		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
651
652	/*
653	 * Repost another asynchronous event request to replace the one
654	 *  that just completed.
655	 */
656	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
657}
658
659static void
660nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
661{
662	struct nvme_async_event_request	*aer = arg;
663
664	if (cpl->status.sc == NVME_SC_ABORTED_SQ_DELETION) {
665		/*
666		 *  This is simulated when controller is being shut down, to
667		 *  effectively abort outstanding asynchronous event requests
668		 *  and make sure all memory is freed.  Do not repost the
669		 *  request in this case.
670		 */
671		return;
672	}
673
674	/* Associated log page is in bits 23:16 of completion entry dw0. */
675	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
676
677	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
678	    aer->log_page_id);
679
680	if (is_log_page_id_valid(aer->log_page_id)) {
681		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
682		    aer->log_page_id);
683		memcpy(&aer->cpl, cpl, sizeof(*cpl));
684		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
685		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
686		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
687		    aer);
688		/* Wait to notify consumers until after log page is fetched. */
689	} else {
690		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
691		    NULL, 0);
692
693		/*
694		 * Repost another asynchronous event request to replace the one
695		 *  that just completed.
696		 */
697		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
698	}
699}
700
701static void
702nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
703    struct nvme_async_event_request *aer)
704{
705	struct nvme_request *req;
706
707	aer->ctrlr = ctrlr;
708	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
709	aer->req = req;
710
711	/*
712	 * Disable timeout here, since asynchronous event requests should by
713	 *  nature never be timed out.
714	 */
715	req->timeout = FALSE;
716	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
717	nvme_ctrlr_submit_admin_request(ctrlr, req);
718}
719
720static void
721nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
722{
723	union nvme_critical_warning_state	state;
724	struct nvme_async_event_request		*aer;
725	uint32_t				i;
726
727	state.raw = 0xFF;
728	state.bits.reserved = 0;
729	nvme_ctrlr_cmd_set_async_event_config(ctrlr, state, NULL, NULL);
730
731	/* aerl is a zero-based value, so we need to add 1 here. */
732	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
733
734	/* Chatham doesn't support AERs. */
735	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
736		ctrlr->num_aers = 0;
737
738	for (i = 0; i < ctrlr->num_aers; i++) {
739		aer = &ctrlr->aer[i];
740		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
741	}
742}
743
744static void
745nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
746{
747
748	ctrlr->int_coal_time = 0;
749	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
750	    &ctrlr->int_coal_time);
751
752	ctrlr->int_coal_threshold = 0;
753	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
754	    &ctrlr->int_coal_threshold);
755
756	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
757	    ctrlr->int_coal_threshold, NULL, NULL);
758}
759
760static void
761nvme_ctrlr_start(void *ctrlr_arg)
762{
763	struct nvme_controller *ctrlr = ctrlr_arg;
764	int i;
765
766	nvme_qpair_reset(&ctrlr->adminq);
767	for (i = 0; i < ctrlr->num_io_queues; i++)
768		nvme_qpair_reset(&ctrlr->ioq[i]);
769
770	nvme_admin_qpair_enable(&ctrlr->adminq);
771
772	if (nvme_ctrlr_identify(ctrlr) != 0) {
773		nvme_ctrlr_fail(ctrlr);
774		return;
775	}
776
777	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
778		nvme_ctrlr_fail(ctrlr);
779		return;
780	}
781
782	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
783		nvme_ctrlr_fail(ctrlr);
784		return;
785	}
786
787	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
788		nvme_ctrlr_fail(ctrlr);
789		return;
790	}
791
792	nvme_ctrlr_configure_aer(ctrlr);
793	nvme_ctrlr_configure_int_coalescing(ctrlr);
794
795	for (i = 0; i < ctrlr->num_io_queues; i++)
796		nvme_io_qpair_enable(&ctrlr->ioq[i]);
797
798	/*
799	 * Clear software progress marker to 0, to indicate to pre-boot
800	 *  software that OS driver load was successful.
801	 *
802	 * Chatham does not support this feature.
803	 */
804	if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID)
805		nvme_ctrlr_cmd_set_feature(ctrlr,
806		    NVME_FEAT_SOFTWARE_PROGRESS_MARKER, 0, NULL, 0, NULL, NULL);
807}
808
809void
810nvme_ctrlr_start_config_hook(void *arg)
811{
812	struct nvme_controller *ctrlr = arg;
813
814	nvme_ctrlr_start(ctrlr);
815	config_intrhook_disestablish(&ctrlr->config_hook);
816}
817
818static void
819nvme_ctrlr_reset_task(void *arg, int pending)
820{
821	struct nvme_controller	*ctrlr = arg;
822	int			status;
823
824	nvme_printf(ctrlr, "resetting controller\n");
825	status = nvme_ctrlr_hw_reset(ctrlr);
826	/*
827	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
828	 *  handlers on this CPU that were blocked on a qpair lock. We want
829	 *  all nvme interrupts completed before proceeding with restarting the
830	 *  controller.
831	 *
832	 * XXX - any way to guarantee the interrupt handlers have quiesced?
833	 */
834	pause("nvmereset", hz / 10);
835	if (status == 0)
836		nvme_ctrlr_start(ctrlr);
837	else
838		nvme_ctrlr_fail(ctrlr);
839
840	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
841}
842
843static void
844nvme_ctrlr_intx_handler(void *arg)
845{
846	struct nvme_controller *ctrlr = arg;
847
848	nvme_mmio_write_4(ctrlr, intms, 1);
849
850	nvme_qpair_process_completions(&ctrlr->adminq);
851
852	if (ctrlr->ioq[0].cpl)
853		nvme_qpair_process_completions(&ctrlr->ioq[0]);
854
855	nvme_mmio_write_4(ctrlr, intmc, 1);
856}
857
858static int
859nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
860{
861
862	ctrlr->num_io_queues = 1;
863	ctrlr->per_cpu_io_queues = 0;
864	ctrlr->rid = 0;
865	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
866	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
867
868	if (ctrlr->res == NULL) {
869		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
870		return (ENOMEM);
871	}
872
873	bus_setup_intr(ctrlr->dev, ctrlr->res,
874	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
875	    ctrlr, &ctrlr->tag);
876
877	if (ctrlr->tag == NULL) {
878		nvme_printf(ctrlr, "unable to setup intx handler\n");
879		return (ENOMEM);
880	}
881
882	return (0);
883}
884
885static void
886nvme_pt_done(void *arg, const struct nvme_completion *cpl)
887{
888	struct nvme_pt_command *pt = arg;
889
890	bzero(&pt->cpl, sizeof(pt->cpl));
891	pt->cpl.cdw0 = cpl->cdw0;
892	pt->cpl.status = cpl->status;
893	pt->cpl.status.p = 0;
894
895	mtx_lock(pt->driver_lock);
896	wakeup(pt);
897	mtx_unlock(pt->driver_lock);
898}
899
900int
901nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
902    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
903    int is_admin_cmd)
904{
905	struct nvme_request	*req;
906	struct mtx		*mtx;
907	struct buf		*buf = NULL;
908	int			ret = 0;
909
910	if (pt->len > 0)
911		if (is_user_buffer) {
912			/*
913			 * Ensure the user buffer is wired for the duration of
914			 *  this passthrough command.
915			 */
916			PHOLD(curproc);
917			buf = getpbuf(NULL);
918			buf->b_saveaddr = buf->b_data;
919			buf->b_data = pt->buf;
920			buf->b_bufsize = pt->len;
921			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
922#ifdef NVME_UNMAPPED_BIO_SUPPORT
923			if (vmapbuf(buf, 1) < 0) {
924#else
925			if (vmapbuf(buf) < 0) {
926#endif
927				ret = EFAULT;
928				goto err;
929			}
930			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
931			    nvme_pt_done, pt);
932		} else
933			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
934			    nvme_pt_done, pt);
935	else
936		req = nvme_allocate_request_null(nvme_pt_done, pt);
937
938	req->cmd.opc	= pt->cmd.opc;
939	req->cmd.cdw10	= pt->cmd.cdw10;
940	req->cmd.cdw11	= pt->cmd.cdw11;
941	req->cmd.cdw12	= pt->cmd.cdw12;
942	req->cmd.cdw13	= pt->cmd.cdw13;
943	req->cmd.cdw14	= pt->cmd.cdw14;
944	req->cmd.cdw15	= pt->cmd.cdw15;
945
946	req->cmd.nsid = nsid;
947
948	if (is_admin_cmd)
949		mtx = &ctrlr->lock;
950	else
951		mtx = &ctrlr->ns[nsid-1].lock;
952
953	mtx_lock(mtx);
954	pt->driver_lock = mtx;
955
956	if (is_admin_cmd)
957		nvme_ctrlr_submit_admin_request(ctrlr, req);
958	else
959		nvme_ctrlr_submit_io_request(ctrlr, req);
960
961	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
962	mtx_unlock(mtx);
963
964	pt->driver_lock = NULL;
965
966err:
967	if (buf != NULL) {
968		relpbuf(buf, NULL);
969		PRELE(curproc);
970	}
971
972	return (ret);
973}
974
975static int
976nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
977    struct thread *td)
978{
979	struct nvme_controller			*ctrlr;
980	struct nvme_pt_command			*pt;
981
982	ctrlr = cdev->si_drv1;
983
984	switch (cmd) {
985	case NVME_RESET_CONTROLLER:
986		nvme_ctrlr_reset(ctrlr);
987		break;
988	case NVME_PASSTHROUGH_CMD:
989		pt = (struct nvme_pt_command *)arg;
990		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
991		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
992	default:
993		return (ENOTTY);
994	}
995
996	return (0);
997}
998
999static struct cdevsw nvme_ctrlr_cdevsw = {
1000	.d_version =	D_VERSION,
1001	.d_flags =	0,
1002	.d_ioctl =	nvme_ctrlr_ioctl
1003};
1004
1005int
1006nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1007{
1008	union cap_lo_register	cap_lo;
1009	union cap_hi_register	cap_hi;
1010	int			num_vectors, per_cpu_io_queues, status = 0;
1011	int			timeout_period;
1012
1013	ctrlr->dev = dev;
1014
1015	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1016
1017	status = nvme_ctrlr_allocate_bar(ctrlr);
1018
1019	if (status != 0)
1020		return (status);
1021
1022#ifdef CHATHAM2
1023	if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
1024		status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
1025		if (status != 0)
1026			return (status);
1027		nvme_ctrlr_setup_chatham(ctrlr);
1028	}
1029#endif
1030
1031	/*
1032	 * Software emulators may set the doorbell stride to something
1033	 *  other than zero, but this driver is not set up to handle that.
1034	 */
1035	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1036	if (cap_hi.bits.dstrd != 0)
1037		return (ENXIO);
1038
1039	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1040
1041	/* Get ready timeout value from controller, in units of 500ms. */
1042	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1043	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1044
1045	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1046	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1047	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1048	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1049	ctrlr->timeout_period = timeout_period;
1050
1051	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1052	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1053
1054	per_cpu_io_queues = 1;
1055	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1056	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
1057
1058	if (ctrlr->per_cpu_io_queues)
1059		ctrlr->num_io_queues = mp_ncpus;
1060	else
1061		ctrlr->num_io_queues = 1;
1062
1063	ctrlr->force_intx = 0;
1064	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1065
1066	ctrlr->enable_aborts = 0;
1067	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1068
1069	ctrlr->msix_enabled = 1;
1070
1071	if (ctrlr->force_intx) {
1072		ctrlr->msix_enabled = 0;
1073		goto intx;
1074	}
1075
1076	/* One vector per IO queue, plus one vector for admin queue. */
1077	num_vectors = ctrlr->num_io_queues + 1;
1078
1079	if (pci_msix_count(dev) < num_vectors) {
1080		ctrlr->msix_enabled = 0;
1081		goto intx;
1082	}
1083
1084	if (pci_alloc_msix(dev, &num_vectors) != 0)
1085		ctrlr->msix_enabled = 0;
1086
1087intx:
1088
1089	if (!ctrlr->msix_enabled)
1090		nvme_ctrlr_configure_intx(ctrlr);
1091
1092	nvme_ctrlr_construct_admin_qpair(ctrlr);
1093
1094	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1095
1096	if (status != 0)
1097		return (status);
1098
1099	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600,
1100	    "nvme%d", device_get_unit(dev));
1101
1102	if (ctrlr->cdev == NULL)
1103		return (ENXIO);
1104
1105	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1106
1107	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1108	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1109	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1110
1111	ctrlr->is_resetting = 0;
1112	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1113
1114	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1115	STAILQ_INIT(&ctrlr->fail_req);
1116	ctrlr->is_failed = FALSE;
1117
1118	return (0);
1119}
1120
1121void
1122nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1123{
1124	int				i;
1125
1126	nvme_ctrlr_disable(ctrlr);
1127	taskqueue_free(ctrlr->taskqueue);
1128
1129	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1130		nvme_ns_destruct(&ctrlr->ns[i]);
1131
1132	if (ctrlr->cdev)
1133		destroy_dev(ctrlr->cdev);
1134
1135	for (i = 0; i < ctrlr->num_io_queues; i++) {
1136		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1137	}
1138
1139	free(ctrlr->ioq, M_NVME);
1140
1141	nvme_admin_qpair_destroy(&ctrlr->adminq);
1142
1143	if (ctrlr->resource != NULL) {
1144		bus_release_resource(dev, SYS_RES_MEMORY,
1145		    ctrlr->resource_id, ctrlr->resource);
1146	}
1147
1148	if (ctrlr->bar4_resource != NULL) {
1149		bus_release_resource(dev, SYS_RES_MEMORY,
1150		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1151	}
1152
1153#ifdef CHATHAM2
1154	if (ctrlr->chatham_resource != NULL) {
1155		bus_release_resource(dev, SYS_RES_MEMORY,
1156		    ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1157	}
1158#endif
1159
1160	if (ctrlr->tag)
1161		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1162
1163	if (ctrlr->res)
1164		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1165		    rman_get_rid(ctrlr->res), ctrlr->res);
1166
1167	if (ctrlr->msix_enabled)
1168		pci_release_msi(dev);
1169}
1170
1171void
1172nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1173    struct nvme_request *req)
1174{
1175
1176	nvme_qpair_submit_request(&ctrlr->adminq, req);
1177}
1178
1179void
1180nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1181    struct nvme_request *req)
1182{
1183	struct nvme_qpair       *qpair;
1184
1185	if (ctrlr->per_cpu_io_queues)
1186		qpair = &ctrlr->ioq[curcpu];
1187	else
1188		qpair = &ctrlr->ioq[0];
1189
1190	nvme_qpair_submit_request(qpair, req);
1191}
1192
1193device_t
1194nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1195{
1196
1197	return (ctrlr->dev);
1198}
1199
1200const struct nvme_controller_data *
1201nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1202{
1203
1204	return (&ctrlr->cdata);
1205}
1206