if_ath_tx.c revision 235491
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath_tx.c 235491 2012-05-15 23:39:37Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_regdomain.h>
74#ifdef IEEE80211_SUPPORT_SUPERG
75#include <net80211/ieee80211_superg.h>
76#endif
77#ifdef IEEE80211_SUPPORT_TDMA
78#include <net80211/ieee80211_tdma.h>
79#endif
80#include <net80211/ieee80211_ht.h>
81
82#include <net/bpf.h>
83
84#ifdef INET
85#include <netinet/in.h>
86#include <netinet/if_ether.h>
87#endif
88
89#include <dev/ath/if_athvar.h>
90#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
91#include <dev/ath/ath_hal/ah_diagcodes.h>
92
93#include <dev/ath/if_ath_debug.h>
94
95#ifdef ATH_TX99_DIAG
96#include <dev/ath/ath_tx99/ath_tx99.h>
97#endif
98
99#include <dev/ath/if_ath_misc.h>
100#include <dev/ath/if_ath_tx.h>
101#include <dev/ath/if_ath_tx_ht.h>
102
103/*
104 * How many retries to perform in software
105 */
106#define	SWMAX_RETRIES		10
107
108static int ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an,
109    int tid);
110static int ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an,
111    int tid);
112static int ath_tx_action_frame_override_queue(struct ath_softc *sc,
113    struct ieee80211_node *ni, struct mbuf *m0, int *tid);
114static int ath_tx_seqno_required(struct ath_softc *sc,
115    struct ieee80211_node *ni, struct ath_buf *bf, struct mbuf *m0);
116
117/*
118 * Whether to use the 11n rate scenario functions or not
119 */
120static inline int
121ath_tx_is_11n(struct ath_softc *sc)
122{
123	return (sc->sc_ah->ah_magic == 0x20065416);
124}
125
126/*
127 * Obtain the current TID from the given frame.
128 *
129 * Non-QoS frames need to go into TID 16 (IEEE80211_NONQOS_TID.)
130 * This has implications for which AC/priority the packet is placed
131 * in.
132 */
133static int
134ath_tx_gettid(struct ath_softc *sc, const struct mbuf *m0)
135{
136	const struct ieee80211_frame *wh;
137	int pri = M_WME_GETAC(m0);
138
139	wh = mtod(m0, const struct ieee80211_frame *);
140	if (! IEEE80211_QOS_HAS_SEQ(wh))
141		return IEEE80211_NONQOS_TID;
142	else
143		return WME_AC_TO_TID(pri);
144}
145
146/*
147 * Determine what the correct AC queue for the given frame
148 * should be.
149 *
150 * This code assumes that the TIDs map consistently to
151 * the underlying hardware (or software) ath_txq.
152 * Since the sender may try to set an AC which is
153 * arbitrary, non-QoS TIDs may end up being put on
154 * completely different ACs. There's no way to put a
155 * TID into multiple ath_txq's for scheduling, so
156 * for now we override the AC/TXQ selection and set
157 * non-QOS TID frames into the BE queue.
158 *
159 * This may be completely incorrect - specifically,
160 * some management frames may end up out of order
161 * compared to the QoS traffic they're controlling.
162 * I'll look into this later.
163 */
164static int
165ath_tx_getac(struct ath_softc *sc, const struct mbuf *m0)
166{
167	const struct ieee80211_frame *wh;
168	int pri = M_WME_GETAC(m0);
169	wh = mtod(m0, const struct ieee80211_frame *);
170	if (IEEE80211_QOS_HAS_SEQ(wh))
171		return pri;
172
173	return WME_AC_BE;
174}
175
176void
177ath_txfrag_cleanup(struct ath_softc *sc,
178	ath_bufhead *frags, struct ieee80211_node *ni)
179{
180	struct ath_buf *bf, *next;
181
182	ATH_TXBUF_LOCK_ASSERT(sc);
183
184	TAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
185		/* NB: bf assumed clean */
186		TAILQ_REMOVE(frags, bf, bf_list);
187		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
188		ieee80211_node_decref(ni);
189	}
190}
191
192/*
193 * Setup xmit of a fragmented frame.  Allocate a buffer
194 * for each frag and bump the node reference count to
195 * reflect the held reference to be setup by ath_tx_start.
196 */
197int
198ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
199	struct mbuf *m0, struct ieee80211_node *ni)
200{
201	struct mbuf *m;
202	struct ath_buf *bf;
203
204	ATH_TXBUF_LOCK(sc);
205	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
206		bf = _ath_getbuf_locked(sc);
207		if (bf == NULL) {	/* out of buffers, cleanup */
208			device_printf(sc->sc_dev, "%s: no buffer?\n",
209			    __func__);
210			ath_txfrag_cleanup(sc, frags, ni);
211			break;
212		}
213		ieee80211_node_incref(ni);
214		TAILQ_INSERT_TAIL(frags, bf, bf_list);
215	}
216	ATH_TXBUF_UNLOCK(sc);
217
218	return !TAILQ_EMPTY(frags);
219}
220
221/*
222 * Reclaim mbuf resources.  For fragmented frames we
223 * need to claim each frag chained with m_nextpkt.
224 */
225void
226ath_freetx(struct mbuf *m)
227{
228	struct mbuf *next;
229
230	do {
231		next = m->m_nextpkt;
232		m->m_nextpkt = NULL;
233		m_freem(m);
234	} while ((m = next) != NULL);
235}
236
237static int
238ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
239{
240	struct mbuf *m;
241	int error;
242
243	/*
244	 * Load the DMA map so any coalescing is done.  This
245	 * also calculates the number of descriptors we need.
246	 */
247	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
248				     bf->bf_segs, &bf->bf_nseg,
249				     BUS_DMA_NOWAIT);
250	if (error == EFBIG) {
251		/* XXX packet requires too many descriptors */
252		bf->bf_nseg = ATH_TXDESC+1;
253	} else if (error != 0) {
254		sc->sc_stats.ast_tx_busdma++;
255		ath_freetx(m0);
256		return error;
257	}
258	/*
259	 * Discard null packets and check for packets that
260	 * require too many TX descriptors.  We try to convert
261	 * the latter to a cluster.
262	 */
263	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
264		sc->sc_stats.ast_tx_linear++;
265		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
266		if (m == NULL) {
267			ath_freetx(m0);
268			sc->sc_stats.ast_tx_nombuf++;
269			return ENOMEM;
270		}
271		m0 = m;
272		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
273					     bf->bf_segs, &bf->bf_nseg,
274					     BUS_DMA_NOWAIT);
275		if (error != 0) {
276			sc->sc_stats.ast_tx_busdma++;
277			ath_freetx(m0);
278			return error;
279		}
280		KASSERT(bf->bf_nseg <= ATH_TXDESC,
281		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
282	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
283		sc->sc_stats.ast_tx_nodata++;
284		ath_freetx(m0);
285		return EIO;
286	}
287	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
288		__func__, m0, m0->m_pkthdr.len);
289	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
290	bf->bf_m = m0;
291
292	return 0;
293}
294
295/*
296 * Chain together segments+descriptors for a non-11n frame.
297 */
298static void
299ath_tx_chaindesclist(struct ath_softc *sc, struct ath_buf *bf)
300{
301	struct ath_hal *ah = sc->sc_ah;
302	struct ath_desc *ds, *ds0;
303	int i;
304
305	/*
306	 * Fillin the remainder of the descriptor info.
307	 */
308	ds0 = ds = bf->bf_desc;
309	for (i = 0; i < bf->bf_nseg; i++, ds++) {
310		ds->ds_data = bf->bf_segs[i].ds_addr;
311		if (i == bf->bf_nseg - 1)
312			ds->ds_link = 0;
313		else
314			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
315		ath_hal_filltxdesc(ah, ds
316			, bf->bf_segs[i].ds_len	/* segment length */
317			, i == 0		/* first segment */
318			, i == bf->bf_nseg - 1	/* last segment */
319			, ds0			/* first descriptor */
320		);
321		DPRINTF(sc, ATH_DEBUG_XMIT,
322			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
323			__func__, i, ds->ds_link, ds->ds_data,
324			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
325		bf->bf_lastds = ds;
326	}
327	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
328}
329
330/*
331 * Fill in the descriptor list for a aggregate subframe.
332 *
333 * The subframe is returned with the ds_link field in the last subframe
334 * pointing to 0.
335 */
336static void
337ath_tx_chaindesclist_subframe(struct ath_softc *sc, struct ath_buf *bf)
338{
339	struct ath_hal *ah = sc->sc_ah;
340	struct ath_desc *ds, *ds0;
341	int i;
342
343	ds0 = ds = bf->bf_desc;
344
345	/*
346	 * There's no need to call ath_hal_setupfirsttxdesc here;
347	 * That's only going to occur for the first frame in an aggregate.
348	 */
349	for (i = 0; i < bf->bf_nseg; i++, ds++) {
350		ds->ds_data = bf->bf_segs[i].ds_addr;
351		if (i == bf->bf_nseg - 1)
352			ds->ds_link = 0;
353		else
354			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
355
356		/*
357		 * This performs the setup for an aggregate frame.
358		 * This includes enabling the aggregate flags if needed.
359		 */
360		ath_hal_chaintxdesc(ah, ds,
361		    bf->bf_state.bfs_pktlen,
362		    bf->bf_state.bfs_hdrlen,
363		    HAL_PKT_TYPE_AMPDU,	/* forces aggregate bits to be set */
364		    bf->bf_state.bfs_keyix,
365		    0,			/* cipher, calculated from keyix */
366		    bf->bf_state.bfs_ndelim,
367		    bf->bf_segs[i].ds_len,	/* segment length */
368		    i == 0,		/* first segment */
369		    i == bf->bf_nseg - 1,	/* last segment */
370		    bf->bf_next == NULL		/* last sub-frame in aggr */
371		);
372
373		DPRINTF(sc, ATH_DEBUG_XMIT,
374			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
375			__func__, i, ds->ds_link, ds->ds_data,
376			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
377		bf->bf_lastds = ds;
378		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
379		    BUS_DMASYNC_PREWRITE);
380	}
381}
382
383/*
384 * Setup segments+descriptors for an 11n aggregate.
385 * bf_first is the first buffer in the aggregate.
386 * The descriptor list must already been linked together using
387 * bf->bf_next.
388 */
389static void
390ath_tx_setds_11n(struct ath_softc *sc, struct ath_buf *bf_first)
391{
392	struct ath_buf *bf, *bf_prev = NULL;
393
394	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: nframes=%d, al=%d\n",
395	    __func__, bf_first->bf_state.bfs_nframes,
396	    bf_first->bf_state.bfs_al);
397
398	/*
399	 * Setup all descriptors of all subframes.
400	 */
401	bf = bf_first;
402	while (bf != NULL) {
403		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
404		    "%s: bf=%p, nseg=%d, pktlen=%d, seqno=%d\n",
405		    __func__, bf, bf->bf_nseg, bf->bf_state.bfs_pktlen,
406		    SEQNO(bf->bf_state.bfs_seqno));
407
408		/* Sub-frame setup */
409		ath_tx_chaindesclist_subframe(sc, bf);
410
411		/*
412		 * Link the last descriptor of the previous frame
413		 * to the beginning descriptor of this frame.
414		 */
415		if (bf_prev != NULL)
416			bf_prev->bf_lastds->ds_link = bf->bf_daddr;
417
418		/* Save a copy so we can link the next descriptor in */
419		bf_prev = bf;
420		bf = bf->bf_next;
421	}
422
423	/*
424	 * Setup first descriptor of first frame.
425	 * chaintxdesc() overwrites the descriptor entries;
426	 * setupfirsttxdesc() merges in things.
427	 * Otherwise various fields aren't set correctly (eg flags).
428	 */
429	ath_hal_setupfirsttxdesc(sc->sc_ah,
430	    bf_first->bf_desc,
431	    bf_first->bf_state.bfs_al,
432	    bf_first->bf_state.bfs_txflags | HAL_TXDESC_INTREQ,
433	    bf_first->bf_state.bfs_txpower,
434	    bf_first->bf_state.bfs_txrate0,
435	    bf_first->bf_state.bfs_try0,
436	    bf_first->bf_state.bfs_txantenna,
437	    bf_first->bf_state.bfs_ctsrate,
438	    bf_first->bf_state.bfs_ctsduration);
439
440	/*
441	 * Setup the last descriptor in the list.
442	 * bf_prev points to the last; bf is NULL here.
443	 */
444	ath_hal_setuplasttxdesc(sc->sc_ah, bf_prev->bf_desc,
445	    bf_first->bf_desc);
446
447	/*
448	 * Set the first descriptor bf_lastds field to point to
449	 * the last descriptor in the last subframe, that's where
450	 * the status update will occur.
451	 */
452	bf_first->bf_lastds = bf_prev->bf_lastds;
453
454	/*
455	 * And bf_last in the first descriptor points to the end of
456	 * the aggregate list.
457	 */
458	bf_first->bf_last = bf_prev;
459
460	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: end\n", __func__);
461}
462
463static void
464ath_tx_handoff_mcast(struct ath_softc *sc, struct ath_txq *txq,
465    struct ath_buf *bf)
466{
467	ATH_TXQ_LOCK_ASSERT(txq);
468	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
469	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
470	if (txq->axq_link != NULL) {
471		struct ath_buf *last = ATH_TXQ_LAST(txq, axq_q_s);
472		struct ieee80211_frame *wh;
473
474		/* mark previous frame */
475		wh = mtod(last->bf_m, struct ieee80211_frame *);
476		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
477		bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
478		    BUS_DMASYNC_PREWRITE);
479
480		/* link descriptor */
481		*txq->axq_link = bf->bf_daddr;
482	}
483	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
484	txq->axq_link = &bf->bf_lastds->ds_link;
485}
486
487/*
488 * Hand-off packet to a hardware queue.
489 */
490static void
491ath_tx_handoff_hw(struct ath_softc *sc, struct ath_txq *txq,
492    struct ath_buf *bf)
493{
494	struct ath_hal *ah = sc->sc_ah;
495
496	/*
497	 * Insert the frame on the outbound list and pass it on
498	 * to the hardware.  Multicast frames buffered for power
499	 * save stations and transmit from the CAB queue are stored
500	 * on a s/w only queue and loaded on to the CAB queue in
501	 * the SWBA handler since frames only go out on DTIM and
502	 * to avoid possible races.
503	 */
504	ATH_TXQ_LOCK_ASSERT(txq);
505	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
506	     ("%s: busy status 0x%x", __func__, bf->bf_flags));
507	KASSERT(txq->axq_qnum != ATH_TXQ_SWQ,
508	     ("ath_tx_handoff_hw called for mcast queue"));
509
510#if 0
511	/*
512	 * This causes a LOR. Find out where the PCU lock is being
513	 * held whilst the TXQ lock is grabbed - that shouldn't
514	 * be occuring.
515	 */
516	ATH_PCU_LOCK(sc);
517	if (sc->sc_inreset_cnt) {
518		ATH_PCU_UNLOCK(sc);
519		DPRINTF(sc, ATH_DEBUG_RESET,
520		    "%s: called with sc_in_reset != 0\n",
521		    __func__);
522		DPRINTF(sc, ATH_DEBUG_XMIT,
523		    "%s: queued: TXDP[%u] = %p (%p) depth %d\n",
524		    __func__, txq->axq_qnum,
525		    (caddr_t)bf->bf_daddr, bf->bf_desc,
526		    txq->axq_depth);
527		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
528		if (bf->bf_state.bfs_aggr)
529			txq->axq_aggr_depth++;
530		/*
531		 * There's no need to update axq_link; the hardware
532		 * is in reset and once the reset is complete, any
533		 * non-empty queues will simply have DMA restarted.
534		 */
535		return;
536		}
537	ATH_PCU_UNLOCK(sc);
538#endif
539
540	/* For now, so not to generate whitespace diffs */
541	if (1) {
542#ifdef IEEE80211_SUPPORT_TDMA
543		int qbusy;
544
545		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
546		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
547		if (txq->axq_link == NULL) {
548			/*
549			 * Be careful writing the address to TXDP.  If
550			 * the tx q is enabled then this write will be
551			 * ignored.  Normally this is not an issue but
552			 * when tdma is in use and the q is beacon gated
553			 * this race can occur.  If the q is busy then
554			 * defer the work to later--either when another
555			 * packet comes along or when we prepare a beacon
556			 * frame at SWBA.
557			 */
558			if (!qbusy) {
559				ath_hal_puttxbuf(ah, txq->axq_qnum,
560				    bf->bf_daddr);
561				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
562				DPRINTF(sc, ATH_DEBUG_XMIT,
563				    "%s: TXDP[%u] = %p (%p) depth %d\n",
564				    __func__, txq->axq_qnum,
565				    (caddr_t)bf->bf_daddr, bf->bf_desc,
566				    txq->axq_depth);
567			} else {
568				txq->axq_flags |= ATH_TXQ_PUTPENDING;
569				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
570				    "%s: Q%u busy, defer enable\n", __func__,
571				    txq->axq_qnum);
572			}
573		} else {
574			*txq->axq_link = bf->bf_daddr;
575			DPRINTF(sc, ATH_DEBUG_XMIT,
576			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
577			    txq->axq_qnum, txq->axq_link,
578			    (caddr_t)bf->bf_daddr, bf->bf_desc,
579			    txq->axq_depth);
580			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
581				/*
582				 * The q was busy when we previously tried
583				 * to write the address of the first buffer
584				 * in the chain.  Since it's not busy now
585				 * handle this chore.  We are certain the
586				 * buffer at the front is the right one since
587				 * axq_link is NULL only when the buffer list
588				 * is/was empty.
589				 */
590				ath_hal_puttxbuf(ah, txq->axq_qnum,
591					TAILQ_FIRST(&txq->axq_q)->bf_daddr);
592				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
593				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
594				    "%s: Q%u restarted\n", __func__,
595				    txq->axq_qnum);
596			}
597		}
598#else
599		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
600		if (txq->axq_link == NULL) {
601			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
602			DPRINTF(sc, ATH_DEBUG_XMIT,
603			    "%s: TXDP[%u] = %p (%p) depth %d\n",
604			    __func__, txq->axq_qnum,
605			    (caddr_t)bf->bf_daddr, bf->bf_desc,
606			    txq->axq_depth);
607		} else {
608			*txq->axq_link = bf->bf_daddr;
609			DPRINTF(sc, ATH_DEBUG_XMIT,
610			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
611			    txq->axq_qnum, txq->axq_link,
612			    (caddr_t)bf->bf_daddr, bf->bf_desc,
613			    txq->axq_depth);
614		}
615#endif /* IEEE80211_SUPPORT_TDMA */
616		if (bf->bf_state.bfs_aggr)
617			txq->axq_aggr_depth++;
618		txq->axq_link = &bf->bf_lastds->ds_link;
619		ath_hal_txstart(ah, txq->axq_qnum);
620	}
621}
622
623/*
624 * Restart TX DMA for the given TXQ.
625 *
626 * This must be called whether the queue is empty or not.
627 */
628void
629ath_txq_restart_dma(struct ath_softc *sc, struct ath_txq *txq)
630{
631	struct ath_hal *ah = sc->sc_ah;
632	struct ath_buf *bf, *bf_last;
633
634	ATH_TXQ_LOCK_ASSERT(txq);
635
636	/* This is always going to be cleared, empty or not */
637	txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
638
639	/* XXX make this ATH_TXQ_FIRST */
640	bf = TAILQ_FIRST(&txq->axq_q);
641	bf_last = ATH_TXQ_LAST(txq, axq_q_s);
642
643	if (bf == NULL)
644		return;
645
646	ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
647	txq->axq_link = &bf_last->bf_lastds->ds_link;
648	ath_hal_txstart(ah, txq->axq_qnum);
649}
650
651/*
652 * Hand off a packet to the hardware (or mcast queue.)
653 *
654 * The relevant hardware txq should be locked.
655 */
656static void
657ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
658{
659	ATH_TXQ_LOCK_ASSERT(txq);
660
661	if (txq->axq_qnum == ATH_TXQ_SWQ)
662		ath_tx_handoff_mcast(sc, txq, bf);
663	else
664		ath_tx_handoff_hw(sc, txq, bf);
665}
666
667static int
668ath_tx_tag_crypto(struct ath_softc *sc, struct ieee80211_node *ni,
669    struct mbuf *m0, int iswep, int isfrag, int *hdrlen, int *pktlen,
670    int *keyix)
671{
672	DPRINTF(sc, ATH_DEBUG_XMIT,
673	    "%s: hdrlen=%d, pktlen=%d, isfrag=%d, iswep=%d, m0=%p\n",
674	    __func__,
675	    *hdrlen,
676	    *pktlen,
677	    isfrag,
678	    iswep,
679	    m0);
680
681	if (iswep) {
682		const struct ieee80211_cipher *cip;
683		struct ieee80211_key *k;
684
685		/*
686		 * Construct the 802.11 header+trailer for an encrypted
687		 * frame. The only reason this can fail is because of an
688		 * unknown or unsupported cipher/key type.
689		 */
690		k = ieee80211_crypto_encap(ni, m0);
691		if (k == NULL) {
692			/*
693			 * This can happen when the key is yanked after the
694			 * frame was queued.  Just discard the frame; the
695			 * 802.11 layer counts failures and provides
696			 * debugging/diagnostics.
697			 */
698			return (0);
699		}
700		/*
701		 * Adjust the packet + header lengths for the crypto
702		 * additions and calculate the h/w key index.  When
703		 * a s/w mic is done the frame will have had any mic
704		 * added to it prior to entry so m0->m_pkthdr.len will
705		 * account for it. Otherwise we need to add it to the
706		 * packet length.
707		 */
708		cip = k->wk_cipher;
709		(*hdrlen) += cip->ic_header;
710		(*pktlen) += cip->ic_header + cip->ic_trailer;
711		/* NB: frags always have any TKIP MIC done in s/w */
712		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
713			(*pktlen) += cip->ic_miclen;
714		(*keyix) = k->wk_keyix;
715	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
716		/*
717		 * Use station key cache slot, if assigned.
718		 */
719		(*keyix) = ni->ni_ucastkey.wk_keyix;
720		if ((*keyix) == IEEE80211_KEYIX_NONE)
721			(*keyix) = HAL_TXKEYIX_INVALID;
722	} else
723		(*keyix) = HAL_TXKEYIX_INVALID;
724
725	return (1);
726}
727
728/*
729 * Calculate whether interoperability protection is required for
730 * this frame.
731 *
732 * This requires the rate control information be filled in,
733 * as the protection requirement depends upon the current
734 * operating mode / PHY.
735 */
736static void
737ath_tx_calc_protection(struct ath_softc *sc, struct ath_buf *bf)
738{
739	struct ieee80211_frame *wh;
740	uint8_t rix;
741	uint16_t flags;
742	int shortPreamble;
743	const HAL_RATE_TABLE *rt = sc->sc_currates;
744	struct ifnet *ifp = sc->sc_ifp;
745	struct ieee80211com *ic = ifp->if_l2com;
746
747	flags = bf->bf_state.bfs_txflags;
748	rix = bf->bf_state.bfs_rc[0].rix;
749	shortPreamble = bf->bf_state.bfs_shpream;
750	wh = mtod(bf->bf_m, struct ieee80211_frame *);
751
752	/*
753	 * If 802.11g protection is enabled, determine whether
754	 * to use RTS/CTS or just CTS.  Note that this is only
755	 * done for OFDM unicast frames.
756	 */
757	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
758	    rt->info[rix].phy == IEEE80211_T_OFDM &&
759	    (flags & HAL_TXDESC_NOACK) == 0) {
760		bf->bf_state.bfs_doprot = 1;
761		/* XXX fragments must use CCK rates w/ protection */
762		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) {
763			flags |= HAL_TXDESC_RTSENA;
764		} else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) {
765			flags |= HAL_TXDESC_CTSENA;
766		}
767		/*
768		 * For frags it would be desirable to use the
769		 * highest CCK rate for RTS/CTS.  But stations
770		 * farther away may detect it at a lower CCK rate
771		 * so use the configured protection rate instead
772		 * (for now).
773		 */
774		sc->sc_stats.ast_tx_protect++;
775	}
776
777	/*
778	 * If 11n protection is enabled and it's a HT frame,
779	 * enable RTS.
780	 *
781	 * XXX ic_htprotmode or ic_curhtprotmode?
782	 * XXX should it_htprotmode only matter if ic_curhtprotmode
783	 * XXX indicates it's not a HT pure environment?
784	 */
785	if ((ic->ic_htprotmode == IEEE80211_PROT_RTSCTS) &&
786	    rt->info[rix].phy == IEEE80211_T_HT &&
787	    (flags & HAL_TXDESC_NOACK) == 0) {
788		flags |= HAL_TXDESC_RTSENA;
789		sc->sc_stats.ast_tx_htprotect++;
790	}
791	bf->bf_state.bfs_txflags = flags;
792}
793
794/*
795 * Update the frame duration given the currently selected rate.
796 *
797 * This also updates the frame duration value, so it will require
798 * a DMA flush.
799 */
800static void
801ath_tx_calc_duration(struct ath_softc *sc, struct ath_buf *bf)
802{
803	struct ieee80211_frame *wh;
804	uint8_t rix;
805	uint16_t flags;
806	int shortPreamble;
807	struct ath_hal *ah = sc->sc_ah;
808	const HAL_RATE_TABLE *rt = sc->sc_currates;
809	int isfrag = bf->bf_m->m_flags & M_FRAG;
810
811	flags = bf->bf_state.bfs_txflags;
812	rix = bf->bf_state.bfs_rc[0].rix;
813	shortPreamble = bf->bf_state.bfs_shpream;
814	wh = mtod(bf->bf_m, struct ieee80211_frame *);
815
816	/*
817	 * Calculate duration.  This logically belongs in the 802.11
818	 * layer but it lacks sufficient information to calculate it.
819	 */
820	if ((flags & HAL_TXDESC_NOACK) == 0 &&
821	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
822		u_int16_t dur;
823		if (shortPreamble)
824			dur = rt->info[rix].spAckDuration;
825		else
826			dur = rt->info[rix].lpAckDuration;
827		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
828			dur += dur;		/* additional SIFS+ACK */
829			KASSERT(bf->bf_m->m_nextpkt != NULL, ("no fragment"));
830			/*
831			 * Include the size of next fragment so NAV is
832			 * updated properly.  The last fragment uses only
833			 * the ACK duration
834			 */
835			dur += ath_hal_computetxtime(ah, rt,
836					bf->bf_m->m_nextpkt->m_pkthdr.len,
837					rix, shortPreamble);
838		}
839		if (isfrag) {
840			/*
841			 * Force hardware to use computed duration for next
842			 * fragment by disabling multi-rate retry which updates
843			 * duration based on the multi-rate duration table.
844			 */
845			bf->bf_state.bfs_ismrr = 0;
846			bf->bf_state.bfs_try0 = ATH_TXMGTTRY;
847			/* XXX update bfs_rc[0].try? */
848		}
849
850		/* Update the duration field itself */
851		*(u_int16_t *)wh->i_dur = htole16(dur);
852	}
853}
854
855static uint8_t
856ath_tx_get_rtscts_rate(struct ath_hal *ah, const HAL_RATE_TABLE *rt,
857    int cix, int shortPreamble)
858{
859	uint8_t ctsrate;
860
861	/*
862	 * CTS transmit rate is derived from the transmit rate
863	 * by looking in the h/w rate table.  We must also factor
864	 * in whether or not a short preamble is to be used.
865	 */
866	/* NB: cix is set above where RTS/CTS is enabled */
867	KASSERT(cix != 0xff, ("cix not setup"));
868	ctsrate = rt->info[cix].rateCode;
869
870	/* XXX this should only matter for legacy rates */
871	if (shortPreamble)
872		ctsrate |= rt->info[cix].shortPreamble;
873
874	return (ctsrate);
875}
876
877/*
878 * Calculate the RTS/CTS duration for legacy frames.
879 */
880static int
881ath_tx_calc_ctsduration(struct ath_hal *ah, int rix, int cix,
882    int shortPreamble, int pktlen, const HAL_RATE_TABLE *rt,
883    int flags)
884{
885	int ctsduration = 0;
886
887	/* This mustn't be called for HT modes */
888	if (rt->info[cix].phy == IEEE80211_T_HT) {
889		printf("%s: HT rate where it shouldn't be (0x%x)\n",
890		    __func__, rt->info[cix].rateCode);
891		return (-1);
892	}
893
894	/*
895	 * Compute the transmit duration based on the frame
896	 * size and the size of an ACK frame.  We call into the
897	 * HAL to do the computation since it depends on the
898	 * characteristics of the actual PHY being used.
899	 *
900	 * NB: CTS is assumed the same size as an ACK so we can
901	 *     use the precalculated ACK durations.
902	 */
903	if (shortPreamble) {
904		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
905			ctsduration += rt->info[cix].spAckDuration;
906		ctsduration += ath_hal_computetxtime(ah,
907			rt, pktlen, rix, AH_TRUE);
908		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
909			ctsduration += rt->info[rix].spAckDuration;
910	} else {
911		if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
912			ctsduration += rt->info[cix].lpAckDuration;
913		ctsduration += ath_hal_computetxtime(ah,
914			rt, pktlen, rix, AH_FALSE);
915		if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
916			ctsduration += rt->info[rix].lpAckDuration;
917	}
918
919	return (ctsduration);
920}
921
922/*
923 * Update the given ath_buf with updated rts/cts setup and duration
924 * values.
925 *
926 * To support rate lookups for each software retry, the rts/cts rate
927 * and cts duration must be re-calculated.
928 *
929 * This function assumes the RTS/CTS flags have been set as needed;
930 * mrr has been disabled; and the rate control lookup has been done.
931 *
932 * XXX TODO: MRR need only be disabled for the pre-11n NICs.
933 * XXX The 11n NICs support per-rate RTS/CTS configuration.
934 */
935static void
936ath_tx_set_rtscts(struct ath_softc *sc, struct ath_buf *bf)
937{
938	uint16_t ctsduration = 0;
939	uint8_t ctsrate = 0;
940	uint8_t rix = bf->bf_state.bfs_rc[0].rix;
941	uint8_t cix = 0;
942	const HAL_RATE_TABLE *rt = sc->sc_currates;
943
944	/*
945	 * No RTS/CTS enabled? Don't bother.
946	 */
947	if ((bf->bf_state.bfs_txflags &
948	    (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) == 0) {
949		/* XXX is this really needed? */
950		bf->bf_state.bfs_ctsrate = 0;
951		bf->bf_state.bfs_ctsduration = 0;
952		return;
953	}
954
955	/*
956	 * If protection is enabled, use the protection rix control
957	 * rate. Otherwise use the rate0 control rate.
958	 */
959	if (bf->bf_state.bfs_doprot)
960		rix = sc->sc_protrix;
961	else
962		rix = bf->bf_state.bfs_rc[0].rix;
963
964	/*
965	 * If the raw path has hard-coded ctsrate0 to something,
966	 * use it.
967	 */
968	if (bf->bf_state.bfs_ctsrate0 != 0)
969		cix = ath_tx_findrix(sc, bf->bf_state.bfs_ctsrate0);
970	else
971		/* Control rate from above */
972		cix = rt->info[rix].controlRate;
973
974	/* Calculate the rtscts rate for the given cix */
975	ctsrate = ath_tx_get_rtscts_rate(sc->sc_ah, rt, cix,
976	    bf->bf_state.bfs_shpream);
977
978	/* The 11n chipsets do ctsduration calculations for you */
979	if (! ath_tx_is_11n(sc))
980		ctsduration = ath_tx_calc_ctsduration(sc->sc_ah, rix, cix,
981		    bf->bf_state.bfs_shpream, bf->bf_state.bfs_pktlen,
982		    rt, bf->bf_state.bfs_txflags);
983
984	/* Squirrel away in ath_buf */
985	bf->bf_state.bfs_ctsrate = ctsrate;
986	bf->bf_state.bfs_ctsduration = ctsduration;
987
988	/*
989	 * Must disable multi-rate retry when using RTS/CTS.
990	 * XXX TODO: only for pre-11n NICs.
991	 */
992	bf->bf_state.bfs_ismrr = 0;
993	bf->bf_state.bfs_try0 =
994	    bf->bf_state.bfs_rc[0].tries = ATH_TXMGTTRY;	/* XXX ew */
995}
996
997/*
998 * Setup the descriptor chain for a normal or fast-frame
999 * frame.
1000 */
1001static void
1002ath_tx_setds(struct ath_softc *sc, struct ath_buf *bf)
1003{
1004	struct ath_desc *ds = bf->bf_desc;
1005	struct ath_hal *ah = sc->sc_ah;
1006
1007	ath_hal_setuptxdesc(ah, ds
1008		, bf->bf_state.bfs_pktlen	/* packet length */
1009		, bf->bf_state.bfs_hdrlen	/* header length */
1010		, bf->bf_state.bfs_atype	/* Atheros packet type */
1011		, bf->bf_state.bfs_txpower	/* txpower */
1012		, bf->bf_state.bfs_txrate0
1013		, bf->bf_state.bfs_try0		/* series 0 rate/tries */
1014		, bf->bf_state.bfs_keyix	/* key cache index */
1015		, bf->bf_state.bfs_txantenna	/* antenna mode */
1016		, bf->bf_state.bfs_txflags	/* flags */
1017		, bf->bf_state.bfs_ctsrate	/* rts/cts rate */
1018		, bf->bf_state.bfs_ctsduration	/* rts/cts duration */
1019	);
1020
1021	/*
1022	 * This will be overriden when the descriptor chain is written.
1023	 */
1024	bf->bf_lastds = ds;
1025	bf->bf_last = bf;
1026
1027	/* XXX TODO: Setup descriptor chain */
1028}
1029
1030/*
1031 * Do a rate lookup.
1032 *
1033 * This performs a rate lookup for the given ath_buf only if it's required.
1034 * Non-data frames and raw frames don't require it.
1035 *
1036 * This populates the primary and MRR entries; MRR values are
1037 * then disabled later on if something requires it (eg RTS/CTS on
1038 * pre-11n chipsets.
1039 *
1040 * This needs to be done before the RTS/CTS fields are calculated
1041 * as they may depend upon the rate chosen.
1042 */
1043static void
1044ath_tx_do_ratelookup(struct ath_softc *sc, struct ath_buf *bf)
1045{
1046	uint8_t rate, rix;
1047	int try0;
1048
1049	if (! bf->bf_state.bfs_doratelookup)
1050		return;
1051
1052	/* Get rid of any previous state */
1053	bzero(bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1054
1055	ATH_NODE_LOCK(ATH_NODE(bf->bf_node));
1056	ath_rate_findrate(sc, ATH_NODE(bf->bf_node), bf->bf_state.bfs_shpream,
1057	    bf->bf_state.bfs_pktlen, &rix, &try0, &rate);
1058
1059	/* In case MRR is disabled, make sure rc[0] is setup correctly */
1060	bf->bf_state.bfs_rc[0].rix = rix;
1061	bf->bf_state.bfs_rc[0].ratecode = rate;
1062	bf->bf_state.bfs_rc[0].tries = try0;
1063
1064	if (bf->bf_state.bfs_ismrr && try0 != ATH_TXMAXTRY)
1065		ath_rate_getxtxrates(sc, ATH_NODE(bf->bf_node), rix,
1066		    bf->bf_state.bfs_rc);
1067	ATH_NODE_UNLOCK(ATH_NODE(bf->bf_node));
1068
1069	sc->sc_txrix = rix;	/* for LED blinking */
1070	sc->sc_lastdatarix = rix;	/* for fast frames */
1071	bf->bf_state.bfs_try0 = try0;
1072	bf->bf_state.bfs_txrate0 = rate;
1073}
1074
1075/*
1076 * Set the rate control fields in the given descriptor based on
1077 * the bf_state fields and node state.
1078 *
1079 * The bfs fields should already be set with the relevant rate
1080 * control information, including whether MRR is to be enabled.
1081 *
1082 * Since the FreeBSD HAL currently sets up the first TX rate
1083 * in ath_hal_setuptxdesc(), this will setup the MRR
1084 * conditionally for the pre-11n chips, and call ath_buf_set_rate
1085 * unconditionally for 11n chips. These require the 11n rate
1086 * scenario to be set if MCS rates are enabled, so it's easier
1087 * to just always call it. The caller can then only set rates 2, 3
1088 * and 4 if multi-rate retry is needed.
1089 */
1090static void
1091ath_tx_set_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
1092    struct ath_buf *bf)
1093{
1094	struct ath_rc_series *rc = bf->bf_state.bfs_rc;
1095
1096	/* If mrr is disabled, blank tries 1, 2, 3 */
1097	if (! bf->bf_state.bfs_ismrr)
1098		rc[1].tries = rc[2].tries = rc[3].tries = 0;
1099
1100	/*
1101	 * Always call - that way a retried descriptor will
1102	 * have the MRR fields overwritten.
1103	 *
1104	 * XXX TODO: see if this is really needed - setting up
1105	 * the first descriptor should set the MRR fields to 0
1106	 * for us anyway.
1107	 */
1108	if (ath_tx_is_11n(sc)) {
1109		ath_buf_set_rate(sc, ni, bf);
1110	} else {
1111		ath_hal_setupxtxdesc(sc->sc_ah, bf->bf_desc
1112			, rc[1].ratecode, rc[1].tries
1113			, rc[2].ratecode, rc[2].tries
1114			, rc[3].ratecode, rc[3].tries
1115		);
1116	}
1117}
1118
1119/*
1120 * Transmit the given frame to the hardware.
1121 *
1122 * The frame must already be setup; rate control must already have
1123 * been done.
1124 *
1125 * XXX since the TXQ lock is being held here (and I dislike holding
1126 * it for this long when not doing software aggregation), later on
1127 * break this function into "setup_normal" and "xmit_normal". The
1128 * lock only needs to be held for the ath_tx_handoff call.
1129 */
1130static void
1131ath_tx_xmit_normal(struct ath_softc *sc, struct ath_txq *txq,
1132    struct ath_buf *bf)
1133{
1134
1135	ATH_TXQ_LOCK_ASSERT(txq);
1136
1137	/* Setup the descriptor before handoff */
1138	ath_tx_do_ratelookup(sc, bf);
1139	ath_tx_calc_duration(sc, bf);
1140	ath_tx_calc_protection(sc, bf);
1141	ath_tx_set_rtscts(sc, bf);
1142	ath_tx_rate_fill_rcflags(sc, bf);
1143	ath_tx_setds(sc, bf);
1144	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
1145	ath_tx_chaindesclist(sc, bf);
1146
1147	/* Hand off to hardware */
1148	ath_tx_handoff(sc, txq, bf);
1149}
1150
1151
1152
1153static int
1154ath_tx_normal_setup(struct ath_softc *sc, struct ieee80211_node *ni,
1155    struct ath_buf *bf, struct mbuf *m0, struct ath_txq *txq)
1156{
1157	struct ieee80211vap *vap = ni->ni_vap;
1158	struct ath_hal *ah = sc->sc_ah;
1159	struct ifnet *ifp = sc->sc_ifp;
1160	struct ieee80211com *ic = ifp->if_l2com;
1161	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1162	int error, iswep, ismcast, isfrag, ismrr;
1163	int keyix, hdrlen, pktlen, try0 = 0;
1164	u_int8_t rix = 0, txrate = 0;
1165	struct ath_desc *ds;
1166	struct ieee80211_frame *wh;
1167	u_int subtype, flags;
1168	HAL_PKT_TYPE atype;
1169	const HAL_RATE_TABLE *rt;
1170	HAL_BOOL shortPreamble;
1171	struct ath_node *an;
1172	u_int pri;
1173
1174	wh = mtod(m0, struct ieee80211_frame *);
1175	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1176	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1177	isfrag = m0->m_flags & M_FRAG;
1178	hdrlen = ieee80211_anyhdrsize(wh);
1179	/*
1180	 * Packet length must not include any
1181	 * pad bytes; deduct them here.
1182	 */
1183	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
1184
1185	/* Handle encryption twiddling if needed */
1186	if (! ath_tx_tag_crypto(sc, ni, m0, iswep, isfrag, &hdrlen,
1187	    &pktlen, &keyix)) {
1188		ath_freetx(m0);
1189		return EIO;
1190	}
1191
1192	/* packet header may have moved, reset our local pointer */
1193	wh = mtod(m0, struct ieee80211_frame *);
1194
1195	pktlen += IEEE80211_CRC_LEN;
1196
1197	/*
1198	 * Load the DMA map so any coalescing is done.  This
1199	 * also calculates the number of descriptors we need.
1200	 */
1201	error = ath_tx_dmasetup(sc, bf, m0);
1202	if (error != 0)
1203		return error;
1204	bf->bf_node = ni;			/* NB: held reference */
1205	m0 = bf->bf_m;				/* NB: may have changed */
1206	wh = mtod(m0, struct ieee80211_frame *);
1207
1208	/* setup descriptors */
1209	ds = bf->bf_desc;
1210	rt = sc->sc_currates;
1211	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1212
1213	/*
1214	 * NB: the 802.11 layer marks whether or not we should
1215	 * use short preamble based on the current mode and
1216	 * negotiated parameters.
1217	 */
1218	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1219	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1220		shortPreamble = AH_TRUE;
1221		sc->sc_stats.ast_tx_shortpre++;
1222	} else {
1223		shortPreamble = AH_FALSE;
1224	}
1225
1226	an = ATH_NODE(ni);
1227	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1228	ismrr = 0;				/* default no multi-rate retry*/
1229	pri = M_WME_GETAC(m0);			/* honor classification */
1230	/* XXX use txparams instead of fixed values */
1231	/*
1232	 * Calculate Atheros packet type from IEEE80211 packet header,
1233	 * setup for rate calculations, and select h/w transmit queue.
1234	 */
1235	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1236	case IEEE80211_FC0_TYPE_MGT:
1237		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1238		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1239			atype = HAL_PKT_TYPE_BEACON;
1240		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1241			atype = HAL_PKT_TYPE_PROBE_RESP;
1242		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1243			atype = HAL_PKT_TYPE_ATIM;
1244		else
1245			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
1246		rix = an->an_mgmtrix;
1247		txrate = rt->info[rix].rateCode;
1248		if (shortPreamble)
1249			txrate |= rt->info[rix].shortPreamble;
1250		try0 = ATH_TXMGTTRY;
1251		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1252		break;
1253	case IEEE80211_FC0_TYPE_CTL:
1254		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
1255		rix = an->an_mgmtrix;
1256		txrate = rt->info[rix].rateCode;
1257		if (shortPreamble)
1258			txrate |= rt->info[rix].shortPreamble;
1259		try0 = ATH_TXMGTTRY;
1260		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
1261		break;
1262	case IEEE80211_FC0_TYPE_DATA:
1263		atype = HAL_PKT_TYPE_NORMAL;		/* default */
1264		/*
1265		 * Data frames: multicast frames go out at a fixed rate,
1266		 * EAPOL frames use the mgmt frame rate; otherwise consult
1267		 * the rate control module for the rate to use.
1268		 */
1269		if (ismcast) {
1270			rix = an->an_mcastrix;
1271			txrate = rt->info[rix].rateCode;
1272			if (shortPreamble)
1273				txrate |= rt->info[rix].shortPreamble;
1274			try0 = 1;
1275		} else if (m0->m_flags & M_EAPOL) {
1276			/* XXX? maybe always use long preamble? */
1277			rix = an->an_mgmtrix;
1278			txrate = rt->info[rix].rateCode;
1279			if (shortPreamble)
1280				txrate |= rt->info[rix].shortPreamble;
1281			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
1282		} else {
1283			/*
1284			 * Do rate lookup on each TX, rather than using
1285			 * the hard-coded TX information decided here.
1286			 */
1287			ismrr = 1;
1288			bf->bf_state.bfs_doratelookup = 1;
1289		}
1290		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
1291			flags |= HAL_TXDESC_NOACK;
1292		break;
1293	default:
1294		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
1295			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1296		/* XXX statistic */
1297		ath_freetx(m0);
1298		return EIO;
1299	}
1300
1301	/*
1302	 * Calculate miscellaneous flags.
1303	 */
1304	if (ismcast) {
1305		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1306	} else if (pktlen > vap->iv_rtsthreshold &&
1307	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
1308		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1309		sc->sc_stats.ast_tx_rts++;
1310	}
1311	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
1312		sc->sc_stats.ast_tx_noack++;
1313#ifdef IEEE80211_SUPPORT_TDMA
1314	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
1315		DPRINTF(sc, ATH_DEBUG_TDMA,
1316		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
1317		sc->sc_stats.ast_tdma_ack++;
1318		ath_freetx(m0);
1319		return EIO;
1320	}
1321#endif
1322
1323	/*
1324	 * Determine if a tx interrupt should be generated for
1325	 * this descriptor.  We take a tx interrupt to reap
1326	 * descriptors when the h/w hits an EOL condition or
1327	 * when the descriptor is specifically marked to generate
1328	 * an interrupt.  We periodically mark descriptors in this
1329	 * way to insure timely replenishing of the supply needed
1330	 * for sending frames.  Defering interrupts reduces system
1331	 * load and potentially allows more concurrent work to be
1332	 * done but if done to aggressively can cause senders to
1333	 * backup.
1334	 *
1335	 * NB: use >= to deal with sc_txintrperiod changing
1336	 *     dynamically through sysctl.
1337	 */
1338	if (flags & HAL_TXDESC_INTREQ) {
1339		txq->axq_intrcnt = 0;
1340	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
1341		flags |= HAL_TXDESC_INTREQ;
1342		txq->axq_intrcnt = 0;
1343	}
1344
1345	/* This point forward is actual TX bits */
1346
1347	/*
1348	 * At this point we are committed to sending the frame
1349	 * and we don't need to look at m_nextpkt; clear it in
1350	 * case this frame is part of frag chain.
1351	 */
1352	m0->m_nextpkt = NULL;
1353
1354	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1355		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
1356		    sc->sc_hwmap[rix].ieeerate, -1);
1357
1358	if (ieee80211_radiotap_active_vap(vap)) {
1359		u_int64_t tsf = ath_hal_gettsf64(ah);
1360
1361		sc->sc_tx_th.wt_tsf = htole64(tsf);
1362		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1363		if (iswep)
1364			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1365		if (isfrag)
1366			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1367		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1368		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1369		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1370
1371		ieee80211_radiotap_tx(vap, m0);
1372	}
1373
1374	/* Blank the legacy rate array */
1375	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1376
1377	/*
1378	 * ath_buf_set_rate needs at least one rate/try to setup
1379	 * the rate scenario.
1380	 */
1381	bf->bf_state.bfs_rc[0].rix = rix;
1382	bf->bf_state.bfs_rc[0].tries = try0;
1383	bf->bf_state.bfs_rc[0].ratecode = txrate;
1384
1385	/* Store the decided rate index values away */
1386	bf->bf_state.bfs_pktlen = pktlen;
1387	bf->bf_state.bfs_hdrlen = hdrlen;
1388	bf->bf_state.bfs_atype = atype;
1389	bf->bf_state.bfs_txpower = ni->ni_txpower;
1390	bf->bf_state.bfs_txrate0 = txrate;
1391	bf->bf_state.bfs_try0 = try0;
1392	bf->bf_state.bfs_keyix = keyix;
1393	bf->bf_state.bfs_txantenna = sc->sc_txantenna;
1394	bf->bf_state.bfs_txflags = flags;
1395	bf->bf_state.bfs_shpream = shortPreamble;
1396
1397	/* XXX this should be done in ath_tx_setrate() */
1398	bf->bf_state.bfs_ctsrate0 = 0;	/* ie, no hard-coded ctsrate */
1399	bf->bf_state.bfs_ctsrate = 0;	/* calculated later */
1400	bf->bf_state.bfs_ctsduration = 0;
1401	bf->bf_state.bfs_ismrr = ismrr;
1402
1403	return 0;
1404}
1405
1406/*
1407 * Direct-dispatch the current frame to the hardware.
1408 *
1409 * This can be called by the net80211 code.
1410 *
1411 * XXX what about locking? Or, push the seqno assign into the
1412 * XXX aggregate scheduler so its serialised?
1413 */
1414int
1415ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni,
1416    struct ath_buf *bf, struct mbuf *m0)
1417{
1418	struct ieee80211vap *vap = ni->ni_vap;
1419	struct ath_vap *avp = ATH_VAP(vap);
1420	int r = 0;
1421	u_int pri;
1422	int tid;
1423	struct ath_txq *txq;
1424	int ismcast;
1425	const struct ieee80211_frame *wh;
1426	int is_ampdu, is_ampdu_tx, is_ampdu_pending;
1427	//ieee80211_seq seqno;
1428	uint8_t type, subtype;
1429
1430	/*
1431	 * Determine the target hardware queue.
1432	 *
1433	 * For multicast frames, the txq gets overridden appropriately
1434	 * depending upon the state of PS.
1435	 *
1436	 * For any other frame, we do a TID/QoS lookup inside the frame
1437	 * to see what the TID should be. If it's a non-QoS frame, the
1438	 * AC and TID are overridden. The TID/TXQ code assumes the
1439	 * TID is on a predictable hardware TXQ, so we don't support
1440	 * having a node TID queued to multiple hardware TXQs.
1441	 * This may change in the future but would require some locking
1442	 * fudgery.
1443	 */
1444	pri = ath_tx_getac(sc, m0);
1445	tid = ath_tx_gettid(sc, m0);
1446
1447	txq = sc->sc_ac2q[pri];
1448	wh = mtod(m0, struct ieee80211_frame *);
1449	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1450	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1451	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1452
1453	/*
1454	 * Enforce how deep the multicast queue can grow.
1455	 *
1456	 * XXX duplicated in ath_raw_xmit().
1457	 */
1458	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1459		ATH_TXQ_LOCK(sc->sc_cabq);
1460
1461		if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
1462			sc->sc_stats.ast_tx_mcastq_overflow++;
1463			r = ENOBUFS;
1464		}
1465
1466		ATH_TXQ_UNLOCK(sc->sc_cabq);
1467
1468		if (r != 0) {
1469			m_freem(m0);
1470			return r;
1471		}
1472	}
1473
1474	/* A-MPDU TX */
1475	is_ampdu_tx = ath_tx_ampdu_running(sc, ATH_NODE(ni), tid);
1476	is_ampdu_pending = ath_tx_ampdu_pending(sc, ATH_NODE(ni), tid);
1477	is_ampdu = is_ampdu_tx | is_ampdu_pending;
1478
1479	DPRINTF(sc, ATH_DEBUG_SW_TX,
1480	    "%s: bf=%p, tid=%d, ac=%d, is_ampdu=%d\n",
1481	    __func__, bf, tid, pri, is_ampdu);
1482
1483	/*
1484	 * When servicing one or more stations in power-save mode
1485	 * (or) if there is some mcast data waiting on the mcast
1486	 * queue (to prevent out of order delivery) multicast frames
1487	 * must be bufferd until after the beacon.
1488	 *
1489	 * TODO: we should lock the mcastq before we check the length.
1490	 */
1491	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
1492		txq = &avp->av_mcastq;
1493
1494	/* Do the generic frame setup */
1495	/* XXX should just bzero the bf_state? */
1496	bf->bf_state.bfs_dobaw = 0;
1497	bf->bf_state.bfs_seqno_assigned = 0;
1498	bf->bf_state.bfs_need_seqno = 0;
1499	bf->bf_state.bfs_seqno = -1;	/* XXX debugging */
1500
1501	/* A-MPDU TX? Manually set sequence number */
1502	/* Don't do it whilst pending; the net80211 layer still assigns them */
1503	/* XXX do we need locking here? */
1504	if (is_ampdu_tx) {
1505		ATH_TXQ_LOCK(txq);
1506		/*
1507		 * Always call; this function will
1508		 * handle making sure that null data frames
1509		 * don't get a sequence number from the current
1510		 * TID and thus mess with the BAW.
1511		 */
1512		//seqno = ath_tx_tid_seqno_assign(sc, ni, bf, m0);
1513		if (ath_tx_seqno_required(sc, ni, bf, m0)) {
1514			bf->bf_state.bfs_dobaw = 1;
1515			bf->bf_state.bfs_need_seqno = 1;
1516		}
1517		ATH_TXQ_UNLOCK(txq);
1518	} else {
1519		/* No AMPDU TX, we've been assigned a sequence number. */
1520		if (IEEE80211_QOS_HAS_SEQ(wh)) {
1521			bf->bf_state.bfs_seqno_assigned = 1;
1522			/* XXX we should store the frag+seqno in bfs_seqno */
1523			bf->bf_state.bfs_seqno =
1524			    M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1525		}
1526	}
1527
1528	/*
1529	 * If needed, the sequence number has been assigned.
1530	 * Squirrel it away somewhere easy to get to.
1531	 */
1532	//bf->bf_state.bfs_seqno = M_SEQNO_GET(m0) << IEEE80211_SEQ_SEQ_SHIFT;
1533
1534	/* Is ampdu pending? fetch the seqno and print it out */
1535	if (is_ampdu_pending)
1536		DPRINTF(sc, ATH_DEBUG_SW_TX,
1537		    "%s: tid %d: ampdu pending, seqno %d\n",
1538		    __func__, tid, M_SEQNO_GET(m0));
1539
1540	/* This also sets up the DMA map */
1541	r = ath_tx_normal_setup(sc, ni, bf, m0, txq);
1542
1543	if (r != 0)
1544		return r;
1545
1546	/* At this point m0 could have changed! */
1547	m0 = bf->bf_m;
1548
1549	DPRINTF(sc, ATH_DEBUG_SW_TX,
1550	    "%s: DONE: bf=%p, tid=%d, ac=%d, is_ampdu=%d, dobaw=%d, seqno=%d\n",
1551	    __func__, bf, tid, pri, is_ampdu, bf->bf_state.bfs_dobaw, M_SEQNO_GET(m0));
1552
1553#if 1
1554	/*
1555	 * If it's a multicast frame, do a direct-dispatch to the
1556	 * destination hardware queue. Don't bother software
1557	 * queuing it.
1558	 */
1559	/*
1560	 * If it's a BAR frame, do a direct dispatch to the
1561	 * destination hardware queue. Don't bother software
1562	 * queuing it, as the TID will now be paused.
1563	 * Sending a BAR frame can occur from the net80211 txa timer
1564	 * (ie, retries) or from the ath txtask (completion call.)
1565	 * It queues directly to hardware because the TID is paused
1566	 * at this point (and won't be unpaused until the BAR has
1567	 * either been TXed successfully or max retries has been
1568	 * reached.)
1569	 */
1570	if (txq == &avp->av_mcastq) {
1571		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1572		    "%s: bf=%p: mcastq: TX'ing\n", __func__, bf);
1573		ATH_TXQ_LOCK(txq);
1574		ath_tx_xmit_normal(sc, txq, bf);
1575		ATH_TXQ_UNLOCK(txq);
1576	} else if (type == IEEE80211_FC0_TYPE_CTL &&
1577		    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
1578		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1579		    "%s: BAR: TX'ing direct\n", __func__);
1580		ATH_TXQ_LOCK(txq);
1581		ath_tx_xmit_normal(sc, txq, bf);
1582		ATH_TXQ_UNLOCK(txq);
1583	} else {
1584		/* add to software queue */
1585		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
1586		    "%s: bf=%p: swq: TX'ing\n", __func__, bf);
1587		ath_tx_swq(sc, ni, txq, bf);
1588	}
1589#else
1590	/*
1591	 * For now, since there's no software queue,
1592	 * direct-dispatch to the hardware.
1593	 */
1594	ATH_TXQ_LOCK(txq);
1595	ath_tx_xmit_normal(sc, txq, bf);
1596	ATH_TXQ_UNLOCK(txq);
1597#endif
1598
1599	return 0;
1600}
1601
1602static int
1603ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
1604	struct ath_buf *bf, struct mbuf *m0,
1605	const struct ieee80211_bpf_params *params)
1606{
1607	struct ifnet *ifp = sc->sc_ifp;
1608	struct ieee80211com *ic = ifp->if_l2com;
1609	struct ath_hal *ah = sc->sc_ah;
1610	struct ieee80211vap *vap = ni->ni_vap;
1611	int error, ismcast, ismrr;
1612	int keyix, hdrlen, pktlen, try0, txantenna;
1613	u_int8_t rix, txrate;
1614	struct ieee80211_frame *wh;
1615	u_int flags;
1616	HAL_PKT_TYPE atype;
1617	const HAL_RATE_TABLE *rt;
1618	struct ath_desc *ds;
1619	u_int pri;
1620	int o_tid = -1;
1621	int do_override;
1622
1623	wh = mtod(m0, struct ieee80211_frame *);
1624	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1625	hdrlen = ieee80211_anyhdrsize(wh);
1626	/*
1627	 * Packet length must not include any
1628	 * pad bytes; deduct them here.
1629	 */
1630	/* XXX honor IEEE80211_BPF_DATAPAD */
1631	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
1632
1633
1634	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: ismcast=%d\n",
1635	    __func__, ismcast);
1636
1637	/* Handle encryption twiddling if needed */
1638	if (! ath_tx_tag_crypto(sc, ni,
1639	    m0, params->ibp_flags & IEEE80211_BPF_CRYPTO, 0,
1640	    &hdrlen, &pktlen, &keyix)) {
1641		ath_freetx(m0);
1642		return EIO;
1643	}
1644	/* packet header may have moved, reset our local pointer */
1645	wh = mtod(m0, struct ieee80211_frame *);
1646
1647	/* Do the generic frame setup */
1648	/* XXX should just bzero the bf_state? */
1649	bf->bf_state.bfs_dobaw = 0;
1650
1651	error = ath_tx_dmasetup(sc, bf, m0);
1652	if (error != 0)
1653		return error;
1654	m0 = bf->bf_m;				/* NB: may have changed */
1655	wh = mtod(m0, struct ieee80211_frame *);
1656	bf->bf_node = ni;			/* NB: held reference */
1657
1658	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
1659	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
1660	if (params->ibp_flags & IEEE80211_BPF_RTS)
1661		flags |= HAL_TXDESC_RTSENA;
1662	else if (params->ibp_flags & IEEE80211_BPF_CTS) {
1663		/* XXX assume 11g/11n protection? */
1664		bf->bf_state.bfs_doprot = 1;
1665		flags |= HAL_TXDESC_CTSENA;
1666	}
1667	/* XXX leave ismcast to injector? */
1668	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
1669		flags |= HAL_TXDESC_NOACK;
1670
1671	rt = sc->sc_currates;
1672	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1673	rix = ath_tx_findrix(sc, params->ibp_rate0);
1674	txrate = rt->info[rix].rateCode;
1675	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
1676		txrate |= rt->info[rix].shortPreamble;
1677	sc->sc_txrix = rix;
1678	try0 = params->ibp_try0;
1679	ismrr = (params->ibp_try1 != 0);
1680	txantenna = params->ibp_pri >> 2;
1681	if (txantenna == 0)			/* XXX? */
1682		txantenna = sc->sc_txantenna;
1683
1684	/*
1685	 * Since ctsrate is fixed, store it away for later
1686	 * use when the descriptor fields are being set.
1687	 */
1688	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA))
1689		bf->bf_state.bfs_ctsrate0 = params->ibp_ctsrate;
1690
1691	pri = params->ibp_pri & 3;
1692	/* Override pri if the frame isn't a QoS one */
1693	if (! IEEE80211_QOS_HAS_SEQ(wh))
1694		pri = ath_tx_getac(sc, m0);
1695
1696	/*
1697	 * NB: we mark all packets as type PSPOLL so the h/w won't
1698	 * set the sequence number, duration, etc.
1699	 */
1700	atype = HAL_PKT_TYPE_PSPOLL;
1701
1702	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
1703		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
1704		    sc->sc_hwmap[rix].ieeerate, -1);
1705
1706	if (ieee80211_radiotap_active_vap(vap)) {
1707		u_int64_t tsf = ath_hal_gettsf64(ah);
1708
1709		sc->sc_tx_th.wt_tsf = htole64(tsf);
1710		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
1711		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1712			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1713		if (m0->m_flags & M_FRAG)
1714			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
1715		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
1716		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
1717		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
1718
1719		ieee80211_radiotap_tx(vap, m0);
1720	}
1721
1722	/*
1723	 * Formulate first tx descriptor with tx controls.
1724	 */
1725	ds = bf->bf_desc;
1726	/* XXX check return value? */
1727
1728	/* Store the decided rate index values away */
1729	bf->bf_state.bfs_pktlen = pktlen;
1730	bf->bf_state.bfs_hdrlen = hdrlen;
1731	bf->bf_state.bfs_atype = atype;
1732	bf->bf_state.bfs_txpower = params->ibp_power;
1733	bf->bf_state.bfs_txrate0 = txrate;
1734	bf->bf_state.bfs_try0 = try0;
1735	bf->bf_state.bfs_keyix = keyix;
1736	bf->bf_state.bfs_txantenna = txantenna;
1737	bf->bf_state.bfs_txflags = flags;
1738	bf->bf_state.bfs_shpream =
1739	    !! (params->ibp_flags & IEEE80211_BPF_SHORTPRE);
1740
1741	/* XXX this should be done in ath_tx_setrate() */
1742	bf->bf_state.bfs_ctsrate = 0;
1743	bf->bf_state.bfs_ctsduration = 0;
1744	bf->bf_state.bfs_ismrr = ismrr;
1745
1746	/* Blank the legacy rate array */
1747	bzero(&bf->bf_state.bfs_rc, sizeof(bf->bf_state.bfs_rc));
1748
1749	bf->bf_state.bfs_rc[0].rix =
1750	    ath_tx_findrix(sc, params->ibp_rate0);
1751	bf->bf_state.bfs_rc[0].tries = try0;
1752	bf->bf_state.bfs_rc[0].ratecode = txrate;
1753
1754	if (ismrr) {
1755		int rix;
1756
1757		rix = ath_tx_findrix(sc, params->ibp_rate1);
1758		bf->bf_state.bfs_rc[1].rix = rix;
1759		bf->bf_state.bfs_rc[1].tries = params->ibp_try1;
1760
1761		rix = ath_tx_findrix(sc, params->ibp_rate2);
1762		bf->bf_state.bfs_rc[2].rix = rix;
1763		bf->bf_state.bfs_rc[2].tries = params->ibp_try2;
1764
1765		rix = ath_tx_findrix(sc, params->ibp_rate3);
1766		bf->bf_state.bfs_rc[3].rix = rix;
1767		bf->bf_state.bfs_rc[3].tries = params->ibp_try3;
1768	}
1769	/*
1770	 * All the required rate control decisions have been made;
1771	 * fill in the rc flags.
1772	 */
1773	ath_tx_rate_fill_rcflags(sc, bf);
1774
1775	/* NB: no buffered multicast in power save support */
1776
1777	/* XXX If it's an ADDBA, override the correct queue */
1778	do_override = ath_tx_action_frame_override_queue(sc, ni, m0, &o_tid);
1779
1780	/* Map ADDBA to the correct priority */
1781	if (do_override) {
1782#if 0
1783		device_printf(sc->sc_dev,
1784		    "%s: overriding tid %d pri %d -> %d\n",
1785		    __func__, o_tid, pri, TID_TO_WME_AC(o_tid));
1786#endif
1787		pri = TID_TO_WME_AC(o_tid);
1788	}
1789
1790	/*
1791	 * If we're overiding the ADDBA destination, dump directly
1792	 * into the hardware queue, right after any pending
1793	 * frames to that node are.
1794	 */
1795	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: dooverride=%d\n",
1796	    __func__, do_override);
1797
1798	if (do_override) {
1799		ATH_TXQ_LOCK(sc->sc_ac2q[pri]);
1800		ath_tx_xmit_normal(sc, sc->sc_ac2q[pri], bf);
1801		ATH_TXQ_UNLOCK(sc->sc_ac2q[pri]);
1802	} else {
1803		/* Queue to software queue */
1804		ath_tx_swq(sc, ni, sc->sc_ac2q[pri], bf);
1805	}
1806
1807	return 0;
1808}
1809
1810/*
1811 * Send a raw frame.
1812 *
1813 * This can be called by net80211.
1814 */
1815int
1816ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1817	const struct ieee80211_bpf_params *params)
1818{
1819	struct ieee80211com *ic = ni->ni_ic;
1820	struct ifnet *ifp = ic->ic_ifp;
1821	struct ath_softc *sc = ifp->if_softc;
1822	struct ath_buf *bf;
1823	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1824	int error = 0;
1825
1826	ATH_PCU_LOCK(sc);
1827	if (sc->sc_inreset_cnt > 0) {
1828		device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; bailing\n",
1829		    __func__);
1830		error = EIO;
1831		ATH_PCU_UNLOCK(sc);
1832		goto bad0;
1833	}
1834	sc->sc_txstart_cnt++;
1835	ATH_PCU_UNLOCK(sc);
1836
1837	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
1838		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
1839		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
1840			"!running" : "invalid");
1841		m_freem(m);
1842		error = ENETDOWN;
1843		goto bad;
1844	}
1845
1846	/*
1847	 * Enforce how deep the multicast queue can grow.
1848	 *
1849	 * XXX duplicated in ath_tx_start().
1850	 */
1851	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1852		ATH_TXQ_LOCK(sc->sc_cabq);
1853
1854		if (sc->sc_cabq->axq_depth > sc->sc_txq_mcastq_maxdepth) {
1855			sc->sc_stats.ast_tx_mcastq_overflow++;
1856			error = ENOBUFS;
1857		}
1858
1859		ATH_TXQ_UNLOCK(sc->sc_cabq);
1860
1861		if (error != 0) {
1862			m_freem(m);
1863			goto bad;
1864		}
1865	}
1866
1867	/*
1868	 * Grab a TX buffer and associated resources.
1869	 */
1870	bf = ath_getbuf(sc);
1871	if (bf == NULL) {
1872		sc->sc_stats.ast_tx_nobuf++;
1873		m_freem(m);
1874		error = ENOBUFS;
1875		goto bad;
1876	}
1877
1878	if (params == NULL) {
1879		/*
1880		 * Legacy path; interpret frame contents to decide
1881		 * precisely how to send the frame.
1882		 */
1883		if (ath_tx_start(sc, ni, bf, m)) {
1884			error = EIO;		/* XXX */
1885			goto bad2;
1886		}
1887	} else {
1888		/*
1889		 * Caller supplied explicit parameters to use in
1890		 * sending the frame.
1891		 */
1892		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
1893			error = EIO;		/* XXX */
1894			goto bad2;
1895		}
1896	}
1897	sc->sc_wd_timer = 5;
1898	ifp->if_opackets++;
1899	sc->sc_stats.ast_tx_raw++;
1900
1901	ATH_PCU_LOCK(sc);
1902	sc->sc_txstart_cnt--;
1903	ATH_PCU_UNLOCK(sc);
1904
1905	return 0;
1906bad2:
1907	ATH_TXBUF_LOCK(sc);
1908	TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1909	ATH_TXBUF_UNLOCK(sc);
1910bad:
1911	ATH_PCU_LOCK(sc);
1912	sc->sc_txstart_cnt--;
1913	ATH_PCU_UNLOCK(sc);
1914bad0:
1915	ifp->if_oerrors++;
1916	sc->sc_stats.ast_tx_raw_fail++;
1917	ieee80211_free_node(ni);
1918
1919	return error;
1920}
1921
1922/* Some helper functions */
1923
1924/*
1925 * ADDBA (and potentially others) need to be placed in the same
1926 * hardware queue as the TID/node it's relating to. This is so
1927 * it goes out after any pending non-aggregate frames to the
1928 * same node/TID.
1929 *
1930 * If this isn't done, the ADDBA can go out before the frames
1931 * queued in hardware. Even though these frames have a sequence
1932 * number -earlier- than the ADDBA can be transmitted (but
1933 * no frames whose sequence numbers are after the ADDBA should
1934 * be!) they'll arrive after the ADDBA - and the receiving end
1935 * will simply drop them as being out of the BAW.
1936 *
1937 * The frames can't be appended to the TID software queue - it'll
1938 * never be sent out. So these frames have to be directly
1939 * dispatched to the hardware, rather than queued in software.
1940 * So if this function returns true, the TXQ has to be
1941 * overridden and it has to be directly dispatched.
1942 *
1943 * It's a dirty hack, but someone's gotta do it.
1944 */
1945
1946/*
1947 * XXX doesn't belong here!
1948 */
1949static int
1950ieee80211_is_action(struct ieee80211_frame *wh)
1951{
1952	/* Type: Management frame? */
1953	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1954	    IEEE80211_FC0_TYPE_MGT)
1955		return 0;
1956
1957	/* Subtype: Action frame? */
1958	if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) !=
1959	    IEEE80211_FC0_SUBTYPE_ACTION)
1960		return 0;
1961
1962	return 1;
1963}
1964
1965#define	MS(_v, _f)	(((_v) & _f) >> _f##_S)
1966/*
1967 * Return an alternate TID for ADDBA request frames.
1968 *
1969 * Yes, this likely should be done in the net80211 layer.
1970 */
1971static int
1972ath_tx_action_frame_override_queue(struct ath_softc *sc,
1973    struct ieee80211_node *ni,
1974    struct mbuf *m0, int *tid)
1975{
1976	struct ieee80211_frame *wh = mtod(m0, struct ieee80211_frame *);
1977	struct ieee80211_action_ba_addbarequest *ia;
1978	uint8_t *frm;
1979	uint16_t baparamset;
1980
1981	/* Not action frame? Bail */
1982	if (! ieee80211_is_action(wh))
1983		return 0;
1984
1985	/* XXX Not needed for frames we send? */
1986#if 0
1987	/* Correct length? */
1988	if (! ieee80211_parse_action(ni, m))
1989		return 0;
1990#endif
1991
1992	/* Extract out action frame */
1993	frm = (u_int8_t *)&wh[1];
1994	ia = (struct ieee80211_action_ba_addbarequest *) frm;
1995
1996	/* Not ADDBA? Bail */
1997	if (ia->rq_header.ia_category != IEEE80211_ACTION_CAT_BA)
1998		return 0;
1999	if (ia->rq_header.ia_action != IEEE80211_ACTION_BA_ADDBA_REQUEST)
2000		return 0;
2001
2002	/* Extract TID, return it */
2003	baparamset = le16toh(ia->rq_baparamset);
2004	*tid = (int) MS(baparamset, IEEE80211_BAPS_TID);
2005
2006	return 1;
2007}
2008#undef	MS
2009
2010/* Per-node software queue operations */
2011
2012/*
2013 * Add the current packet to the given BAW.
2014 * It is assumed that the current packet
2015 *
2016 * + fits inside the BAW;
2017 * + already has had a sequence number allocated.
2018 *
2019 * Since the BAW status may be modified by both the ath task and
2020 * the net80211/ifnet contexts, the TID must be locked.
2021 */
2022void
2023ath_tx_addto_baw(struct ath_softc *sc, struct ath_node *an,
2024    struct ath_tid *tid, struct ath_buf *bf)
2025{
2026	int index, cindex;
2027	struct ieee80211_tx_ampdu *tap;
2028
2029	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2030
2031	if (bf->bf_state.bfs_isretried)
2032		return;
2033
2034	/*
2035	 * If this occurs we're in a lot of trouble.  We should try to
2036	 * recover from this without the session hanging?
2037	 */
2038	if (! bf->bf_state.bfs_seqno_assigned) {
2039		device_printf(sc->sc_dev,
2040		    "%s: bf=%p, seqno_assigned is 0?!\n", __func__, bf);
2041		return;
2042	}
2043
2044	tap = ath_tx_get_tx_tid(an, tid->tid);
2045
2046	if (bf->bf_state.bfs_addedbaw)
2047		device_printf(sc->sc_dev,
2048		    "%s: re-added? bf=%p, tid=%d, seqno %d; window %d:%d; "
2049		    "baw head=%d tail=%d\n",
2050		    __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2051		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2052		    tid->baw_tail);
2053
2054	/*
2055	 * Verify that the given sequence number is not outside of the
2056	 * BAW.  Complain loudly if that's the case.
2057	 */
2058	if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2059	    SEQNO(bf->bf_state.bfs_seqno))) {
2060		device_printf(sc->sc_dev,
2061		    "%s: bf=%p: outside of BAW?? tid=%d, seqno %d; window %d:%d; "
2062		    "baw head=%d tail=%d\n",
2063		    __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2064		    tap->txa_start, tap->txa_wnd, tid->baw_head,
2065		    tid->baw_tail);
2066
2067	}
2068
2069	/*
2070	 * ni->ni_txseqs[] is the currently allocated seqno.
2071	 * the txa state contains the current baw start.
2072	 */
2073	index  = ATH_BA_INDEX(tap->txa_start, SEQNO(bf->bf_state.bfs_seqno));
2074	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2075	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2076	    "%s: bf=%p, tid=%d, seqno %d; window %d:%d; index=%d cindex=%d "
2077	    "baw head=%d tail=%d\n",
2078	    __func__, bf, tid->tid, SEQNO(bf->bf_state.bfs_seqno),
2079	    tap->txa_start, tap->txa_wnd, index, cindex, tid->baw_head,
2080	    tid->baw_tail);
2081
2082
2083#if 0
2084	assert(tid->tx_buf[cindex] == NULL);
2085#endif
2086	if (tid->tx_buf[cindex] != NULL) {
2087		device_printf(sc->sc_dev,
2088		    "%s: ba packet dup (index=%d, cindex=%d, "
2089		    "head=%d, tail=%d)\n",
2090		    __func__, index, cindex, tid->baw_head, tid->baw_tail);
2091		device_printf(sc->sc_dev,
2092		    "%s: BA bf: %p; seqno=%d ; new bf: %p; seqno=%d\n",
2093		    __func__,
2094		    tid->tx_buf[cindex],
2095		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno),
2096		    bf,
2097		    SEQNO(bf->bf_state.bfs_seqno)
2098		);
2099	}
2100	tid->tx_buf[cindex] = bf;
2101
2102	if (index >= ((tid->baw_tail - tid->baw_head) &
2103	    (ATH_TID_MAX_BUFS - 1))) {
2104		tid->baw_tail = cindex;
2105		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
2106	}
2107}
2108
2109/*
2110 * Flip the BAW buffer entry over from the existing one to the new one.
2111 *
2112 * When software retransmitting a (sub-)frame, it is entirely possible that
2113 * the frame ath_buf is marked as BUSY and can't be immediately reused.
2114 * In that instance the buffer is cloned and the new buffer is used for
2115 * retransmit. We thus need to update the ath_buf slot in the BAW buf
2116 * tracking array to maintain consistency.
2117 */
2118static void
2119ath_tx_switch_baw_buf(struct ath_softc *sc, struct ath_node *an,
2120    struct ath_tid *tid, struct ath_buf *old_bf, struct ath_buf *new_bf)
2121{
2122	int index, cindex;
2123	struct ieee80211_tx_ampdu *tap;
2124	int seqno = SEQNO(old_bf->bf_state.bfs_seqno);
2125
2126	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2127
2128	tap = ath_tx_get_tx_tid(an, tid->tid);
2129	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2130	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2131
2132	/*
2133	 * Just warn for now; if it happens then we should find out
2134	 * about it. It's highly likely the aggregation session will
2135	 * soon hang.
2136	 */
2137	if (old_bf->bf_state.bfs_seqno != new_bf->bf_state.bfs_seqno) {
2138		device_printf(sc->sc_dev, "%s: retransmitted buffer"
2139		    " has mismatching seqno's, BA session may hang.\n",
2140		    __func__);
2141		device_printf(sc->sc_dev, "%s: old seqno=%d, new_seqno=%d\n",
2142		    __func__,
2143		    old_bf->bf_state.bfs_seqno,
2144		    new_bf->bf_state.bfs_seqno);
2145	}
2146
2147	if (tid->tx_buf[cindex] != old_bf) {
2148		device_printf(sc->sc_dev, "%s: ath_buf pointer incorrect; "
2149		    " has m BA session may hang.\n",
2150		    __func__);
2151		device_printf(sc->sc_dev, "%s: old bf=%p, new bf=%p\n",
2152		    __func__,
2153		    old_bf, new_bf);
2154	}
2155
2156	tid->tx_buf[cindex] = new_bf;
2157}
2158
2159/*
2160 * seq_start - left edge of BAW
2161 * seq_next - current/next sequence number to allocate
2162 *
2163 * Since the BAW status may be modified by both the ath task and
2164 * the net80211/ifnet contexts, the TID must be locked.
2165 */
2166static void
2167ath_tx_update_baw(struct ath_softc *sc, struct ath_node *an,
2168    struct ath_tid *tid, const struct ath_buf *bf)
2169{
2170	int index, cindex;
2171	struct ieee80211_tx_ampdu *tap;
2172	int seqno = SEQNO(bf->bf_state.bfs_seqno);
2173
2174	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2175
2176	tap = ath_tx_get_tx_tid(an, tid->tid);
2177	index  = ATH_BA_INDEX(tap->txa_start, seqno);
2178	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
2179
2180	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2181	    "%s: bf=%p: tid=%d, baw=%d:%d, seqno=%d, index=%d, cindex=%d, "
2182	    "baw head=%d, tail=%d\n",
2183	    __func__, bf, tid->tid, tap->txa_start, tap->txa_wnd, seqno, index,
2184	    cindex, tid->baw_head, tid->baw_tail);
2185
2186	/*
2187	 * If this occurs then we have a big problem - something else
2188	 * has slid tap->txa_start along without updating the BAW
2189	 * tracking start/end pointers. Thus the TX BAW state is now
2190	 * completely busted.
2191	 *
2192	 * But for now, since I haven't yet fixed TDMA and buffer cloning,
2193	 * it's quite possible that a cloned buffer is making its way
2194	 * here and causing it to fire off. Disable TDMA for now.
2195	 */
2196	if (tid->tx_buf[cindex] != bf) {
2197		device_printf(sc->sc_dev,
2198		    "%s: comp bf=%p, seq=%d; slot bf=%p, seqno=%d\n",
2199		    __func__,
2200		    bf, SEQNO(bf->bf_state.bfs_seqno),
2201		    tid->tx_buf[cindex],
2202		    SEQNO(tid->tx_buf[cindex]->bf_state.bfs_seqno));
2203	}
2204
2205	tid->tx_buf[cindex] = NULL;
2206
2207	while (tid->baw_head != tid->baw_tail &&
2208	    !tid->tx_buf[tid->baw_head]) {
2209		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
2210		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
2211	}
2212	DPRINTF(sc, ATH_DEBUG_SW_TX_BAW,
2213	    "%s: baw is now %d:%d, baw head=%d\n",
2214	    __func__, tap->txa_start, tap->txa_wnd, tid->baw_head);
2215}
2216
2217/*
2218 * Mark the current node/TID as ready to TX.
2219 *
2220 * This is done to make it easy for the software scheduler to
2221 * find which nodes have data to send.
2222 *
2223 * The TXQ lock must be held.
2224 */
2225static void
2226ath_tx_tid_sched(struct ath_softc *sc, struct ath_tid *tid)
2227{
2228	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2229
2230	ATH_TXQ_LOCK_ASSERT(txq);
2231
2232	if (tid->paused)
2233		return;		/* paused, can't schedule yet */
2234
2235	if (tid->sched)
2236		return;		/* already scheduled */
2237
2238	tid->sched = 1;
2239
2240	TAILQ_INSERT_TAIL(&txq->axq_tidq, tid, axq_qelem);
2241}
2242
2243/*
2244 * Mark the current node as no longer needing to be polled for
2245 * TX packets.
2246 *
2247 * The TXQ lock must be held.
2248 */
2249static void
2250ath_tx_tid_unsched(struct ath_softc *sc, struct ath_tid *tid)
2251{
2252	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2253
2254	ATH_TXQ_LOCK_ASSERT(txq);
2255
2256	if (tid->sched == 0)
2257		return;
2258
2259	tid->sched = 0;
2260	TAILQ_REMOVE(&txq->axq_tidq, tid, axq_qelem);
2261}
2262
2263/*
2264 * Return whether a sequence number is actually required.
2265 *
2266 * A sequence number must only be allocated at the time that a frame
2267 * is considered for addition to the BAW/aggregate and being TXed.
2268 * The sequence number must not be allocated before the frame
2269 * is added to the BAW (protected by the same lock instance)
2270 * otherwise a the multi-entrant TX path may result in a later seqno
2271 * being added to the BAW first.  The subsequent addition of the
2272 * earlier seqno would then not go into the BAW as it's now outside
2273 * of said BAW.
2274 *
2275 * This routine is used by ath_tx_start() to mark whether the frame
2276 * should get a sequence number before adding it to the BAW.
2277 *
2278 * Then the actual aggregate TX routines will check whether this
2279 * flag is set and if the frame needs to go into the BAW, it'll
2280 * have a sequence number allocated for it.
2281 */
2282static int
2283ath_tx_seqno_required(struct ath_softc *sc, struct ieee80211_node *ni,
2284    struct ath_buf *bf, struct mbuf *m0)
2285{
2286	const struct ieee80211_frame *wh;
2287	uint8_t subtype;
2288
2289	wh = mtod(m0, const struct ieee80211_frame *);
2290	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2291
2292	/* XXX assert txq lock */
2293	/* XXX assert ampdu is set */
2294
2295	return ((IEEE80211_QOS_HAS_SEQ(wh) &&
2296	    subtype != IEEE80211_FC0_SUBTYPE_QOS_NULL));
2297}
2298
2299/*
2300 * Assign a sequence number manually to the given frame.
2301 *
2302 * This should only be called for A-MPDU TX frames.
2303 *
2304 * If this is called after the initial frame setup, make sure you've flushed
2305 * the DMA map or you'll risk sending stale data to the NIC.  This routine
2306 * updates the actual frame contents with the relevant seqno.
2307 */
2308int
2309ath_tx_tid_seqno_assign(struct ath_softc *sc, struct ieee80211_node *ni,
2310    struct ath_buf *bf, struct mbuf *m0)
2311{
2312	struct ieee80211_frame *wh;
2313	int tid, pri;
2314	ieee80211_seq seqno;
2315	uint8_t subtype;
2316
2317	/* TID lookup */
2318	wh = mtod(m0, struct ieee80211_frame *);
2319	pri = M_WME_GETAC(m0);			/* honor classification */
2320	tid = WME_AC_TO_TID(pri);
2321	DPRINTF(sc, ATH_DEBUG_SW_TX,
2322	    "%s: bf=%p, pri=%d, tid=%d, qos has seq=%d\n",
2323	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh));
2324
2325	if (! bf->bf_state.bfs_need_seqno) {
2326		device_printf(sc->sc_dev, "%s: bf=%p: need_seqno not set?!\n",
2327		    __func__, bf);
2328		return -1;
2329	}
2330	/* XXX check for bfs_need_seqno? */
2331	if (bf->bf_state.bfs_seqno_assigned) {
2332		device_printf(sc->sc_dev,
2333		    "%s: bf=%p: seqno already assigned (%d)?!\n",
2334		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno));
2335		return bf->bf_state.bfs_seqno >> IEEE80211_SEQ_SEQ_SHIFT;
2336	}
2337
2338	/* XXX Is it a control frame? Ignore */
2339
2340	/* Does the packet require a sequence number? */
2341	if (! IEEE80211_QOS_HAS_SEQ(wh))
2342		return -1;
2343
2344	/*
2345	 * Is it a QOS NULL Data frame? Give it a sequence number from
2346	 * the default TID (IEEE80211_NONQOS_TID.)
2347	 *
2348	 * The RX path of everything I've looked at doesn't include the NULL
2349	 * data frame sequence number in the aggregation state updates, so
2350	 * assigning it a sequence number there will cause a BAW hole on the
2351	 * RX side.
2352	 */
2353	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2354	if (subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) {
2355		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID];
2356		INCR(ni->ni_txseqs[IEEE80211_NONQOS_TID], IEEE80211_SEQ_RANGE);
2357	} else {
2358		/* Manually assign sequence number */
2359		seqno = ni->ni_txseqs[tid];
2360		INCR(ni->ni_txseqs[tid], IEEE80211_SEQ_RANGE);
2361	}
2362	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2363	M_SEQNO_SET(m0, seqno);
2364	bf->bf_state.bfs_seqno = seqno << IEEE80211_SEQ_SEQ_SHIFT;
2365	bf->bf_state.bfs_seqno_assigned = 1;
2366
2367	/* Return so caller can do something with it if needed */
2368	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p:  -> seqno=%d\n",
2369	    __func__,
2370	    bf,
2371	    seqno);
2372	return seqno;
2373}
2374
2375/*
2376 * Attempt to direct dispatch an aggregate frame to hardware.
2377 * If the frame is out of BAW, queue.
2378 * Otherwise, schedule it as a single frame.
2379 */
2380static void
2381ath_tx_xmit_aggr(struct ath_softc *sc, struct ath_node *an, struct ath_buf *bf)
2382{
2383	struct ieee80211_node *ni = &an->an_node;
2384	struct ath_tid *tid = &an->an_tid[bf->bf_state.bfs_tid];
2385	struct ath_txq *txq = bf->bf_state.bfs_txq;
2386	struct ieee80211_tx_ampdu *tap;
2387
2388	ATH_TXQ_LOCK_ASSERT(txq);
2389
2390	tap = ath_tx_get_tx_tid(an, tid->tid);
2391
2392	/* paused? queue */
2393	if (tid->paused) {
2394		ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2395		/* XXX don't sched - we're paused! */
2396		return;
2397	}
2398
2399	/*
2400	 * TODO: If it's _before_ the BAW left edge, complain very loudly.
2401	 * This means something (else) has slid the left edge along
2402	 * before we got a chance to be TXed.
2403	 */
2404
2405	/*
2406	 * Is there space in this BAW for another frame?
2407	 * If not, don't bother trying to schedule it; just
2408	 * throw it back on the queue.
2409	 *
2410	 * If we allocate the sequence number before we add
2411	 * it to the BAW, we risk racing with another TX
2412	 * thread that gets in a frame into the BAW with
2413	 * seqno greater than ours.  We'd then fail the
2414	 * below check and throw the frame on the tail of
2415	 * the queue.  The sender would then have a hole.
2416	 *
2417	 * XXX again, we're protecting ni->ni_txseqs[tid]
2418	 * behind this hardware TXQ lock, like the rest of
2419	 * the TIDs that map to it.  Ugh.
2420	 */
2421	if (bf->bf_state.bfs_dobaw) {
2422		ieee80211_seq seqno;
2423
2424		/*
2425		 * If the sequence number is allocated, use it.
2426		 * Otherwise, use the sequence number we WOULD
2427		 * allocate.
2428		 */
2429		if (bf->bf_state.bfs_seqno_assigned)
2430			seqno = SEQNO(bf->bf_state.bfs_seqno);
2431		else
2432			seqno = ni->ni_txseqs[bf->bf_state.bfs_tid];
2433
2434		/*
2435		 * Check whether either the currently allocated
2436		 * sequence number _OR_ the to-be allocated
2437		 * sequence number is inside the BAW.
2438		 */
2439		if (! BAW_WITHIN(tap->txa_start, tap->txa_wnd, seqno)) {
2440			ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2441			ath_tx_tid_sched(sc, tid);
2442			return;
2443		}
2444		if (! bf->bf_state.bfs_seqno_assigned) {
2445			int seqno;
2446
2447			seqno = ath_tx_tid_seqno_assign(sc, ni, bf, bf->bf_m);
2448			if (seqno < 0) {
2449				device_printf(sc->sc_dev,
2450				    "%s: bf=%p, huh, seqno=-1?\n",
2451				    __func__,
2452				    bf);
2453				/* XXX what can we even do here? */
2454			}
2455			/* Flush seqno update to RAM */
2456			/*
2457			 * XXX This is required because the dmasetup
2458			 * XXX is done early rather than at dispatch
2459			 * XXX time. Ew, we should fix this!
2460			 */
2461			bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2462			    BUS_DMASYNC_PREWRITE);
2463		}
2464	}
2465
2466	/* outside baw? queue */
2467	if (bf->bf_state.bfs_dobaw &&
2468	    (! BAW_WITHIN(tap->txa_start, tap->txa_wnd,
2469	    SEQNO(bf->bf_state.bfs_seqno)))) {
2470		device_printf(sc->sc_dev,
2471		    "%s: bf=%p, shouldn't be outside BAW now?!\n",
2472		    __func__,
2473		    bf);
2474		ATH_TXQ_INSERT_TAIL(tid, bf, bf_list);
2475		ath_tx_tid_sched(sc, tid);
2476		return;
2477	}
2478
2479	/* Direct dispatch to hardware */
2480	ath_tx_do_ratelookup(sc, bf);
2481	ath_tx_calc_duration(sc, bf);
2482	ath_tx_calc_protection(sc, bf);
2483	ath_tx_set_rtscts(sc, bf);
2484	ath_tx_rate_fill_rcflags(sc, bf);
2485	ath_tx_setds(sc, bf);
2486	ath_tx_set_ratectrl(sc, bf->bf_node, bf);
2487	ath_tx_chaindesclist(sc, bf);
2488
2489	/* Statistics */
2490	sc->sc_aggr_stats.aggr_low_hwq_single_pkt++;
2491
2492	/* Track per-TID hardware queue depth correctly */
2493	tid->hwq_depth++;
2494
2495	/* Add to BAW */
2496	if (bf->bf_state.bfs_dobaw) {
2497		ath_tx_addto_baw(sc, an, tid, bf);
2498		bf->bf_state.bfs_addedbaw = 1;
2499	}
2500
2501	/* Set completion handler, multi-frame aggregate or not */
2502	bf->bf_comp = ath_tx_aggr_comp;
2503
2504	/* Hand off to hardware */
2505	ath_tx_handoff(sc, txq, bf);
2506}
2507
2508/*
2509 * Attempt to send the packet.
2510 * If the queue isn't busy, direct-dispatch.
2511 * If the queue is busy enough, queue the given packet on the
2512 *  relevant software queue.
2513 */
2514void
2515ath_tx_swq(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_txq *txq,
2516    struct ath_buf *bf)
2517{
2518	struct ath_node *an = ATH_NODE(ni);
2519	struct ieee80211_frame *wh;
2520	struct ath_tid *atid;
2521	int pri, tid;
2522	struct mbuf *m0 = bf->bf_m;
2523
2524	/* Fetch the TID - non-QoS frames get assigned to TID 16 */
2525	wh = mtod(m0, struct ieee80211_frame *);
2526	pri = ath_tx_getac(sc, m0);
2527	tid = ath_tx_gettid(sc, m0);
2528	atid = &an->an_tid[tid];
2529
2530	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p, pri=%d, tid=%d, qos=%d, seqno=%d\n",
2531	    __func__, bf, pri, tid, IEEE80211_QOS_HAS_SEQ(wh), SEQNO(bf->bf_state.bfs_seqno));
2532
2533	/* Set local packet state, used to queue packets to hardware */
2534	bf->bf_state.bfs_tid = tid;
2535	bf->bf_state.bfs_txq = txq;
2536	bf->bf_state.bfs_pri = pri;
2537
2538	/*
2539	 * If the hardware queue isn't busy, queue it directly.
2540	 * If the hardware queue is busy, queue it.
2541	 * If the TID is paused or the traffic it outside BAW, software
2542	 * queue it.
2543	 */
2544	ATH_TXQ_LOCK(txq);
2545	if (atid->paused) {
2546		/* TID is paused, queue */
2547		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: paused\n", __func__, bf);
2548		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2549	} else if (ath_tx_ampdu_pending(sc, an, tid)) {
2550		/* AMPDU pending; queue */
2551		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: pending\n", __func__, bf);
2552		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2553		/* XXX sched? */
2554	} else if (ath_tx_ampdu_running(sc, an, tid)) {
2555		/* AMPDU running, attempt direct dispatch if possible */
2556		if (txq->axq_depth < sc->sc_hwq_limit) {
2557			DPRINTF(sc, ATH_DEBUG_SW_TX,
2558			    "%s: bf=%p: xmit_aggr\n",
2559			    __func__, bf);
2560			ath_tx_xmit_aggr(sc, an, bf);
2561		} else {
2562			DPRINTF(sc, ATH_DEBUG_SW_TX,
2563			    "%s: bf=%p: ampdu; swq'ing\n",
2564			    __func__, bf);
2565			ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2566			ath_tx_tid_sched(sc, atid);
2567		}
2568	} else if (txq->axq_depth < sc->sc_hwq_limit) {
2569		/* AMPDU not running, attempt direct dispatch */
2570		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: xmit_normal\n", __func__, bf);
2571		ath_tx_xmit_normal(sc, txq, bf);
2572	} else {
2573		/* Busy; queue */
2574		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: swq'ing\n", __func__, bf);
2575		ATH_TXQ_INSERT_TAIL(atid, bf, bf_list);
2576		ath_tx_tid_sched(sc, atid);
2577	}
2578	ATH_TXQ_UNLOCK(txq);
2579}
2580
2581/*
2582 * Do the basic frame setup stuff that's required before the frame
2583 * is added to a software queue.
2584 *
2585 * All frames get mostly the same treatment and it's done once.
2586 * Retransmits fiddle with things like the rate control setup,
2587 * setting the retransmit bit in the packet; doing relevant DMA/bus
2588 * syncing and relinking it (back) into the hardware TX queue.
2589 *
2590 * Note that this may cause the mbuf to be reallocated, so
2591 * m0 may not be valid.
2592 */
2593
2594
2595/*
2596 * Configure the per-TID node state.
2597 *
2598 * This likely belongs in if_ath_node.c but I can't think of anywhere
2599 * else to put it just yet.
2600 *
2601 * This sets up the SLISTs and the mutex as appropriate.
2602 */
2603void
2604ath_tx_tid_init(struct ath_softc *sc, struct ath_node *an)
2605{
2606	int i, j;
2607	struct ath_tid *atid;
2608
2609	for (i = 0; i < IEEE80211_TID_SIZE; i++) {
2610		atid = &an->an_tid[i];
2611		TAILQ_INIT(&atid->axq_q);
2612		atid->tid = i;
2613		atid->an = an;
2614		for (j = 0; j < ATH_TID_MAX_BUFS; j++)
2615			atid->tx_buf[j] = NULL;
2616		atid->baw_head = atid->baw_tail = 0;
2617		atid->paused = 0;
2618		atid->sched = 0;
2619		atid->hwq_depth = 0;
2620		atid->cleanup_inprogress = 0;
2621		if (i == IEEE80211_NONQOS_TID)
2622			atid->ac = WME_AC_BE;
2623		else
2624			atid->ac = TID_TO_WME_AC(i);
2625	}
2626}
2627
2628/*
2629 * Pause the current TID. This stops packets from being transmitted
2630 * on it.
2631 *
2632 * Since this is also called from upper layers as well as the driver,
2633 * it will get the TID lock.
2634 */
2635static void
2636ath_tx_tid_pause(struct ath_softc *sc, struct ath_tid *tid)
2637{
2638
2639	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2640	tid->paused++;
2641	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: paused = %d\n",
2642	    __func__, tid->paused);
2643}
2644
2645/*
2646 * Unpause the current TID, and schedule it if needed.
2647 */
2648static void
2649ath_tx_tid_resume(struct ath_softc *sc, struct ath_tid *tid)
2650{
2651	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2652
2653	tid->paused--;
2654
2655	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: unpaused = %d\n",
2656	    __func__, tid->paused);
2657
2658	if (tid->paused || tid->axq_depth == 0) {
2659		return;
2660	}
2661
2662	ath_tx_tid_sched(sc, tid);
2663	/* Punt some frames to the hardware if needed */
2664	//ath_txq_sched(sc, sc->sc_ac2q[tid->ac]);
2665	taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
2666}
2667
2668/*
2669 * Suspend the queue because we need to TX a BAR.
2670 */
2671static void
2672ath_tx_tid_bar_suspend(struct ath_softc *sc, struct ath_tid *tid)
2673{
2674	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2675
2676	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2677	    "%s: tid=%p, called\n",
2678	    __func__,
2679	    tid);
2680
2681	/* We shouldn't be called when bar_tx is 1 */
2682	if (tid->bar_tx) {
2683		device_printf(sc->sc_dev, "%s: bar_tx is 1?!\n",
2684		    __func__);
2685	}
2686
2687	/* If we've already been called, just be patient. */
2688	if (tid->bar_wait)
2689		return;
2690
2691	/* Wait! */
2692	tid->bar_wait = 1;
2693
2694	/* Only one pause, no matter how many frames fail */
2695	ath_tx_tid_pause(sc, tid);
2696}
2697
2698/*
2699 * We've finished with BAR handling - either we succeeded or
2700 * failed. Either way, unsuspend TX.
2701 */
2702static void
2703ath_tx_tid_bar_unsuspend(struct ath_softc *sc, struct ath_tid *tid)
2704{
2705	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2706
2707	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2708	    "%s: tid=%p, called\n",
2709	    __func__,
2710	    tid);
2711
2712	if (tid->bar_tx == 0 || tid->bar_wait == 0) {
2713		device_printf(sc->sc_dev, "%s: bar_tx=%d, bar_wait=%d: ?\n",
2714		    __func__, tid->bar_tx, tid->bar_wait);
2715	}
2716
2717	tid->bar_tx = tid->bar_wait = 0;
2718	ath_tx_tid_resume(sc, tid);
2719}
2720
2721/*
2722 * Return whether we're ready to TX a BAR frame.
2723 *
2724 * Requires the TID lock be held.
2725 */
2726static int
2727ath_tx_tid_bar_tx_ready(struct ath_softc *sc, struct ath_tid *tid)
2728{
2729
2730	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2731
2732	if (tid->bar_wait == 0 || tid->hwq_depth > 0)
2733		return (0);
2734
2735	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR, "%s: tid=%p (%d), bar ready\n",
2736	    __func__, tid, tid->tid);
2737
2738	return (1);
2739}
2740
2741/*
2742 * Check whether the current TID is ready to have a BAR
2743 * TXed and if so, do the TX.
2744 *
2745 * Since the TID/TXQ lock can't be held during a call to
2746 * ieee80211_send_bar(), we have to do the dirty thing of unlocking it,
2747 * sending the BAR and locking it again.
2748 *
2749 * Eventually, the code to send the BAR should be broken out
2750 * from this routine so the lock doesn't have to be reacquired
2751 * just to be immediately dropped by the caller.
2752 */
2753static void
2754ath_tx_tid_bar_tx(struct ath_softc *sc, struct ath_tid *tid)
2755{
2756	struct ieee80211_tx_ampdu *tap;
2757
2758	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2759
2760	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2761	    "%s: tid=%p, called\n",
2762	    __func__,
2763	    tid);
2764
2765	tap = ath_tx_get_tx_tid(tid->an, tid->tid);
2766
2767	/*
2768	 * This is an error condition!
2769	 */
2770	if (tid->bar_wait == 0 || tid->bar_tx == 1) {
2771		device_printf(sc->sc_dev,
2772		    "%s: tid=%p, bar_tx=%d, bar_wait=%d: ?\n",
2773		    __func__,
2774		    tid,
2775		    tid->bar_tx,
2776		    tid->bar_wait);
2777		return;
2778	}
2779
2780	/* Don't do anything if we still have pending frames */
2781	if (tid->hwq_depth > 0) {
2782		DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2783		    "%s: tid=%p, hwq_depth=%d, waiting\n",
2784		    __func__,
2785		    tid,
2786		    tid->hwq_depth);
2787		return;
2788	}
2789
2790	/* We're now about to TX */
2791	tid->bar_tx = 1;
2792
2793	/*
2794	 * Calculate new BAW left edge, now that all frames have either
2795	 * succeeded or failed.
2796	 *
2797	 * XXX verify this is _actually_ the valid value to begin at!
2798	 */
2799	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
2800	    "%s: tid=%p, new BAW left edge=%d\n",
2801	    __func__,
2802	    tid,
2803	    tap->txa_start);
2804
2805	/* Try sending the BAR frame */
2806	/* We can't hold the lock here! */
2807
2808	ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
2809	if (ieee80211_send_bar(&tid->an->an_node, tap, tap->txa_start) == 0) {
2810		/* Success? Now we wait for notification that it's done */
2811		ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2812		return;
2813	}
2814
2815	/* Failure? For now, warn loudly and continue */
2816	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
2817	device_printf(sc->sc_dev, "%s: tid=%p, failed to TX BAR, continue!\n",
2818	    __func__, tid);
2819	ath_tx_tid_bar_unsuspend(sc, tid);
2820}
2821
2822
2823/*
2824 * Free any packets currently pending in the software TX queue.
2825 *
2826 * This will be called when a node is being deleted.
2827 *
2828 * It can also be called on an active node during an interface
2829 * reset or state transition.
2830 *
2831 * (From Linux/reference):
2832 *
2833 * TODO: For frame(s) that are in the retry state, we will reuse the
2834 * sequence number(s) without setting the retry bit. The
2835 * alternative is to give up on these and BAR the receiver's window
2836 * forward.
2837 */
2838static void
2839ath_tx_tid_drain(struct ath_softc *sc, struct ath_node *an,
2840    struct ath_tid *tid, ath_bufhead *bf_cq)
2841{
2842	struct ath_buf *bf;
2843	struct ieee80211_tx_ampdu *tap;
2844	struct ieee80211_node *ni = &an->an_node;
2845	int t = 0;
2846	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
2847
2848	tap = ath_tx_get_tx_tid(an, tid->tid);
2849
2850	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[tid->ac]);
2851
2852	/* Walk the queue, free frames */
2853	for (;;) {
2854		bf = TAILQ_FIRST(&tid->axq_q);
2855		if (bf == NULL) {
2856			break;
2857		}
2858
2859		if (t == 0) {
2860			device_printf(sc->sc_dev,
2861			    "%s: node %p: bf=%p: addbaw=%d, dobaw=%d, "
2862			    "seqno_assign=%d, seqno_required=%d, seqno=%d, retry=%d\n",
2863			    __func__, ni, bf,
2864			    bf->bf_state.bfs_addedbaw,
2865			    bf->bf_state.bfs_dobaw,
2866			    bf->bf_state.bfs_need_seqno,
2867			    bf->bf_state.bfs_seqno_assigned,
2868			    SEQNO(bf->bf_state.bfs_seqno),
2869			    bf->bf_state.bfs_retries);
2870			device_printf(sc->sc_dev,
2871			    "%s: node %p: bf=%p: tid txq_depth=%d hwq_depth=%d, bar_wait=%d\n",
2872			    __func__, ni, bf,
2873			    tid->axq_depth,
2874			    tid->hwq_depth,
2875			    tid->bar_wait);
2876			device_printf(sc->sc_dev,
2877			    "%s: node %p: bf=%p: tid %d: txq_depth=%d, "
2878			    "txq_aggr_depth=%d, sched=%d, paused=%d, "
2879			    "hwq_depth=%d, incomp=%d, baw_head=%d, "
2880			    "baw_tail=%d txa_start=%d, ni_txseqs=%d\n",
2881			     __func__, ni, bf, tid->tid, txq->axq_depth,
2882			     txq->axq_aggr_depth, tid->sched, tid->paused,
2883			     tid->hwq_depth, tid->incomp, tid->baw_head,
2884			     tid->baw_tail, tap == NULL ? -1 : tap->txa_start,
2885			     ni->ni_txseqs[tid->tid]);
2886
2887			/* XXX Dump the frame, see what it is? */
2888			ieee80211_dump_pkt(ni->ni_ic,
2889			    mtod(bf->bf_m, const uint8_t *),
2890			    bf->bf_m->m_len, 0, -1);
2891
2892			t = 1;
2893		}
2894
2895
2896		/*
2897		 * If the current TID is running AMPDU, update
2898		 * the BAW.
2899		 */
2900		if (ath_tx_ampdu_running(sc, an, tid->tid) &&
2901		    bf->bf_state.bfs_dobaw) {
2902			/*
2903			 * Only remove the frame from the BAW if it's
2904			 * been transmitted at least once; this means
2905			 * the frame was in the BAW to begin with.
2906			 */
2907			if (bf->bf_state.bfs_retries > 0) {
2908				ath_tx_update_baw(sc, an, tid, bf);
2909				bf->bf_state.bfs_dobaw = 0;
2910			}
2911			/*
2912			 * This has become a non-fatal error now
2913			 */
2914			if (! bf->bf_state.bfs_addedbaw)
2915				device_printf(sc->sc_dev,
2916				    "%s: wasn't added: seqno %d\n",
2917				    __func__, SEQNO(bf->bf_state.bfs_seqno));
2918		}
2919		ATH_TXQ_REMOVE(tid, bf, bf_list);
2920		TAILQ_INSERT_TAIL(bf_cq, bf, bf_list);
2921	}
2922
2923	/*
2924	 * Now that it's completed, grab the TID lock and update
2925	 * the sequence number and BAW window.
2926	 * Because sequence numbers have been assigned to frames
2927	 * that haven't been sent yet, it's entirely possible
2928	 * we'll be called with some pending frames that have not
2929	 * been transmitted.
2930	 *
2931	 * The cleaner solution is to do the sequence number allocation
2932	 * when the packet is first transmitted - and thus the "retries"
2933	 * check above would be enough to update the BAW/seqno.
2934	 */
2935
2936	/* But don't do it for non-QoS TIDs */
2937	if (tap) {
2938#if 0
2939		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
2940		    "%s: node %p: TID %d: sliding BAW left edge to %d\n",
2941		    __func__, an, tid->tid, tap->txa_start);
2942#endif
2943		ni->ni_txseqs[tid->tid] = tap->txa_start;
2944		tid->baw_tail = tid->baw_head;
2945	}
2946}
2947
2948/*
2949 * Flush all software queued packets for the given node.
2950 *
2951 * This occurs when a completion handler frees the last buffer
2952 * for a node, and the node is thus freed. This causes the node
2953 * to be cleaned up, which ends up calling ath_tx_node_flush.
2954 */
2955void
2956ath_tx_node_flush(struct ath_softc *sc, struct ath_node *an)
2957{
2958	int tid;
2959	ath_bufhead bf_cq;
2960	struct ath_buf *bf;
2961
2962	TAILQ_INIT(&bf_cq);
2963
2964	for (tid = 0; tid < IEEE80211_TID_SIZE; tid++) {
2965		struct ath_tid *atid = &an->an_tid[tid];
2966		struct ath_txq *txq = sc->sc_ac2q[atid->ac];
2967
2968		/* Remove this tid from the list of active tids */
2969		ATH_TXQ_LOCK(txq);
2970		ath_tx_tid_unsched(sc, atid);
2971
2972		/* Free packets */
2973		ath_tx_tid_drain(sc, an, atid, &bf_cq);
2974		ATH_TXQ_UNLOCK(txq);
2975	}
2976
2977	/* Handle completed frames */
2978	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
2979		TAILQ_REMOVE(&bf_cq, bf, bf_list);
2980		ath_tx_default_comp(sc, bf, 0);
2981	}
2982}
2983
2984/*
2985 * Drain all the software TXQs currently with traffic queued.
2986 */
2987void
2988ath_tx_txq_drain(struct ath_softc *sc, struct ath_txq *txq)
2989{
2990	struct ath_tid *tid;
2991	ath_bufhead bf_cq;
2992	struct ath_buf *bf;
2993
2994	TAILQ_INIT(&bf_cq);
2995	ATH_TXQ_LOCK(txq);
2996
2997	/*
2998	 * Iterate over all active tids for the given txq,
2999	 * flushing and unsched'ing them
3000	 */
3001	while (! TAILQ_EMPTY(&txq->axq_tidq)) {
3002		tid = TAILQ_FIRST(&txq->axq_tidq);
3003		ath_tx_tid_drain(sc, tid->an, tid, &bf_cq);
3004		ath_tx_tid_unsched(sc, tid);
3005	}
3006
3007	ATH_TXQ_UNLOCK(txq);
3008
3009	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3010		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3011		ath_tx_default_comp(sc, bf, 0);
3012	}
3013}
3014
3015/*
3016 * Handle completion of non-aggregate session frames.
3017 */
3018void
3019ath_tx_normal_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3020{
3021	struct ieee80211_node *ni = bf->bf_node;
3022	struct ath_node *an = ATH_NODE(ni);
3023	int tid = bf->bf_state.bfs_tid;
3024	struct ath_tid *atid = &an->an_tid[tid];
3025	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3026
3027	/* The TID state is protected behind the TXQ lock */
3028	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3029
3030	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: bf=%p: fail=%d, hwq_depth now %d\n",
3031	    __func__, bf, fail, atid->hwq_depth - 1);
3032
3033	atid->hwq_depth--;
3034	if (atid->hwq_depth < 0)
3035		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3036		    __func__, atid->hwq_depth);
3037	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3038
3039	/*
3040	 * punt to rate control if we're not being cleaned up
3041	 * during a hw queue drain and the frame wanted an ACK.
3042	 */
3043	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
3044		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3045		    ts, bf->bf_state.bfs_pktlen,
3046		    1, (ts->ts_status == 0) ? 0 : 1);
3047
3048	ath_tx_default_comp(sc, bf, fail);
3049}
3050
3051/*
3052 * Handle cleanup of aggregate session packets that aren't
3053 * an A-MPDU.
3054 *
3055 * There's no need to update the BAW here - the session is being
3056 * torn down.
3057 */
3058static void
3059ath_tx_comp_cleanup_unaggr(struct ath_softc *sc, struct ath_buf *bf)
3060{
3061	struct ieee80211_node *ni = bf->bf_node;
3062	struct ath_node *an = ATH_NODE(ni);
3063	int tid = bf->bf_state.bfs_tid;
3064	struct ath_tid *atid = &an->an_tid[tid];
3065
3066	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: TID %d: incomp=%d\n",
3067	    __func__, tid, atid->incomp);
3068
3069	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3070	atid->incomp--;
3071	if (atid->incomp == 0) {
3072		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3073		    "%s: TID %d: cleaned up! resume!\n",
3074		    __func__, tid);
3075		atid->cleanup_inprogress = 0;
3076		ath_tx_tid_resume(sc, atid);
3077	}
3078	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3079
3080	ath_tx_default_comp(sc, bf, 0);
3081}
3082
3083/*
3084 * Performs transmit side cleanup when TID changes from aggregated to
3085 * unaggregated.
3086 *
3087 * - Discard all retry frames from the s/w queue.
3088 * - Fix the tx completion function for all buffers in s/w queue.
3089 * - Count the number of unacked frames, and let transmit completion
3090 *   handle it later.
3091 *
3092 * The caller is responsible for pausing the TID.
3093 */
3094static void
3095ath_tx_cleanup(struct ath_softc *sc, struct ath_node *an, int tid)
3096{
3097	struct ath_tid *atid = &an->an_tid[tid];
3098	struct ieee80211_tx_ampdu *tap;
3099	struct ath_buf *bf, *bf_next;
3100	ath_bufhead bf_cq;
3101
3102	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3103	    "%s: TID %d: called\n", __func__, tid);
3104
3105	TAILQ_INIT(&bf_cq);
3106	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3107
3108	/*
3109	 * Update the frames in the software TX queue:
3110	 *
3111	 * + Discard retry frames in the queue
3112	 * + Fix the completion function to be non-aggregate
3113	 */
3114	bf = TAILQ_FIRST(&atid->axq_q);
3115	while (bf) {
3116		if (bf->bf_state.bfs_isretried) {
3117			bf_next = TAILQ_NEXT(bf, bf_list);
3118			TAILQ_REMOVE(&atid->axq_q, bf, bf_list);
3119			atid->axq_depth--;
3120			if (bf->bf_state.bfs_dobaw) {
3121				ath_tx_update_baw(sc, an, atid, bf);
3122				if (! bf->bf_state.bfs_addedbaw)
3123					device_printf(sc->sc_dev,
3124					    "%s: wasn't added: seqno %d\n",
3125					    __func__,
3126					    SEQNO(bf->bf_state.bfs_seqno));
3127			}
3128			bf->bf_state.bfs_dobaw = 0;
3129			/*
3130			 * Call the default completion handler with "fail" just
3131			 * so upper levels are suitably notified about this.
3132			 */
3133			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3134			bf = bf_next;
3135			continue;
3136		}
3137		/* Give these the default completion handler */
3138		bf->bf_comp = ath_tx_normal_comp;
3139		bf = TAILQ_NEXT(bf, bf_list);
3140	}
3141
3142	/* The caller is required to pause the TID */
3143#if 0
3144	/* Pause the TID */
3145	ath_tx_tid_pause(sc, atid);
3146#endif
3147
3148	/*
3149	 * Calculate what hardware-queued frames exist based
3150	 * on the current BAW size. Ie, what frames have been
3151	 * added to the TX hardware queue for this TID but
3152	 * not yet ACKed.
3153	 */
3154	tap = ath_tx_get_tx_tid(an, tid);
3155	/* Need the lock - fiddling with BAW */
3156	while (atid->baw_head != atid->baw_tail) {
3157		if (atid->tx_buf[atid->baw_head]) {
3158			atid->incomp++;
3159			atid->cleanup_inprogress = 1;
3160			atid->tx_buf[atid->baw_head] = NULL;
3161		}
3162		INCR(atid->baw_head, ATH_TID_MAX_BUFS);
3163		INCR(tap->txa_start, IEEE80211_SEQ_RANGE);
3164	}
3165
3166	/*
3167	 * If cleanup is required, defer TID scheduling
3168	 * until all the HW queued packets have been
3169	 * sent.
3170	 */
3171	if (! atid->cleanup_inprogress)
3172		ath_tx_tid_resume(sc, atid);
3173
3174	if (atid->cleanup_inprogress)
3175		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3176		    "%s: TID %d: cleanup needed: %d packets\n",
3177		    __func__, tid, atid->incomp);
3178	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3179
3180	/* Handle completing frames and fail them */
3181	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3182		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3183		ath_tx_default_comp(sc, bf, 1);
3184	}
3185}
3186
3187static void
3188ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
3189{
3190	struct ieee80211_frame *wh;
3191
3192	wh = mtod(bf->bf_m, struct ieee80211_frame *);
3193	/* Only update/resync if needed */
3194	if (bf->bf_state.bfs_isretried == 0) {
3195		wh->i_fc[1] |= IEEE80211_FC1_RETRY;
3196		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3197		    BUS_DMASYNC_PREWRITE);
3198	}
3199	sc->sc_stats.ast_tx_swretries++;
3200	bf->bf_state.bfs_isretried = 1;
3201	bf->bf_state.bfs_retries ++;
3202}
3203
3204static struct ath_buf *
3205ath_tx_retry_clone(struct ath_softc *sc, struct ath_node *an,
3206    struct ath_tid *tid, struct ath_buf *bf)
3207{
3208	struct ath_buf *nbf;
3209	int error;
3210
3211	nbf = ath_buf_clone(sc, bf);
3212
3213#if 0
3214	device_printf(sc->sc_dev, "%s: ATH_BUF_BUSY; cloning\n",
3215	    __func__);
3216#endif
3217
3218	if (nbf == NULL) {
3219		/* Failed to clone */
3220		device_printf(sc->sc_dev,
3221		    "%s: failed to clone a busy buffer\n",
3222		    __func__);
3223		return NULL;
3224	}
3225
3226	/* Setup the dma for the new buffer */
3227	error = ath_tx_dmasetup(sc, nbf, nbf->bf_m);
3228	if (error != 0) {
3229		device_printf(sc->sc_dev,
3230		    "%s: failed to setup dma for clone\n",
3231		    __func__);
3232		/*
3233		 * Put this at the head of the list, not tail;
3234		 * that way it doesn't interfere with the
3235		 * busy buffer logic (which uses the tail of
3236		 * the list.)
3237		 */
3238		ATH_TXBUF_LOCK(sc);
3239		TAILQ_INSERT_HEAD(&sc->sc_txbuf, nbf, bf_list);
3240		ATH_TXBUF_UNLOCK(sc);
3241		return NULL;
3242	}
3243
3244	/* Update BAW if required, before we free the original buf */
3245	if (bf->bf_state.bfs_dobaw)
3246		ath_tx_switch_baw_buf(sc, an, tid, bf, nbf);
3247
3248	/* Free current buffer; return the older buffer */
3249	bf->bf_m = NULL;
3250	bf->bf_node = NULL;
3251	ath_freebuf(sc, bf);
3252	return nbf;
3253}
3254
3255/*
3256 * Handle retrying an unaggregate frame in an aggregate
3257 * session.
3258 *
3259 * If too many retries occur, pause the TID, wait for
3260 * any further retransmits (as there's no reason why
3261 * non-aggregate frames in an aggregate session are
3262 * transmitted in-order; they just have to be in-BAW)
3263 * and then queue a BAR.
3264 */
3265static void
3266ath_tx_aggr_retry_unaggr(struct ath_softc *sc, struct ath_buf *bf)
3267{
3268	struct ieee80211_node *ni = bf->bf_node;
3269	struct ath_node *an = ATH_NODE(ni);
3270	int tid = bf->bf_state.bfs_tid;
3271	struct ath_tid *atid = &an->an_tid[tid];
3272	struct ieee80211_tx_ampdu *tap;
3273
3274	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3275
3276	tap = ath_tx_get_tx_tid(an, tid);
3277
3278	/*
3279	 * If the buffer is marked as busy, we can't directly
3280	 * reuse it. Instead, try to clone the buffer.
3281	 * If the clone is successful, recycle the old buffer.
3282	 * If the clone is unsuccessful, set bfs_retries to max
3283	 * to force the next bit of code to free the buffer
3284	 * for us.
3285	 */
3286	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
3287	    (bf->bf_flags & ATH_BUF_BUSY)) {
3288		struct ath_buf *nbf;
3289		nbf = ath_tx_retry_clone(sc, an, atid, bf);
3290		if (nbf)
3291			/* bf has been freed at this point */
3292			bf = nbf;
3293		else
3294			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
3295	}
3296
3297	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
3298		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
3299		    "%s: exceeded retries; seqno %d\n",
3300		    __func__, SEQNO(bf->bf_state.bfs_seqno));
3301		sc->sc_stats.ast_tx_swretrymax++;
3302
3303		/* Update BAW anyway */
3304		if (bf->bf_state.bfs_dobaw) {
3305			ath_tx_update_baw(sc, an, atid, bf);
3306			if (! bf->bf_state.bfs_addedbaw)
3307				device_printf(sc->sc_dev,
3308				    "%s: wasn't added: seqno %d\n",
3309				    __func__, SEQNO(bf->bf_state.bfs_seqno));
3310		}
3311		bf->bf_state.bfs_dobaw = 0;
3312
3313		/* Suspend the TX queue and get ready to send the BAR */
3314		ath_tx_tid_bar_suspend(sc, atid);
3315
3316		/* Send the BAR if there are no other frames waiting */
3317		if (ath_tx_tid_bar_tx_ready(sc, atid))
3318			ath_tx_tid_bar_tx(sc, atid);
3319
3320		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3321
3322		/* Free buffer, bf is free after this call */
3323		ath_tx_default_comp(sc, bf, 0);
3324		return;
3325	}
3326
3327	/*
3328	 * This increments the retry counter as well as
3329	 * sets the retry flag in the ath_buf and packet
3330	 * body.
3331	 */
3332	ath_tx_set_retry(sc, bf);
3333
3334	/*
3335	 * Insert this at the head of the queue, so it's
3336	 * retried before any current/subsequent frames.
3337	 */
3338	ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3339	ath_tx_tid_sched(sc, atid);
3340	/* Send the BAR if there are no other frames waiting */
3341	if (ath_tx_tid_bar_tx_ready(sc, atid))
3342		ath_tx_tid_bar_tx(sc, atid);
3343
3344	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3345}
3346
3347/*
3348 * Common code for aggregate excessive retry/subframe retry.
3349 * If retrying, queues buffers to bf_q. If not, frees the
3350 * buffers.
3351 *
3352 * XXX should unify this with ath_tx_aggr_retry_unaggr()
3353 */
3354static int
3355ath_tx_retry_subframe(struct ath_softc *sc, struct ath_buf *bf,
3356    ath_bufhead *bf_q)
3357{
3358	struct ieee80211_node *ni = bf->bf_node;
3359	struct ath_node *an = ATH_NODE(ni);
3360	int tid = bf->bf_state.bfs_tid;
3361	struct ath_tid *atid = &an->an_tid[tid];
3362
3363	ATH_TXQ_LOCK_ASSERT(sc->sc_ac2q[atid->ac]);
3364
3365	ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3366	ath_hal_set11nburstduration(sc->sc_ah, bf->bf_desc, 0);
3367	/* ath_hal_set11n_virtualmorefrag(sc->sc_ah, bf->bf_desc, 0); */
3368
3369	/*
3370	 * If the buffer is marked as busy, we can't directly
3371	 * reuse it. Instead, try to clone the buffer.
3372	 * If the clone is successful, recycle the old buffer.
3373	 * If the clone is unsuccessful, set bfs_retries to max
3374	 * to force the next bit of code to free the buffer
3375	 * for us.
3376	 */
3377	if ((bf->bf_state.bfs_retries < SWMAX_RETRIES) &&
3378	    (bf->bf_flags & ATH_BUF_BUSY)) {
3379		struct ath_buf *nbf;
3380		nbf = ath_tx_retry_clone(sc, an, atid, bf);
3381		if (nbf)
3382			/* bf has been freed at this point */
3383			bf = nbf;
3384		else
3385			bf->bf_state.bfs_retries = SWMAX_RETRIES + 1;
3386	}
3387
3388	if (bf->bf_state.bfs_retries >= SWMAX_RETRIES) {
3389		sc->sc_stats.ast_tx_swretrymax++;
3390		DPRINTF(sc, ATH_DEBUG_SW_TX_RETRIES,
3391		    "%s: max retries: seqno %d\n",
3392		    __func__, SEQNO(bf->bf_state.bfs_seqno));
3393		ath_tx_update_baw(sc, an, atid, bf);
3394		if (! bf->bf_state.bfs_addedbaw)
3395			device_printf(sc->sc_dev,
3396			    "%s: wasn't added: seqno %d\n",
3397			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3398		bf->bf_state.bfs_dobaw = 0;
3399		return 1;
3400	}
3401
3402	ath_tx_set_retry(sc, bf);
3403	bf->bf_next = NULL;		/* Just to make sure */
3404
3405	TAILQ_INSERT_TAIL(bf_q, bf, bf_list);
3406	return 0;
3407}
3408
3409/*
3410 * error pkt completion for an aggregate destination
3411 */
3412static void
3413ath_tx_comp_aggr_error(struct ath_softc *sc, struct ath_buf *bf_first,
3414    struct ath_tid *tid)
3415{
3416	struct ieee80211_node *ni = bf_first->bf_node;
3417	struct ath_node *an = ATH_NODE(ni);
3418	struct ath_buf *bf_next, *bf;
3419	ath_bufhead bf_q;
3420	int drops = 0;
3421	struct ieee80211_tx_ampdu *tap;
3422	ath_bufhead bf_cq;
3423
3424	TAILQ_INIT(&bf_q);
3425	TAILQ_INIT(&bf_cq);
3426
3427	/*
3428	 * Update rate control - all frames have failed.
3429	 *
3430	 * XXX use the length in the first frame in the series;
3431	 * XXX just so things are consistent for now.
3432	 */
3433	ath_tx_update_ratectrl(sc, ni, bf_first->bf_state.bfs_rc,
3434	    &bf_first->bf_status.ds_txstat,
3435	    bf_first->bf_state.bfs_pktlen,
3436	    bf_first->bf_state.bfs_nframes, bf_first->bf_state.bfs_nframes);
3437
3438	ATH_TXQ_LOCK(sc->sc_ac2q[tid->ac]);
3439	tap = ath_tx_get_tx_tid(an, tid->tid);
3440	sc->sc_stats.ast_tx_aggr_failall++;
3441
3442	/* Retry all subframes */
3443	bf = bf_first;
3444	while (bf) {
3445		bf_next = bf->bf_next;
3446		bf->bf_next = NULL;	/* Remove it from the aggr list */
3447		sc->sc_stats.ast_tx_aggr_fail++;
3448		if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3449			drops++;
3450			bf->bf_next = NULL;
3451			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3452		}
3453		bf = bf_next;
3454	}
3455
3456	/* Prepend all frames to the beginning of the queue */
3457	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3458		TAILQ_REMOVE(&bf_q, bf, bf_list);
3459		ATH_TXQ_INSERT_HEAD(tid, bf, bf_list);
3460	}
3461
3462	/*
3463	 * Schedule the TID to be re-tried.
3464	 */
3465	ath_tx_tid_sched(sc, tid);
3466
3467	/*
3468	 * send bar if we dropped any frames
3469	 *
3470	 * Keep the txq lock held for now, as we need to ensure
3471	 * that ni_txseqs[] is consistent (as it's being updated
3472	 * in the ifnet TX context or raw TX context.)
3473	 */
3474	if (drops) {
3475		/* Suspend the TX queue and get ready to send the BAR */
3476		ath_tx_tid_bar_suspend(sc, tid);
3477	}
3478
3479	/*
3480	 * Send BAR if required
3481	 */
3482	if (ath_tx_tid_bar_tx_ready(sc, tid))
3483		ath_tx_tid_bar_tx(sc, tid);
3484	ATH_TXQ_UNLOCK(sc->sc_ac2q[tid->ac]);
3485
3486	/* Complete frames which errored out */
3487	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3488		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3489		ath_tx_default_comp(sc, bf, 0);
3490	}
3491}
3492
3493/*
3494 * Handle clean-up of packets from an aggregate list.
3495 *
3496 * There's no need to update the BAW here - the session is being
3497 * torn down.
3498 */
3499static void
3500ath_tx_comp_cleanup_aggr(struct ath_softc *sc, struct ath_buf *bf_first)
3501{
3502	struct ath_buf *bf, *bf_next;
3503	struct ieee80211_node *ni = bf_first->bf_node;
3504	struct ath_node *an = ATH_NODE(ni);
3505	int tid = bf_first->bf_state.bfs_tid;
3506	struct ath_tid *atid = &an->an_tid[tid];
3507
3508	bf = bf_first;
3509
3510	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3511
3512	/* update incomp */
3513	while (bf) {
3514		atid->incomp--;
3515		bf = bf->bf_next;
3516	}
3517
3518	if (atid->incomp == 0) {
3519		DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
3520		    "%s: TID %d: cleaned up! resume!\n",
3521		    __func__, tid);
3522		atid->cleanup_inprogress = 0;
3523		ath_tx_tid_resume(sc, atid);
3524	}
3525
3526	/* Send BAR if required */
3527	if (ath_tx_tid_bar_tx_ready(sc, atid))
3528		ath_tx_tid_bar_tx(sc, atid);
3529	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3530
3531	/* Handle frame completion */
3532	while (bf) {
3533		bf_next = bf->bf_next;
3534		ath_tx_default_comp(sc, bf, 1);
3535		bf = bf_next;
3536	}
3537}
3538
3539/*
3540 * Handle completion of an set of aggregate frames.
3541 *
3542 * XXX for now, simply complete each sub-frame.
3543 *
3544 * Note: the completion handler is the last descriptor in the aggregate,
3545 * not the last descriptor in the first frame.
3546 */
3547static void
3548ath_tx_aggr_comp_aggr(struct ath_softc *sc, struct ath_buf *bf_first,
3549    int fail)
3550{
3551	//struct ath_desc *ds = bf->bf_lastds;
3552	struct ieee80211_node *ni = bf_first->bf_node;
3553	struct ath_node *an = ATH_NODE(ni);
3554	int tid = bf_first->bf_state.bfs_tid;
3555	struct ath_tid *atid = &an->an_tid[tid];
3556	struct ath_tx_status ts;
3557	struct ieee80211_tx_ampdu *tap;
3558	ath_bufhead bf_q;
3559	ath_bufhead bf_cq;
3560	int seq_st, tx_ok;
3561	int hasba, isaggr;
3562	uint32_t ba[2];
3563	struct ath_buf *bf, *bf_next;
3564	int ba_index;
3565	int drops = 0;
3566	int nframes = 0, nbad = 0, nf;
3567	int pktlen;
3568	/* XXX there's too much on the stack? */
3569	struct ath_rc_series rc[4];
3570	int txseq;
3571
3572	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR, "%s: called; hwq_depth=%d\n",
3573	    __func__, atid->hwq_depth);
3574
3575	/* The TID state is kept behind the TXQ lock */
3576	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3577
3578	atid->hwq_depth--;
3579	if (atid->hwq_depth < 0)
3580		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3581		    __func__, atid->hwq_depth);
3582
3583	/*
3584	 * Punt cleanup to the relevant function, not our problem now
3585	 */
3586	if (atid->cleanup_inprogress) {
3587		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3588		ath_tx_comp_cleanup_aggr(sc, bf_first);
3589		return;
3590	}
3591
3592	/*
3593	 * Take a copy; this may be needed -after- bf_first
3594	 * has been completed and freed.
3595	 */
3596	ts = bf_first->bf_status.ds_txstat;
3597	/*
3598	 * XXX for now, use the first frame in the aggregate for
3599	 * XXX rate control completion; it's at least consistent.
3600	 */
3601	pktlen = bf_first->bf_state.bfs_pktlen;
3602
3603	/*
3604	 * Handle errors first!
3605	 *
3606	 * Here, handle _any_ error as a "exceeded retries" error.
3607	 * Later on (when filtered frames are to be specially handled)
3608	 * it'll have to be expanded.
3609	 */
3610#if 0
3611	if (ts.ts_status & HAL_TXERR_XRETRY) {
3612#endif
3613	if (ts.ts_status != 0) {
3614		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3615		ath_tx_comp_aggr_error(sc, bf_first, atid);
3616		return;
3617	}
3618
3619	TAILQ_INIT(&bf_q);
3620	TAILQ_INIT(&bf_cq);
3621	tap = ath_tx_get_tx_tid(an, tid);
3622
3623	/*
3624	 * extract starting sequence and block-ack bitmap
3625	 */
3626	/* XXX endian-ness of seq_st, ba? */
3627	seq_st = ts.ts_seqnum;
3628	hasba = !! (ts.ts_flags & HAL_TX_BA);
3629	tx_ok = (ts.ts_status == 0);
3630	isaggr = bf_first->bf_state.bfs_aggr;
3631	ba[0] = ts.ts_ba_low;
3632	ba[1] = ts.ts_ba_high;
3633
3634	/*
3635	 * Copy the TX completion status and the rate control
3636	 * series from the first descriptor, as it may be freed
3637	 * before the rate control code can get its grubby fingers
3638	 * into things.
3639	 */
3640	memcpy(rc, bf_first->bf_state.bfs_rc, sizeof(rc));
3641
3642	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3643	    "%s: txa_start=%d, tx_ok=%d, status=%.8x, flags=%.8x, "
3644	    "isaggr=%d, seq_st=%d, hasba=%d, ba=%.8x, %.8x\n",
3645	    __func__, tap->txa_start, tx_ok, ts.ts_status, ts.ts_flags,
3646	    isaggr, seq_st, hasba, ba[0], ba[1]);
3647
3648	/* Occasionally, the MAC sends a tx status for the wrong TID. */
3649	if (tid != ts.ts_tid) {
3650		device_printf(sc->sc_dev, "%s: tid %d != hw tid %d\n",
3651		    __func__, tid, ts.ts_tid);
3652		tx_ok = 0;
3653	}
3654
3655	/* AR5416 BA bug; this requires an interface reset */
3656	if (isaggr && tx_ok && (! hasba)) {
3657		device_printf(sc->sc_dev,
3658		    "%s: AR5416 bug: hasba=%d; txok=%d, isaggr=%d, "
3659		    "seq_st=%d\n",
3660		    __func__, hasba, tx_ok, isaggr, seq_st);
3661		/* XXX TODO: schedule an interface reset */
3662	}
3663
3664	/*
3665	 * Walk the list of frames, figure out which ones were correctly
3666	 * sent and which weren't.
3667	 */
3668	bf = bf_first;
3669	nf = bf_first->bf_state.bfs_nframes;
3670
3671	/* bf_first is going to be invalid once this list is walked */
3672	bf_first = NULL;
3673
3674	/*
3675	 * Walk the list of completed frames and determine
3676	 * which need to be completed and which need to be
3677	 * retransmitted.
3678	 *
3679	 * For completed frames, the completion functions need
3680	 * to be called at the end of this function as the last
3681	 * node reference may free the node.
3682	 *
3683	 * Finally, since the TXQ lock can't be held during the
3684	 * completion callback (to avoid lock recursion),
3685	 * the completion calls have to be done outside of the
3686	 * lock.
3687	 */
3688	while (bf) {
3689		nframes++;
3690		ba_index = ATH_BA_INDEX(seq_st,
3691		    SEQNO(bf->bf_state.bfs_seqno));
3692		bf_next = bf->bf_next;
3693		bf->bf_next = NULL;	/* Remove it from the aggr list */
3694
3695		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3696		    "%s: checking bf=%p seqno=%d; ack=%d\n",
3697		    __func__, bf, SEQNO(bf->bf_state.bfs_seqno),
3698		    ATH_BA_ISSET(ba, ba_index));
3699
3700		if (tx_ok && ATH_BA_ISSET(ba, ba_index)) {
3701			sc->sc_stats.ast_tx_aggr_ok++;
3702			ath_tx_update_baw(sc, an, atid, bf);
3703			bf->bf_state.bfs_dobaw = 0;
3704			if (! bf->bf_state.bfs_addedbaw)
3705				device_printf(sc->sc_dev,
3706				    "%s: wasn't added: seqno %d\n",
3707				    __func__, SEQNO(bf->bf_state.bfs_seqno));
3708			bf->bf_next = NULL;
3709			TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3710		} else {
3711			sc->sc_stats.ast_tx_aggr_fail++;
3712			if (ath_tx_retry_subframe(sc, bf, &bf_q)) {
3713				drops++;
3714				bf->bf_next = NULL;
3715				TAILQ_INSERT_TAIL(&bf_cq, bf, bf_list);
3716			}
3717			nbad++;
3718		}
3719		bf = bf_next;
3720	}
3721
3722	/*
3723	 * Now that the BAW updates have been done, unlock
3724	 *
3725	 * txseq is grabbed before the lock is released so we
3726	 * have a consistent view of what -was- in the BAW.
3727	 * Anything after this point will not yet have been
3728	 * TXed.
3729	 */
3730	txseq = tap->txa_start;
3731	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3732
3733	if (nframes != nf)
3734		device_printf(sc->sc_dev,
3735		    "%s: num frames seen=%d; bf nframes=%d\n",
3736		    __func__, nframes, nf);
3737
3738	/*
3739	 * Now we know how many frames were bad, call the rate
3740	 * control code.
3741	 */
3742	if (fail == 0)
3743		ath_tx_update_ratectrl(sc, ni, rc, &ts, pktlen, nframes,
3744		    nbad);
3745
3746	/*
3747	 * send bar if we dropped any frames
3748	 */
3749	if (drops) {
3750		/* Suspend the TX queue and get ready to send the BAR */
3751		ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3752		ath_tx_tid_bar_suspend(sc, atid);
3753		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3754	}
3755
3756	DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3757	    "%s: txa_start now %d\n", __func__, tap->txa_start);
3758
3759	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3760
3761	/* Prepend all frames to the beginning of the queue */
3762	while ((bf = TAILQ_LAST(&bf_q, ath_bufhead_s)) != NULL) {
3763		TAILQ_REMOVE(&bf_q, bf, bf_list);
3764		ATH_TXQ_INSERT_HEAD(atid, bf, bf_list);
3765	}
3766
3767	/*
3768	 * Reschedule to grab some further frames.
3769	 */
3770	ath_tx_tid_sched(sc, atid);
3771
3772	/*
3773	 * Send BAR if required
3774	 */
3775	if (ath_tx_tid_bar_tx_ready(sc, atid))
3776		ath_tx_tid_bar_tx(sc, atid);
3777
3778	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3779
3780	/* Do deferred completion */
3781	while ((bf = TAILQ_FIRST(&bf_cq)) != NULL) {
3782		TAILQ_REMOVE(&bf_cq, bf, bf_list);
3783		ath_tx_default_comp(sc, bf, 0);
3784	}
3785}
3786
3787/*
3788 * Handle completion of unaggregated frames in an ADDBA
3789 * session.
3790 *
3791 * Fail is set to 1 if the entry is being freed via a call to
3792 * ath_tx_draintxq().
3793 */
3794static void
3795ath_tx_aggr_comp_unaggr(struct ath_softc *sc, struct ath_buf *bf, int fail)
3796{
3797	struct ieee80211_node *ni = bf->bf_node;
3798	struct ath_node *an = ATH_NODE(ni);
3799	int tid = bf->bf_state.bfs_tid;
3800	struct ath_tid *atid = &an->an_tid[tid];
3801	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3802
3803	/*
3804	 * Update rate control status here, before we possibly
3805	 * punt to retry or cleanup.
3806	 *
3807	 * Do it outside of the TXQ lock.
3808	 */
3809	if (fail == 0 && ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0))
3810		ath_tx_update_ratectrl(sc, ni, bf->bf_state.bfs_rc,
3811		    &bf->bf_status.ds_txstat,
3812		    bf->bf_state.bfs_pktlen,
3813		    1, (ts->ts_status == 0) ? 0 : 1);
3814
3815	/*
3816	 * This is called early so atid->hwq_depth can be tracked.
3817	 * This unfortunately means that it's released and regrabbed
3818	 * during retry and cleanup. That's rather inefficient.
3819	 */
3820	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
3821
3822	if (tid == IEEE80211_NONQOS_TID)
3823		device_printf(sc->sc_dev, "%s: TID=16!\n", __func__);
3824
3825	DPRINTF(sc, ATH_DEBUG_SW_TX,
3826	    "%s: bf=%p: tid=%d, hwq_depth=%d, seqno=%d\n",
3827	    __func__, bf, bf->bf_state.bfs_tid, atid->hwq_depth,
3828	    SEQNO(bf->bf_state.bfs_seqno));
3829
3830	atid->hwq_depth--;
3831	if (atid->hwq_depth < 0)
3832		device_printf(sc->sc_dev, "%s: hwq_depth < 0: %d\n",
3833		    __func__, atid->hwq_depth);
3834
3835	/*
3836	 * If a cleanup is in progress, punt to comp_cleanup;
3837	 * rather than handling it here. It's thus their
3838	 * responsibility to clean up, call the completion
3839	 * function in net80211, etc.
3840	 */
3841	if (atid->cleanup_inprogress) {
3842		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3843		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: cleanup_unaggr\n",
3844		    __func__);
3845		ath_tx_comp_cleanup_unaggr(sc, bf);
3846		return;
3847	}
3848
3849	/*
3850	 * Don't bother with the retry check if all frames
3851	 * are being failed (eg during queue deletion.)
3852	 */
3853#if 0
3854	if (fail == 0 && ts->ts_status & HAL_TXERR_XRETRY) {
3855#endif
3856	if (fail == 0 && ts->ts_status != 0) {
3857		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3858		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: retry_unaggr\n",
3859		    __func__);
3860		ath_tx_aggr_retry_unaggr(sc, bf);
3861		return;
3862	}
3863
3864	/* Success? Complete */
3865	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: TID=%d, seqno %d\n",
3866	    __func__, tid, SEQNO(bf->bf_state.bfs_seqno));
3867	if (bf->bf_state.bfs_dobaw) {
3868		ath_tx_update_baw(sc, an, atid, bf);
3869		bf->bf_state.bfs_dobaw = 0;
3870		if (! bf->bf_state.bfs_addedbaw)
3871			device_printf(sc->sc_dev,
3872			    "%s: wasn't added: seqno %d\n",
3873			    __func__, SEQNO(bf->bf_state.bfs_seqno));
3874	}
3875
3876	/*
3877	 * Send BAR if required
3878	 */
3879	if (ath_tx_tid_bar_tx_ready(sc, atid))
3880		ath_tx_tid_bar_tx(sc, atid);
3881
3882	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
3883
3884	ath_tx_default_comp(sc, bf, fail);
3885	/* bf is freed at this point */
3886}
3887
3888void
3889ath_tx_aggr_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3890{
3891	if (bf->bf_state.bfs_aggr)
3892		ath_tx_aggr_comp_aggr(sc, bf, fail);
3893	else
3894		ath_tx_aggr_comp_unaggr(sc, bf, fail);
3895}
3896
3897/*
3898 * Schedule some packets from the given node/TID to the hardware.
3899 *
3900 * This is the aggregate version.
3901 */
3902void
3903ath_tx_tid_hw_queue_aggr(struct ath_softc *sc, struct ath_node *an,
3904    struct ath_tid *tid)
3905{
3906	struct ath_buf *bf;
3907	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
3908	struct ieee80211_tx_ampdu *tap;
3909	struct ieee80211_node *ni = &an->an_node;
3910	ATH_AGGR_STATUS status;
3911	ath_bufhead bf_q;
3912
3913	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d\n", __func__, tid->tid);
3914	ATH_TXQ_LOCK_ASSERT(txq);
3915
3916	tap = ath_tx_get_tx_tid(an, tid->tid);
3917
3918	if (tid->tid == IEEE80211_NONQOS_TID)
3919		device_printf(sc->sc_dev, "%s: called for TID=NONQOS_TID?\n",
3920		    __func__);
3921
3922	for (;;) {
3923		status = ATH_AGGR_DONE;
3924
3925		/*
3926		 * If the upper layer has paused the TID, don't
3927		 * queue any further packets.
3928		 *
3929		 * This can also occur from the completion task because
3930		 * of packet loss; but as its serialised with this code,
3931		 * it won't "appear" half way through queuing packets.
3932		 */
3933		if (tid->paused)
3934			break;
3935
3936		bf = TAILQ_FIRST(&tid->axq_q);
3937		if (bf == NULL) {
3938			break;
3939		}
3940
3941		/*
3942		 * If the packet doesn't fall within the BAW (eg a NULL
3943		 * data frame), schedule it directly; continue.
3944		 */
3945		if (! bf->bf_state.bfs_dobaw) {
3946			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3947			    "%s: non-baw packet\n",
3948			    __func__);
3949			ATH_TXQ_REMOVE(tid, bf, bf_list);
3950			bf->bf_state.bfs_aggr = 0;
3951			ath_tx_do_ratelookup(sc, bf);
3952			ath_tx_calc_duration(sc, bf);
3953			ath_tx_calc_protection(sc, bf);
3954			ath_tx_set_rtscts(sc, bf);
3955			ath_tx_rate_fill_rcflags(sc, bf);
3956			ath_tx_setds(sc, bf);
3957			ath_tx_chaindesclist(sc, bf);
3958			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
3959			ath_tx_set_ratectrl(sc, ni, bf);
3960
3961			sc->sc_aggr_stats.aggr_nonbaw_pkt++;
3962
3963			/* Queue the packet; continue */
3964			goto queuepkt;
3965		}
3966
3967		TAILQ_INIT(&bf_q);
3968
3969		/*
3970		 * Do a rate control lookup on the first frame in the
3971		 * list. The rate control code needs that to occur
3972		 * before it can determine whether to TX.
3973		 * It's inaccurate because the rate control code doesn't
3974		 * really "do" aggregate lookups, so it only considers
3975		 * the size of the first frame.
3976		 */
3977		ath_tx_do_ratelookup(sc, bf);
3978		bf->bf_state.bfs_rc[3].rix = 0;
3979		bf->bf_state.bfs_rc[3].tries = 0;
3980
3981		ath_tx_calc_duration(sc, bf);
3982		ath_tx_calc_protection(sc, bf);
3983
3984		ath_tx_set_rtscts(sc, bf);
3985		ath_tx_rate_fill_rcflags(sc, bf);
3986
3987		status = ath_tx_form_aggr(sc, an, tid, &bf_q);
3988
3989		DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
3990		    "%s: ath_tx_form_aggr() status=%d\n", __func__, status);
3991
3992		/*
3993		 * No frames to be picked up - out of BAW
3994		 */
3995		if (TAILQ_EMPTY(&bf_q))
3996			break;
3997
3998		/*
3999		 * This assumes that the descriptor list in the ath_bufhead
4000		 * are already linked together via bf_next pointers.
4001		 */
4002		bf = TAILQ_FIRST(&bf_q);
4003
4004		if (status == ATH_AGGR_8K_LIMITED)
4005			sc->sc_aggr_stats.aggr_rts_aggr_limited++;
4006
4007		/*
4008		 * If it's the only frame send as non-aggregate
4009		 * assume that ath_tx_form_aggr() has checked
4010		 * whether it's in the BAW and added it appropriately.
4011		 */
4012		if (bf->bf_state.bfs_nframes == 1) {
4013			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4014			    "%s: single-frame aggregate\n", __func__);
4015			bf->bf_state.bfs_aggr = 0;
4016			ath_tx_setds(sc, bf);
4017			ath_tx_chaindesclist(sc, bf);
4018			ath_hal_clr11n_aggr(sc->sc_ah, bf->bf_desc);
4019			ath_tx_set_ratectrl(sc, ni, bf);
4020			if (status == ATH_AGGR_BAW_CLOSED)
4021				sc->sc_aggr_stats.aggr_baw_closed_single_pkt++;
4022			else
4023				sc->sc_aggr_stats.aggr_single_pkt++;
4024		} else {
4025			DPRINTF(sc, ATH_DEBUG_SW_TX_AGGR,
4026			    "%s: multi-frame aggregate: %d frames, "
4027			    "length %d\n",
4028			     __func__, bf->bf_state.bfs_nframes,
4029			    bf->bf_state.bfs_al);
4030			bf->bf_state.bfs_aggr = 1;
4031			sc->sc_aggr_stats.aggr_pkts[bf->bf_state.bfs_nframes]++;
4032			sc->sc_aggr_stats.aggr_aggr_pkt++;
4033
4034			/*
4035			 * Calculate the duration/protection as required.
4036			 */
4037			ath_tx_calc_duration(sc, bf);
4038			ath_tx_calc_protection(sc, bf);
4039
4040			/*
4041			 * Update the rate and rtscts information based on the
4042			 * rate decision made by the rate control code;
4043			 * the first frame in the aggregate needs it.
4044			 */
4045			ath_tx_set_rtscts(sc, bf);
4046
4047			/*
4048			 * Setup the relevant descriptor fields
4049			 * for aggregation. The first descriptor
4050			 * already points to the rest in the chain.
4051			 */
4052			ath_tx_setds_11n(sc, bf);
4053
4054			/*
4055			 * setup first desc with rate and aggr info
4056			 */
4057			ath_tx_set_ratectrl(sc, ni, bf);
4058		}
4059	queuepkt:
4060		//txq = bf->bf_state.bfs_txq;
4061
4062		/* Set completion handler, multi-frame aggregate or not */
4063		bf->bf_comp = ath_tx_aggr_comp;
4064
4065		if (bf->bf_state.bfs_tid == IEEE80211_NONQOS_TID)
4066		    device_printf(sc->sc_dev, "%s: TID=16?\n", __func__);
4067
4068		/* Punt to txq */
4069		ath_tx_handoff(sc, txq, bf);
4070
4071		/* Track outstanding buffer count to hardware */
4072		/* aggregates are "one" buffer */
4073		tid->hwq_depth++;
4074
4075		/*
4076		 * Break out if ath_tx_form_aggr() indicated
4077		 * there can't be any further progress (eg BAW is full.)
4078		 * Checking for an empty txq is done above.
4079		 *
4080		 * XXX locking on txq here?
4081		 */
4082		if (txq->axq_aggr_depth >= sc->sc_hwq_limit ||
4083		    status == ATH_AGGR_BAW_CLOSED)
4084			break;
4085	}
4086}
4087
4088/*
4089 * Schedule some packets from the given node/TID to the hardware.
4090 */
4091void
4092ath_tx_tid_hw_queue_norm(struct ath_softc *sc, struct ath_node *an,
4093    struct ath_tid *tid)
4094{
4095	struct ath_buf *bf;
4096	struct ath_txq *txq = sc->sc_ac2q[tid->ac];
4097	struct ieee80211_node *ni = &an->an_node;
4098
4099	DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: node %p: TID %d: called\n",
4100	    __func__, an, tid->tid);
4101
4102	ATH_TXQ_LOCK_ASSERT(txq);
4103
4104	/* Check - is AMPDU pending or running? then print out something */
4105	if (ath_tx_ampdu_pending(sc, an, tid->tid))
4106		device_printf(sc->sc_dev, "%s: tid=%d, ampdu pending?\n",
4107		    __func__, tid->tid);
4108	if (ath_tx_ampdu_running(sc, an, tid->tid))
4109		device_printf(sc->sc_dev, "%s: tid=%d, ampdu running?\n",
4110		    __func__, tid->tid);
4111
4112	for (;;) {
4113
4114		/*
4115		 * If the upper layers have paused the TID, don't
4116		 * queue any further packets.
4117		 */
4118		if (tid->paused)
4119			break;
4120
4121		bf = TAILQ_FIRST(&tid->axq_q);
4122		if (bf == NULL) {
4123			break;
4124		}
4125
4126		ATH_TXQ_REMOVE(tid, bf, bf_list);
4127
4128		KASSERT(txq == bf->bf_state.bfs_txq, ("txqs not equal!\n"));
4129
4130		/* Sanity check! */
4131		if (tid->tid != bf->bf_state.bfs_tid) {
4132			device_printf(sc->sc_dev, "%s: bfs_tid %d !="
4133			    " tid %d\n",
4134			    __func__, bf->bf_state.bfs_tid, tid->tid);
4135		}
4136		/* Normal completion handler */
4137		bf->bf_comp = ath_tx_normal_comp;
4138
4139		/* Program descriptors + rate control */
4140		ath_tx_do_ratelookup(sc, bf);
4141		ath_tx_calc_duration(sc, bf);
4142		ath_tx_calc_protection(sc, bf);
4143		ath_tx_set_rtscts(sc, bf);
4144		ath_tx_rate_fill_rcflags(sc, bf);
4145		ath_tx_setds(sc, bf);
4146		ath_tx_chaindesclist(sc, bf);
4147		ath_tx_set_ratectrl(sc, ni, bf);
4148
4149		/* Track outstanding buffer count to hardware */
4150		/* aggregates are "one" buffer */
4151		tid->hwq_depth++;
4152
4153		/* Punt to hardware or software txq */
4154		ath_tx_handoff(sc, txq, bf);
4155	}
4156}
4157
4158/*
4159 * Schedule some packets to the given hardware queue.
4160 *
4161 * This function walks the list of TIDs (ie, ath_node TIDs
4162 * with queued traffic) and attempts to schedule traffic
4163 * from them.
4164 *
4165 * TID scheduling is implemented as a FIFO, with TIDs being
4166 * added to the end of the queue after some frames have been
4167 * scheduled.
4168 */
4169void
4170ath_txq_sched(struct ath_softc *sc, struct ath_txq *txq)
4171{
4172	struct ath_tid *tid, *next, *last;
4173
4174	ATH_TXQ_LOCK_ASSERT(txq);
4175
4176	/*
4177	 * Don't schedule if the hardware queue is busy.
4178	 * This (hopefully) gives some more time to aggregate
4179	 * some packets in the aggregation queue.
4180	 */
4181	if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
4182		sc->sc_aggr_stats.aggr_sched_nopkt++;
4183		return;
4184	}
4185
4186	last = TAILQ_LAST(&txq->axq_tidq, axq_t_s);
4187
4188	TAILQ_FOREACH_SAFE(tid, &txq->axq_tidq, axq_qelem, next) {
4189		/*
4190		 * Suspend paused queues here; they'll be resumed
4191		 * once the addba completes or times out.
4192		 */
4193		DPRINTF(sc, ATH_DEBUG_SW_TX, "%s: tid=%d, paused=%d\n",
4194		    __func__, tid->tid, tid->paused);
4195		ath_tx_tid_unsched(sc, tid);
4196		if (tid->paused) {
4197			continue;
4198		}
4199		if (ath_tx_ampdu_running(sc, tid->an, tid->tid))
4200			ath_tx_tid_hw_queue_aggr(sc, tid->an, tid);
4201		else
4202			ath_tx_tid_hw_queue_norm(sc, tid->an, tid);
4203
4204		/* Not empty? Re-schedule */
4205		if (tid->axq_depth != 0)
4206			ath_tx_tid_sched(sc, tid);
4207
4208		/* Give the software queue time to aggregate more packets */
4209		if (txq->axq_aggr_depth >= sc->sc_hwq_limit) {
4210			break;
4211		}
4212
4213		/*
4214		 * If this was the last entry on the original list, stop.
4215		 * Otherwise nodes that have been rescheduled onto the end
4216		 * of the TID FIFO list will just keep being rescheduled.
4217		 */
4218		if (tid == last)
4219			break;
4220	}
4221}
4222
4223/*
4224 * TX addba handling
4225 */
4226
4227/*
4228 * Return net80211 TID struct pointer, or NULL for none
4229 */
4230struct ieee80211_tx_ampdu *
4231ath_tx_get_tx_tid(struct ath_node *an, int tid)
4232{
4233	struct ieee80211_node *ni = &an->an_node;
4234	struct ieee80211_tx_ampdu *tap;
4235
4236	if (tid == IEEE80211_NONQOS_TID)
4237		return NULL;
4238
4239	tap = &ni->ni_tx_ampdu[tid];
4240	return tap;
4241}
4242
4243/*
4244 * Is AMPDU-TX running?
4245 */
4246static int
4247ath_tx_ampdu_running(struct ath_softc *sc, struct ath_node *an, int tid)
4248{
4249	struct ieee80211_tx_ampdu *tap;
4250
4251	if (tid == IEEE80211_NONQOS_TID)
4252		return 0;
4253
4254	tap = ath_tx_get_tx_tid(an, tid);
4255	if (tap == NULL)
4256		return 0;	/* Not valid; default to not running */
4257
4258	return !! (tap->txa_flags & IEEE80211_AGGR_RUNNING);
4259}
4260
4261/*
4262 * Is AMPDU-TX negotiation pending?
4263 */
4264static int
4265ath_tx_ampdu_pending(struct ath_softc *sc, struct ath_node *an, int tid)
4266{
4267	struct ieee80211_tx_ampdu *tap;
4268
4269	if (tid == IEEE80211_NONQOS_TID)
4270		return 0;
4271
4272	tap = ath_tx_get_tx_tid(an, tid);
4273	if (tap == NULL)
4274		return 0;	/* Not valid; default to not pending */
4275
4276	return !! (tap->txa_flags & IEEE80211_AGGR_XCHGPEND);
4277}
4278
4279/*
4280 * Is AMPDU-TX pending for the given TID?
4281 */
4282
4283
4284/*
4285 * Method to handle sending an ADDBA request.
4286 *
4287 * We tap this so the relevant flags can be set to pause the TID
4288 * whilst waiting for the response.
4289 *
4290 * XXX there's no timeout handler we can override?
4291 */
4292int
4293ath_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4294    int dialogtoken, int baparamset, int batimeout)
4295{
4296	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4297	int tid = tap->txa_tid;
4298	struct ath_node *an = ATH_NODE(ni);
4299	struct ath_tid *atid = &an->an_tid[tid];
4300
4301	/*
4302	 * XXX danger Will Robinson!
4303	 *
4304	 * Although the taskqueue may be running and scheduling some more
4305	 * packets, these should all be _before_ the addba sequence number.
4306	 * However, net80211 will keep self-assigning sequence numbers
4307	 * until addba has been negotiated.
4308	 *
4309	 * In the past, these packets would be "paused" (which still works
4310	 * fine, as they're being scheduled to the driver in the same
4311	 * serialised method which is calling the addba request routine)
4312	 * and when the aggregation session begins, they'll be dequeued
4313	 * as aggregate packets and added to the BAW. However, now there's
4314	 * a "bf->bf_state.bfs_dobaw" flag, and this isn't set for these
4315	 * packets. Thus they never get included in the BAW tracking and
4316	 * this can cause the initial burst of packets after the addba
4317	 * negotiation to "hang", as they quickly fall outside the BAW.
4318	 *
4319	 * The "eventual" solution should be to tag these packets with
4320	 * dobaw. Although net80211 has given us a sequence number,
4321	 * it'll be "after" the left edge of the BAW and thus it'll
4322	 * fall within it.
4323	 */
4324	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4325	ath_tx_tid_pause(sc, atid);
4326	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4327
4328	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4329	    "%s: called; dialogtoken=%d, baparamset=%d, batimeout=%d\n",
4330	    __func__, dialogtoken, baparamset, batimeout);
4331	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4332	    "%s: txa_start=%d, ni_txseqs=%d\n",
4333	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
4334
4335	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
4336	    batimeout);
4337}
4338
4339/*
4340 * Handle an ADDBA response.
4341 *
4342 * We unpause the queue so TX'ing can resume.
4343 *
4344 * Any packets TX'ed from this point should be "aggregate" (whether
4345 * aggregate or not) so the BAW is updated.
4346 *
4347 * Note! net80211 keeps self-assigning sequence numbers until
4348 * ampdu is negotiated. This means the initially-negotiated BAW left
4349 * edge won't match the ni->ni_txseq.
4350 *
4351 * So, being very dirty, the BAW left edge is "slid" here to match
4352 * ni->ni_txseq.
4353 *
4354 * What likely SHOULD happen is that all packets subsequent to the
4355 * addba request should be tagged as aggregate and queued as non-aggregate
4356 * frames; thus updating the BAW. For now though, I'll just slide the
4357 * window.
4358 */
4359int
4360ath_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4361    int status, int code, int batimeout)
4362{
4363	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4364	int tid = tap->txa_tid;
4365	struct ath_node *an = ATH_NODE(ni);
4366	struct ath_tid *atid = &an->an_tid[tid];
4367	int r;
4368
4369	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4370	    "%s: called; status=%d, code=%d, batimeout=%d\n", __func__,
4371	    status, code, batimeout);
4372
4373	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4374	    "%s: txa_start=%d, ni_txseqs=%d\n",
4375	    __func__, tap->txa_start, ni->ni_txseqs[tid]);
4376
4377	/*
4378	 * Call this first, so the interface flags get updated
4379	 * before the TID is unpaused. Otherwise a race condition
4380	 * exists where the unpaused TID still doesn't yet have
4381	 * IEEE80211_AGGR_RUNNING set.
4382	 */
4383	r = sc->sc_addba_response(ni, tap, status, code, batimeout);
4384
4385	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4386	/*
4387	 * XXX dirty!
4388	 * Slide the BAW left edge to wherever net80211 left it for us.
4389	 * Read above for more information.
4390	 */
4391	tap->txa_start = ni->ni_txseqs[tid];
4392	ath_tx_tid_resume(sc, atid);
4393	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4394	return r;
4395}
4396
4397
4398/*
4399 * Stop ADDBA on a queue.
4400 */
4401void
4402ath_addba_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
4403{
4404	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4405	int tid = tap->txa_tid;
4406	struct ath_node *an = ATH_NODE(ni);
4407	struct ath_tid *atid = &an->an_tid[tid];
4408
4409	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL, "%s: called\n", __func__);
4410
4411	/* Pause TID traffic early, so there aren't any races */
4412	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4413	ath_tx_tid_pause(sc, atid);
4414	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4415
4416	/* There's no need to hold the TXQ lock here */
4417	sc->sc_addba_stop(ni, tap);
4418
4419	/*
4420	 * ath_tx_cleanup will resume the TID if possible, otherwise
4421	 * it'll set the cleanup flag, and it'll be unpaused once
4422	 * things have been cleaned up.
4423	 */
4424	ath_tx_cleanup(sc, an, tid);
4425}
4426
4427/*
4428 * Note: net80211 bar_timeout() doesn't call this function on BAR failure;
4429 * it simply tears down the aggregation session. Ew.
4430 *
4431 * It however will call ieee80211_ampdu_stop() which will call
4432 * ic->ic_addba_stop().
4433 *
4434 * XXX This uses a hard-coded max BAR count value; the whole
4435 * XXX BAR TX success or failure should be better handled!
4436 */
4437void
4438ath_bar_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
4439    int status)
4440{
4441	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4442	int tid = tap->txa_tid;
4443	struct ath_node *an = ATH_NODE(ni);
4444	struct ath_tid *atid = &an->an_tid[tid];
4445	int attempts = tap->txa_attempts;
4446
4447	DPRINTF(sc, ATH_DEBUG_SW_TX_BAR,
4448	    "%s: called; status=%d, attempts=%d\n",
4449	    __func__,
4450	    status,
4451	    attempts);
4452
4453	/* Note: This may update the BAW details */
4454	sc->sc_bar_response(ni, tap, status);
4455
4456	/* Unpause the TID */
4457	/*
4458	 * XXX if this is attempt=50, the TID will be downgraded
4459	 * XXX to a non-aggregate session. So we must unpause the
4460	 * XXX TID here or it'll never be done.
4461	 */
4462	if (status == 0 || attempts == 50) {
4463		ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4464		ath_tx_tid_bar_unsuspend(sc, atid);
4465		ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4466	}
4467}
4468
4469/*
4470 * This is called whenever the pending ADDBA request times out.
4471 * Unpause and reschedule the TID.
4472 */
4473void
4474ath_addba_response_timeout(struct ieee80211_node *ni,
4475    struct ieee80211_tx_ampdu *tap)
4476{
4477	struct ath_softc *sc = ni->ni_ic->ic_ifp->if_softc;
4478	int tid = tap->txa_tid;
4479	struct ath_node *an = ATH_NODE(ni);
4480	struct ath_tid *atid = &an->an_tid[tid];
4481
4482	DPRINTF(sc, ATH_DEBUG_SW_TX_CTRL,
4483	    "%s: called; resuming\n", __func__);
4484
4485	/* Note: This updates the aggregate state to (again) pending */
4486	sc->sc_addba_response_timeout(ni, tap);
4487
4488	/* Unpause the TID; which reschedules it */
4489	ATH_TXQ_LOCK(sc->sc_ac2q[atid->ac]);
4490	ath_tx_tid_resume(sc, atid);
4491	ATH_TXQ_UNLOCK(sc->sc_ac2q[atid->ac]);
4492}
4493