if_ath_tx.c revision 236877
150472Speter/*-
228263Spst * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3183242Ssam * All rights reserved.
4183242Ssam *
5100316Sru * Redistribution and use in source and binary forms, with or without
628263Spst * modification, are permitted provided that the following conditions
728263Spst * are met:
828263Spst * 1. Redistributions of source code must retain the above copyright
928263Spst *    notice, this list of conditions and the following disclaimer,
1028263Spst *    without modification.
11249095Smav * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12154652Smaxim *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13156215Sbrueffer *    redistribution must be conditioned upon including a substantially
14156215Sbrueffer *    similar Disclaimer requirement for further binary redistribution.
15156215Sbrueffer *
1628263Spst * NO WARRANTY
1728263Spst * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1828263Spst * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1928263Spst * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20183242Ssam * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21183242Ssam * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22183242Ssam * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23183242Ssam * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24183242Ssam * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25183242Ssam * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26183242Ssam * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27183242Ssam * THE POSSIBILITY OF SUCH DAMAGES.
28183242Ssam */
29183242Ssam
30183242Ssam#include <sys/cdefs.h>
31183242Ssam__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath_tx.c 236877 2012-06-11 07:29:25Z adrian $");
32183242Ssam
33183242Ssam/*
34183242Ssam * Driver for the Atheros Wireless LAN controller.
35183242Ssam *
36183242Ssam * This software is derived from work of Atsushi Onoe; his contribution
37183242Ssam * is greatly appreciated.
38183242Ssam */
39183242Ssam
40183242Ssam#include "opt_inet.h"
41183242Ssam#include "opt_ath.h"
42211142Solli#include "opt_wlan.h"
43244484Sbapt
44244484Sbapt#include <sys/param.h>
45211142Solli#include <sys/systm.h>
46211142Solli#include <sys/sysctl.h>
47183242Ssam#include <sys/mbuf.h>
48183242Ssam#include <sys/malloc.h>
49183242Ssam#include <sys/lock.h>
50183242Ssam#include <sys/mutex.h>
51183242Ssam#include <sys/kernel.h>
52183242Ssam#include <sys/socket.h>
53183242Ssam#include <sys/sockio.h>
54183242Ssam#include <sys/errno.h>
55183242Ssam#include <sys/callout.h>
56183242Ssam#include <sys/bus.h>
57183242Ssam#include <sys/endian.h>
58183242Ssam#include <sys/kthread.h>
59183242Ssam#include <sys/taskqueue.h>
60209250Snetchild#include <sys/priv.h>
61209250Snetchild
62209250Snetchild#include <machine/bus.h>
63209250Snetchild
64209250Snetchild#include <net/if.h>
6528263Spst#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_regdomain.h>
74#ifdef IEEE80211_SUPPORT_SUPERG
75#include <net80211/ieee80211_superg.h>
76#endif
77#ifdef IEEE80211_SUPPORT_TDMA
78#include <net80211/ieee80211_tdma.h>
79#endif
80#include <net80211/ieee80211_ht.h>
81
82#include <net/bpf.h>
83
84#ifdef INET
85#include <netinet/in.h>
86#include <netinet/if_ether.h>
87#endif
88
89#include <dev/ath/if_athvar.h>
90#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
91#include <dev/ath/ath_hal/ah_diagcodes.h>
92
93#include <dev/ath/if_ath_debug.h>
94
95#ifdef ATH_TX99_DIAG
96#include <dev/ath/ath_tx99/ath_tx99.h>
97#endif
98
99#include <dev/ath/if_ath_misc.h>
100#include <dev/ath/if_ath_tx.h>
101#include <dev/ath/if_ath_tx_ht.h>
102
103/*
104 * How many retries to perform in software
105 */
106#define	SWMAX_RETRIES		10
107
108static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
109    int tid);
110static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
111    int tid);
112static ieee80211_seq ath_tx_tid_seqno_assign(struct ath_softc *sc,
113    struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
114static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
115    struct ieee80211_node *ni, struct mbuf *m0, int *tid);
116
117/*
118 * Whether to use the 11n rate scenario functions or not
119 */
120static inline int
121ath_tx_is_11n(struct ath_softc *sc)
122{
123	return (sc->sc_ah->ah_magic == 0x20065416);
124}
125
126/*
127 * Obtain the current TID from the given frame.
128 *
129 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
130 * This has implications for which AC/priority the packet is placed
131 * in.
132 */
133static int
134ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
135{
136	const struct ieee80211_frame *wh;
137	int pri = M_WME_GETAC(m0);
138
139	wh = mtod(m0, const struct ieee80211_frame *);
140	if (! IEEE80211_QOS_HAS_SEQ(wh))
141		return IEEE80211_NONQOS_TID;
142	else
143		return WME_AC_TO_TID(pri);
144}
145
146/*
147 * Determine what the correct AC queue for the given frame
148 * should be.
149 *
150 * This code assumes that the TIDs map consistently to
151 * the underlying hardware (or software) ath_txq.
152 * Since the sender may try to set an AC which is
153 * arbitrary, non-QoS TIDs may end up being put on
154 * completely different ACs. There's no way to put a
155 * TID into multiple ath_txq's for scheduling, so
156 * for now we override the AC/TXQ selection and set
157 * non-QOS TID frames into the BE queue.
158 *
159 * This may be completely incorrect - specifically,
160 * some management frames may end up out of order
161 * compared to the QoS traffic they're controlling.
162 * I'll look into this later.
163 */
164static int
165ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
166{
167	const struct ieee80211_frame *wh;
168	int pri = M_WME_GETAC(m0);
169	wh = mtod(m0, const struct ieee80211_frame *);
170	if (IEEE80211_QOS_HAS_SEQ(wh))
171		return pri;
172
173	return WME_AC_BE;
174}
175
176void
177ath_txfrag_cleanup(struct ath_softc *sc,
178	ath_bufhead *frags, struct ieee80211_node *ni)
179{
180	struct ath_buf *bf, *next;
181
182	ATH_TXBUF_LOCK_ASSERT(sc);
183
184	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
185		/* NB: bf assumed clean */
186		TAILQ_REMOVE(frags, bf, bf_list);
187		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
188		ieee80211_node_decref(ni);
189	}
190}
191
192/*
193 * Setup xmit of a fragmented frame.  Allocate a buffer
194 * for each frag and bump the node reference count to
195 * reflect the held reference to be setup by ath_tx_start.
196 */
197int
198ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
199	struct mbuf *m0, struct ieee80211_node *ni)
200{
201	struct mbuf *m;
202	struct ath_buf *bf;
203
204	ATH_TXBUF_LOCK(sc);
205	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
206		bf = _ath_getbuf_locked(sc);
207		if (bf == NULL) {	/* out of buffers, cleanup */
208			device_printf(sc->sc_dev, "%s: no buffer?\n",
209			    __func__);
210			ath_txfrag_cleanup(sc, frags, ni);
211			break;
212		}
213		ieee80211_node_incref(ni);
214		TAILQ_INSERT_TAIL(frags, bf, bf_list);
215	}
216	ATH_TXBUF_UNLOCK(sc);
217
218	return !TAILQ_EMPTY(frags);
219}
220
221/*
222 * Reclaim mbuf resources.  For fragmented frames we
223 * need to claim each frag chained with m_nextpkt.
224 */
225void
226ath_freetx(struct mbuf *m)
227{
228	struct mbuf *next;
229
230	do {
231		next = m->m_nextpkt;
232		m->m_nextpkt = NULL;
233		m_freem(m);
234	} while ((m = next) != NULL);
235}
236
237static int
238ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
239{
240	struct mbuf *m;
241	int error;
242
243	/*
244	 * Load the DMA map so any coalescing is done.  This
245	 * also calculates the number of descriptors we need.
246	 */
247	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
248				     bf->bf_segs, &bf->bf_nseg,
249				     BUS_DMA_NOWAIT);
250	if (error == EFBIG) {
251		/* XXX packet requires too many descriptors */
252		bf->bf_nseg = ATH_TXDESC+1;
253	} else if (error != 0) {
254		sc->sc_stats.ast_tx_busdma++;
255		ath_freetx(m0);
256		return error;
257	}
258	/*
259	 * Discard null packets and check for packets that
260	 * require too many TX descriptors.  We try to convert
261	 * the latter to a cluster.
262	 */
263	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
264		sc->sc_stats.ast_tx_linear++;
265		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
266		if (m == NULL) {
267			ath_freetx(m0);
268			sc->sc_stats.ast_tx_nombuf++;
269			return ENOMEM;
270		}
271		m0 = m;
272		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
273					     bf->bf_segs, &bf->bf_nseg,
274					     BUS_DMA_NOWAIT);
275		if (error != 0) {
276			sc->sc_stats.ast_tx_busdma++;
277			ath_freetx(m0);
278			return error;
279		}
280		KASSERT(bf->bf_nseg <= ATH_TXDESC,
281		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
282	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
283		sc->sc_stats.ast_tx_nodata++;
284		ath_freetx(m0);
285		return EIO;
286	}
287	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
288		__func__, m0, m0->m_pkthdr.len);
289	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
290	bf->bf_m = m0;
291
292	return 0;
293}
294
295/*
296 * Chain together segments+descriptors for a non-11n frame.
297 */
298static void
299ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
300{
301	struct ath_hal *ah = sc->sc_ah;
302	struct ath_desc *ds, *ds0;
303	int i;
304
305	/*
306	 * Fillin the remainder of the descriptor info.
307	 */
308	ds0 = ds = bf->bf_desc;
309	for (i = 0; i < bf->bf_nseg; i++, ds++) {
310		ds->ds_data = bf->bf_segs[i].ds_addr;
311		if (i == bf->bf_nseg - 1)
312			ds->ds_link = 0;
313		else
314			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
315		ath_hal_filltxdesc(ah, ds
316			, bf->bf_segs[i].ds_len	/* segment length */
317			, i == 0		/* first segment */
318			, i == bf->bf_nseg - 1	/* last segment */
319			, ds0			/* first descriptor */
320		);
321		DPRINTF(sc, ATH_DEBUG_XMIT,
322			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
323			__func__, i, ds->ds_link, ds->ds_data,
324			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
325		bf->bf_lastds = ds;
326	}
327	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
328}
329
330/*
331 * Fill in the descriptor list for a aggregate subframe.
332 *
333 * The subframe is returned with the ds_link field in the last subframe
334 * pointing to 0.
335 */
336static void
337ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
338{
339	struct ath_hal *ah = sc->sc_ah;
340	struct ath_desc *ds, *ds0;
341	int i;
342
343	ds0 = ds = bf->bf_desc;
344
345	/*
346	 * There's no need to call ath_hal_setupfirsttxdesc here;
347	 * That's only going to occur for the first frame in an aggregate.
348	 */
349	for (i = 0; i < bf->bf_nseg; i++, ds++) {
350		ds->ds_data = bf->bf_segs[i].ds_addr;
351		if (i == bf->bf_nseg - 1)
352			ds->ds_link = 0;
353		else
354			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
355
356		/*
357		 * This performs the setup for an aggregate frame.
358		 * This includes enabling the aggregate flags if needed.
359		 */
360		ath_hal_chaintxdesc(ah, ds,
361		    bf->bf_state.bfs_pktlen,
362		    bf->bf_state.bfs_hdrlen,
363		    HAL_PKT_TYPE_AMPDU,	/* forces aggregate bits to be set */
364		    bf->bf_state.bfs_keyix,
365		    0,			/* cipher, calculated from keyix */
366		    bf->bf_state.bfs_ndelim,
367		    bf->bf_segs[i].ds_len,	/* segment length */
368		    i == 0,		/* first segment */
369		    i == bf->bf_nseg - 1,	/* last segment */
370		    bf->bf_next == NULL		/* last sub-frame in aggr */
371		);
372
373		DPRINTF(sc, ATH_DEBUG_XMIT,
374			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
375			__func__, i, ds->ds_link, ds->ds_data,
376			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
377		bf->bf_lastds = ds;
378		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
379		    BUS_DMASYNC_PREWRITE);
380	}
381}
382
383/*
384 * Setup segments+descriptors for an 11n aggregate.
385 * bf_first is the first buffer in the aggregate.
386 * The descriptor list must already been linked together using
387 * bf->bf_next.
388 */
389static void
390ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
391{
392	struct ath_buf *bf, *bf_prev = NULL;
393
394	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
395	    __func__, bf_first->bf_state.bfs_nframes,
396	    bf_first->bf_state.bfs_al);
397
398	/*
399	 * Setup all descriptors of all subframes.
400	 */
401	bf = bf_first;
402	while (bf != NULL) {
403		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
404		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
405		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
406		    SEQNO(bf->bf_state.bfs_seqno));
407
408		/* Sub-frame setup */
409		ath_tx_chaindesclist_subframe(sc, bf);
410
411		/*
412		 * Link the last descriptor of the previous frame
413		 * to the beginning descriptor of this frame.
414		 */
415		if (bf_prev != NULL)
416			bf_prev->bf_lastds->ds_link = bf->bf_daddr;
417
418		/* Save a copy so we can link the next descriptor in */
419		bf_prev = bf;
420		bf = bf->bf_next;
421	}
422
423	/*
424	 * Setup first descriptor of first frame.
425	 * chaintxdesc() overwrites the descriptor entries;
426	 * setupfirsttxdesc() merges in things.
427	 * Otherwise various fields aren't set correctly (eg flags).
428	 */
429	ath_hal_setupfirsttxdesc(sc->sc_ah,
430	    bf_first->bf_desc,
431	    bf_first->bf_state.bfs_al,
432	    bf_first->bf_state.bfs_txflags | HAL_TXDESC_INTREQ,
433	    bf_first->bf_state.bfs_txpower,
434	    bf_first->bf_state.bfs_txrate0,
435	    bf_first->bf_state.bfs_try0,
436	    bf_first->bf_state.bfs_txantenna,
437	    bf_first->bf_state.bfs_ctsrate,
438	    bf_first->bf_state.bfs_ctsduration);
439
440	/*
441	 * Setup the last descriptor in the list.
442	 * bf_prev points to the last; bf is NULL here.
443	 */
444	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc,
445	    bf_first->bf_desc);
446
447	/*
448	 * Set the first descriptor bf_lastds field to point to
449	 * the last descriptor in the last subframe, that's where
450	 * the status update will occur.
451	 */
452	bf_first->bf_lastds = bf_prev->bf_lastds;
453
454	/*
455	 * And bf_last in the first descriptor points to the end of
456	 * the aggregate list.
457	 */
458	bf_first->bf_last = bf_prev;
459
460	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
461}
462
463static void
464ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
465    struct ath_buf *bf)
466{
467	ATH_TXQ_LOCK_ASSERT(txq);
468	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
469	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
470	if (txq->axq_link != NULL) {
471		struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
472		struct ieee80211_frame *wh;
473
474		/* mark previous frame */
475		wh = mtod(last->bf_m, struct ieee80211_frame *);
476		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
477		bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
478		    BUS_DMASYNC_PREWRITE);
479
480		/* link descriptor */
481		*txq->axq_link = bf->bf_daddr;
482	}
483	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
484	txq->axq_link = &bf->bf_lastds->ds_link;
485}
486
487/*
488 * Hand-off packet to a hardware queue.
489 */
490static void
491ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
492    struct ath_buf *bf)
493{
494	struct ath_hal *ah = sc->sc_ah;
495
496	/*
497	 * Insert the frame on the outbound list and pass it on
498	 * to the hardware.  Multicast frames buffered for power
499	 * save stations and transmit from the CAB queue are stored
500	 * on a s/w only queue and loaded on to the CAB queue in
501	 * the SWBA handler since frames only go out on DTIM and
502	 * to avoid possible races.
503	 */
504	ATH_TXQ_LOCK_ASSERT(txq);
505	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
506	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
507	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
508	     ("ath_tx_handoff_hw called for mcast queue"));
509
510#if 0
511	/*
512	 * This causes a LOR. Find out where the PCU lock is being
513	 * held whilst the TXQ lock is grabbed - that shouldn't
514	 * be occuring.
515	 */
516	ATH_PCU_LOCK(sc);
517	if (sc->sc_inreset_cnt) {
518		ATH_PCU_UNLOCK(sc);
519		DPRINTF(sc, ATH_DEBUG_RESET,
520		    "%s: called with sc_in_reset != 0\n",
521		    __func__);
522		DPRINTF(sc, ATH_DEBUG_XMIT,
523		    "%s: queued: TXDP[%u] = %p (%p) depth %d\n",
524		    __func__, txq->axq_qnum,
525		    (caddr_t)bf->bf_daddr, bf->bf_desc,
526		    txq->axq_depth);
527		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
528		if (bf->bf_state.bfs_aggr)
529			txq->axq_aggr_depth++;
530		/*
531		 * There's no need to update axq_link; the hardware
532		 * is in reset and once the reset is complete, any
533		 * non-empty queues will simply have DMA restarted.
534		 */
535		return;
536		}
537	ATH_PCU_UNLOCK(sc);
538#endif
539
540	/* For now, so not to generate whitespace diffs */
541	if (1) {
542#ifdef IEEE80211_SUPPORT_TDMA
543		int qbusy;
544
545		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
546		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
547		if (txq->axq_link == NULL) {
548			/*
549			 * Be careful writing the address to TXDP.  If
550			 * the tx q is enabled then this write will be
551			 * ignored.  Normally this is not an issue but
552			 * when tdma is in use and the q is beacon gated
553			 * this race can occur.  If the q is busy then
554			 * defer the work to later--either when another
555			 * packet comes along or when we prepare a beacon
556			 * frame at SWBA.
557			 */
558			if (!qbusy) {
559				ath_hal_puttxbuf(ah, txq->axq_qnum,
560				    bf->bf_daddr);
561				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
562				DPRINTF(sc, ATH_DEBUG_XMIT,
563				    "%s: TXDP[%u] = %p (%p) depth %d\n",
564				    __func__, txq->axq_qnum,
565				    (caddr_t)bf->bf_daddr, bf->bf_desc,
566				    txq->axq_depth);
567			} else {
568				txq->axq_flags |= ATH_TXQ_PUTPENDING;
569				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
570				    "%s: Q%u busy, defer enable\n", __func__,
571				    txq->axq_qnum);
572			}
573		} else {
574			*txq->axq_link = bf->bf_daddr;
575			DPRINTF(sc, ATH_DEBUG_XMIT,
576			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
577			    txq->axq_qnum, txq->axq_link,
578			    (caddr_t)bf->bf_daddr, bf->bf_desc,
579			    txq->axq_depth);
580			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
581				/*
582				 * The q was busy when we previously tried
583				 * to write the address of the first buffer
584				 * in the chain.  Since it's not busy now
585				 * handle this chore.  We are certain the
586				 * buffer at the front is the right one since
587				 * axq_link is NULL only when the buffer list
588				 * is/was empty.
589				 */
590				ath_hal_puttxbuf(ah, txq->axq_qnum,
591					TAILQ_FIRST(&txq->axq_q)->bf_daddr);
592				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
593				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
594				    "%s: Q%u restarted\n", __func__,
595				    txq->axq_qnum);
596			}
597		}
598#else
599		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
600		if (txq->axq_link == NULL) {
601			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
602			DPRINTF(sc, ATH_DEBUG_XMIT,
603			    "%s: TXDP[%u] = %p (%p) depth %d\n",
604			    __func__, txq->axq_qnum,
605			    (caddr_t)bf->bf_daddr, bf->bf_desc,
606			    txq->axq_depth);
607		} else {
608			*txq->axq_link = bf->bf_daddr;
609			DPRINTF(sc, ATH_DEBUG_XMIT,
610			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
611			    txq->axq_qnum, txq->axq_link,
612			    (caddr_t)bf->bf_daddr, bf->bf_desc,
613			    txq->axq_depth);
614		}
615#endif /* IEEE80211_SUPPORT_TDMA */
616		if (bf->bf_state.bfs_aggr)
617			txq->axq_aggr_depth++;
618		txq->axq_link = &bf->bf_lastds->ds_link;
619		ath_hal_txstart(ah, txq->axq_qnum);
620	}
621}
622
623/*
624 * Restart TX DMA for the given TXQ.
625 *
626 * This must be called whether the queue is empty or not.
627 */
628void
629ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
630{
631	struct ath_hal *ah = sc->sc_ah;
632	struct ath_buf *bf, *bf_last;
633
634	ATH_TXQ_LOCK_ASSERT(txq);
635
636	/* This is always going to be cleared, empty or not */
637	txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
638
639	/* XXX make this ATH_TXQ_FIRST */
640	bf = TAILQ_FIRST(&txq->axq_q);
641	bf_last = ATH_TXQ_LAST(txq, axq_q_s);
642
643	if (bf == NULL)
644		return;
645
646	ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
647	txq->axq_link = &bf_last->bf_lastds->ds_link;
648	ath_hal_txstart(ah, txq->axq_qnum);
649}
650
651/*
652 * Hand off a packet to the hardware (or mcast queue.)
653 *
654 * The relevant hardware txq should be locked.
655 */
656static void
657ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
658{
659	ATH_TXQ_LOCK_ASSERT(txq);
660
661	if (txq->axq_qnum == ATH_TXQ_SWQ)
662		ath_tx_handoff_mcast(sc, txq, bf);
663	else
664		ath_tx_handoff_hw(sc, txq, bf);
665}
666
667static int
668ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
669    struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
670    int *keyix)
671{
672	DPRINTF(sc, ATH_DEBUG_XMIT,
673	    "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
674	    __func__,
675	    *hdrlen,
676	    *pktlen,
677	    isfrag,
678	    iswep,
679	    m0);
680
681	if (iswep) {
682		const struct ieee80211_cipher *cip;
683		struct ieee80211_key *k;
684
685		/*
686		 * Construct the 802.11 header+trailer for an encrypted
687		 * frame. The only reason this can fail is because of an
688		 * unknown or unsupported cipher/key type.
689		 */
690		k = ieee80211_crypto_encap(ni, m0);
691		if (k == NULL) {
692			/*
693			 * This can happen when the key is yanked after the
694			 * frame was queued.  Just discard the frame; the
695			 * 802.11 layer counts failures and provides
696			 * debugging/diagnostics.
697			 */
698			return (0);
699		}
700		/*
701		 * Adjust the packet + header lengths for the crypto
702		 * additions and calculate the h/w key index.  When
703		 * a s/w mic is done the frame will have had any mic
704		 * added to it prior to entry so m0->m_pkthdr.len will
705		 * account for it. Otherwise we need to add it to the
706		 * packet length.
707		 */
708		cip = k->wk_cipher;
709		(*hdrlen) += cip->ic_header;
710		(*pktlen) += cip->ic_header + cip->ic_trailer;
711		/* NB: frags always have any TKIP MIC done in s/w */
712		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
713			(*pktlen) += cip->ic_miclen;
714		(*keyix) = k->wk_keyix;
715	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
716		/*
717		 * Use station key cache slot, if assigned.
718		 */
719		(*keyix) = ni->ni_ucastkey.wk_keyix;
720		if ((*keyix) == IEEE80211_KEYIX_NONE)
721			(*keyix) = HAL_TXKEYIX_INVALID;
722	} else
723		(*keyix) = HAL_TXKEYIX_INVALID;
724
725	return (1);
726}
727
728/*
729 * Calculate whether interoperability protection is required for
730 * this frame.
731 *
732 * This requires the rate control information be filled in,
733 * as the protection requirement depends upon the current
734 * operating mode / PHY.
735 */
736static void
737ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
738{
739	struct ieee80211_frame *wh;
740	uint8_t rix;
741	uint16_t flags;
742	int shortPreamble;
743	const HAL_RATE_TABLE *rt = sc->sc_currates;
744	struct ifnet *ifp = sc->sc_ifp;
745	struct ieee80211com *ic = ifp->if_l2com;
746
747	flags = bf->bf_state.bfs_txflags;
748	rix = bf->bf_state.bfs_rc[0].rix;
749	shortPreamble = bf->bf_state.bfs_shpream;
750	wh = mtod(bf->bf_m, struct ieee80211_frame *);
751
752	/*
753	 * If 802.11g protection is enabled, determine whether
754	 * to use RTS/CTS or just CTS.  Note that this is only
755	 * done for OFDM unicast frames.
756	 */
757	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
758	    rt->info[rix].phy == IEEE80211_T_OFDM &&
759	    (flags & HAL_TXDESC_NOACK) == 0) {
760		bf->bf_state.bfs_doprot = 1;
761		/* XXX fragments must use CCK rates w/ protection */
762		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
763			flags |= HAL_TXDESC_RTSENA;
764		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
765			flags |= HAL_TXDESC_CTSENA;
766		}
767		/*
768		 * For frags it would be desirable to use the
769		 * highest CCK rate for RTS/CTS.  But stations
770		 * farther away may detect it at a lower CCK rate
771		 * so use the configured protection rate instead
772		 * (for now).
773		 */
774		sc->sc_stats.ast_tx_protect++;
775	}
776
777	/*
778	 * If 11n protection is enabled and it's a HT frame,
779	 * enable RTS.
780	 *
781	 * XXX ic_htprotmode or ic_curhtprotmode?
782	 * XXX should it_htprotmode only matter if ic_curhtprotmode
783	 * XXX indicates it's not a HT pure environment?
784	 */
785	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
786	    rt->info[rix].phy == IEEE80211_T_HT &&
787	    (flags & HAL_TXDESC_NOACK) == 0) {
788		flags |= HAL_TXDESC_RTSENA;
789		sc->sc_stats.ast_tx_htprotect++;
790	}
791	bf->bf_state.bfs_txflags = flags;
792}
793
794/*
795 * Update the frame duration given the currently selected rate.
796 *
797 * This also updates the frame duration value, so it will require
798 * a DMA flush.
799 */
800static void
801ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
802{
803	struct ieee80211_frame *wh;
804	uint8_t rix;
805	uint16_t flags;
806	int shortPreamble;
807	struct ath_hal *ah = sc->sc_ah;
808	const HAL_RATE_TABLE *rt = sc->sc_currates;
809	int isfrag = bf->bf_m->m_flags & M_FRAG;
810
811	flags = bf->bf_state.bfs_txflags;
812	rix = bf->bf_state.bfs_rc[0].rix;
813	shortPreamble = bf->bf_state.bfs_shpream;
814	wh = mtod(bf->bf_m, struct ieee80211_frame *);
815
816	/*
817	 * Calculate duration.  This logically belongs in the 802.11
818	 * layer but it lacks sufficient information to calculate it.
819	 */
820	if ((flags & HAL_TXDESC_NOACK) == 0 &&
821	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
822		u_int16_t dur;
823		if (shortPreamble)
824			dur = rt->info[rix].spAckDuration;
825		else
826			dur = rt->info[rix].lpAckDuration;
827		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
828			dur += dur;		/* additional SIFS+ACK */
829			KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment"));
830			/*
831			 * Include the size of next fragment so NAV is
832			 * updated properly.  The last fragment uses only
833			 * the ACK duration
834			 */
835			dur += ath_hal_computetxtime(ah, rt,
836					bf->bf_m->m_nextpkt->m_pkthdr.len,
837					rix, shortPreamble);
838		}
839		if (isfrag) {
840			/*
841			 * Force hardware to use computed duration for next
842			 * fragment by disabling multi-rate retry which updates
843			 * duration based on the multi-rate duration table.
844			 */
845			bf->bf_state.bfs_ismrr = 0;
846			bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
847			/* XXX update bfs_rc[0].try? */
848		}
849
850		/* Update the duration field itself */
851		*(u_int16_t *)wh->i_dur = htole16(dur);
852	}
853}
854
855static uint8_t
856ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
857    int cix, int shortPreamble)
858{
859	uint8_t ctsrate;
860
861	/*
862	 * CTS transmit rate is derived from the transmit rate
863	 * by looking in the h/w rate table.  We must also factor
864	 * in whether or not a short preamble is to be used.
865	 */
866	/* NB: cix is set above where RTS/CTS is enabled */
867	KASSERT(cix != 0xff, ("cix not setup"));
868	ctsrate = rt->info[cix].rateCode;
869
870	/* XXX this should only matter for legacy rates */
871	if (shortPreamble)
872		ctsrate |= rt->info[cix].shortPreamble;
873
874	return (ctsrate);
875}
876
877/*
878 * Calculate the RTS/CTS duration for legacy frames.
879 */
880static int
881ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
882    int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
883    int flags)
884{
885	int ctsduration = 0;
886
887	/* This mustn't be called for HT modes */
888	if (rt->info[cix].phy == IEEE80211_T_HT) {
889		printf("%s: HT rate where it shouldn't be (0x%x)\n",
890		    __func__, rt->info[cix].rateCode);
891		return (-1);
892	}
893
894	/*
895	 * Compute the transmit duration based on the frame
896	 * size and the size of an ACK frame.  We call into the
897	 * HAL to do the computation since it depends on the
898	 * characteristics of the actual PHY being used.
899	 *
900	 * NB: CTS is assumed the same size as an ACK so we can
901	 *     use the precalculated ACK durations.
902	 */
903	if (shortPreamble) {
904		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
905			ctsduration += rt->info[cix].spAckDuration;
906		ctsduration += ath_hal_computetxtime(ah,
907			rt, pktlen, rix, AH_TRUE);
908		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
909			ctsduration += rt->info[rix].spAckDuration;
910	} else {
911		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
912			ctsduration += rt->info[cix].lpAckDuration;
913		ctsduration += ath_hal_computetxtime(ah,
914			rt, pktlen, rix, AH_FALSE);
915		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
916			ctsduration += rt->info[rix].lpAckDuration;
917	}
918
919	return (ctsduration);
920}
921
922/*
923 * Update the given ath_buf with updated rts/cts setup and duration
924 * values.
925 *
926 * To support rate lookups for each software retry, the rts/cts rate
927 * and cts duration must be re-calculated.
928 *
929 * This function assumes the RTS/CTS flags have been set as needed;
930 * mrr has been disabled; and the rate control lookup has been done.
931 *
932 * XXX TODO: MRR need only be disabled for the pre-11n NICs.
933 * XXX The 11n NICs support per-rate RTS/CTS configuration.
934 */
935static void
936ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
937{
938	uint16_t ctsduration = 0;
939	uint8_t ctsrate = 0;
940	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
941	uint8_t cix = 0;
942	const HAL_RATE_TABLE *rt = sc->sc_currates;
943
944	/*
945	 * No RTS/CTS enabled? Don't bother.
946	 */
947	if ((bf->bf_state.bfs_txflags &
948	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
949		/* XXX is this really needed? */
950		bf->bf_state.bfs_ctsrate = 0;
951		bf->bf_state.bfs_ctsduration = 0;
952		return;
953	}
954
955	/*
956	 * If protection is enabled, use the protection rix control
957	 * rate. Otherwise use the rate0 control rate.
958	 */
959	if (bf->bf_state.bfs_doprot)
960		rix = sc->sc_protrix;
961	else
962		rix = bf->bf_state.bfs_rc[0].rix;
963
964	/*
965	 * If the raw path has hard-coded ctsrate0 to something,
966	 * use it.
967	 */
968	if (bf->bf_state.bfs_ctsrate0 != 0)
969		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
970	else
971		/* Control rate from above */
972		cix = rt->info[rix].controlRate;
973
974	/* Calculate the rtscts rate for the given cix */
975	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
976	    bf->bf_state.bfs_shpream);
977
978	/* The 11n chipsets do ctsduration calculations for you */
979	if (! ath_tx_is_11n(sc))
980		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
981		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
982		    rt, bf->bf_state.bfs_txflags);
983
984	/* Squirrel away in ath_buf */
985	bf->bf_state.bfs_ctsrate = ctsrate;
986	bf->bf_state.bfs_ctsduration = ctsduration;
987
988	/*
989	 * Must disable multi-rate retry when using RTS/CTS.
990	 * XXX TODO: only for pre-11n NICs.
991	 */
992	bf->bf_state.bfs_ismrr = 0;
993	bf->bf_state.bfs_try0 =
994	    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY;	/* XXX ew */
995}
996
997/*
998 * Setup the descriptor chain for a normal or fast-frame
999 * frame.
1000 */
1001static void
1002ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
1003{
1004	struct ath_desc *ds = bf->bf_desc;
1005	struct ath_hal *ah = sc->sc_ah;
1006
1007	ath_hal_setuptxdesc(ah, ds
1008		, bf->bf_state.bfs_pktlen	/* packet length */
1009		, bf->bf_state.bfs_hdrlen	/* header length */
1010		, bf->bf_state.bfs_atype	/* Atheros packet type */
1011		, bf->bf_state.bfs_txpower	/* txpower */
1012		, bf->bf_state.bfs_txrate0
1013		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
1014		, bf->bf_state.bfs_keyix	/* key cache index */
1015		, bf->bf_state.bfs_txantenna	/* antenna mode */
1016		, bf->bf_state.bfs_txflags	/* flags */
1017		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
1018		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
1019	);
1020
1021	/*
1022	 * This will be overriden when the descriptor chain is written.
1023	 */
1024	bf->bf_lastds = ds;
1025	bf->bf_last = bf;
1026
1027	/* XXX TODO: Setup descriptor chain */
1028}
1029
1030/*
1031 * Do a rate lookup.
1032 *
1033 * This performs a rate lookup for the given ath_buf only if it's required.
1034 * Non-data frames and raw frames don't require it.
1035 *
1036 * This populates the primary and MRR entries; MRR values are
1037 * then disabled later on if something requires it (eg RTS/CTS on
1038 * pre-11n chipsets.
1039 *
1040 * This needs to be done before the RTS/CTS fields are calculated
1041 * as they may depend upon the rate chosen.
1042 */
1043static void
1044ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
1045{
1046	uint8_t rate, rix;
1047	int try0;
1048
1049	if (! bf->bf_state.bfs_doratelookup)
1050		return;
1051
1052	/* Get rid of any previous state */
1053	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1054
1055	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
1056	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
1057	    bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
1058
1059	/* In case MRR is disabled, make sure rc[0] is setup correctly */
1060	bf->bf_state.bfs_rc[0].rix = rix;
1061	bf->bf_state.bfs_rc[0].ratecode = rate;
1062	bf->bf_state.bfs_rc[0].tries = try0;
1063
1064	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
1065		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
1066		    bf->bf_state.bfs_rc);
1067	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
1068
1069	sc->sc_txrix = rix;	/* for LED blinking */
1070	sc->sc_lastdatarix = rix;	/* for fast frames */
1071	bf->bf_state.bfs_try0 = try0;
1072	bf->bf_state.bfs_txrate0 = rate;
1073}
1074
1075/*
1076 * Set the rate control fields in the given descriptor based on
1077 * the bf_state fields and node state.
1078 *
1079 * The bfs fields should already be set with the relevant rate
1080 * control information, including whether MRR is to be enabled.
1081 *
1082 * Since the FreeBSD HAL currently sets up the first TX rate
1083 * in ath_hal_setuptxdesc(), this will setup the MRR
1084 * conditionally for the pre-11n chips, and call ath_buf_set_rate
1085 * unconditionally for 11n chips. These require the 11n rate
1086 * scenario to be set if MCS rates are enabled, so it's easier
1087 * to just always call it. The caller can then only set rates 2, 3
1088 * and 4 if multi-rate retry is needed.
1089 */
1090static void
1091ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
1092    struct ath_buf *bf)
1093{
1094	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
1095
1096	/* If mrr is disabled, blank tries 1, 2, 3 */
1097	if (! bf->bf_state.bfs_ismrr)
1098		rc[1].tries = rc[2].tries = rc[3].tries = 0;
1099
1100	/*
1101	 * Always call - that way a retried descriptor will
1102	 * have the MRR fields overwritten.
1103	 *
1104	 * XXX TODO: see if this is really needed - setting up
1105	 * the first descriptor should set the MRR fields to 0
1106	 * for us anyway.
1107	 */
1108	if (ath_tx_is_11n(sc)) {
1109		ath_buf_set_rate(sc, ni, bf);
1110	} else {
1111		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
1112			, rc[1].ratecode, rc[1].tries
1113			, rc[2].ratecode, rc[2].tries
1114			, rc[3].ratecode, rc[3].tries
1115		);
1116	}
1117}
1118
1119/*
1120 * Transmit the given frame to the hardware.
1121 *
1122 * The frame must already be setup; rate control must already have
1123 * been done.
1124 *
1125 * XXX since the TXQ lock is being held here (and I dislike holding
1126 * it for this long when not doing software aggregation), later on
1127 * break this function into "setup_normal" and "xmit_normal". The
1128 * lock only needs to be held for the ath_tx_handoff call.
1129 */
1130static void
1131ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
1132    struct ath_buf *bf)
1133{
1134
1135	ATH_TXQ_LOCK_ASSERT(txq);
1136
1137	/* Setup the descriptor before handoff */
1138	ath_tx_do_ratelookup(sc, bf);
1139	ath_tx_calc_duration(sc, bf);
1140	ath_tx_calc_protection(sc, bf);
1141	ath_tx_set_rtscts(sc, bf);
1142	ath_tx_rate_fill_rcflags(sc, bf);
1143	ath_tx_setds(sc, bf);
1144	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
1145	ath_tx_chaindesclist(sc, bf);
1146
1147	/* Hand off to hardware */
1148	ath_tx_handoff(sc, txq, bf);
1149}
1150
1151
1152
1153static int
1154ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1155    struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
1156{
1157	struct ieee80211vap *vap = ni->ni_vap;
1158	struct ath_hal *ah = sc->sc_ah;
1159	struct ifnet *ifp = sc->sc_ifp;
1160	struct ieee80211com *ic = ifp->if_l2com;
1161	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1162	int error, iswep, ismcast, isfrag, ismrr;
1163	int keyix, hdrlen, pktlen, try0 = 0;
1164	u_int8_t rix = 0, txrate = 0;
1165	struct ath_desc *ds;
1166	struct ieee80211_frame *wh;
1167	u_int subtype, flags;
1168	HAL_PKT_TYPE atype;
1169	const HAL_RATE_TABLE *rt;
1170	HAL_BOOL shortPreamble;
1171	struct ath_node *an;
1172	u_int pri;
1173
1174	wh = mtod(m0, struct ieee80211_frame *);
1175	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1176	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1177	isfrag = m0->m_flags & M_FRAG;
1178	hdrlen = ieee80211_anyhdrsize(wh);
1179	/*
1180	 * Packet length must not include any
1181	 * pad bytes; deduct them here.
1182	 */
1183	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1184
1185	/* Handle encryption twiddling if needed */
1186	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1187	    &pktlen, &keyix)) {
1188		ath_freetx(m0);
1189		return EIO;
1190	}
1191
1192	/* packet header may have moved, reset our local pointer */
1193	wh = mtod(m0, struct ieee80211_frame *);
1194
1195	pktlen += IEEE80211_CRC_LEN;
1196
1197	/*
1198	 * Load the DMA map so any coalescing is done.  This
1199	 * also calculates the number of descriptors we need.
1200	 */
1201	error = ath_tx_dmasetup(sc, bf, m0);
1202	if (error != 0)
1203		return error;
1204	bf->bf_node = ni;			/* NB: held reference */
1205	m0 = bf->bf_m;				/* NB: may have changed */
1206	wh = mtod(m0, struct ieee80211_frame *);
1207
1208	/* setup descriptors */
1209	ds = bf->bf_desc;
1210	rt = sc->sc_currates;
1211	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1212
1213	/*
1214	 * NB: the 802.11 layer marks whether or not we should
1215	 * use short preamble based on the current mode and
1216	 * negotiated parameters.
1217	 */
1218	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1219	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1220		shortPreamble = AH_TRUE;
1221		sc->sc_stats.ast_tx_shortpre++;
1222	} else {
1223		shortPreamble = AH_FALSE;
1224	}
1225
1226	an = ATH_NODE(ni);
1227	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1228	ismrr = 0;				/* default no multi-rate retry*/
1229	pri = M_WME_GETAC(m0);			/* honor classification */
1230	/* XXX use txparams instead of fixed values */
1231	/*
1232	 * Calculate Atheros packet type from IEEE80211 packet header,
1233	 * setup for rate calculations, and select h/w transmit queue.
1234	 */
1235	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1236	case IEEE80211_FC0_TYPE_MGT:
1237		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1238		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1239			atype = HAL_PKT_TYPE_BEACON;
1240		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1241			atype = HAL_PKT_TYPE_PROBE_RESP;
1242		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1243			atype = HAL_PKT_TYPE_ATIM;
1244		else
1245			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1246		rix = an->an_mgmtrix;
1247		txrate = rt->info[rix].rateCode;
1248		if (shortPreamble)
1249			txrate |= rt->info[rix].shortPreamble;
1250		try0 = ATH_TXMGTTRY;
1251		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1252		break;
1253	case IEEE80211_FC0_TYPE_CTL:
1254		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1255		rix = an->an_mgmtrix;
1256		txrate = rt->info[rix].rateCode;
1257		if (shortPreamble)
1258			txrate |= rt->info[rix].shortPreamble;
1259		try0 = ATH_TXMGTTRY;
1260		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1261		break;
1262	case IEEE80211_FC0_TYPE_DATA:
1263		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1264		/*
1265		 * Data frames: multicast frames go out at a fixed rate,
1266		 * EAPOL frames use the mgmt frame rate; otherwise consult
1267		 * the rate control module for the rate to use.
1268		 */
1269		if (ismcast) {
1270			rix = an->an_mcastrix;
1271			txrate = rt->info[rix].rateCode;
1272			if (shortPreamble)
1273				txrate |= rt->info[rix].shortPreamble;
1274			try0 = 1;
1275		} else if (m0->m_flags & M_EAPOL) {
1276			/* XXX? maybe always use long preamble? */
1277			rix = an->an_mgmtrix;
1278			txrate = rt->info[rix].rateCode;
1279			if (shortPreamble)
1280				txrate |= rt->info[rix].shortPreamble;
1281			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1282		} else {
1283			/*
1284			 * Do rate lookup on each TX, rather than using
1285			 * the hard-coded TX information decided here.
1286			 */
1287			ismrr = 1;
1288			bf->bf_state.bfs_doratelookup = 1;
1289		}
1290		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1291			flags |= HAL_TXDESC_NOACK;
1292		break;
1293	default:
1294		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
1295			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1296		/* XXX statistic */
1297		ath_freetx(m0);
1298		return EIO;
1299	}
1300
1301	/* Check if the TXQ wouldn't match what the hardware TXQ is! */
1302	if (txq != sc->sc_ac2q[pri]) {
1303		device_printf(sc->sc_dev,
1304		    "%s: txq=%p (%d), pri=%d, pri txq=%p (%d)\n",
1305		    __func__,
1306		    txq,
1307		    txq->axq_qnum,
1308		    pri,
1309		    sc->sc_ac2q[pri],
1310		    sc->sc_ac2q[pri]->axq_qnum);
1311	}
1312
1313	/*
1314	 * Calculate miscellaneous flags.
1315	 */
1316	if (ismcast) {
1317		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1318	} else if (pktlen > vap->iv_rtsthreshold &&
1319	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1320		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1321		sc->sc_stats.ast_tx_rts++;
1322	}
1323	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1324		sc->sc_stats.ast_tx_noack++;
1325#ifdef IEEE80211_SUPPORT_TDMA
1326	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1327		DPRINTF(sc, ATH_DEBUG_TDMA,
1328		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1329		sc->sc_stats.ast_tdma_ack++;
1330		ath_freetx(m0);
1331		return EIO;
1332	}
1333#endif
1334
1335	/*
1336	 * Determine if a tx interrupt should be generated for
1337	 * this descriptor.  We take a tx interrupt to reap
1338	 * descriptors when the h/w hits an EOL condition or
1339	 * when the descriptor is specifically marked to generate
1340	 * an interrupt.  We periodically mark descriptors in this
1341	 * way to insure timely replenishing of the supply needed
1342	 * for sending frames.  Defering interrupts reduces system
1343	 * load and potentially allows more concurrent work to be
1344	 * done but if done to aggressively can cause senders to
1345	 * backup.
1346	 *
1347	 * NB: use >= to deal with sc_txintrperiod changing
1348	 *     dynamically through sysctl.
1349	 */
1350	if (flags & HAL_TXDESC_INTREQ) {
1351		txq->axq_intrcnt = 0;
1352	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1353		flags |= HAL_TXDESC_INTREQ;
1354		txq->axq_intrcnt = 0;
1355	}
1356
1357	/* This point forward is actual TX bits */
1358
1359	/*
1360	 * At this point we are committed to sending the frame
1361	 * and we don't need to look at m_nextpkt; clear it in
1362	 * case this frame is part of frag chain.
1363	 */
1364	m0->m_nextpkt = NULL;
1365
1366	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1367		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1368		    sc->sc_hwmap[rix].ieeerate, -1);
1369
1370	if (ieee80211_radiotap_active_vap(vap)) {
1371		u_int64_t tsf = ath_hal_gettsf64(ah);
1372
1373		sc->sc_tx_th.wt_tsf = htole64(tsf);
1374		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1375		if (iswep)
1376			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1377		if (isfrag)
1378			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1379		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1380		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1381		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1382
1383		ieee80211_radiotap_tx(vap, m0);
1384	}
1385
1386	/* Blank the legacy rate array */
1387	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1388
1389	/*
1390	 * ath_buf_set_rate needs at least one rate/try to setup
1391	 * the rate scenario.
1392	 */
1393	bf->bf_state.bfs_rc[0].rix = rix;
1394	bf->bf_state.bfs_rc[0].tries = try0;
1395	bf->bf_state.bfs_rc[0].ratecode = txrate;
1396
1397	/* Store the decided rate index values away */
1398	bf->bf_state.bfs_pktlen = pktlen;
1399	bf->bf_state.bfs_hdrlen = hdrlen;
1400	bf->bf_state.bfs_atype = atype;
1401	bf->bf_state.bfs_txpower = ni->ni_txpower;
1402	bf->bf_state.bfs_txrate0 = txrate;
1403	bf->bf_state.bfs_try0 = try0;
1404	bf->bf_state.bfs_keyix = keyix;
1405	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1406	bf->bf_state.bfs_txflags = flags;
1407	bf->bf_state.bfs_shpream = shortPreamble;
1408
1409	/* XXX this should be done in ath_tx_setrate() */
1410	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1411	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1412	bf->bf_state.bfs_ctsduration = 0;
1413	bf->bf_state.bfs_ismrr = ismrr;
1414
1415	return 0;
1416}
1417
1418/*
1419 * Direct-dispatch the current frame to the hardware.
1420 *
1421 * This can be called by the net80211 code.
1422 *
1423 * XXX what about locking? Or, push the seqno assign into the
1424 * XXX aggregate scheduler so its serialised?
1425 */
1426int
1427ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1428    struct ath_buf *bf, struct mbuf *m0)
1429{
1430	struct ieee80211vap *vap = ni->ni_vap;
1431	struct ath_vap *avp = ATH_VAP(vap);
1432	int r = 0;
1433	u_int pri;
1434	int tid;
1435	struct ath_txq *txq;
1436	int ismcast;
1437	const struct ieee80211_frame *wh;
1438	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1439	ieee80211_seq seqno;
1440	uint8_t type, subtype;
1441
1442	/*
1443	 * Determine the target hardware queue.
1444	 *
1445	 * For multicast frames, the txq gets overridden appropriately
1446	 * depending upon the state of PS.
1447	 *
1448	 * For any other frame, we do a TID/QoS lookup inside the frame
1449	 * to see what the TID should be. If it's a non-QoS frame, the
1450	 * AC and TID are overridden. The TID/TXQ code assumes the
1451	 * TID is on a predictable hardware TXQ, so we don't support
1452	 * having a node TID queued to multiple hardware TXQs.
1453	 * This may change in the future but would require some locking
1454	 * fudgery.
1455	 */
1456	pri = ath_tx_getac(sc, m0);
1457	tid = ath_tx_gettid(sc, m0);
1458
1459	txq = sc->sc_ac2q[pri];
1460	wh = mtod(m0, struct ieee80211_frame *);
1461	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1462	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1463	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1464
1465	/*
1466	 * Enforce how deep the multicast queue can grow.
1467	 *
1468	 * XXX duplicated in ath_raw_xmit().
1469	 */
1470	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1471		ATH_TXQ_LOCK(sc->sc_cabq);
1472
1473		if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
1474			sc->sc_stats.ast_tx_mcastq_overflow++;
1475			r = ENOBUFS;
1476		}
1477
1478		ATH_TXQ_UNLOCK(sc->sc_cabq);
1479
1480		if (r != 0) {
1481			m_freem(m0);
1482			return r;
1483		}
1484	}
1485
1486	/* A-MPDU TX */
1487	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1488	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1489	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1490
1491	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, ac=%d, is_ampdu=%d\n",
1492	    __func__, tid, pri, is_ampdu);
1493
1494	/*
1495	 * When servicing one or more stations in power-save mode
1496	 * (or) if there is some mcast data waiting on the mcast
1497	 * queue (to prevent out of order delivery) multicast frames
1498	 * must be bufferd until after the beacon.
1499	 *
1500	 * TODO: we should lock the mcastq before we check the length.
1501	 */
1502	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1503		txq = &avp->av_mcastq;
1504
1505	/* Do the generic frame setup */
1506	/* XXX should just bzero the bf_state? */
1507	bf->bf_state.bfs_dobaw = 0;
1508
1509	/* A-MPDU TX? Manually set sequence number */
1510	/* Don't do it whilst pending; the net80211 layer still assigns them */
1511	/* XXX do we need locking here? */
1512	if (is_ampdu_tx) {
1513		ATH_TXQ_LOCK(txq);
1514		/*
1515		 * Always call; this function will
1516		 * handle making sure that null data frames
1517		 * don't get a sequence number from the current
1518		 * TID and thus mess with the BAW.
1519		 */
1520		seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
1521
1522		/*
1523		 * Don't add QoS NULL frames to the BAW.
1524		 */
1525		if (IEEE80211_QOS_HAS_SEQ(wh) &&
1526		    subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL) {
1527			bf->bf_state.bfs_dobaw = 1;
1528		}
1529		ATH_TXQ_UNLOCK(txq);
1530	}
1531
1532	/*
1533	 * If needed, the sequence number has been assigned.
1534	 * Squirrel it away somewhere easy to get to.
1535	 */
1536	bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1537
1538	/* Is ampdu pending? fetch the seqno and print it out */
1539	if (is_ampdu_pending)
1540		DPRINTF(sc, ATH_DEBUG_SW_TX,
1541		    "%s: tid %d: ampdu pending, seqno %d\n",
1542		    __func__, tid, M_SEQNO_GET(m0));
1543
1544	/* This also sets up the DMA map */
1545	r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
1546
1547	if (r != 0)
1548		return r;
1549
1550	/* At this point m0 could have changed! */
1551	m0 = bf->bf_m;
1552
1553#if 1
1554	/*
1555	 * If it's a multicast frame, do a direct-dispatch to the
1556	 * destination hardware queue. Don't bother software
1557	 * queuing it.
1558	 */
1559	/*
1560	 * If it's a BAR frame, do a direct dispatch to the
1561	 * destination hardware queue. Don't bother software
1562	 * queuing it, as the TID will now be paused.
1563	 * Sending a BAR frame can occur from the net80211 txa timer
1564	 * (ie, retries) or from the ath txtask (completion call.)
1565	 * It queues directly to hardware because the TID is paused
1566	 * at this point (and won't be unpaused until the BAR has
1567	 * either been TXed successfully or max retries has been
1568	 * reached.)
1569	 */
1570	if (txq == &avp->av_mcastq) {
1571		DPRINTF(sc, ATH_DEBUG_SW_TX,
1572		    "%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
1573		ATH_TXQ_LOCK(txq);
1574		ath_tx_xmit_normal(sc, txq, bf);
1575		ATH_TXQ_UNLOCK(txq);
1576	} else if (type == IEEE80211_FC0_TYPE_CTL &&
1577		    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1578		DPRINTF(sc, ATH_DEBUG_SW_TX,
1579		    "%s: BAR: TX'ing direct\n", __func__);
1580		ATH_TXQ_LOCK(txq);
1581		ath_tx_xmit_normal(sc, txq, bf);
1582		ATH_TXQ_UNLOCK(txq);
1583	} else {
1584		/* add to software queue */
1585		DPRINTF(sc, ATH_DEBUG_SW_TX,
1586		    "%s: bf=%p: swq: TX'ing\n", __func__, bf);
1587		ath_tx_swq(sc, ni, txq, bf);
1588	}
1589#else
1590	/*
1591	 * For now, since there's no software queue,
1592	 * direct-dispatch to the hardware.
1593	 */
1594	ATH_TXQ_LOCK(txq);
1595	ath_tx_xmit_normal(sc, txq, bf);
1596	ATH_TXQ_UNLOCK(txq);
1597#endif
1598
1599	return 0;
1600}
1601
1602static int
1603ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
1604	struct ath_buf *bf, struct mbuf *m0,
1605	const struct ieee80211_bpf_params *params)
1606{
1607	struct ifnet *ifp = sc->sc_ifp;
1608	struct ieee80211com *ic = ifp->if_l2com;
1609	struct ath_hal *ah = sc->sc_ah;
1610	struct ieee80211vap *vap = ni->ni_vap;
1611	int error, ismcast, ismrr;
1612	int keyix, hdrlen, pktlen, try0, txantenna;
1613	u_int8_t rix, txrate;
1614	struct ieee80211_frame *wh;
1615	u_int flags;
1616	HAL_PKT_TYPE atype;
1617	const HAL_RATE_TABLE *rt;
1618	struct ath_desc *ds;
1619	u_int pri;
1620	int o_tid = -1;
1621	int do_override;
1622
1623	wh = mtod(m0, struct ieee80211_frame *);
1624	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1625	hdrlen = ieee80211_anyhdrsize(wh);
1626	/*
1627	 * Packet length must not include any
1628	 * pad bytes; deduct them here.
1629	 */
1630	/* XXX honor IEEE80211_BPF_DATAPAD */
1631	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
1632
1633
1634	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
1635	    __func__, ismcast);
1636
1637	/* Handle encryption twiddling if needed */
1638	if (! ath_tx_tag_crypto(sc, ni,
1639	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
1640	    &hdrlen, &pktlen, &keyix)) {
1641		ath_freetx(m0);
1642		return EIO;
1643	}
1644	/* packet header may have moved, reset our local pointer */
1645	wh = mtod(m0, struct ieee80211_frame *);
1646
1647	/* Do the generic frame setup */
1648	/* XXX should just bzero the bf_state? */
1649	bf->bf_state.bfs_dobaw = 0;
1650
1651	error = ath_tx_dmasetup(sc, bf, m0);
1652	if (error != 0)
1653		return error;
1654	m0 = bf->bf_m;				/* NB: may have changed */
1655	wh = mtod(m0, struct ieee80211_frame *);
1656	bf->bf_node = ni;			/* NB: held reference */
1657
1658	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1659	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
1660	if (params->ibp_flags & IEEE80211_BPF_RTS)
1661		flags |= HAL_TXDESC_RTSENA;
1662	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
1663		/* XXX assume 11g/11n protection? */
1664		bf->bf_state.bfs_doprot = 1;
1665		flags |= HAL_TXDESC_CTSENA;
1666	}
1667	/* XXX leave ismcast to injector? */
1668	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
1669		flags |= HAL_TXDESC_NOACK;
1670
1671	rt = sc->sc_currates;
1672	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1673	rix = ath_tx_findrix(sc, params->ibp_rate0);
1674	txrate = rt->info[rix].rateCode;
1675	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
1676		txrate |= rt->info[rix].shortPreamble;
1677	sc->sc_txrix = rix;
1678	try0 = params->ibp_try0;
1679	ismrr = (params->ibp_try1 != 0);
1680	txantenna = params->ibp_pri >> 2;
1681	if (txantenna == 0)			/* XXX? */
1682		txantenna = sc->sc_txantenna;
1683
1684	/*
1685	 * Since ctsrate is fixed, store it away for later
1686	 * use when the descriptor fields are being set.
1687	 */
1688	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
1689		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
1690
1691	pri = params->ibp_pri & 3;
1692	/* Override pri if the frame isn't a QoS one */
1693	if (! IEEE80211_QOS_HAS_SEQ(wh))
1694		pri = ath_tx_getac(sc, m0);
1695
1696	/*
1697	 * NB: we mark all packets as type PSPOLL so the h/w won't
1698	 * set the sequence number, duration, etc.
1699	 */
1700	atype = HAL_PKT_TYPE_PSPOLL;
1701
1702	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1703		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
1704		    sc->sc_hwmap[rix].ieeerate, -1);
1705
1706	if (ieee80211_radiotap_active_vap(vap)) {
1707		u_int64_t tsf = ath_hal_gettsf64(ah);
1708
1709		sc->sc_tx_th.wt_tsf = htole64(tsf);
1710		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1711		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1712			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1713		if (m0->m_flags & M_FRAG)
1714			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1715		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1716		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1717		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1718
1719		ieee80211_radiotap_tx(vap, m0);
1720	}
1721
1722	/*
1723	 * Formulate first tx descriptor with tx controls.
1724	 */
1725	ds = bf->bf_desc;
1726	/* XXX check return value? */
1727
1728	/* Store the decided rate index values away */
1729	bf->bf_state.bfs_pktlen = pktlen;
1730	bf->bf_state.bfs_hdrlen = hdrlen;
1731	bf->bf_state.bfs_atype = atype;
1732	bf->bf_state.bfs_txpower = params->ibp_power;
1733	bf->bf_state.bfs_txrate0 = txrate;
1734	bf->bf_state.bfs_try0 = try0;
1735	bf->bf_state.bfs_keyix = keyix;
1736	bf->bf_state.bfs_txantenna = txantenna;
1737	bf->bf_state.bfs_txflags = flags;
1738	bf->bf_state.bfs_shpream =
1739	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
1740
1741	/* XXX this should be done in ath_tx_setrate() */
1742	bf->bf_state.bfs_ctsrate = 0;
1743	bf->bf_state.bfs_ctsduration = 0;
1744	bf->bf_state.bfs_ismrr = ismrr;
1745
1746	/* Blank the legacy rate array */
1747	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1748
1749	bf->bf_state.bfs_rc[0].rix =
1750	    ath_tx_findrix(sc, params->ibp_rate0);
1751	bf->bf_state.bfs_rc[0].tries = try0;
1752	bf->bf_state.bfs_rc[0].ratecode = txrate;
1753
1754	if (ismrr) {
1755		int rix;
1756
1757		rix = ath_tx_findrix(sc, params->ibp_rate1);
1758		bf->bf_state.bfs_rc[1].rix = rix;
1759		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
1760
1761		rix = ath_tx_findrix(sc, params->ibp_rate2);
1762		bf->bf_state.bfs_rc[2].rix = rix;
1763		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
1764
1765		rix = ath_tx_findrix(sc, params->ibp_rate3);
1766		bf->bf_state.bfs_rc[3].rix = rix;
1767		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
1768	}
1769	/*
1770	 * All the required rate control decisions have been made;
1771	 * fill in the rc flags.
1772	 */
1773	ath_tx_rate_fill_rcflags(sc, bf);
1774
1775	/* NB: no buffered multicast in power save support */
1776
1777	/* XXX If it's an ADDBA, override the correct queue */
1778	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
1779
1780	/* Map ADDBA to the correct priority */
1781	if (do_override) {
1782#if 0
1783		device_printf(sc->sc_dev,
1784		    "%s: overriding tid %d pri %d -> %d\n",
1785		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
1786#endif
1787		pri = TID_TO_WME_AC(o_tid);
1788	}
1789
1790	/*
1791	 * If we're overiding the ADDBA destination, dump directly
1792	 * into the hardware queue, right after any pending
1793	 * frames to that node are.
1794	 */
1795	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
1796	    __func__, do_override);
1797
1798	if (do_override) {
1799		ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
1800		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
1801		ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
1802	} else {
1803		/* Queue to software queue */
1804		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
1805	}
1806
1807	return 0;
1808}
1809
1810/*
1811 * Send a raw frame.
1812 *
1813 * This can be called by net80211.
1814 */
1815int
1816ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1817	const struct ieee80211_bpf_params *params)
1818{
1819	struct ieee80211com *ic = ni->ni_ic;
1820	struct ifnet *ifp = ic->ic_ifp;
1821	struct ath_softc *sc = ifp->if_softc;
1822	struct ath_buf *bf;
1823	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1824	int error = 0;
1825
1826	ATH_PCU_LOCK(sc);
1827	if (sc->sc_inreset_cnt > 0) {
1828		device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
1829		    __func__);
1830		error = EIO;
1831		ATH_PCU_UNLOCK(sc);
1832		goto bad0;
1833	}
1834	sc->sc_txstart_cnt++;
1835	ATH_PCU_UNLOCK(sc);
1836
1837	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1838		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
1839		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
1840			"!running" : "invalid");
1841		m_freem(m);
1842		error = ENETDOWN;
1843		goto bad;
1844	}
1845
1846	/*
1847	 * Enforce how deep the multicast queue can grow.
1848	 *
1849	 * XXX duplicated in ath_tx_start().
1850	 */
1851	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1852		ATH_TXQ_LOCK(sc->sc_cabq);
1853
1854		if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
1855			sc->sc_stats.ast_tx_mcastq_overflow++;
1856			error = ENOBUFS;
1857		}
1858
1859		ATH_TXQ_UNLOCK(sc->sc_cabq);
1860
1861		if (error != 0) {
1862			m_freem(m);
1863			goto bad;
1864		}
1865	}
1866
1867	/*
1868	 * Grab a TX buffer and associated resources.
1869	 */
1870	bf = ath_getbuf(sc);
1871	if (bf == NULL) {
1872		sc->sc_stats.ast_tx_nobuf++;
1873		m_freem(m);
1874		error = ENOBUFS;
1875		goto bad;
1876	}
1877
1878	if (params == NULL) {
1879		/*
1880		 * Legacy path; interpret frame contents to decide
1881		 * precisely how to send the frame.
1882		 */
1883		if (ath_tx_start(sc, ni, bf, m)) {
1884			error = EIO;		/* XXX */
1885			goto bad2;
1886		}
1887	} else {
1888		/*
1889		 * Caller supplied explicit parameters to use in
1890		 * sending the frame.
1891		 */
1892		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
1893			error = EIO;		/* XXX */
1894			goto bad2;
1895		}
1896	}
1897	sc->sc_wd_timer = 5;
1898	ifp->if_opackets++;
1899	sc->sc_stats.ast_tx_raw++;
1900
1901	ATH_PCU_LOCK(sc);
1902	sc->sc_txstart_cnt--;
1903	ATH_PCU_UNLOCK(sc);
1904
1905	return 0;
1906bad2:
1907	ATH_TXBUF_LOCK(sc);
1908	TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1909	ATH_TXBUF_UNLOCK(sc);
1910bad:
1911	ATH_PCU_LOCK(sc);
1912	sc->sc_txstart_cnt--;
1913	ATH_PCU_UNLOCK(sc);
1914bad0:
1915	ifp->if_oerrors++;
1916	sc->sc_stats.ast_tx_raw_fail++;
1917	ieee80211_free_node(ni);
1918
1919	return error;
1920}
1921
1922/* Some helper functions */
1923
1924/*
1925 * ADDBA (and potentially others) need to be placed in the same
1926 * hardware queue as the TID/node it's relating to. This is so
1927 * it goes out after any pending non-aggregate frames to the
1928 * same node/TID.
1929 *
1930 * If this isn't done, the ADDBA can go out before the frames
1931 * queued in hardware. Even though these frames have a sequence
1932 * number -earlier- than the ADDBA can be transmitted (but
1933 * no frames whose sequence numbers are after the ADDBA should
1934 * be!) they'll arrive after the ADDBA - and the receiving end
1935 * will simply drop them as being out of the BAW.
1936 *
1937 * The frames can't be appended to the TID software queue - it'll
1938 * never be sent out. So these frames have to be directly
1939 * dispatched to the hardware, rather than queued in software.
1940 * So if this function returns true, the TXQ has to be
1941 * overridden and it has to be directly dispatched.
1942 *
1943 * It's a dirty hack, but someone's gotta do it.
1944 */
1945
1946/*
1947 * XXX doesn't belong here!
1948 */
1949static int
1950ieee80211_is_action(struct ieee80211_frame *wh)
1951{
1952	/* Type: Management frame? */
1953	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1954	    IEEE80211_FC0_TYPE_MGT)
1955		return 0;
1956
1957	/* Subtype: Action frame? */
1958	if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
1959	    IEEE80211_FC0_SUBTYPE_ACTION)
1960		return 0;
1961
1962	return 1;
1963}
1964
1965#define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
1966/*
1967 * Return an alternate TID for ADDBA request frames.
1968 *
1969 * Yes, this likely should be done in the net80211 layer.
1970 */
1971static int
1972ath_tx_action_frame_override_queue(struct ath_softc *sc,
1973    struct ieee80211_node *ni,
1974    struct mbuf *m0, int *tid)
1975{
1976	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
1977	struct ieee80211_action_ba_addbarequest *ia;
1978	uint8_t *frm;
1979	uint16_t baparamset;
1980
1981	/* Not action frame? Bail */
1982	if (! ieee80211_is_action(wh))
1983		return 0;
1984
1985	/* XXX Not needed for frames we send? */
1986#if 0
1987	/* Correct length? */
1988	if (! ieee80211_parse_action(ni, m))
1989		return 0;
1990#endif
1991
1992	/* Extract out action frame */
1993	frm = (u_int8_t *)&wh[1];
1994	ia = (struct ieee80211_action_ba_addbarequest *) frm;
1995
1996	/* Not ADDBA? Bail */
1997	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
1998		return 0;
1999	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
2000		return 0;
2001
2002	/* Extract TID, return it */
2003	baparamset = le16toh(ia->rq_baparamset);
2004	*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
2005
2006	return 1;
2007}
2008#undef	MS
2009
2010/* Per-node software queue operations */
2011
2012/*
2013 * Add the current packet to the given BAW.
2014 * It is assumed that the current packet
2015 *
2016 * + fits inside the BAW;
2017 * + already has had a sequence number allocated.
2018 *
2019 * Since the BAW status may be modified by both the ath task and
2020 * the net80211/ifnet contexts, the TID must be locked.
2021 */
2022void
2023ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
2024    struct ath_tid *tid, struct ath_buf *bf)
2025{
2026	int index, cindex;
2027	struct ieee80211_tx_ampdu *tap;
2028
2029	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2030	ATH_TID_LOCK_ASSERT(sc, tid);
2031
2032	if (bf->bf_state.bfs_isretried)
2033		return;
2034
2035	tap = ath_tx_get_tx_tid(an, tid->tid);
2036
2037	if (bf->bf_state.bfs_addedbaw)
2038		device_printf(sc->sc_dev,
2039		    "%s: re-added? tid=%d, seqno %d; window %d:%d; "
2040		    "baw head=%d tail=%d\n",
2041		    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2042		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2043		    tid->baw_tail);
2044
2045	/*
2046	 * ni->ni_txseqs[] is the currently allocated seqno.
2047	 * the txa state contains the current baw start.
2048	 */
2049	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
2050	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2051	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2052	    "%s: tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
2053	    "baw head=%d tail=%d\n",
2054	    __func__, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2055	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
2056	    tid->baw_tail);
2057
2058
2059#if 0
2060	assert(tid->tx_buf[cindex] == NULL);
2061#endif
2062	if (tid->tx_buf[cindex] != NULL) {
2063		device_printf(sc->sc_dev,
2064		    "%s: ba packet dup (index=%d, cindex=%d, "
2065		    "head=%d, tail=%d)\n",
2066		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
2067		device_printf(sc->sc_dev,
2068		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
2069		    __func__,
2070		    tid->tx_buf[cindex],
2071		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
2072		    bf,
2073		    SEQNO(bf->bf_state.bfs_seqno)
2074		);
2075	}
2076	tid->tx_buf[cindex] = bf;
2077
2078	if (index >= ((tid->baw_tail - tid->baw_head) &
2079	    (ATH_TID_MAX_BUFS - 1))) {
2080		tid->baw_tail = cindex;
2081		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
2082	}
2083}
2084
2085/*
2086 * Flip the BAW buffer entry over from the existing one to the new one.
2087 *
2088 * When software retransmitting a (sub-)frame, it is entirely possible that
2089 * the frame ath_buf is marked as BUSY and can't be immediately reused.
2090 * In that instance the buffer is cloned and the new buffer is used for
2091 * retransmit. We thus need to update the ath_buf slot in the BAW buf
2092 * tracking array to maintain consistency.
2093 */
2094static void
2095ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
2096    struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
2097{
2098	int index, cindex;
2099	struct ieee80211_tx_ampdu *tap;
2100	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
2101
2102	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2103	ATH_TID_LOCK_ASSERT(sc, tid);
2104
2105	tap = ath_tx_get_tx_tid(an, tid->tid);
2106	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2107	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2108
2109	/*
2110	 * Just warn for now; if it happens then we should find out
2111	 * about it. It's highly likely the aggregation session will
2112	 * soon hang.
2113	 */
2114	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
2115		device_printf(sc->sc_dev, "%s: retransmitted buffer"
2116		    " has mismatching seqno's, BA session may hang.\n",
2117		    __func__);
2118		device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
2119		    __func__,
2120		    old_bf->bf_state.bfs_seqno,
2121		    new_bf->bf_state.bfs_seqno);
2122	}
2123
2124	if (tid->tx_buf[cindex] != old_bf) {
2125		device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
2126		    " has m BA session may hang.\n",
2127		    __func__);
2128		device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
2129		    __func__,
2130		    old_bf, new_bf);
2131	}
2132
2133	tid->tx_buf[cindex] = new_bf;
2134}
2135
2136/*
2137 * seq_start - left edge of BAW
2138 * seq_next - current/next sequence number to allocate
2139 *
2140 * Since the BAW status may be modified by both the ath task and
2141 * the net80211/ifnet contexts, the TID must be locked.
2142 */
2143static void
2144ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2145    struct ath_tid *tid, const struct ath_buf *bf)
2146{
2147	int index, cindex;
2148	struct ieee80211_tx_ampdu *tap;
2149	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2150
2151	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2152
2153	tap = ath_tx_get_tx_tid(an, tid->tid);
2154	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2155	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2156
2157	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2158	    "%s: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
2159	    "baw head=%d, tail=%d\n",
2160	    __func__, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2161	    cindex, tid->baw_head, tid->baw_tail);
2162
2163	/*
2164	 * If this occurs then we have a big problem - something else
2165	 * has slid tap->txa_start along without updating the BAW
2166	 * tracking start/end pointers. Thus the TX BAW state is now
2167	 * completely busted.
2168	 *
2169	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2170	 * it's quite possible that a cloned buffer is making its way
2171	 * here and causing it to fire off. Disable TDMA for now.
2172	 */
2173	if (tid->tx_buf[cindex] != bf) {
2174		device_printf(sc->sc_dev,
2175		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2176		    __func__,
2177		    bf, SEQNO(bf->bf_state.bfs_seqno),
2178		    tid->tx_buf[cindex],
2179		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
2180	}
2181
2182	tid->tx_buf[cindex] = NULL;
2183
2184	while (tid->baw_head != tid->baw_tail &&
2185	    !tid->tx_buf[tid->baw_head]) {
2186		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2187		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2188	}
2189	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2190	    "%s: baw is now %d:%d, baw head=%d\n",
2191	    __func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
2192}
2193
2194/*
2195 * Mark the current node/TID as ready to TX.
2196 *
2197 * This is done to make it easy for the software scheduler to
2198 * find which nodes have data to send.
2199 *
2200 * The TXQ lock must be held.
2201 */
2202static void
2203ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2204{
2205	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2206
2207	ATH_TXQ_LOCK_ASSERT(txq);
2208
2209	if (tid->paused)
2210		return;		/* paused, can't schedule yet */
2211
2212	if (tid->sched)
2213		return;		/* already scheduled */
2214
2215	tid->sched = 1;
2216
2217	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2218}
2219
2220/*
2221 * Mark the current node as no longer needing to be polled for
2222 * TX packets.
2223 *
2224 * The TXQ lock must be held.
2225 */
2226static void
2227ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2228{
2229	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2230
2231	ATH_TXQ_LOCK_ASSERT(txq);
2232
2233	if (tid->sched == 0)
2234		return;
2235
2236	tid->sched = 0;
2237	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2238}
2239
2240/*
2241 * Assign a sequence number manually to the given frame.
2242 *
2243 * This should only be called for A-MPDU TX frames.
2244 */
2245static ieee80211_seq
2246ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2247    struct ath_buf *bf, struct mbuf *m0)
2248{
2249	struct ieee80211_frame *wh;
2250	int tid, pri;
2251	ieee80211_seq seqno;
2252	uint8_t subtype;
2253
2254	/* TID lookup */
2255	wh = mtod(m0, struct ieee80211_frame *);
2256	pri = M_WME_GETAC(m0);			/* honor classification */
2257	tid = WME_AC_TO_TID(pri);
2258	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pri=%d, tid=%d, qos has seq=%d\n",
2259	    __func__, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2260
2261	/* XXX Is it a control frame? Ignore */
2262
2263	/* Does the packet require a sequence number? */
2264	if (! IEEE80211_QOS_HAS_SEQ(wh))
2265		return -1;
2266
2267	/*
2268	 * Is it a QOS NULL Data frame? Give it a sequence number from
2269	 * the default TID (IEEE80211_NONQOS_TID.)
2270	 *
2271	 * The RX path of everything I've looked at doesn't include the NULL
2272	 * data frame sequence number in the aggregation state updates, so
2273	 * assigning it a sequence number there will cause a BAW hole on the
2274	 * RX side.
2275	 */
2276	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2277	if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2278		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2279		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2280	} else {
2281		/* Manually assign sequence number */
2282		seqno = ni->ni_txseqs[tid];
2283		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2284	}
2285	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2286	M_SEQNO_SET(m0, seqno);
2287
2288	/* Return so caller can do something with it if needed */
2289	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s:  -> seqno=%d\n", __func__, seqno);
2290	return seqno;
2291}
2292
2293/*
2294 * Attempt to direct dispatch an aggregate frame to hardware.
2295 * If the frame is out of BAW, queue.
2296 * Otherwise, schedule it as a single frame.
2297 */
2298static void
2299ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
2300{
2301	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2302	struct ath_txq *txq = bf->bf_state.bfs_txq;
2303	struct ieee80211_tx_ampdu *tap;
2304
2305	ATH_TXQ_LOCK_ASSERT(txq);
2306	ATH_TID_LOCK_ASSERT(sc, tid);
2307
2308	tap = ath_tx_get_tx_tid(an, tid->tid);
2309
2310	/* paused? queue */
2311	if (tid->paused) {
2312		ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
2313		/* XXX don't sched - we're paused! */
2314		return;
2315	}
2316
2317	/* outside baw? queue */
2318	if (bf->bf_state.bfs_dobaw &&
2319	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2320	    SEQNO(bf->bf_state.bfs_seqno)))) {
2321		ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2322		ath_tx_tid_sched(sc, tid);
2323		return;
2324	}
2325
2326	/* Direct dispatch to hardware */
2327	ath_tx_do_ratelookup(sc, bf);
2328	ath_tx_calc_duration(sc, bf);
2329	ath_tx_calc_protection(sc, bf);
2330	ath_tx_set_rtscts(sc, bf);
2331	ath_tx_rate_fill_rcflags(sc, bf);
2332	ath_tx_setds(sc, bf);
2333	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
2334	ath_tx_chaindesclist(sc, bf);
2335
2336	/* Statistics */
2337	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
2338
2339	/* Track per-TID hardware queue depth correctly */
2340	tid->hwq_depth++;
2341
2342	/* Add to BAW */
2343	if (bf->bf_state.bfs_dobaw) {
2344		ath_tx_addto_baw(sc, an, tid, bf);
2345		bf->bf_state.bfs_addedbaw = 1;
2346	}
2347
2348	/* Set completion handler, multi-frame aggregate or not */
2349	bf->bf_comp = ath_tx_aggr_comp;
2350
2351	/* Hand off to hardware */
2352	ath_tx_handoff(sc, txq, bf);
2353}
2354
2355/*
2356 * Attempt to send the packet.
2357 * If the queue isn't busy, direct-dispatch.
2358 * If the queue is busy enough, queue the given packet on the
2359 *  relevant software queue.
2360 */
2361void
2362ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
2363    struct ath_buf *bf)
2364{
2365	struct ath_node *an = ATH_NODE(ni);
2366	struct ieee80211_frame *wh;
2367	struct ath_tid *atid;
2368	int pri, tid;
2369	struct mbuf *m0 = bf->bf_m;
2370
2371	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
2372	wh = mtod(m0, struct ieee80211_frame *);
2373	pri = ath_tx_getac(sc, m0);
2374	tid = ath_tx_gettid(sc, m0);
2375	atid = &an->an_tid[tid];
2376
2377	ATH_TID_LOCK_ASSERT(sc, atid);
2378
2379	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d\n",
2380	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2381
2382	/* Set local packet state, used to queue packets to hardware */
2383	bf->bf_state.bfs_tid = tid;
2384	bf->bf_state.bfs_txq = txq;
2385	bf->bf_state.bfs_pri = pri;
2386
2387	/*
2388	 * If the hardware queue isn't busy, queue it directly.
2389	 * If the hardware queue is busy, queue it.
2390	 * If the TID is paused or the traffic it outside BAW, software
2391	 * queue it.
2392	 */
2393	ATH_TXQ_LOCK(txq);
2394	if (atid->paused) {
2395		/* TID is paused, queue */
2396		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: paused\n", __func__);
2397		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2398	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
2399		/* AMPDU pending; queue */
2400		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: pending\n", __func__);
2401		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2402		/* XXX sched? */
2403	} else if (ath_tx_ampdu_running(sc, an, tid)) {
2404		/* AMPDU running, attempt direct dispatch if possible */
2405
2406		/*
2407		 * Always queue the frame to the tail of the list.
2408		 */
2409		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2410
2411		/*
2412		 * If the hardware queue isn't busy, direct dispatch
2413		 * the head frame in the list.  Don't schedule the
2414		 * TID - let it build some more frames first?
2415		 *
2416		 * Otherwise, schedule the TID.
2417		 */
2418		if (txq->axq_depth < sc->sc_hwq_limit) {
2419			bf = TAILQ_FIRST(&atid->axq_q);
2420			ATH_TXQ_REMOVE(atid, bf, bf_list);
2421			ath_tx_xmit_aggr(sc, an, bf);
2422			DPRINTF(sc, ATH_DEBUG_SW_TX,
2423			    "%s: xmit_aggr\n",
2424			    __func__);
2425		} else {
2426			DPRINTF(sc, ATH_DEBUG_SW_TX,
2427			    "%s: ampdu; swq'ing\n",
2428			    __func__);
2429			ath_tx_tid_sched(sc, atid);
2430		}
2431	} else if (txq->axq_depth < sc->sc_hwq_limit) {
2432		/* AMPDU not running, attempt direct dispatch */
2433		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: xmit_normal\n", __func__);
2434		ath_tx_xmit_normal(sc, txq, bf);
2435	} else {
2436		/* Busy; queue */
2437		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: swq'ing\n", __func__);
2438		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2439		ath_tx_tid_sched(sc, atid);
2440	}
2441	ATH_TXQ_UNLOCK(txq);
2442}
2443
2444/*
2445 * Do the basic frame setup stuff that's required before the frame
2446 * is added to a software queue.
2447 *
2448 * All frames get mostly the same treatment and it's done once.
2449 * Retransmits fiddle with things like the rate control setup,
2450 * setting the retransmit bit in the packet; doing relevant DMA/bus
2451 * syncing and relinking it (back) into the hardware TX queue.
2452 *
2453 * Note that this may cause the mbuf to be reallocated, so
2454 * m0 may not be valid.
2455 */
2456
2457
2458/*
2459 * Configure the per-TID node state.
2460 *
2461 * This likely belongs in if_ath_node.c but I can't think of anywhere
2462 * else to put it just yet.
2463 *
2464 * This sets up the SLISTs and the mutex as appropriate.
2465 */
2466void
2467ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
2468{
2469	int i, j;
2470	struct ath_tid *atid;
2471
2472	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2473		atid = &an->an_tid[i];
2474		TAILQ_INIT(&atid->axq_q);
2475		atid->tid = i;
2476		atid->an = an;
2477		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
2478			atid->tx_buf[j] = NULL;
2479		atid->baw_head = atid->baw_tail = 0;
2480		atid->paused = 0;
2481		atid->sched = 0;
2482		atid->hwq_depth = 0;
2483		atid->cleanup_inprogress = 0;
2484		if (i == IEEE80211_NONQOS_TID)
2485			atid->ac = WME_AC_BE;
2486		else
2487			atid->ac = TID_TO_WME_AC(i);
2488	}
2489}
2490
2491/*
2492 * Pause the current TID. This stops packets from being transmitted
2493 * on it.
2494 *
2495 * Since this is also called from upper layers as well as the driver,
2496 * it will get the TID lock.
2497 */
2498static void
2499ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
2500{
2501
2502	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2503	tid->paused++;
2504	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
2505	    __func__, tid->paused);
2506}
2507
2508/*
2509 * Unpause the current TID, and schedule it if needed.
2510 */
2511static void
2512ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
2513{
2514	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2515
2516	tid->paused--;
2517
2518	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
2519	    __func__, tid->paused);
2520
2521	if (tid->paused || tid->axq_depth == 0) {
2522		return;
2523	}
2524
2525	ath_tx_tid_sched(sc, tid);
2526	/* Punt some frames to the hardware if needed */
2527	//ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
2528	taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
2529}
2530
2531/*
2532 * Suspend the queue because we need to TX a BAR.
2533 */
2534static void
2535ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
2536{
2537	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2538
2539	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2540	    "%s: tid=%p, bar_wait=%d, bar_tx=%d, called\n",
2541	    __func__,
2542	    tid,
2543	    tid->bar_wait,
2544	    tid->bar_tx);
2545
2546	/* We shouldn't be called when bar_tx is 1 */
2547	if (tid->bar_tx) {
2548		device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n",
2549		    __func__);
2550	}
2551
2552	/* If we've already been called, just be patient. */
2553	if (tid->bar_wait)
2554		return;
2555
2556	/* Wait! */
2557	tid->bar_wait = 1;
2558
2559	/* Only one pause, no matter how many frames fail */
2560	ath_tx_tid_pause(sc, tid);
2561}
2562
2563/*
2564 * We've finished with BAR handling - either we succeeded or
2565 * failed. Either way, unsuspend TX.
2566 */
2567static void
2568ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
2569{
2570	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2571
2572	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2573	    "%s: tid=%p, called\n",
2574	    __func__,
2575	    tid);
2576
2577	if (tid->bar_tx == 0 || tid->bar_wait == 0) {
2578		device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n",
2579		    __func__, tid->bar_tx, tid->bar_wait);
2580	}
2581
2582	tid->bar_tx = tid->bar_wait = 0;
2583	ath_tx_tid_resume(sc, tid);
2584}
2585
2586/*
2587 * Return whether we're ready to TX a BAR frame.
2588 *
2589 * Requires the TID lock be held.
2590 */
2591static int
2592ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
2593{
2594
2595	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2596
2597	if (tid->bar_wait == 0 || tid->hwq_depth > 0)
2598		return (0);
2599
2600	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n",
2601	    __func__, tid, tid->tid);
2602
2603	return (1);
2604}
2605
2606/*
2607 * Check whether the current TID is ready to have a BAR
2608 * TXed and if so, do the TX.
2609 *
2610 * Since the TID/TXQ lock can't be held during a call to
2611 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
2612 * sending the BAR and locking it again.
2613 *
2614 * Eventually, the code to send the BAR should be broken out
2615 * from this routine so the lock doesn't have to be reacquired
2616 * just to be immediately dropped by the caller.
2617 */
2618static void
2619ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
2620{
2621	struct ieee80211_tx_ampdu *tap;
2622
2623	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2624
2625	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2626	    "%s: tid=%p, called\n",
2627	    __func__,
2628	    tid);
2629
2630	tap = ath_tx_get_tx_tid(tid->an, tid->tid);
2631
2632	/*
2633	 * This is an error condition!
2634	 */
2635	if (tid->bar_wait == 0 || tid->bar_tx == 1) {
2636		device_printf(sc->sc_dev,
2637		    "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n",
2638		    __func__,
2639		    tid,
2640		    tid->bar_tx,
2641		    tid->bar_wait);
2642		return;
2643	}
2644
2645	/* Don't do anything if we still have pending frames */
2646	if (tid->hwq_depth > 0) {
2647		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2648		    "%s: tid=%p, hwq_depth=%d, waiting\n",
2649		    __func__,
2650		    tid,
2651		    tid->hwq_depth);
2652		return;
2653	}
2654
2655	/* We're now about to TX */
2656	tid->bar_tx = 1;
2657
2658	/*
2659	 * Calculate new BAW left edge, now that all frames have either
2660	 * succeeded or failed.
2661	 *
2662	 * XXX verify this is _actually_ the valid value to begin at!
2663	 */
2664	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2665	    "%s: tid=%p, new BAW left edge=%d\n",
2666	    __func__,
2667	    tid,
2668	    tap->txa_start);
2669
2670	/* Try sending the BAR frame */
2671	/* We can't hold the lock here! */
2672
2673	ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2674	if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
2675		/* Success? Now we wait for notification that it's done */
2676		ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2677		return;
2678	}
2679
2680	/* Failure? For now, warn loudly and continue */
2681	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2682	device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n",
2683	    __func__, tid);
2684	ath_tx_tid_bar_unsuspend(sc, tid);
2685}
2686
2687
2688/*
2689 * Free any packets currently pending in the software TX queue.
2690 *
2691 * This will be called when a node is being deleted.
2692 *
2693 * It can also be called on an active node during an interface
2694 * reset or state transition.
2695 *
2696 * (From Linux/reference):
2697 *
2698 * TODO: For frame(s) that are in the retry state, we will reuse the
2699 * sequence number(s) without setting the retry bit. The
2700 * alternative is to give up on these and BAR the receiver's window
2701 * forward.
2702 */
2703static void
2704ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
2705    struct ath_tid *tid, ath_bufhead *bf_cq)
2706{
2707	struct ath_buf *bf;
2708	struct ieee80211_tx_ampdu *tap;
2709	struct ieee80211_node *ni = &an->an_node;
2710	int t = 0;
2711	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2712
2713	tap = ath_tx_get_tx_tid(an, tid->tid);
2714
2715	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2716
2717	/* Walk the queue, free frames */
2718	for (;;) {
2719		bf = TAILQ_FIRST(&tid->axq_q);
2720		if (bf == NULL) {
2721			break;
2722		}
2723
2724		if (t == 0) {
2725			device_printf(sc->sc_dev,
2726			    "%s: node %p: bf=%p: addbaw=%d, dobaw=%d, "
2727			    "seqno=%d, retry=%d\n",
2728			    __func__, ni, bf,
2729			    bf->bf_state.bfs_addedbaw,
2730			    bf->bf_state.bfs_dobaw,
2731			    SEQNO(bf->bf_state.bfs_seqno),
2732			    bf->bf_state.bfs_retries);
2733			device_printf(sc->sc_dev,
2734			    "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d\n",
2735			    __func__, ni, bf,
2736			    tid->axq_depth,
2737			    tid->hwq_depth,
2738			    tid->bar_wait);
2739			device_printf(sc->sc_dev,
2740			    "%s: node %p: tid %d: txq_depth=%d, "
2741			    "txq_aggr_depth=%d, sched=%d, paused=%d, "
2742			    "hwq_depth=%d, incomp=%d, baw_head=%d, "
2743			    "baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
2744			     __func__, ni, tid->tid, txq->axq_depth,
2745			     txq->axq_aggr_depth, tid->sched, tid->paused,
2746			     tid->hwq_depth, tid->incomp, tid->baw_head,
2747			     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
2748			     ni->ni_txseqs[tid->tid]);
2749
2750			/* XXX Dump the frame, see what it is? */
2751			ieee80211_dump_pkt(ni->ni_ic,
2752			    mtod(bf->bf_m, const uint8_t *),
2753			    bf->bf_m->m_len, 0, -1);
2754
2755			t = 1;
2756		}
2757
2758
2759		/*
2760		 * If the current TID is running AMPDU, update
2761		 * the BAW.
2762		 */
2763		if (ath_tx_ampdu_running(sc, an, tid->tid) &&
2764		    bf->bf_state.bfs_dobaw) {
2765			/*
2766			 * Only remove the frame from the BAW if it's
2767			 * been transmitted at least once; this means
2768			 * the frame was in the BAW to begin with.
2769			 */
2770			if (bf->bf_state.bfs_retries > 0) {
2771				ath_tx_update_baw(sc, an, tid, bf);
2772				bf->bf_state.bfs_dobaw = 0;
2773			}
2774			/*
2775			 * This has become a non-fatal error now
2776			 */
2777			if (! bf->bf_state.bfs_addedbaw)
2778				device_printf(sc->sc_dev,
2779				    "%s: wasn't added: seqno %d\n",
2780				    __func__, SEQNO(bf->bf_state.bfs_seqno));
2781		}
2782		ATH_TXQ_REMOVE(tid, bf, bf_list);
2783		TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
2784	}
2785
2786	/*
2787	 * Now that it's completed, grab the TID lock and update
2788	 * the sequence number and BAW window.
2789	 * Because sequence numbers have been assigned to frames
2790	 * that haven't been sent yet, it's entirely possible
2791	 * we'll be called with some pending frames that have not
2792	 * been transmitted.
2793	 *
2794	 * The cleaner solution is to do the sequence number allocation
2795	 * when the packet is first transmitted - and thus the "retries"
2796	 * check above would be enough to update the BAW/seqno.
2797	 */
2798
2799	/* But don't do it for non-QoS TIDs */
2800	if (tap) {
2801#if 0
2802		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2803		    "%s: node %p: TID %d: sliding BAW left edge to %d\n",
2804		    __func__, an, tid->tid, tap->txa_start);
2805#endif
2806		ni->ni_txseqs[tid->tid] = tap->txa_start;
2807		tid->baw_tail = tid->baw_head;
2808	}
2809}
2810
2811/*
2812 * Flush all software queued packets for the given node.
2813 *
2814 * This occurs when a completion handler frees the last buffer
2815 * for a node, and the node is thus freed. This causes the node
2816 * to be cleaned up, which ends up calling ath_tx_node_flush.
2817 */
2818void
2819ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
2820{
2821	int tid;
2822	ath_bufhead bf_cq;
2823	struct ath_buf *bf;
2824
2825	TAILQ_INIT(&bf_cq);
2826
2827	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
2828		struct ath_tid *atid = &an->an_tid[tid];
2829		struct ath_txq *txq = sc->sc_ac2q[atid->ac];
2830
2831		/* Remove this tid from the list of active tids */
2832		ATH_TXQ_LOCK(txq);
2833		ath_tx_tid_unsched(sc, atid);
2834
2835		/* Free packets */
2836		ath_tx_tid_drain(sc, an, atid, &bf_cq);
2837		ATH_TXQ_UNLOCK(txq);
2838	}
2839
2840	/* Handle completed frames */
2841	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2842		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2843		ath_tx_default_comp(sc, bf, 0);
2844	}
2845}
2846
2847/*
2848 * Drain all the software TXQs currently with traffic queued.
2849 */
2850void
2851ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
2852{
2853	struct ath_tid *tid;
2854	ath_bufhead bf_cq;
2855	struct ath_buf *bf;
2856
2857	TAILQ_INIT(&bf_cq);
2858	ATH_TXQ_LOCK(txq);
2859
2860	/*
2861	 * Iterate over all active tids for the given txq,
2862	 * flushing and unsched'ing them
2863	 */
2864	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
2865		tid = TAILQ_FIRST(&txq->axq_tidq);
2866		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
2867		ath_tx_tid_unsched(sc, tid);
2868	}
2869
2870	ATH_TXQ_UNLOCK(txq);
2871
2872	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2873		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2874		ath_tx_default_comp(sc, bf, 0);
2875	}
2876}
2877
2878/*
2879 * Handle completion of non-aggregate session frames.
2880 */
2881void
2882ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
2883{
2884	struct ieee80211_node *ni = bf->bf_node;
2885	struct ath_node *an = ATH_NODE(ni);
2886	int tid = bf->bf_state.bfs_tid;
2887	struct ath_tid *atid = &an->an_tid[tid];
2888	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
2889
2890	/* The TID state is protected behind the TXQ lock */
2891	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2892
2893	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
2894	    __func__, bf, fail, atid->hwq_depth - 1);
2895
2896	atid->hwq_depth--;
2897	if (atid->hwq_depth < 0)
2898		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
2899		    __func__, atid->hwq_depth);
2900	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2901
2902	/*
2903	 * punt to rate control if we're not being cleaned up
2904	 * during a hw queue drain and the frame wanted an ACK.
2905	 */
2906	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
2907		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
2908		    ts, bf->bf_state.bfs_pktlen,
2909		    1, (ts->ts_status == 0) ? 0 : 1);
2910
2911	ath_tx_default_comp(sc, bf, fail);
2912}
2913
2914/*
2915 * Handle cleanup of aggregate session packets that aren't
2916 * an A-MPDU.
2917 *
2918 * There's no need to update the BAW here - the session is being
2919 * torn down.
2920 */
2921static void
2922ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
2923{
2924	struct ieee80211_node *ni = bf->bf_node;
2925	struct ath_node *an = ATH_NODE(ni);
2926	int tid = bf->bf_state.bfs_tid;
2927	struct ath_tid *atid = &an->an_tid[tid];
2928
2929	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
2930	    __func__, tid, atid->incomp);
2931
2932	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2933	atid->incomp--;
2934	if (atid->incomp == 0) {
2935		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2936		    "%s: TID %d: cleaned up! resume!\n",
2937		    __func__, tid);
2938		atid->cleanup_inprogress = 0;
2939		ath_tx_tid_resume(sc, atid);
2940	}
2941	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
2942
2943	ath_tx_default_comp(sc, bf, 0);
2944}
2945
2946/*
2947 * Performs transmit side cleanup when TID changes from aggregated to
2948 * unaggregated.
2949 *
2950 * - Discard all retry frames from the s/w queue.
2951 * - Fix the tx completion function for all buffers in s/w queue.
2952 * - Count the number of unacked frames, and let transmit completion
2953 *   handle it later.
2954 *
2955 * The caller is responsible for pausing the TID.
2956 */
2957static void
2958ath_tx_tid_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
2959{
2960	struct ath_tid *atid = &an->an_tid[tid];
2961	struct ieee80211_tx_ampdu *tap;
2962	struct ath_buf *bf, *bf_next;
2963	ath_bufhead bf_cq;
2964
2965	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2966	    "%s: TID %d: called\n", __func__, tid);
2967
2968	TAILQ_INIT(&bf_cq);
2969	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
2970
2971	/*
2972	 * Update the frames in the software TX queue:
2973	 *
2974	 * + Discard retry frames in the queue
2975	 * + Fix the completion function to be non-aggregate
2976	 */
2977	bf = TAILQ_FIRST(&atid->axq_q);
2978	while (bf) {
2979		if (bf->bf_state.bfs_isretried) {
2980			bf_next = TAILQ_NEXT(bf, bf_list);
2981			TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
2982			atid->axq_depth--;
2983			if (bf->bf_state.bfs_dobaw) {
2984				ath_tx_update_baw(sc, an, atid, bf);
2985				if (! bf->bf_state.bfs_addedbaw)
2986					device_printf(sc->sc_dev,
2987					    "%s: wasn't added: seqno %d\n",
2988					    __func__,
2989					    SEQNO(bf->bf_state.bfs_seqno));
2990			}
2991			bf->bf_state.bfs_dobaw = 0;
2992			/*
2993			 * Call the default completion handler with "fail" just
2994			 * so upper levels are suitably notified about this.
2995			 */
2996			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
2997			bf = bf_next;
2998			continue;
2999		}
3000		/* Give these the default completion handler */
3001		bf->bf_comp = ath_tx_normal_comp;
3002		bf = TAILQ_NEXT(bf, bf_list);
3003	}
3004
3005	/* The caller is required to pause the TID */
3006#if 0
3007	/* Pause the TID */
3008	ath_tx_tid_pause(sc, atid);
3009#endif
3010
3011	/*
3012	 * Calculate what hardware-queued frames exist based
3013	 * on the current BAW size. Ie, what frames have been
3014	 * added to the TX hardware queue for this TID but
3015	 * not yet ACKed.
3016	 */
3017	tap = ath_tx_get_tx_tid(an, tid);
3018	/* Need the lock - fiddling with BAW */
3019	while (atid->baw_head != atid->baw_tail) {
3020		if (atid->tx_buf[atid->baw_head]) {
3021			atid->incomp++;
3022			atid->cleanup_inprogress = 1;
3023			atid->tx_buf[atid->baw_head] = NULL;
3024		}
3025		INCR(atid->baw_head, ATH_TID_MAX_BUFS);
3026		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
3027	}
3028
3029	/*
3030	 * If cleanup is required, defer TID scheduling
3031	 * until all the HW queued packets have been
3032	 * sent.
3033	 */
3034	if (! atid->cleanup_inprogress)
3035		ath_tx_tid_resume(sc, atid);
3036
3037	if (atid->cleanup_inprogress)
3038		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3039		    "%s: TID %d: cleanup needed: %d packets\n",
3040		    __func__, tid, atid->incomp);
3041	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3042
3043	/* Handle completing frames and fail them */
3044	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3045		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3046		ath_tx_default_comp(sc, bf, 1);
3047	}
3048}
3049
3050static void
3051ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
3052{
3053	struct ieee80211_frame *wh;
3054
3055	wh = mtod(bf->bf_m, struct ieee80211_frame *);
3056	/* Only update/resync if needed */
3057	if (bf->bf_state.bfs_isretried == 0) {
3058		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
3059		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3060		    BUS_DMASYNC_PREWRITE);
3061	}
3062	sc->sc_stats.ast_tx_swretries++;
3063	bf->bf_state.bfs_isretried = 1;
3064	bf->bf_state.bfs_retries ++;
3065}
3066
3067static struct ath_buf *
3068ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
3069    struct ath_tid *tid, struct ath_buf *bf)
3070{
3071	struct ath_buf *nbf;
3072	int error;
3073
3074	nbf = ath_buf_clone(sc, bf);
3075
3076#if 0
3077	device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
3078	    __func__);
3079#endif
3080
3081	if (nbf == NULL) {
3082		/* Failed to clone */
3083		device_printf(sc->sc_dev,
3084		    "%s: failed to clone a busy buffer\n",
3085		    __func__);
3086		return NULL;
3087	}
3088
3089	/* Setup the dma for the new buffer */
3090	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
3091	if (error != 0) {
3092		device_printf(sc->sc_dev,
3093		    "%s: failed to setup dma for clone\n",
3094		    __func__);
3095		/*
3096		 * Put this at the head of the list, not tail;
3097		 * that way it doesn't interfere with the
3098		 * busy buffer logic (which uses the tail of
3099		 * the list.)
3100		 */
3101		ATH_TXBUF_LOCK(sc);
3102		TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
3103		ATH_TXBUF_UNLOCK(sc);
3104		return NULL;
3105	}
3106
3107	/* Update BAW if required, before we free the original buf */
3108	if (bf->bf_state.bfs_dobaw)
3109		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
3110
3111	/* Free current buffer; return the older buffer */
3112	bf->bf_m = NULL;
3113	bf->bf_node = NULL;
3114	ath_freebuf(sc, bf);
3115	return nbf;
3116}
3117
3118/*
3119 * Handle retrying an unaggregate frame in an aggregate
3120 * session.
3121 *
3122 * If too many retries occur, pause the TID, wait for
3123 * any further retransmits (as there's no reason why
3124 * non-aggregate frames in an aggregate session are
3125 * transmitted in-order; they just have to be in-BAW)
3126 * and then queue a BAR.
3127 */
3128static void
3129ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
3130{
3131	struct ieee80211_node *ni = bf->bf_node;
3132	struct ath_node *an = ATH_NODE(ni);
3133	int tid = bf->bf_state.bfs_tid;
3134	struct ath_tid *atid = &an->an_tid[tid];
3135	struct ieee80211_tx_ampdu *tap;
3136
3137	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3138
3139	tap = ath_tx_get_tx_tid(an, tid);
3140
3141	/*
3142	 * If the buffer is marked as busy, we can't directly
3143	 * reuse it. Instead, try to clone the buffer.
3144	 * If the clone is successful, recycle the old buffer.
3145	 * If the clone is unsuccessful, set bfs_retries to max
3146	 * to force the next bit of code to free the buffer
3147	 * for us.
3148	 */
3149	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
3150	    (bf->bf_flags & ATH_BUF_BUSY)) {
3151		struct ath_buf *nbf;
3152		nbf = ath_tx_retry_clone(sc, an, atid, bf);
3153		if (nbf)
3154			/* bf has been freed at this point */
3155			bf = nbf;
3156		else
3157			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
3158	}
3159
3160	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
3161		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
3162		    "%s: exceeded retries; seqno %d\n",
3163		    __func__, SEQNO(bf->bf_state.bfs_seqno));
3164		sc->sc_stats.ast_tx_swretrymax++;
3165
3166		/* Update BAW anyway */
3167		if (bf->bf_state.bfs_dobaw) {
3168			ath_tx_update_baw(sc, an, atid, bf);
3169			if (! bf->bf_state.bfs_addedbaw)
3170				device_printf(sc->sc_dev,
3171				    "%s: wasn't added: seqno %d\n",
3172				    __func__, SEQNO(bf->bf_state.bfs_seqno));
3173		}
3174		bf->bf_state.bfs_dobaw = 0;
3175
3176		/* Suspend the TX queue and get ready to send the BAR */
3177		ath_tx_tid_bar_suspend(sc, atid);
3178
3179		/* Send the BAR if there are no other frames waiting */
3180		if (ath_tx_tid_bar_tx_ready(sc, atid))
3181			ath_tx_tid_bar_tx(sc, atid);
3182
3183		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3184
3185		/* Free buffer, bf is free after this call */
3186		ath_tx_default_comp(sc, bf, 0);
3187		return;
3188	}
3189
3190	/*
3191	 * This increments the retry counter as well as
3192	 * sets the retry flag in the ath_buf and packet
3193	 * body.
3194	 */
3195	ath_tx_set_retry(sc, bf);
3196
3197	/*
3198	 * Insert this at the head of the queue, so it's
3199	 * retried before any current/subsequent frames.
3200	 */
3201	ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3202	ath_tx_tid_sched(sc, atid);
3203	/* Send the BAR if there are no other frames waiting */
3204	if (ath_tx_tid_bar_tx_ready(sc, atid))
3205		ath_tx_tid_bar_tx(sc, atid);
3206
3207	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3208}
3209
3210/*
3211 * Common code for aggregate excessive retry/subframe retry.
3212 * If retrying, queues buffers to bf_q. If not, frees the
3213 * buffers.
3214 *
3215 * XXX should unify this with ath_tx_aggr_retry_unaggr()
3216 */
3217static int
3218ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
3219    ath_bufhead *bf_q)
3220{
3221	struct ieee80211_node *ni = bf->bf_node;
3222	struct ath_node *an = ATH_NODE(ni);
3223	int tid = bf->bf_state.bfs_tid;
3224	struct ath_tid *atid = &an->an_tid[tid];
3225
3226	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
3227
3228	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3229	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
3230	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
3231
3232	/*
3233	 * If the buffer is marked as busy, we can't directly
3234	 * reuse it. Instead, try to clone the buffer.
3235	 * If the clone is successful, recycle the old buffer.
3236	 * If the clone is unsuccessful, set bfs_retries to max
3237	 * to force the next bit of code to free the buffer
3238	 * for us.
3239	 */
3240	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
3241	    (bf->bf_flags & ATH_BUF_BUSY)) {
3242		struct ath_buf *nbf;
3243		nbf = ath_tx_retry_clone(sc, an, atid, bf);
3244		if (nbf)
3245			/* bf has been freed at this point */
3246			bf = nbf;
3247		else
3248			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
3249	}
3250
3251	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
3252		sc->sc_stats.ast_tx_swretrymax++;
3253		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
3254		    "%s: max retries: seqno %d\n",
3255		    __func__, SEQNO(bf->bf_state.bfs_seqno));
3256		ath_tx_update_baw(sc, an, atid, bf);
3257		if (! bf->bf_state.bfs_addedbaw)
3258			device_printf(sc->sc_dev,
3259			    "%s: wasn't added: seqno %d\n",
3260			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3261		bf->bf_state.bfs_dobaw = 0;
3262		return 1;
3263	}
3264
3265	ath_tx_set_retry(sc, bf);
3266	bf->bf_next = NULL;		/* Just to make sure */
3267
3268	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3269	return 0;
3270}
3271
3272/*
3273 * error pkt completion for an aggregate destination
3274 */
3275static void
3276ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
3277    struct ath_tid *tid)
3278{
3279	struct ieee80211_node *ni = bf_first->bf_node;
3280	struct ath_node *an = ATH_NODE(ni);
3281	struct ath_buf *bf_next, *bf;
3282	ath_bufhead bf_q;
3283	int drops = 0;
3284	struct ieee80211_tx_ampdu *tap;
3285	ath_bufhead bf_cq;
3286
3287	TAILQ_INIT(&bf_q);
3288	TAILQ_INIT(&bf_cq);
3289
3290	/*
3291	 * Update rate control - all frames have failed.
3292	 *
3293	 * XXX use the length in the first frame in the series;
3294	 * XXX just so things are consistent for now.
3295	 */
3296	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
3297	    &bf_first->bf_status.ds_txstat,
3298	    bf_first->bf_state.bfs_pktlen,
3299	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
3300
3301	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
3302	tap = ath_tx_get_tx_tid(an, tid->tid);
3303	sc->sc_stats.ast_tx_aggr_failall++;
3304
3305	/* Retry all subframes */
3306	bf = bf_first;
3307	while (bf) {
3308		bf_next = bf->bf_next;
3309		bf->bf_next = NULL;	/* Remove it from the aggr list */
3310		sc->sc_stats.ast_tx_aggr_fail++;
3311		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3312			drops++;
3313			bf->bf_next = NULL;
3314			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3315		}
3316		bf = bf_next;
3317	}
3318
3319	/* Prepend all frames to the beginning of the queue */
3320	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3321		TAILQ_REMOVE(&bf_q, bf, bf_list);
3322		ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
3323	}
3324
3325	/*
3326	 * Schedule the TID to be re-tried.
3327	 */
3328	ath_tx_tid_sched(sc, tid);
3329
3330	/*
3331	 * send bar if we dropped any frames
3332	 *
3333	 * Keep the txq lock held for now, as we need to ensure
3334	 * that ni_txseqs[] is consistent (as it's being updated
3335	 * in the ifnet TX context or raw TX context.)
3336	 */
3337	if (drops) {
3338		/* Suspend the TX queue and get ready to send the BAR */
3339		ath_tx_tid_bar_suspend(sc, tid);
3340	}
3341
3342	/*
3343	 * Send BAR if required
3344	 */
3345	if (ath_tx_tid_bar_tx_ready(sc, tid))
3346		ath_tx_tid_bar_tx(sc, tid);
3347	ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
3348
3349	/* Complete frames which errored out */
3350	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3351		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3352		ath_tx_default_comp(sc, bf, 0);
3353	}
3354}
3355
3356/*
3357 * Handle clean-up of packets from an aggregate list.
3358 *
3359 * There's no need to update the BAW here - the session is being
3360 * torn down.
3361 */
3362static void
3363ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
3364{
3365	struct ath_buf *bf, *bf_next;
3366	struct ieee80211_node *ni = bf_first->bf_node;
3367	struct ath_node *an = ATH_NODE(ni);
3368	int tid = bf_first->bf_state.bfs_tid;
3369	struct ath_tid *atid = &an->an_tid[tid];
3370
3371	bf = bf_first;
3372
3373	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3374
3375	/* update incomp */
3376	while (bf) {
3377		atid->incomp--;
3378		bf = bf->bf_next;
3379	}
3380
3381	if (atid->incomp == 0) {
3382		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3383		    "%s: TID %d: cleaned up! resume!\n",
3384		    __func__, tid);
3385		atid->cleanup_inprogress = 0;
3386		ath_tx_tid_resume(sc, atid);
3387	}
3388
3389	/* Send BAR if required */
3390	if (ath_tx_tid_bar_tx_ready(sc, atid))
3391		ath_tx_tid_bar_tx(sc, atid);
3392	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3393
3394	/* Handle frame completion */
3395	while (bf) {
3396		bf_next = bf->bf_next;
3397		ath_tx_default_comp(sc, bf, 1);
3398		bf = bf_next;
3399	}
3400}
3401
3402/*
3403 * Handle completion of an set of aggregate frames.
3404 *
3405 * XXX for now, simply complete each sub-frame.
3406 *
3407 * Note: the completion handler is the last descriptor in the aggregate,
3408 * not the last descriptor in the first frame.
3409 */
3410static void
3411ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
3412    int fail)
3413{
3414	//struct ath_desc *ds = bf->bf_lastds;
3415	struct ieee80211_node *ni = bf_first->bf_node;
3416	struct ath_node *an = ATH_NODE(ni);
3417	int tid = bf_first->bf_state.bfs_tid;
3418	struct ath_tid *atid = &an->an_tid[tid];
3419	struct ath_tx_status ts;
3420	struct ieee80211_tx_ampdu *tap;
3421	ath_bufhead bf_q;
3422	ath_bufhead bf_cq;
3423	int seq_st, tx_ok;
3424	int hasba, isaggr;
3425	uint32_t ba[2];
3426	struct ath_buf *bf, *bf_next;
3427	int ba_index;
3428	int drops = 0;
3429	int nframes = 0, nbad = 0, nf;
3430	int pktlen;
3431	/* XXX there's too much on the stack? */
3432	struct ath_rc_series rc[ATH_RC_NUM];
3433	int txseq;
3434
3435	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
3436	    __func__, atid->hwq_depth);
3437
3438	/* The TID state is kept behind the TXQ lock */
3439	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3440
3441	atid->hwq_depth--;
3442	if (atid->hwq_depth < 0)
3443		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3444		    __func__, atid->hwq_depth);
3445
3446	/*
3447	 * Punt cleanup to the relevant function, not our problem now
3448	 */
3449	if (atid->cleanup_inprogress) {
3450		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3451		ath_tx_comp_cleanup_aggr(sc, bf_first);
3452		return;
3453	}
3454
3455	/*
3456	 * Take a copy; this may be needed -after- bf_first
3457	 * has been completed and freed.
3458	 */
3459	ts = bf_first->bf_status.ds_txstat;
3460	/*
3461	 * XXX for now, use the first frame in the aggregate for
3462	 * XXX rate control completion; it's at least consistent.
3463	 */
3464	pktlen = bf_first->bf_state.bfs_pktlen;
3465
3466	/*
3467	 * Handle errors first!
3468	 *
3469	 * Here, handle _any_ error as a "exceeded retries" error.
3470	 * Later on (when filtered frames are to be specially handled)
3471	 * it'll have to be expanded.
3472	 */
3473#if 0
3474	if (ts.ts_status & HAL_TXERR_XRETRY) {
3475#endif
3476	if (ts.ts_status != 0) {
3477		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3478		ath_tx_comp_aggr_error(sc, bf_first, atid);
3479		return;
3480	}
3481
3482	TAILQ_INIT(&bf_q);
3483	TAILQ_INIT(&bf_cq);
3484	tap = ath_tx_get_tx_tid(an, tid);
3485
3486	/*
3487	 * extract starting sequence and block-ack bitmap
3488	 */
3489	/* XXX endian-ness of seq_st, ba? */
3490	seq_st = ts.ts_seqnum;
3491	hasba = !! (ts.ts_flags & HAL_TX_BA);
3492	tx_ok = (ts.ts_status == 0);
3493	isaggr = bf_first->bf_state.bfs_aggr;
3494	ba[0] = ts.ts_ba_low;
3495	ba[1] = ts.ts_ba_high;
3496
3497	/*
3498	 * Copy the TX completion status and the rate control
3499	 * series from the first descriptor, as it may be freed
3500	 * before the rate control code can get its grubby fingers
3501	 * into things.
3502	 */
3503	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
3504
3505	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3506	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
3507	    "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
3508	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
3509	    isaggr, seq_st, hasba, ba[0], ba[1]);
3510
3511	/* Occasionally, the MAC sends a tx status for the wrong TID. */
3512	if (tid != ts.ts_tid) {
3513		device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
3514		    __func__, tid, ts.ts_tid);
3515		tx_ok = 0;
3516	}
3517
3518	/* AR5416 BA bug; this requires an interface reset */
3519	if (isaggr && tx_ok && (! hasba)) {
3520		device_printf(sc->sc_dev,
3521		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
3522		    "seq_st=%d\n",
3523		    __func__, hasba, tx_ok, isaggr, seq_st);
3524		/* XXX TODO: schedule an interface reset */
3525	}
3526
3527	/*
3528	 * Walk the list of frames, figure out which ones were correctly
3529	 * sent and which weren't.
3530	 */
3531	bf = bf_first;
3532	nf = bf_first->bf_state.bfs_nframes;
3533
3534	/* bf_first is going to be invalid once this list is walked */
3535	bf_first = NULL;
3536
3537	/*
3538	 * Walk the list of completed frames and determine
3539	 * which need to be completed and which need to be
3540	 * retransmitted.
3541	 *
3542	 * For completed frames, the completion functions need
3543	 * to be called at the end of this function as the last
3544	 * node reference may free the node.
3545	 *
3546	 * Finally, since the TXQ lock can't be held during the
3547	 * completion callback (to avoid lock recursion),
3548	 * the completion calls have to be done outside of the
3549	 * lock.
3550	 */
3551	while (bf) {
3552		nframes++;
3553		ba_index = ATH_BA_INDEX(seq_st,
3554		    SEQNO(bf->bf_state.bfs_seqno));
3555		bf_next = bf->bf_next;
3556		bf->bf_next = NULL;	/* Remove it from the aggr list */
3557
3558		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3559		    "%s: checking bf=%p seqno=%d; ack=%d\n",
3560		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
3561		    ATH_BA_ISSET(ba, ba_index));
3562
3563		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
3564			sc->sc_stats.ast_tx_aggr_ok++;
3565			ath_tx_update_baw(sc, an, atid, bf);
3566			bf->bf_state.bfs_dobaw = 0;
3567			if (! bf->bf_state.bfs_addedbaw)
3568				device_printf(sc->sc_dev,
3569				    "%s: wasn't added: seqno %d\n",
3570				    __func__, SEQNO(bf->bf_state.bfs_seqno));
3571			bf->bf_next = NULL;
3572			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3573		} else {
3574			sc->sc_stats.ast_tx_aggr_fail++;
3575			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3576				drops++;
3577				bf->bf_next = NULL;
3578				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3579			}
3580			nbad++;
3581		}
3582		bf = bf_next;
3583	}
3584
3585	/*
3586	 * Now that the BAW updates have been done, unlock
3587	 *
3588	 * txseq is grabbed before the lock is released so we
3589	 * have a consistent view of what -was- in the BAW.
3590	 * Anything after this point will not yet have been
3591	 * TXed.
3592	 */
3593	txseq = tap->txa_start;
3594	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3595
3596	if (nframes != nf)
3597		device_printf(sc->sc_dev,
3598		    "%s: num frames seen=%d; bf nframes=%d\n",
3599		    __func__, nframes, nf);
3600
3601	/*
3602	 * Now we know how many frames were bad, call the rate
3603	 * control code.
3604	 */
3605	if (fail == 0)
3606		ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes,
3607		    nbad);
3608
3609	/*
3610	 * send bar if we dropped any frames
3611	 */
3612	if (drops) {
3613		/* Suspend the TX queue and get ready to send the BAR */
3614		ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3615		ath_tx_tid_bar_suspend(sc, atid);
3616		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3617	}
3618
3619	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3620	    "%s: txa_start now %d\n", __func__, tap->txa_start);
3621
3622	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3623
3624	/* Prepend all frames to the beginning of the queue */
3625	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3626		TAILQ_REMOVE(&bf_q, bf, bf_list);
3627		ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3628	}
3629
3630	/*
3631	 * Reschedule to grab some further frames.
3632	 */
3633	ath_tx_tid_sched(sc, atid);
3634
3635	/*
3636	 * Send BAR if required
3637	 */
3638	if (ath_tx_tid_bar_tx_ready(sc, atid))
3639		ath_tx_tid_bar_tx(sc, atid);
3640
3641	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3642
3643	/* Do deferred completion */
3644	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3645		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3646		ath_tx_default_comp(sc, bf, 0);
3647	}
3648}
3649
3650/*
3651 * Handle completion of unaggregated frames in an ADDBA
3652 * session.
3653 *
3654 * Fail is set to 1 if the entry is being freed via a call to
3655 * ath_tx_draintxq().
3656 */
3657static void
3658ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
3659{
3660	struct ieee80211_node *ni = bf->bf_node;
3661	struct ath_node *an = ATH_NODE(ni);
3662	int tid = bf->bf_state.bfs_tid;
3663	struct ath_tid *atid = &an->an_tid[tid];
3664	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3665
3666	/*
3667	 * Update rate control status here, before we possibly
3668	 * punt to retry or cleanup.
3669	 *
3670	 * Do it outside of the TXQ lock.
3671	 */
3672	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
3673		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3674		    &bf->bf_status.ds_txstat,
3675		    bf->bf_state.bfs_pktlen,
3676		    1, (ts->ts_status == 0) ? 0 : 1);
3677
3678	/*
3679	 * This is called early so atid->hwq_depth can be tracked.
3680	 * This unfortunately means that it's released and regrabbed
3681	 * during retry and cleanup. That's rather inefficient.
3682	 */
3683	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3684
3685	if (tid == IEEE80211_NONQOS_TID)
3686		device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
3687
3688	DPRINTF(sc, ATH_DEBUG_SW_TX,
3689	    "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
3690	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
3691	    SEQNO(bf->bf_state.bfs_seqno));
3692
3693	atid->hwq_depth--;
3694	if (atid->hwq_depth < 0)
3695		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3696		    __func__, atid->hwq_depth);
3697
3698	/*
3699	 * If a cleanup is in progress, punt to comp_cleanup;
3700	 * rather than handling it here. It's thus their
3701	 * responsibility to clean up, call the completion
3702	 * function in net80211, etc.
3703	 */
3704	if (atid->cleanup_inprogress) {
3705		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3706		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
3707		    __func__);
3708		ath_tx_comp_cleanup_unaggr(sc, bf);
3709		return;
3710	}
3711
3712	/*
3713	 * Don't bother with the retry check if all frames
3714	 * are being failed (eg during queue deletion.)
3715	 */
3716#if 0
3717	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
3718#endif
3719	if (fail == 0 && ts->ts_status != 0) {
3720		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3721		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
3722		    __func__);
3723		ath_tx_aggr_retry_unaggr(sc, bf);
3724		return;
3725	}
3726
3727	/* Success? Complete */
3728	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
3729	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
3730	if (bf->bf_state.bfs_dobaw) {
3731		ath_tx_update_baw(sc, an, atid, bf);
3732		bf->bf_state.bfs_dobaw = 0;
3733		if (! bf->bf_state.bfs_addedbaw)
3734			device_printf(sc->sc_dev,
3735			    "%s: wasn't added: seqno %d\n",
3736			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3737	}
3738
3739	/*
3740	 * Send BAR if required
3741	 */
3742	if (ath_tx_tid_bar_tx_ready(sc, atid))
3743		ath_tx_tid_bar_tx(sc, atid);
3744
3745	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3746
3747	ath_tx_default_comp(sc, bf, fail);
3748	/* bf is freed at this point */
3749}
3750
3751void
3752ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3753{
3754	if (bf->bf_state.bfs_aggr)
3755		ath_tx_aggr_comp_aggr(sc, bf, fail);
3756	else
3757		ath_tx_aggr_comp_unaggr(sc, bf, fail);
3758}
3759
3760/*
3761 * Schedule some packets from the given node/TID to the hardware.
3762 *
3763 * This is the aggregate version.
3764 */
3765void
3766ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
3767    struct ath_tid *tid)
3768{
3769	struct ath_buf *bf;
3770	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3771	struct ieee80211_tx_ampdu *tap;
3772	struct ieee80211_node *ni = &an->an_node;
3773	ATH_AGGR_STATUS status;
3774	ath_bufhead bf_q;
3775
3776	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
3777	ATH_TXQ_LOCK_ASSERT(txq);
3778
3779	tap = ath_tx_get_tx_tid(an, tid->tid);
3780
3781	if (tid->tid == IEEE80211_NONQOS_TID)
3782		device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
3783		    __func__);
3784
3785	for (;;) {
3786		status = ATH_AGGR_DONE;
3787
3788		/*
3789		 * If the upper layer has paused the TID, don't
3790		 * queue any further packets.
3791		 *
3792		 * This can also occur from the completion task because
3793		 * of packet loss; but as its serialised with this code,
3794		 * it won't "appear" half way through queuing packets.
3795		 */
3796		if (tid->paused)
3797			break;
3798
3799		bf = TAILQ_FIRST(&tid->axq_q);
3800		if (bf == NULL) {
3801			break;
3802		}
3803
3804		/*
3805		 * If the packet doesn't fall within the BAW (eg a NULL
3806		 * data frame), schedule it directly; continue.
3807		 */
3808		if (! bf->bf_state.bfs_dobaw) {
3809			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3810			    "%s: non-baw packet\n",
3811			    __func__);
3812			ATH_TXQ_REMOVE(tid, bf, bf_list);
3813			bf->bf_state.bfs_aggr = 0;
3814			ath_tx_do_ratelookup(sc, bf);
3815			ath_tx_calc_duration(sc, bf);
3816			ath_tx_calc_protection(sc, bf);
3817			ath_tx_set_rtscts(sc, bf);
3818			ath_tx_rate_fill_rcflags(sc, bf);
3819			ath_tx_setds(sc, bf);
3820			ath_tx_chaindesclist(sc, bf);
3821			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3822			ath_tx_set_ratectrl(sc, ni, bf);
3823
3824			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
3825
3826			/* Queue the packet; continue */
3827			goto queuepkt;
3828		}
3829
3830		TAILQ_INIT(&bf_q);
3831
3832		/*
3833		 * Do a rate control lookup on the first frame in the
3834		 * list. The rate control code needs that to occur
3835		 * before it can determine whether to TX.
3836		 * It's inaccurate because the rate control code doesn't
3837		 * really "do" aggregate lookups, so it only considers
3838		 * the size of the first frame.
3839		 */
3840		ath_tx_do_ratelookup(sc, bf);
3841		bf->bf_state.bfs_rc[3].rix = 0;
3842		bf->bf_state.bfs_rc[3].tries = 0;
3843
3844		ath_tx_calc_duration(sc, bf);
3845		ath_tx_calc_protection(sc, bf);
3846
3847		ath_tx_set_rtscts(sc, bf);
3848		ath_tx_rate_fill_rcflags(sc, bf);
3849
3850		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
3851
3852		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3853		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
3854
3855		/*
3856		 * No frames to be picked up - out of BAW
3857		 */
3858		if (TAILQ_EMPTY(&bf_q))
3859			break;
3860
3861		/*
3862		 * This assumes that the descriptor list in the ath_bufhead
3863		 * are already linked together via bf_next pointers.
3864		 */
3865		bf = TAILQ_FIRST(&bf_q);
3866
3867		if (status == ATH_AGGR_8K_LIMITED)
3868			sc->sc_aggr_stats.aggr_rts_aggr_limited++;
3869
3870		/*
3871		 * If it's the only frame send as non-aggregate
3872		 * assume that ath_tx_form_aggr() has checked
3873		 * whether it's in the BAW and added it appropriately.
3874		 */
3875		if (bf->bf_state.bfs_nframes == 1) {
3876			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3877			    "%s: single-frame aggregate\n", __func__);
3878			bf->bf_state.bfs_aggr = 0;
3879			ath_tx_setds(sc, bf);
3880			ath_tx_chaindesclist(sc, bf);
3881			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3882			ath_tx_set_ratectrl(sc, ni, bf);
3883			if (status == ATH_AGGR_BAW_CLOSED)
3884				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
3885			else
3886				sc->sc_aggr_stats.aggr_single_pkt++;
3887		} else {
3888			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3889			    "%s: multi-frame aggregate: %d frames, "
3890			    "length %d\n",
3891			     __func__, bf->bf_state.bfs_nframes,
3892			    bf->bf_state.bfs_al);
3893			bf->bf_state.bfs_aggr = 1;
3894			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
3895			sc->sc_aggr_stats.aggr_aggr_pkt++;
3896
3897			/*
3898			 * Calculate the duration/protection as required.
3899			 */
3900			ath_tx_calc_duration(sc, bf);
3901			ath_tx_calc_protection(sc, bf);
3902
3903			/*
3904			 * Update the rate and rtscts information based on the
3905			 * rate decision made by the rate control code;
3906			 * the first frame in the aggregate needs it.
3907			 */
3908			ath_tx_set_rtscts(sc, bf);
3909
3910			/*
3911			 * Setup the relevant descriptor fields
3912			 * for aggregation. The first descriptor
3913			 * already points to the rest in the chain.
3914			 */
3915			ath_tx_setds_11n(sc, bf);
3916
3917			/*
3918			 * setup first desc with rate and aggr info
3919			 */
3920			ath_tx_set_ratectrl(sc, ni, bf);
3921		}
3922	queuepkt:
3923		//txq = bf->bf_state.bfs_txq;
3924
3925		/* Set completion handler, multi-frame aggregate or not */
3926		bf->bf_comp = ath_tx_aggr_comp;
3927
3928		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
3929		    device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
3930
3931		/* Punt to txq */
3932		ath_tx_handoff(sc, txq, bf);
3933
3934		/* Track outstanding buffer count to hardware */
3935		/* aggregates are "one" buffer */
3936		tid->hwq_depth++;
3937
3938		/*
3939		 * Break out if ath_tx_form_aggr() indicated
3940		 * there can't be any further progress (eg BAW is full.)
3941		 * Checking for an empty txq is done above.
3942		 *
3943		 * XXX locking on txq here?
3944		 */
3945		if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
3946		    status == ATH_AGGR_BAW_CLOSED)
3947			break;
3948	}
3949}
3950
3951/*
3952 * Schedule some packets from the given node/TID to the hardware.
3953 */
3954void
3955ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
3956    struct ath_tid *tid)
3957{
3958	struct ath_buf *bf;
3959	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3960	struct ieee80211_node *ni = &an->an_node;
3961
3962	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
3963	    __func__, an, tid->tid);
3964
3965	ATH_TXQ_LOCK_ASSERT(txq);
3966
3967	/* Check - is AMPDU pending or running? then print out something */
3968	if (ath_tx_ampdu_pending(sc, an, tid->tid))
3969		device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
3970		    __func__, tid->tid);
3971	if (ath_tx_ampdu_running(sc, an, tid->tid))
3972		device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
3973		    __func__, tid->tid);
3974
3975	for (;;) {
3976
3977		/*
3978		 * If the upper layers have paused the TID, don't
3979		 * queue any further packets.
3980		 */
3981		if (tid->paused)
3982			break;
3983
3984		bf = TAILQ_FIRST(&tid->axq_q);
3985		if (bf == NULL) {
3986			break;
3987		}
3988
3989		ATH_TXQ_REMOVE(tid, bf, bf_list);
3990
3991		KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
3992
3993		/* Sanity check! */
3994		if (tid->tid != bf->bf_state.bfs_tid) {
3995			device_printf(sc->sc_dev, "%s: bfs_tid %d !="
3996			    " tid %d\n",
3997			    __func__, bf->bf_state.bfs_tid, tid->tid);
3998		}
3999		/* Normal completion handler */
4000		bf->bf_comp = ath_tx_normal_comp;
4001
4002		/* Program descriptors + rate control */
4003		ath_tx_do_ratelookup(sc, bf);
4004		ath_tx_calc_duration(sc, bf);
4005		ath_tx_calc_protection(sc, bf);
4006		ath_tx_set_rtscts(sc, bf);
4007		ath_tx_rate_fill_rcflags(sc, bf);
4008		ath_tx_setds(sc, bf);
4009		ath_tx_chaindesclist(sc, bf);
4010		ath_tx_set_ratectrl(sc, ni, bf);
4011
4012		/* Track outstanding buffer count to hardware */
4013		/* aggregates are "one" buffer */
4014		tid->hwq_depth++;
4015
4016		/* Punt to hardware or software txq */
4017		ath_tx_handoff(sc, txq, bf);
4018	}
4019}
4020
4021/*
4022 * Schedule some packets to the given hardware queue.
4023 *
4024 * This function walks the list of TIDs (ie, ath_node TIDs
4025 * with queued traffic) and attempts to schedule traffic
4026 * from them.
4027 *
4028 * TID scheduling is implemented as a FIFO, with TIDs being
4029 * added to the end of the queue after some frames have been
4030 * scheduled.
4031 */
4032void
4033ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
4034{
4035	struct ath_tid *tid, *next, *last;
4036
4037	ATH_TXQ_LOCK_ASSERT(txq);
4038
4039	/*
4040	 * Don't schedule if the hardware queue is busy.
4041	 * This (hopefully) gives some more time to aggregate
4042	 * some packets in the aggregation queue.
4043	 */
4044	if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
4045		sc->sc_aggr_stats.aggr_sched_nopkt++;
4046		return;
4047	}
4048
4049	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
4050
4051	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
4052		/*
4053		 * Suspend paused queues here; they'll be resumed
4054		 * once the addba completes or times out.
4055		 */
4056		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
4057		    __func__, tid->tid, tid->paused);
4058		ath_tx_tid_unsched(sc, tid);
4059		if (tid->paused) {
4060			continue;
4061		}
4062		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
4063			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
4064		else
4065			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
4066
4067		/* Not empty? Re-schedule */
4068		if (tid->axq_depth != 0)
4069			ath_tx_tid_sched(sc, tid);
4070
4071		/* Give the software queue time to aggregate more packets */
4072		if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
4073			break;
4074		}
4075
4076		/*
4077		 * If this was the last entry on the original list, stop.
4078		 * Otherwise nodes that have been rescheduled onto the end
4079		 * of the TID FIFO list will just keep being rescheduled.
4080		 */
4081		if (tid == last)
4082			break;
4083	}
4084}
4085
4086/*
4087 * TX addba handling
4088 */
4089
4090/*
4091 * Return net80211 TID struct pointer, or NULL for none
4092 */
4093struct ieee80211_tx_ampdu *
4094ath_tx_get_tx_tid(struct ath_node *an, int tid)
4095{
4096	struct ieee80211_node *ni = &an->an_node;
4097	struct ieee80211_tx_ampdu *tap;
4098
4099	if (tid == IEEE80211_NONQOS_TID)
4100		return NULL;
4101
4102	tap = &ni->ni_tx_ampdu[tid];
4103	return tap;
4104}
4105
4106/*
4107 * Is AMPDU-TX running?
4108 */
4109static int
4110ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
4111{
4112	struct ieee80211_tx_ampdu *tap;
4113
4114	if (tid == IEEE80211_NONQOS_TID)
4115		return 0;
4116
4117	tap = ath_tx_get_tx_tid(an, tid);
4118	if (tap == NULL)
4119		return 0;	/* Not valid; default to not running */
4120
4121	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
4122}
4123
4124/*
4125 * Is AMPDU-TX negotiation pending?
4126 */
4127static int
4128ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
4129{
4130	struct ieee80211_tx_ampdu *tap;
4131
4132	if (tid == IEEE80211_NONQOS_TID)
4133		return 0;
4134
4135	tap = ath_tx_get_tx_tid(an, tid);
4136	if (tap == NULL)
4137		return 0;	/* Not valid; default to not pending */
4138
4139	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
4140}
4141
4142/*
4143 * Is AMPDU-TX pending for the given TID?
4144 */
4145
4146
4147/*
4148 * Method to handle sending an ADDBA request.
4149 *
4150 * We tap this so the relevant flags can be set to pause the TID
4151 * whilst waiting for the response.
4152 *
4153 * XXX there's no timeout handler we can override?
4154 */
4155int
4156ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4157    int dialogtoken, int baparamset, int batimeout)
4158{
4159	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4160	int tid = tap->txa_tid;
4161	struct ath_node *an = ATH_NODE(ni);
4162	struct ath_tid *atid = &an->an_tid[tid];
4163
4164	/*
4165	 * XXX danger Will Robinson!
4166	 *
4167	 * Although the taskqueue may be running and scheduling some more
4168	 * packets, these should all be _before_ the addba sequence number.
4169	 * However, net80211 will keep self-assigning sequence numbers
4170	 * until addba has been negotiated.
4171	 *
4172	 * In the past, these packets would be "paused" (which still works
4173	 * fine, as they're being scheduled to the driver in the same
4174	 * serialised method which is calling the addba request routine)
4175	 * and when the aggregation session begins, they'll be dequeued
4176	 * as aggregate packets and added to the BAW. However, now there's
4177	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
4178	 * packets. Thus they never get included in the BAW tracking and
4179	 * this can cause the initial burst of packets after the addba
4180	 * negotiation to "hang", as they quickly fall outside the BAW.
4181	 *
4182	 * The "eventual" solution should be to tag these packets with
4183	 * dobaw. Although net80211 has given us a sequence number,
4184	 * it'll be "after" the left edge of the BAW and thus it'll
4185	 * fall within it.
4186	 */
4187	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4188	/*
4189	 * This is a bit annoying.  Until net80211 HT code inherits some
4190	 * (any) locking, we may have this called in parallel BUT only
4191	 * one response/timeout will be called.  Grr.
4192	 */
4193	if (atid->addba_tx_pending == 0) {
4194		ath_tx_tid_pause(sc, atid);
4195		atid->addba_tx_pending = 1;
4196	}
4197	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4198
4199	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4200	    "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
4201	    __func__, dialogtoken, baparamset, batimeout);
4202	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4203	    "%s: txa_start=%d, ni_txseqs=%d\n",
4204	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
4205
4206	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
4207	    batimeout);
4208}
4209
4210/*
4211 * Handle an ADDBA response.
4212 *
4213 * We unpause the queue so TX'ing can resume.
4214 *
4215 * Any packets TX'ed from this point should be "aggregate" (whether
4216 * aggregate or not) so the BAW is updated.
4217 *
4218 * Note! net80211 keeps self-assigning sequence numbers until
4219 * ampdu is negotiated. This means the initially-negotiated BAW left
4220 * edge won't match the ni->ni_txseq.
4221 *
4222 * So, being very dirty, the BAW left edge is "slid" here to match
4223 * ni->ni_txseq.
4224 *
4225 * What likely SHOULD happen is that all packets subsequent to the
4226 * addba request should be tagged as aggregate and queued as non-aggregate
4227 * frames; thus updating the BAW. For now though, I'll just slide the
4228 * window.
4229 */
4230int
4231ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4232    int status, int code, int batimeout)
4233{
4234	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4235	int tid = tap->txa_tid;
4236	struct ath_node *an = ATH_NODE(ni);
4237	struct ath_tid *atid = &an->an_tid[tid];
4238	int r;
4239
4240	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4241	    "%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
4242	    status, code, batimeout);
4243
4244	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4245	    "%s: txa_start=%d, ni_txseqs=%d\n",
4246	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
4247
4248	/*
4249	 * Call this first, so the interface flags get updated
4250	 * before the TID is unpaused. Otherwise a race condition
4251	 * exists where the unpaused TID still doesn't yet have
4252	 * IEEE80211_AGGR_RUNNING set.
4253	 */
4254	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
4255
4256	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4257	atid->addba_tx_pending = 0;
4258	/*
4259	 * XXX dirty!
4260	 * Slide the BAW left edge to wherever net80211 left it for us.
4261	 * Read above for more information.
4262	 */
4263	tap->txa_start = ni->ni_txseqs[tid];
4264	ath_tx_tid_resume(sc, atid);
4265	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4266	return r;
4267}
4268
4269
4270/*
4271 * Stop ADDBA on a queue.
4272 */
4273void
4274ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
4275{
4276	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4277	int tid = tap->txa_tid;
4278	struct ath_node *an = ATH_NODE(ni);
4279	struct ath_tid *atid = &an->an_tid[tid];
4280
4281	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
4282
4283	/* Pause TID traffic early, so there aren't any races */
4284	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4285	ath_tx_tid_pause(sc, atid);
4286	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4287
4288	/* There's no need to hold the TXQ lock here */
4289	sc->sc_addba_stop(ni, tap);
4290
4291	/*
4292	 * ath_tx_tid_cleanup will resume the TID if possible, otherwise
4293	 * it'll set the cleanup flag, and it'll be unpaused once
4294	 * things have been cleaned up.
4295	 */
4296	ath_tx_tid_cleanup(sc, an, tid);
4297}
4298
4299/*
4300 * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
4301 * it simply tears down the aggregation session. Ew.
4302 *
4303 * It however will call ieee80211_ampdu_stop() which will call
4304 * ic->ic_addba_stop().
4305 *
4306 * XXX This uses a hard-coded max BAR count value; the whole
4307 * XXX BAR TX success or failure should be better handled!
4308 */
4309void
4310ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4311    int status)
4312{
4313	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4314	int tid = tap->txa_tid;
4315	struct ath_node *an = ATH_NODE(ni);
4316	struct ath_tid *atid = &an->an_tid[tid];
4317	int attempts = tap->txa_attempts;
4318
4319	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
4320	    "%s: called; tap=%p, atid=%p, txa_tid=%d, atid->tid=%d, status=%d, attempts=%d\n",
4321	    __func__,
4322	    tap,
4323	    atid,
4324	    tap->txa_tid,
4325	    atid->tid,
4326	    status,
4327	    attempts);
4328
4329	/* Note: This may update the BAW details */
4330	sc->sc_bar_response(ni, tap, status);
4331
4332	/* Unpause the TID */
4333	/*
4334	 * XXX if this is attempt=50, the TID will be downgraded
4335	 * XXX to a non-aggregate session. So we must unpause the
4336	 * XXX TID here or it'll never be done.
4337	 */
4338	if (status == 0 || attempts == 50) {
4339		ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4340		ath_tx_tid_bar_unsuspend(sc, atid);
4341		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4342	}
4343}
4344
4345/*
4346 * This is called whenever the pending ADDBA request times out.
4347 * Unpause and reschedule the TID.
4348 */
4349void
4350ath_addba_response_timeout(struct ieee80211_node *ni,
4351    struct ieee80211_tx_ampdu *tap)
4352{
4353	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4354	int tid = tap->txa_tid;
4355	struct ath_node *an = ATH_NODE(ni);
4356	struct ath_tid *atid = &an->an_tid[tid];
4357
4358	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4359	    "%s: called; resuming\n", __func__);
4360
4361	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4362	atid->addba_tx_pending = 0;
4363	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4364
4365	/* Note: This updates the aggregate state to (again) pending */
4366	sc->sc_addba_response_timeout(ni, tap);
4367
4368	/* Unpause the TID; which reschedules it */
4369	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4370	ath_tx_tid_resume(sc, atid);
4371	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4372}
4373