ar5212_reset.c revision 207472
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5212/ar5212_reset.c 207472 2010-05-01 16:36:14Z imp $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24
25#include "ar5212/ar5212.h"
26#include "ar5212/ar5212reg.h"
27#include "ar5212/ar5212phy.h"
28
29#include "ah_eeprom_v3.h"
30
31/* Additional Time delay to wait after activiting the Base band */
32#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
33#define PLL_SETTLE_DELAY	300	/* 300 usec */
34
35static HAL_BOOL ar5212SetResetReg(struct ath_hal *, uint32_t resetMask);
36/* NB: public for 5312 use */
37HAL_BOOL	ar5212IsSpurChannel(struct ath_hal *,
38		    const struct ieee80211_channel *);
39HAL_BOOL	ar5212ChannelChange(struct ath_hal *,
40		    const struct ieee80211_channel *);
41int16_t		ar5212GetNf(struct ath_hal *, struct ieee80211_channel *);
42HAL_BOOL	ar5212SetBoardValues(struct ath_hal *,
43		    const struct ieee80211_channel *);
44void		ar5212SetDeltaSlope(struct ath_hal *,
45		    const struct ieee80211_channel *);
46HAL_BOOL	ar5212SetTransmitPower(struct ath_hal *ah,
47		   const struct ieee80211_channel *chan, uint16_t *rfXpdGain);
48static HAL_BOOL ar5212SetRateTable(struct ath_hal *,
49		   const struct ieee80211_channel *, int16_t tpcScaleReduction,
50		   int16_t powerLimit,
51		   HAL_BOOL commit, int16_t *minPower, int16_t *maxPower);
52static void ar5212CorrectGainDelta(struct ath_hal *, int twiceOfdmCckDelta);
53static void ar5212GetTargetPowers(struct ath_hal *,
54		   const struct ieee80211_channel *,
55		   const TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
56		   TRGT_POWER_INFO *pNewPower);
57static uint16_t ar5212GetMaxEdgePower(uint16_t channel,
58		   const RD_EDGES_POWER  *pRdEdgesPower);
59void		ar5212SetRateDurationTable(struct ath_hal *,
60		    const struct ieee80211_channel *);
61void		ar5212SetIFSTiming(struct ath_hal *,
62		    const struct ieee80211_channel *);
63
64/* NB: public for RF backend use */
65void		ar5212GetLowerUpperValues(uint16_t value,
66		   uint16_t *pList, uint16_t listSize,
67		   uint16_t *pLowerValue, uint16_t *pUpperValue);
68void		ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
69		   uint32_t numBits, uint32_t firstBit, uint32_t column);
70
71static int
72write_common(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
73	HAL_BOOL bChannelChange, int writes)
74{
75#define IS_NO_RESET_TIMER_ADDR(x)                      \
76    ( (((x) >= AR_BEACON) && ((x) <= AR_CFP_DUR)) || \
77      (((x) >= AR_SLEEP1) && ((x) <= AR_SLEEP3)))
78#define	V(r, c)	(ia)->data[((r)*(ia)->cols) + (c)]
79	int r;
80
81	/* Write Common Array Parameters */
82	for (r = 0; r < ia->rows; r++) {
83		uint32_t reg = V(r, 0);
84		/* XXX timer/beacon setup registers? */
85		/* On channel change, don't reset the PCU registers */
86		if (!(bChannelChange && IS_NO_RESET_TIMER_ADDR(reg))) {
87			OS_REG_WRITE(ah, reg, V(r, 1));
88			DMA_YIELD(writes);
89		}
90	}
91	return writes;
92#undef IS_NO_RESET_TIMER_ADDR
93#undef V
94}
95
96#define IS_DISABLE_FAST_ADC_CHAN(x) (((x) == 2462) || ((x) == 2467))
97
98/*
99 * Places the device in and out of reset and then places sane
100 * values in the registers based on EEPROM config, initialization
101 * vectors (as determined by the mode), and station configuration
102 *
103 * bChannelChange is used to preserve DMA/PCU registers across
104 * a HW Reset during channel change.
105 */
106HAL_BOOL
107ar5212Reset(struct ath_hal *ah, HAL_OPMODE opmode,
108	struct ieee80211_channel *chan,
109	HAL_BOOL bChannelChange, HAL_STATUS *status)
110{
111#define	N(a)	(sizeof (a) / sizeof (a[0]))
112#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
113	struct ath_hal_5212 *ahp = AH5212(ah);
114	HAL_CHANNEL_INTERNAL *ichan = AH_NULL;
115	const HAL_EEPROM *ee;
116	uint32_t softLedCfg, softLedState;
117	uint32_t saveFrameSeqCount, saveDefAntenna, saveLedState;
118	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
119	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
120	int16_t cckOfdmPwrDelta = 0;
121	u_int modesIndex, freqIndex;
122	HAL_STATUS ecode;
123	int i, regWrites;
124	uint32_t testReg, powerVal;
125	int8_t twiceAntennaGain, twiceAntennaReduction;
126	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
127	HAL_BOOL isBmode = AH_FALSE;
128
129	HALASSERT(ah->ah_magic == AR5212_MAGIC);
130	ee = AH_PRIVATE(ah)->ah_eeprom;
131
132	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
133
134	/* Bring out of sleep mode */
135	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
136		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
137		    __func__);
138		FAIL(HAL_EIO);
139	}
140
141	/*
142	 * Map public channel to private.
143	 */
144	ichan = ath_hal_checkchannel(ah, chan);
145	if (ichan == AH_NULL)
146		FAIL(HAL_EINVAL);
147	switch (opmode) {
148	case HAL_M_STA:
149	case HAL_M_IBSS:
150	case HAL_M_HOSTAP:
151	case HAL_M_MONITOR:
152		break;
153	default:
154		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
155		    __func__, opmode);
156		FAIL(HAL_EINVAL);
157		break;
158	}
159	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
160
161	SAVE_CCK(ah, chan, isBmode);
162
163	/* Preserve certain DMA hardware registers on a channel change */
164	if (bChannelChange) {
165		/*
166		 * On Venice, the TSF is almost preserved across a reset;
167		 * it requires doubling writes to the RESET_TSF
168		 * bit in the AR_BEACON register; it also has the quirk
169		 * of the TSF going back in time on the station (station
170		 * latches onto the last beacon's tsf during a reset 50%
171		 * of the times); the latter is not a problem for adhoc
172		 * stations since as long as the TSF is behind, it will
173		 * get resynchronized on receiving the next beacon; the
174		 * TSF going backwards in time could be a problem for the
175		 * sleep operation (supported on infrastructure stations
176		 * only) - the best and most general fix for this situation
177		 * is to resynchronize the various sleep/beacon timers on
178		 * the receipt of the next beacon i.e. when the TSF itself
179		 * gets resynchronized to the AP's TSF - power save is
180		 * needed to be temporarily disabled until that time
181		 *
182		 * Need to save the sequence number to restore it after
183		 * the reset!
184		 */
185		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
186	} else
187		saveFrameSeqCount = 0;		/* NB: silence compiler */
188#if 0
189	/*
190	 * XXX disable for now; this appears to sometimes cause OFDM
191	 * XXX timing error floods when ani is enabled and bg scanning
192	 * XXX kicks in
193	 */
194	/* If the channel change is across the same mode - perform a fast channel change */
195	if (IS_2413(ah) || IS_5413(ah)) {
196		/*
197		 * Fast channel change can only be used when:
198		 *  -channel change requested - so it's not the initial reset.
199		 *  -it's not a change to the current channel -
200		 *	often called when switching modes on a channel
201		 *  -the modes of the previous and requested channel are the
202		 *	same
203		 * XXX opmode shouldn't change either?
204		 */
205		if (bChannelChange &&
206		    (AH_PRIVATE(ah)->ah_curchan != AH_NULL) &&
207		    (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
208		    ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
209		     (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
210			if (ar5212ChannelChange(ah, chan)) {
211				/* If ChannelChange completed - skip the rest of reset */
212				/* XXX ani? */
213				goto done;
214			}
215		}
216	}
217#endif
218	/*
219	 * Preserve the antenna on a channel change
220	 */
221	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
222	if (saveDefAntenna == 0)		/* XXX magic constants */
223		saveDefAntenna = 1;
224
225	/* Save hardware flag before chip reset clears the register */
226	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
227		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
228
229	/* Save led state from pci config register */
230	saveLedState = OS_REG_READ(ah, AR_PCICFG) &
231		(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
232		 AR_PCICFG_LEDSLOW);
233	softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
234	softLedState = OS_REG_READ(ah, AR_GPIODO);
235
236	ar5212RestoreClock(ah, opmode);		/* move to refclk operation */
237
238	/*
239	 * Adjust gain parameters before reset if
240	 * there's an outstanding gain updated.
241	 */
242	(void) ar5212GetRfgain(ah);
243
244	if (!ar5212ChipReset(ah, chan)) {
245		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
246		FAIL(HAL_EIO);
247	}
248
249	/* Setup the indices for the next set of register array writes */
250	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
251		freqIndex  = 2;
252		if (IEEE80211_IS_CHAN_108G(chan))
253			modesIndex = 5;
254		else if (IEEE80211_IS_CHAN_G(chan))
255			modesIndex = 4;
256		else if (IEEE80211_IS_CHAN_B(chan))
257			modesIndex = 3;
258		else {
259			HALDEBUG(ah, HAL_DEBUG_ANY,
260			    "%s: invalid channel %u/0x%x\n",
261			    __func__, chan->ic_freq, chan->ic_flags);
262			FAIL(HAL_EINVAL);
263		}
264	} else {
265		freqIndex  = 1;
266		if (IEEE80211_IS_CHAN_TURBO(chan))
267			modesIndex = 2;
268		else if (IEEE80211_IS_CHAN_A(chan))
269			modesIndex = 1;
270		else {
271			HALDEBUG(ah, HAL_DEBUG_ANY,
272			    "%s: invalid channel %u/0x%x\n",
273			    __func__, chan->ic_freq, chan->ic_flags);
274			FAIL(HAL_EINVAL);
275		}
276	}
277
278	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
279
280	/* Set correct Baseband to analog shift setting to access analog chips. */
281	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
282
283	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
284	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
285		regWrites);
286#ifdef AH_RXCFG_SDMAMW_4BYTES
287	/*
288	 * Nala doesn't work with 128 byte bursts on pb42(hydra) (ar71xx),
289	 * use 4 instead.  Enabling it on all platforms would hurt performance,
290	 * so we only enable it on the ones that are affected by it.
291	 */
292	OS_REG_WRITE(ah, AR_RXCFG, 0);
293#endif
294	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);
295
296	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
297
298	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
299		ar5212SetIFSTiming(ah, chan);
300		if (IS_5413(ah)) {
301			/*
302			 * Force window_length for 1/2 and 1/4 rate channels,
303			 * the ini file sets this to zero otherwise.
304			 */
305			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
306				AR_PHY_FRAME_CTL_WINLEN, 3);
307		}
308	}
309
310	/* Overwrite INI values for revised chipsets */
311	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
312		/* ADC_CTL */
313		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
314			SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
315			SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
316			AR_PHY_ADC_CTL_OFF_PWDDAC |
317			AR_PHY_ADC_CTL_OFF_PWDADC);
318
319		/* TX_PWR_ADJ */
320		if (ichan->channel == 2484) {
321			cckOfdmPwrDelta = SCALE_OC_DELTA(
322			    ee->ee_cckOfdmPwrDelta -
323			    ee->ee_scaledCh14FilterCckDelta);
324		} else {
325			cckOfdmPwrDelta = SCALE_OC_DELTA(
326			    ee->ee_cckOfdmPwrDelta);
327		}
328
329		if (IEEE80211_IS_CHAN_G(chan)) {
330		    OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
331			SM((ee->ee_cckOfdmPwrDelta*-1),
332			    AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
333			SM((cckOfdmPwrDelta*-1),
334			    AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
335		} else {
336			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
337		}
338
339		/* Add barker RSSI thresh enable as disabled */
340		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
341			AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
342		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
343			AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
344
345		/* Set the mute mask to the correct default */
346		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
347	}
348
349	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
350		/* Clear reg to alllow RX_CLEAR line debug */
351		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
352	}
353	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
354#ifdef notyet
355		/* Enable burst prefetch for the data queues */
356		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
357		/* Enable double-buffering */
358		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
359#endif
360	}
361
362	/* Set ADC/DAC select values */
363	OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
364
365	if (IS_5413(ah) || IS_2417(ah)) {
366		uint32_t newReg = 1;
367		if (IS_DISABLE_FAST_ADC_CHAN(ichan->channel))
368			newReg = 0;
369		/* As it's a clock changing register, only write when the value needs to be changed */
370		if (OS_REG_READ(ah, AR_PHY_FAST_ADC) != newReg)
371			OS_REG_WRITE(ah, AR_PHY_FAST_ADC, newReg);
372	}
373
374	/* Setup the transmit power values. */
375	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
376		HALDEBUG(ah, HAL_DEBUG_ANY,
377		    "%s: error init'ing transmit power\n", __func__);
378		FAIL(HAL_EIO);
379	}
380
381	/* Write the analog registers */
382	if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
383		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
384		    __func__);
385		FAIL(HAL_EIO);
386	}
387
388	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
389	if (IEEE80211_IS_CHAN_OFDM(chan)) {
390		if (IS_5413(ah) ||
391		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
392			ar5212SetSpurMitigation(ah, chan);
393		ar5212SetDeltaSlope(ah, chan);
394	}
395
396	/* Setup board specific options for EEPROM version 3 */
397	if (!ar5212SetBoardValues(ah, chan)) {
398		HALDEBUG(ah, HAL_DEBUG_ANY,
399		    "%s: error setting board options\n", __func__);
400		FAIL(HAL_EIO);
401	}
402
403	/* Restore certain DMA hardware registers on a channel change */
404	if (bChannelChange)
405		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);
406
407	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
408
409	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
410	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
411		| macStaId1
412		| AR_STA_ID1_RTS_USE_DEF
413		| ahp->ah_staId1Defaults
414	);
415	ar5212SetOperatingMode(ah, opmode);
416
417	/* Set Venice BSSID mask according to current state */
418	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
419	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
420
421	/* Restore previous led state */
422	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);
423
424	/* Restore soft Led state to GPIO */
425	OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
426	OS_REG_WRITE(ah, AR_GPIODO, softLedState);
427
428	/* Restore previous antenna */
429	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
430
431	/* then our BSSID */
432	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
433	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
434
435	/* Restore bmiss rssi & count thresholds */
436	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
437
438	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
439
440	if (!ar5212SetChannel(ah, chan))
441		FAIL(HAL_EIO);
442
443	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
444
445	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
446
447	ar5212SetRateDurationTable(ah, chan);
448
449	/* Set Tx frame start to tx data start delay */
450	if (IS_RAD5112_ANY(ah) &&
451	    (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
452		txFrm2TxDStart =
453			IEEE80211_IS_CHAN_HALF(chan) ?
454					TX_FRAME_D_START_HALF_RATE:
455					TX_FRAME_D_START_QUARTER_RATE;
456		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL,
457			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
458	}
459
460	/*
461	 * Setup fast diversity.
462	 * Fast diversity can be enabled or disabled via regadd.txt.
463	 * Default is enabled.
464	 * For reference,
465	 *    Disable: reg        val
466	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
467	 *             0x00009970 0x192bb514
468	 *             0x0000a208 0xd03e4648
469	 *
470	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
471	 *             0x00009970 0x192fb514
472	 *             0x0000a208 0xd03e6788
473	 */
474
475	/* XXX Setup pre PHY ENABLE EAR additions */
476	/*
477	 * Wait for the frequency synth to settle (synth goes on
478	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
479	 * Value is in 100ns increments.
480	 */
481	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
482	if (IEEE80211_IS_CHAN_B(chan)) {
483		synthDelay = (4 * synthDelay) / 22;
484	} else {
485		synthDelay /= 10;
486	}
487
488	/* Activate the PHY (includes baseband activate and synthesizer on) */
489	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
490
491	/*
492	 * There is an issue if the AP starts the calibration before
493	 * the base band timeout completes.  This could result in the
494	 * rx_clear false triggering.  As a workaround we add delay an
495	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
496	 * does not happen.
497	 */
498	if (IEEE80211_IS_CHAN_HALF(chan)) {
499		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
500	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
501		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
502	} else {
503		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
504	}
505
506	/*
507	 * The udelay method is not reliable with notebooks.
508	 * Need to check to see if the baseband is ready
509	 */
510	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
511	/* Selects the Tx hold */
512	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
513	i = 0;
514	while ((i++ < 20) &&
515	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
516	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);
517
518	/* Calibrate the AGC and start a NF calculation */
519	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
520		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
521		| AR_PHY_AGC_CONTROL_CAL
522		| AR_PHY_AGC_CONTROL_NF);
523
524	if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
525		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
526		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
527			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
528			INIT_IQCAL_LOG_COUNT_MAX);
529		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
530			AR_PHY_TIMING_CTRL4_DO_IQCAL);
531		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
532	} else
533		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
534
535	/* Setup compression registers */
536	ar5212SetCompRegs(ah);
537
538	/* Set 1:1 QCU to DCU mapping for all queues */
539	for (i = 0; i < AR_NUM_DCU; i++)
540		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
541
542	ahp->ah_intrTxqs = 0;
543	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
544		ar5212ResetTxQueue(ah, i);
545
546	/*
547	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
548	 * manipulates the secondary IMR's as queues are enabled
549	 * and disabled.  This is done with RMW ops to insure the
550	 * settings we make here are preserved.
551	 */
552	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
553			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
554			| AR_IMR_HIUERR
555			;
556	if (opmode == HAL_M_HOSTAP)
557		ahp->ah_maskReg |= AR_IMR_MIB;
558	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
559	/* Enable bus errors that are OR'd to set the HIUERR bit */
560	OS_REG_WRITE(ah, AR_IMR_S2,
561		OS_REG_READ(ah, AR_IMR_S2)
562		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
563
564	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
565		ar5212EnableRfKill(ah);
566
567	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
568		HALDEBUG(ah, HAL_DEBUG_ANY,
569		    "%s: offset calibration failed to complete in 1ms;"
570		    " noisy environment?\n", __func__);
571	}
572
573	/*
574	 * Set clocks back to 32kHz if they had been using refClk, then
575	 * use an external 32kHz crystal when sleeping, if one exists.
576	 */
577	ar5212SetupClock(ah, opmode);
578
579	/*
580	 * Writing to AR_BEACON will start timers. Hence it should
581	 * be the last register to be written. Do not reset tsf, do
582	 * not enable beacons at this point, but preserve other values
583	 * like beaconInterval.
584	 */
585	OS_REG_WRITE(ah, AR_BEACON,
586		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
587
588	/* XXX Setup post reset EAR additions */
589
590	/* QoS support */
591	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
592	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
593	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
594		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
595		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
596	}
597
598	/* Turn on NOACK Support for QoS packets */
599	OS_REG_WRITE(ah, AR_NOACK,
600		SM(2, AR_NOACK_2BIT_VALUE) |
601		SM(5, AR_NOACK_BIT_OFFSET) |
602		SM(0, AR_NOACK_BYTE_OFFSET));
603
604	/* Get Antenna Gain reduction */
605	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
606		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
607	} else {
608		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
609	}
610	twiceAntennaReduction =
611		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
612
613	/* TPC for self-generated frames */
614
615	ackTpcPow = MS(ahp->ah_macTPC, AR_TPC_ACK);
616	if ((ackTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
617		ackTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
618
619	if (ackTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
620		ackTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
621			+ ahp->ah_txPowerIndexOffset;
622
623	ctsTpcPow = MS(ahp->ah_macTPC, AR_TPC_CTS);
624	if ((ctsTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
625		ctsTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
626
627	if (ctsTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
628		ctsTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
629			+ ahp->ah_txPowerIndexOffset;
630
631	chirpTpcPow = MS(ahp->ah_macTPC, AR_TPC_CHIRP);
632	if ((chirpTpcPow-ahp->ah_txPowerIndexOffset) > chan->ic_maxpower)
633		chirpTpcPow = chan->ic_maxpower+ahp->ah_txPowerIndexOffset;
634
635	if (chirpTpcPow > (2*chan->ic_maxregpower - twiceAntennaReduction))
636		chirpTpcPow = (2*chan->ic_maxregpower - twiceAntennaReduction)
637			+ ahp->ah_txPowerIndexOffset;
638
639	if (ackTpcPow > 63)
640		ackTpcPow = 63;
641	if (ctsTpcPow > 63)
642		ctsTpcPow = 63;
643	if (chirpTpcPow > 63)
644		chirpTpcPow = 63;
645
646	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
647		SM(ctsTpcPow, AR_TPC_CTS) |
648		SM(chirpTpcPow, AR_TPC_CHIRP);
649
650	OS_REG_WRITE(ah, AR_TPC, powerVal);
651
652	/* Restore user-specified settings */
653	if (ahp->ah_miscMode != 0)
654		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
655	if (ahp->ah_sifstime != (u_int) -1)
656		ar5212SetSifsTime(ah, ahp->ah_sifstime);
657	if (ahp->ah_slottime != (u_int) -1)
658		ar5212SetSlotTime(ah, ahp->ah_slottime);
659	if (ahp->ah_acktimeout != (u_int) -1)
660		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
661	if (ahp->ah_ctstimeout != (u_int) -1)
662		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
663	if (AH_PRIVATE(ah)->ah_diagreg != 0)
664		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
665
666	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
667#if 0
668done:
669#endif
670	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
671		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
672
673	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
674
675	RESTORE_CCK(ah, chan, isBmode);
676
677	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
678
679	return AH_TRUE;
680bad:
681	RESTORE_CCK(ah, chan, isBmode);
682
683	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
684	if (status != AH_NULL)
685		*status = ecode;
686	return AH_FALSE;
687#undef FAIL
688#undef N
689}
690
691/*
692 * Call the rf backend to change the channel.
693 */
694HAL_BOOL
695ar5212SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
696{
697	struct ath_hal_5212 *ahp = AH5212(ah);
698
699	/* Change the synth */
700	if (!ahp->ah_rfHal->setChannel(ah, chan))
701		return AH_FALSE;
702	return AH_TRUE;
703}
704
705/*
706 * This channel change evaluates whether the selected hardware can
707 * perform a synthesizer-only channel change (no reset).  If the
708 * TX is not stopped, or the RFBus cannot be granted in the given
709 * time, the function returns false as a reset is necessary
710 */
711HAL_BOOL
712ar5212ChannelChange(struct ath_hal *ah, const struct ieee80211_channel *chan)
713{
714	uint32_t       ulCount;
715	uint32_t   data, synthDelay, qnum;
716	uint16_t   rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
717	HAL_BOOL    txStopped = AH_TRUE;
718	HAL_CHANNEL_INTERNAL *ichan;
719
720	/*
721	 * Map public channel to private.
722	 */
723	ichan = ath_hal_checkchannel(ah, chan);
724
725	/* TX must be stopped or RF Bus grant will not work */
726	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
727		if (ar5212NumTxPending(ah, qnum)) {
728			txStopped = AH_FALSE;
729			break;
730		}
731	}
732	if (!txStopped)
733		return AH_FALSE;
734
735	/* Kill last Baseband Rx Frame */
736	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); /* Request analog bus grant */
737	for (ulCount = 0; ulCount < 100; ulCount++) {
738		if (OS_REG_READ(ah, AR_PHY_RFBUS_GNT))
739			break;
740		OS_DELAY(5);
741	}
742	if (ulCount >= 100)
743		return AH_FALSE;
744
745	/* Change the synth */
746	if (!ar5212SetChannel(ah, chan))
747		return AH_FALSE;
748
749	/*
750	 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
751	 * Read the phy active delay register. Value is in 100ns increments.
752	 */
753	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
754	if (IEEE80211_IS_CHAN_B(chan)) {
755		synthDelay = (4 * data) / 22;
756	} else {
757		synthDelay = data / 10;
758	}
759	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
760
761	/* Setup the transmit power values. */
762	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
763		HALDEBUG(ah, HAL_DEBUG_ANY,
764		    "%s: error init'ing transmit power\n", __func__);
765		return AH_FALSE;
766	}
767
768	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
769	if (IEEE80211_IS_CHAN_OFDM(chan)) {
770		if (IS_5413(ah) ||
771		    AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
772			ar5212SetSpurMitigation(ah, chan);
773		ar5212SetDeltaSlope(ah, chan);
774	}
775
776	/* Release the RFBus Grant */
777	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
778
779	/* Start Noise Floor Cal */
780	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
781	return AH_TRUE;
782}
783
784void
785ar5212SetOperatingMode(struct ath_hal *ah, int opmode)
786{
787	uint32_t val;
788
789	val = OS_REG_READ(ah, AR_STA_ID1);
790	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
791	switch (opmode) {
792	case HAL_M_HOSTAP:
793		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
794					| AR_STA_ID1_KSRCH_MODE);
795		OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
796		break;
797	case HAL_M_IBSS:
798		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
799					| AR_STA_ID1_KSRCH_MODE);
800		OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
801		break;
802	case HAL_M_STA:
803	case HAL_M_MONITOR:
804		OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
805		break;
806	}
807}
808
809/*
810 * Places the PHY and Radio chips into reset.  A full reset
811 * must be called to leave this state.  The PCI/MAC/PCU are
812 * not placed into reset as we must receive interrupt to
813 * re-enable the hardware.
814 */
815HAL_BOOL
816ar5212PhyDisable(struct ath_hal *ah)
817{
818	return ar5212SetResetReg(ah, AR_RC_BB);
819}
820
821/*
822 * Places all of hardware into reset
823 */
824HAL_BOOL
825ar5212Disable(struct ath_hal *ah)
826{
827	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
828		return AH_FALSE;
829	/*
830	 * Reset the HW - PCI must be reset after the rest of the
831	 * device has been reset.
832	 */
833	return ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI);
834}
835
836/*
837 * Places the hardware into reset and then pulls it out of reset
838 *
839 * TODO: Only write the PLL if we're changing to or from CCK mode
840 *
841 * WARNING: The order of the PLL and mode registers must be correct.
842 */
843HAL_BOOL
844ar5212ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
845{
846
847	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
848
849	/*
850	 * Reset the HW - PCI must be reset after the rest of the
851	 * device has been reset
852	 */
853	if (!ar5212SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
854		return AH_FALSE;
855
856	/* Bring out of sleep mode (AGAIN) */
857	if (!ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
858		return AH_FALSE;
859
860	/* Clear warm reset register */
861	if (!ar5212SetResetReg(ah, 0))
862		return AH_FALSE;
863
864	/*
865	 * Perform warm reset before the mode/PLL/turbo registers
866	 * are changed in order to deactivate the radio.  Mode changes
867	 * with an active radio can result in corrupted shifts to the
868	 * radio device.
869	 */
870
871	/*
872	 * Set CCK and Turbo modes correctly.
873	 */
874	if (chan != AH_NULL) {		/* NB: can be null during attach */
875		uint32_t rfMode, phyPLL = 0, curPhyPLL, turbo;
876
877		if (IS_5413(ah)) {	/* NB: =>'s 5424 also */
878			rfMode = AR_PHY_MODE_AR5112;
879			if (IEEE80211_IS_CHAN_HALF(chan))
880				rfMode |= AR_PHY_MODE_HALF;
881			else if (IEEE80211_IS_CHAN_QUARTER(chan))
882				rfMode |= AR_PHY_MODE_QUARTER;
883
884			if (IEEE80211_IS_CHAN_CCK(chan))
885				phyPLL = AR_PHY_PLL_CTL_44_5112;
886			else
887				phyPLL = AR_PHY_PLL_CTL_40_5413;
888		} else if (IS_RAD5111(ah)) {
889			rfMode = AR_PHY_MODE_AR5111;
890			if (IEEE80211_IS_CHAN_CCK(chan))
891				phyPLL = AR_PHY_PLL_CTL_44;
892			else
893				phyPLL = AR_PHY_PLL_CTL_40;
894			if (IEEE80211_IS_CHAN_HALF(chan))
895				phyPLL = AR_PHY_PLL_CTL_HALF;
896			else if (IEEE80211_IS_CHAN_QUARTER(chan))
897				phyPLL = AR_PHY_PLL_CTL_QUARTER;
898		} else {		/* 5112, 2413, 2316, 2317 */
899			rfMode = AR_PHY_MODE_AR5112;
900			if (IEEE80211_IS_CHAN_CCK(chan))
901				phyPLL = AR_PHY_PLL_CTL_44_5112;
902			else
903				phyPLL = AR_PHY_PLL_CTL_40_5112;
904			if (IEEE80211_IS_CHAN_HALF(chan))
905				phyPLL |= AR_PHY_PLL_CTL_HALF;
906			else if (IEEE80211_IS_CHAN_QUARTER(chan))
907				phyPLL |= AR_PHY_PLL_CTL_QUARTER;
908		}
909		if (IEEE80211_IS_CHAN_G(chan))
910			rfMode |= AR_PHY_MODE_DYNAMIC;
911		else if (IEEE80211_IS_CHAN_OFDM(chan))
912			rfMode |= AR_PHY_MODE_OFDM;
913		else
914			rfMode |= AR_PHY_MODE_CCK;
915		if (IEEE80211_IS_CHAN_5GHZ(chan))
916			rfMode |= AR_PHY_MODE_RF5GHZ;
917		else
918			rfMode |= AR_PHY_MODE_RF2GHZ;
919		turbo = IEEE80211_IS_CHAN_TURBO(chan) ?
920			(AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT) : 0;
921		curPhyPLL = OS_REG_READ(ah, AR_PHY_PLL_CTL);
922		/*
923		 * PLL, Mode, and Turbo values must be written in the correct
924		 * order to ensure:
925		 * - The PLL cannot be set to 44 unless the CCK or DYNAMIC
926		 *   mode bit is set
927		 * - Turbo cannot be set at the same time as CCK or DYNAMIC
928		 */
929		if (IEEE80211_IS_CHAN_CCK(chan)) {
930			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
931			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
932			if (curPhyPLL != phyPLL) {
933				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
934				/* Wait for the PLL to settle */
935				OS_DELAY(PLL_SETTLE_DELAY);
936			}
937		} else {
938			if (curPhyPLL != phyPLL) {
939				OS_REG_WRITE(ah,  AR_PHY_PLL_CTL,  phyPLL);
940				/* Wait for the PLL to settle */
941				OS_DELAY(PLL_SETTLE_DELAY);
942			}
943			OS_REG_WRITE(ah, AR_PHY_TURBO, turbo);
944			OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
945		}
946	}
947	return AH_TRUE;
948}
949
950/*
951 * Recalibrate the lower PHY chips to account for temperature/environment
952 * changes.
953 */
954HAL_BOOL
955ar5212PerCalibrationN(struct ath_hal *ah,
956	struct ieee80211_channel *chan,
957	u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
958{
959#define IQ_CAL_TRIES    10
960	struct ath_hal_5212 *ahp = AH5212(ah);
961	HAL_CHANNEL_INTERNAL *ichan;
962	int32_t qCoff, qCoffDenom;
963	int32_t iqCorrMeas, iCoff, iCoffDenom;
964	uint32_t powerMeasQ, powerMeasI;
965	HAL_BOOL isBmode = AH_FALSE;
966
967	OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq);
968	*isCalDone = AH_FALSE;
969	ichan = ath_hal_checkchannel(ah, chan);
970	if (ichan == AH_NULL) {
971		HALDEBUG(ah, HAL_DEBUG_ANY,
972		    "%s: invalid channel %u/0x%x; no mapping\n",
973		    __func__, chan->ic_freq, chan->ic_flags);
974		return AH_FALSE;
975	}
976	SAVE_CCK(ah, chan, isBmode);
977
978	if (ahp->ah_bIQCalibration == IQ_CAL_DONE ||
979	    ahp->ah_bIQCalibration == IQ_CAL_INACTIVE)
980		*isCalDone = AH_TRUE;
981
982	/* IQ calibration in progress. Check to see if it has finished. */
983	if (ahp->ah_bIQCalibration == IQ_CAL_RUNNING &&
984	    !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
985		int i;
986
987		/* IQ Calibration has finished. */
988		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;
989		*isCalDone = AH_TRUE;
990
991		/* workaround for misgated IQ Cal results */
992		i = 0;
993		do {
994			/* Read calibration results. */
995			powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
996			powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
997			iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
998			if (powerMeasI && powerMeasQ)
999				break;
1000			/* Do we really need this??? */
1001			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1002			    AR_PHY_TIMING_CTRL4_DO_IQCAL);
1003		} while (++i < IQ_CAL_TRIES);
1004
1005		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1006		    "%s: IQ cal finished: %d tries\n", __func__, i);
1007		HALDEBUG(ah, HAL_DEBUG_PERCAL,
1008		    "%s: powerMeasI %u powerMeasQ %u iqCorrMeas %d\n",
1009		    __func__, powerMeasI, powerMeasQ, iqCorrMeas);
1010
1011		/*
1012		 * Prescale these values to remove 64-bit operation
1013		 * requirement at the loss of a little precision.
1014		 */
1015		iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
1016		qCoffDenom = powerMeasQ / 128;
1017
1018		/* Protect against divide-by-0 and loss of sign bits. */
1019		if (iCoffDenom != 0 && qCoffDenom >= 2) {
1020			iCoff = (int8_t)(-iqCorrMeas) / iCoffDenom;
1021			/* IQCORR_Q_I_COFF is a signed 6 bit number */
1022			if (iCoff < -32) {
1023				iCoff = -32;
1024			} else if (iCoff > 31) {
1025				iCoff = 31;
1026			}
1027
1028			/* IQCORR_Q_Q_COFF is a signed 5 bit number */
1029			qCoff = (powerMeasI / qCoffDenom) - 128;
1030			if (qCoff < -16) {
1031				qCoff = -16;
1032			} else if (qCoff > 15) {
1033				qCoff = 15;
1034			}
1035
1036			HALDEBUG(ah, HAL_DEBUG_PERCAL,
1037			    "%s: iCoff %d qCoff %d\n", __func__, iCoff, qCoff);
1038
1039			/* Write values and enable correction */
1040			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1041				AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1042			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1043				AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1044			OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1045				AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1046
1047			ahp->ah_bIQCalibration = IQ_CAL_DONE;
1048			ichan->privFlags |= CHANNEL_IQVALID;
1049			ichan->iCoff = iCoff;
1050			ichan->qCoff = qCoff;
1051		}
1052	} else if (!IEEE80211_IS_CHAN_B(chan) &&
1053	    ahp->ah_bIQCalibration == IQ_CAL_DONE &&
1054	    (ichan->privFlags & CHANNEL_IQVALID) == 0) {
1055		/*
1056		 * Start IQ calibration if configured channel has changed.
1057		 * Use a magic number of 15 based on default value.
1058		 */
1059		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1060			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
1061			INIT_IQCAL_LOG_COUNT_MAX);
1062		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1063			AR_PHY_TIMING_CTRL4_DO_IQCAL);
1064		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
1065	}
1066	/* XXX EAR */
1067
1068	if (longCal) {
1069		/* Check noise floor results */
1070		ar5212GetNf(ah, chan);
1071		if (!IEEE80211_IS_CHAN_CWINT(chan)) {
1072			/* Perform cal for 5Ghz channels and any OFDM on 5112 */
1073			if (IEEE80211_IS_CHAN_5GHZ(chan) ||
1074			    (IS_RAD5112(ah) && IEEE80211_IS_CHAN_OFDM(chan)))
1075				ar5212RequestRfgain(ah);
1076		}
1077	}
1078	RESTORE_CCK(ah, chan, isBmode);
1079
1080	return AH_TRUE;
1081#undef IQ_CAL_TRIES
1082}
1083
1084HAL_BOOL
1085ar5212PerCalibration(struct ath_hal *ah,  struct ieee80211_channel *chan,
1086	HAL_BOOL *isIQdone)
1087{
1088	return ar5212PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
1089}
1090
1091HAL_BOOL
1092ar5212ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
1093{
1094	HAL_CHANNEL_INTERNAL *ichan;
1095
1096	ichan = ath_hal_checkchannel(ah, chan);
1097	if (ichan == AH_NULL) {
1098		HALDEBUG(ah, HAL_DEBUG_ANY,
1099		    "%s: invalid channel %u/0x%x; no mapping\n",
1100		    __func__, chan->ic_freq, chan->ic_flags);
1101		return AH_FALSE;
1102	}
1103	ichan->privFlags &= ~CHANNEL_IQVALID;
1104	return AH_TRUE;
1105}
1106
1107/*
1108 * Write the given reset bit mask into the reset register
1109 */
1110static HAL_BOOL
1111ar5212SetResetReg(struct ath_hal *ah, uint32_t resetMask)
1112{
1113	uint32_t mask = resetMask ? resetMask : ~0;
1114	HAL_BOOL rt;
1115
1116	/* XXX ar5212MacStop & co. */
1117
1118	if (AH_PRIVATE(ah)->ah_ispcie) {
1119		resetMask &= ~AR_RC_PCI;
1120	}
1121
1122	(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
1123	OS_REG_WRITE(ah, AR_RC, resetMask);
1124	OS_DELAY(15);			/* need to wait at least 128 clocks
1125					   when reseting PCI before read */
1126	mask &= (AR_RC_MAC | AR_RC_BB);
1127	resetMask &= (AR_RC_MAC | AR_RC_BB);
1128	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
1129        if ((resetMask & AR_RC_MAC) == 0) {
1130		if (isBigEndian()) {
1131			/*
1132			 * Set CFG, little-endian for register
1133			 * and descriptor accesses.
1134			 */
1135			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD | AR_CFG_SWRG;
1136#ifndef AH_NEED_DESC_SWAP
1137			mask |= AR_CFG_SWTD;
1138#endif
1139			OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
1140		} else
1141			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1142		if (ar5212SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1143			(void) OS_REG_READ(ah, AR_ISR_RAC);
1144	}
1145
1146	/* track PHY power state so we don't try to r/w BB registers */
1147	AH5212(ah)->ah_phyPowerOn = ((resetMask & AR_RC_BB) == 0);
1148	return rt;
1149}
1150
1151int16_t
1152ar5212GetNoiseFloor(struct ath_hal *ah)
1153{
1154	int16_t nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
1155	if (nf & 0x100)
1156		nf = 0 - ((nf ^ 0x1ff) + 1);
1157	return nf;
1158}
1159
1160static HAL_BOOL
1161getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
1162	int16_t *nft)
1163{
1164	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1165
1166	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1167
1168	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1169	case IEEE80211_CHAN_A:
1170		*nft = ee->ee_noiseFloorThresh[headerInfo11A];
1171		break;
1172	case IEEE80211_CHAN_B:
1173		*nft = ee->ee_noiseFloorThresh[headerInfo11B];
1174		break;
1175	case IEEE80211_CHAN_G:
1176	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
1177		*nft = ee->ee_noiseFloorThresh[headerInfo11G];
1178		break;
1179	default:
1180		HALDEBUG(ah, HAL_DEBUG_ANY,
1181		    "%s: invalid channel flags %u/0x%x\n",
1182		    __func__, chan->ic_freq, chan->ic_flags);
1183		return AH_FALSE;
1184	}
1185	return AH_TRUE;
1186}
1187
1188/*
1189 * Setup the noise floor cal history buffer.
1190 */
1191void
1192ar5212InitNfCalHistBuffer(struct ath_hal *ah)
1193{
1194	struct ath_hal_5212 *ahp = AH5212(ah);
1195	int i;
1196
1197	ahp->ah_nfCalHist.first_run = 1;
1198	ahp->ah_nfCalHist.currIndex = 0;
1199	ahp->ah_nfCalHist.privNF = AR5212_CCA_MAX_GOOD_VALUE;
1200	ahp->ah_nfCalHist.invalidNFcount = AR512_NF_CAL_HIST_MAX;
1201	for (i = 0; i < AR512_NF_CAL_HIST_MAX; i ++)
1202		ahp->ah_nfCalHist.nfCalBuffer[i] = AR5212_CCA_MAX_GOOD_VALUE;
1203}
1204
1205/*
1206 * Add a noise floor value to the ring buffer.
1207 */
1208static __inline void
1209updateNFHistBuff(struct ar5212NfCalHist *h, int16_t nf)
1210{
1211 	h->nfCalBuffer[h->currIndex] = nf;
1212     	if (++h->currIndex >= AR512_NF_CAL_HIST_MAX)
1213		h->currIndex = 0;
1214}
1215
1216/*
1217 * Return the median noise floor value in the ring buffer.
1218 */
1219int16_t
1220ar5212GetNfHistMid(const int16_t calData[AR512_NF_CAL_HIST_MAX])
1221{
1222	int16_t sort[AR512_NF_CAL_HIST_MAX];
1223	int i, j;
1224
1225	OS_MEMCPY(sort, calData, AR512_NF_CAL_HIST_MAX*sizeof(int16_t));
1226	for (i = 0; i < AR512_NF_CAL_HIST_MAX-1; i ++) {
1227		for (j = 1; j < AR512_NF_CAL_HIST_MAX-i; j ++) {
1228			if (sort[j] > sort[j-1]) {
1229				int16_t nf = sort[j];
1230				sort[j] = sort[j-1];
1231				sort[j-1] = nf;
1232			}
1233		}
1234	}
1235	return sort[(AR512_NF_CAL_HIST_MAX-1)>>1];
1236}
1237
1238/*
1239 * Read the NF and check it against the noise floor threshhold
1240 */
1241int16_t
1242ar5212GetNf(struct ath_hal *ah, struct ieee80211_channel *chan)
1243{
1244	struct ath_hal_5212 *ahp = AH5212(ah);
1245	struct ar5212NfCalHist *h = &ahp->ah_nfCalHist;
1246	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1247	int16_t nf, nfThresh;
1248 	int32_t val;
1249
1250	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
1251		HALDEBUG(ah, HAL_DEBUG_ANY,
1252		    "%s: NF did not complete in calibration window\n", __func__);
1253		ichan->rawNoiseFloor = h->privNF;	/* most recent value */
1254		return ichan->rawNoiseFloor;
1255	}
1256
1257	/*
1258	 * Finished NF cal, check against threshold.
1259	 */
1260	nf = ar5212GetNoiseFloor(ah);
1261	if (getNoiseFloorThresh(ah, chan, &nfThresh)) {
1262		if (nf > nfThresh) {
1263			HALDEBUG(ah, HAL_DEBUG_ANY,
1264			    "%s: noise floor failed detected; detected %u, "
1265			    "threshold %u\n", __func__, nf, nfThresh);
1266			/*
1267			 * NB: Don't discriminate 2.4 vs 5Ghz, if this
1268			 *     happens it indicates a problem regardless
1269			 *     of the band.
1270			 */
1271			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
1272			nf = 0;
1273		}
1274	} else
1275		nf = 0;
1276
1277	/*
1278	 * Pass through histogram and write median value as
1279	 * calculated from the accrued window.  We require a
1280	 * full window of in-range values to be seen before we
1281	 * start using the history.
1282	 */
1283	updateNFHistBuff(h, nf);
1284	if (h->first_run) {
1285		if (nf < AR5212_CCA_MIN_BAD_VALUE ||
1286		    nf > AR5212_CCA_MAX_HIGH_VALUE) {
1287			nf = AR5212_CCA_MAX_GOOD_VALUE;
1288			h->invalidNFcount = AR512_NF_CAL_HIST_MAX;
1289		} else if (--(h->invalidNFcount) == 0) {
1290			h->first_run = 0;
1291			h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1292		} else {
1293			nf = AR5212_CCA_MAX_GOOD_VALUE;
1294		}
1295	} else {
1296		h->privNF = nf = ar5212GetNfHistMid(h->nfCalBuffer);
1297	}
1298
1299	val = OS_REG_READ(ah, AR_PHY(25));
1300	val &= 0xFFFFFE00;
1301	val |= (((uint32_t)nf << 1) & 0x1FF);
1302	OS_REG_WRITE(ah, AR_PHY(25), val);
1303	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1304	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1305	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1306
1307	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0)) {
1308#ifdef AH_DEBUG
1309		ath_hal_printf(ah, "%s: AGC not ready AGC_CONTROL 0x%x\n",
1310		    __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
1311#endif
1312	}
1313
1314	/*
1315	 * Now load a high maxCCAPower value again so that we're
1316	 * not capped by the median we just loaded
1317	 */
1318	val &= 0xFFFFFE00;
1319	val |= (((uint32_t)(-50) << 1) & 0x1FF);
1320	OS_REG_WRITE(ah, AR_PHY(25), val);
1321	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
1322	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
1323	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
1324
1325	return (ichan->rawNoiseFloor = nf);
1326}
1327
1328/*
1329 * Set up compression configuration registers
1330 */
1331void
1332ar5212SetCompRegs(struct ath_hal *ah)
1333{
1334	struct ath_hal_5212 *ahp = AH5212(ah);
1335	int i;
1336
1337        /* Check if h/w supports compression */
1338	if (!AH_PRIVATE(ah)->ah_caps.halCompressSupport)
1339		return;
1340
1341	OS_REG_WRITE(ah, AR_DCCFG, 1);
1342
1343	OS_REG_WRITE(ah, AR_CCFG,
1344		(AR_COMPRESSION_WINDOW_SIZE >> 8) & AR_CCFG_WIN_M);
1345
1346	OS_REG_WRITE(ah, AR_CCFG,
1347		OS_REG_READ(ah, AR_CCFG) | AR_CCFG_MIB_INT_EN);
1348	OS_REG_WRITE(ah, AR_CCUCFG,
1349		AR_CCUCFG_RESET_VAL | AR_CCUCFG_CATCHUP_EN);
1350
1351	OS_REG_WRITE(ah, AR_CPCOVF, 0);
1352
1353	/* reset decompression mask */
1354	for (i = 0; i < HAL_DECOMP_MASK_SIZE; i++) {
1355		OS_REG_WRITE(ah, AR_DCM_A, i);
1356		OS_REG_WRITE(ah, AR_DCM_D, ahp->ah_decompMask[i]);
1357	}
1358}
1359
1360HAL_BOOL
1361ar5212SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1362	const struct ieee80211_channel *chan)
1363{
1364#define	ANT_SWITCH_TABLE1	AR_PHY(88)
1365#define	ANT_SWITCH_TABLE2	AR_PHY(89)
1366	struct ath_hal_5212 *ahp = AH5212(ah);
1367	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1368	uint32_t antSwitchA, antSwitchB;
1369	int ix;
1370
1371	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1372	HALASSERT(ahp->ah_phyPowerOn);
1373
1374	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1375	case IEEE80211_CHAN_A:
1376		ix = 0;
1377		break;
1378	case IEEE80211_CHAN_G:
1379	case IEEE80211_CHAN_PUREG:		/* NB: 108G */
1380		ix = 2;
1381		break;
1382	case IEEE80211_CHAN_B:
1383		if (IS_2425(ah) || IS_2417(ah)) {
1384			/* NB: Nala/Swan: 11b is handled using 11g */
1385			ix = 2;
1386		} else
1387			ix = 1;
1388		break;
1389	default:
1390		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1391		    __func__, chan->ic_flags);
1392		return AH_FALSE;
1393	}
1394
1395	antSwitchA =  ee->ee_antennaControl[1][ix]
1396		   | (ee->ee_antennaControl[2][ix] << 6)
1397		   | (ee->ee_antennaControl[3][ix] << 12)
1398		   | (ee->ee_antennaControl[4][ix] << 18)
1399		   | (ee->ee_antennaControl[5][ix] << 24)
1400		   ;
1401	antSwitchB =  ee->ee_antennaControl[6][ix]
1402		   | (ee->ee_antennaControl[7][ix] << 6)
1403		   | (ee->ee_antennaControl[8][ix] << 12)
1404		   | (ee->ee_antennaControl[9][ix] << 18)
1405		   | (ee->ee_antennaControl[10][ix] << 24)
1406		   ;
1407	/*
1408	 * For fixed antenna, give the same setting for both switch banks
1409	 */
1410	switch (settings) {
1411	case HAL_ANT_FIXED_A:
1412		antSwitchB = antSwitchA;
1413		break;
1414	case HAL_ANT_FIXED_B:
1415		antSwitchA = antSwitchB;
1416		break;
1417	case HAL_ANT_VARIABLE:
1418		break;
1419	default:
1420		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1421		    __func__, settings);
1422		return AH_FALSE;
1423	}
1424	if (antSwitchB == antSwitchA) {
1425		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1426		    "%s: Setting fast diversity off.\n", __func__);
1427		OS_REG_CLR_BIT(ah,AR_PHY_CCK_DETECT,
1428			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1429		ahp->ah_diversity = AH_FALSE;
1430	} else {
1431		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
1432		    "%s: Setting fast diversity on.\n", __func__);
1433		OS_REG_SET_BIT(ah,AR_PHY_CCK_DETECT,
1434			       AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1435		ahp->ah_diversity = AH_TRUE;
1436	}
1437	ahp->ah_antControl = settings;
1438
1439	OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1440	OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1441
1442	return AH_TRUE;
1443#undef ANT_SWITCH_TABLE2
1444#undef ANT_SWITCH_TABLE1
1445}
1446
1447HAL_BOOL
1448ar5212IsSpurChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
1449{
1450	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1451	uint32_t clockFreq =
1452	    ((IS_5413(ah) || IS_RAD5112_ANY(ah) || IS_2417(ah)) ? 40 : 32);
1453	return ( ((freq % clockFreq) != 0)
1454              && (((freq % clockFreq) < 10)
1455             || (((freq) % clockFreq) > 22)) );
1456}
1457
1458/*
1459 * Read EEPROM header info and program the device for correct operation
1460 * given the channel value.
1461 */
1462HAL_BOOL
1463ar5212SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1464{
1465#define NO_FALSE_DETECT_BACKOFF   2
1466#define CB22_FALSE_DETECT_BACKOFF 6
1467#define	AR_PHY_BIS(_ah, _reg, _mask, _val) \
1468	OS_REG_WRITE(_ah, AR_PHY(_reg), \
1469		(OS_REG_READ(_ah, AR_PHY(_reg)) & _mask) | (_val));
1470	struct ath_hal_5212 *ahp = AH5212(ah);
1471	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1472	int arrayMode, falseDectectBackoff;
1473	int is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1474	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1475	int8_t adcDesiredSize, pgaDesiredSize;
1476	uint16_t switchSettling, txrxAtten, rxtxMargin;
1477	int iCoff, qCoff;
1478
1479	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1480
1481	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
1482	case IEEE80211_CHAN_A:
1483	case IEEE80211_CHAN_ST:
1484		arrayMode = headerInfo11A;
1485		if (!IS_RAD5112_ANY(ah) && !IS_2413(ah) && !IS_5413(ah))
1486			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1487				AR_PHY_FRAME_CTL_TX_CLIP,
1488				ahp->ah_gainValues.currStep->paramVal[GP_TXCLIP]);
1489		break;
1490	case IEEE80211_CHAN_B:
1491		arrayMode = headerInfo11B;
1492		break;
1493	case IEEE80211_CHAN_G:
1494	case IEEE80211_CHAN_108G:
1495		arrayMode = headerInfo11G;
1496		break;
1497	default:
1498		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1499		    __func__, chan->ic_flags);
1500		return AH_FALSE;
1501	}
1502
1503	/* Set the antenna register(s) correctly for the chip revision */
1504	AR_PHY_BIS(ah, 68, 0xFFFFFC06,
1505		(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1506
1507	ar5212SetAntennaSwitchInternal(ah, ahp->ah_antControl, chan);
1508
1509	/* Set the Noise Floor Thresh on ar5211 devices */
1510	OS_REG_WRITE(ah, AR_PHY(90),
1511		(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF)
1512		| (1 << 9));
1513
1514	if (ee->ee_version >= AR_EEPROM_VER5_0 && IEEE80211_IS_CHAN_TURBO(chan)) {
1515		switchSettling = ee->ee_switchSettlingTurbo[is2GHz];
1516		adcDesiredSize = ee->ee_adcDesiredSizeTurbo[is2GHz];
1517		pgaDesiredSize = ee->ee_pgaDesiredSizeTurbo[is2GHz];
1518		txrxAtten = ee->ee_txrxAttenTurbo[is2GHz];
1519		rxtxMargin = ee->ee_rxtxMarginTurbo[is2GHz];
1520	} else {
1521		switchSettling = ee->ee_switchSettling[arrayMode];
1522		adcDesiredSize = ee->ee_adcDesiredSize[arrayMode];
1523		pgaDesiredSize = ee->ee_pgaDesiredSize[is2GHz];
1524		txrxAtten = ee->ee_txrxAtten[is2GHz];
1525		rxtxMargin = ee->ee_rxtxMargin[is2GHz];
1526	}
1527
1528	OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1529			 AR_PHY_SETTLING_SWITCH, switchSettling);
1530	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1531			 AR_PHY_DESIRED_SZ_ADC, adcDesiredSize);
1532	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
1533			 AR_PHY_DESIRED_SZ_PGA, pgaDesiredSize);
1534	OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
1535			 AR_PHY_RXGAIN_TXRX_ATTEN, txrxAtten);
1536	OS_REG_WRITE(ah, AR_PHY(13),
1537		(ee->ee_txEndToXPAOff[arrayMode] << 24)
1538		| (ee->ee_txEndToXPAOff[arrayMode] << 16)
1539		| (ee->ee_txFrameToXPAOn[arrayMode] << 8)
1540		| ee->ee_txFrameToXPAOn[arrayMode]);
1541	AR_PHY_BIS(ah, 10, 0xFFFF00FF,
1542		ee->ee_txEndToXLNAOn[arrayMode] << 8);
1543	AR_PHY_BIS(ah, 25, 0xFFF80FFF,
1544		(ee->ee_thresh62[arrayMode] << 12) & 0x7F000);
1545
1546	/*
1547	 * False detect backoff - suspected 32 MHz spur causes false
1548	 * detects in OFDM, causing Tx Hangs.  Decrease weak signal
1549	 * sensitivity for this card.
1550	 */
1551	falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1552	if (ee->ee_version < AR_EEPROM_VER3_3) {
1553		/* XXX magic number */
1554		if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1555		    IEEE80211_IS_CHAN_OFDM(chan))
1556			falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1557	} else {
1558		if (ar5212IsSpurChannel(ah, chan))
1559			falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1560	}
1561	AR_PHY_BIS(ah, 73, 0xFFFFFF01, (falseDectectBackoff << 1) & 0xFE);
1562
1563	if (ichan->privFlags & CHANNEL_IQVALID) {
1564		iCoff = ichan->iCoff;
1565		qCoff = ichan->qCoff;
1566	} else {
1567		iCoff = ee->ee_iqCalI[is2GHz];
1568		qCoff = ee->ee_iqCalQ[is2GHz];
1569	}
1570
1571	/* write previous IQ results */
1572	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1573		AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, iCoff);
1574	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4,
1575		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, qCoff);
1576	OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
1577		AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
1578
1579	if (ee->ee_version >= AR_EEPROM_VER4_1) {
1580		if (!IEEE80211_IS_CHAN_108G(chan) || ee->ee_version >= AR_EEPROM_VER5_0)
1581			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
1582				AR_PHY_GAIN_2GHZ_RXTX_MARGIN, rxtxMargin);
1583	}
1584	if (ee->ee_version >= AR_EEPROM_VER5_1) {
1585		/* for now always disabled */
1586		OS_REG_WRITE(ah,  AR_PHY_HEAVY_CLIP_ENABLE,  0);
1587	}
1588
1589	return AH_TRUE;
1590#undef AR_PHY_BIS
1591#undef NO_FALSE_DETECT_BACKOFF
1592#undef CB22_FALSE_DETECT_BACKOFF
1593}
1594
1595/*
1596 * Apply Spur Immunity to Boards that require it.
1597 * Applies only to OFDM RX operation.
1598 */
1599
1600void
1601ar5212SetSpurMitigation(struct ath_hal *ah,
1602	const struct ieee80211_channel *chan)
1603{
1604	uint32_t pilotMask[2] = {0, 0}, binMagMask[4] = {0, 0, 0 , 0};
1605	uint16_t i, finalSpur, curChanAsSpur, binWidth = 0, spurDetectWidth, spurChan;
1606	int32_t spurDeltaPhase = 0, spurFreqSd = 0, spurOffset, binOffsetNumT16, curBinOffset;
1607	int16_t numBinOffsets;
1608	static const uint16_t magMapFor4[4] = {1, 2, 2, 1};
1609	static const uint16_t magMapFor3[3] = {1, 2, 1};
1610	const uint16_t *pMagMap;
1611	HAL_BOOL is2GHz = IEEE80211_IS_CHAN_2GHZ(chan);
1612	HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
1613	uint32_t val;
1614
1615#define CHAN_TO_SPUR(_f, _freq)   ( ((_freq) - ((_f) ? 2300 : 4900)) * 10 )
1616	if (IS_2417(ah)) {
1617		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: no spur mitigation\n",
1618		    __func__);
1619		return;
1620	}
1621
1622	curChanAsSpur = CHAN_TO_SPUR(is2GHz, ichan->channel);
1623
1624	if (ichan->mainSpur) {
1625		/* Pull out the saved spur value */
1626		finalSpur = ichan->mainSpur;
1627	} else {
1628		/*
1629		 * Check if spur immunity should be performed for this channel
1630		 * Should only be performed once per channel and then saved
1631		 */
1632		finalSpur = AR_NO_SPUR;
1633		spurDetectWidth = HAL_SPUR_CHAN_WIDTH;
1634		if (IEEE80211_IS_CHAN_TURBO(chan))
1635			spurDetectWidth *= 2;
1636
1637		/* Decide if any spur affects the current channel */
1638		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1639			spurChan = ath_hal_getSpurChan(ah, i, is2GHz);
1640			if (spurChan == AR_NO_SPUR) {
1641				break;
1642			}
1643			if ((curChanAsSpur - spurDetectWidth <= (spurChan & HAL_SPUR_VAL_MASK)) &&
1644			    (curChanAsSpur + spurDetectWidth >= (spurChan & HAL_SPUR_VAL_MASK))) {
1645				finalSpur = spurChan & HAL_SPUR_VAL_MASK;
1646				break;
1647			}
1648		}
1649		/* Save detected spur (or no spur) for this channel */
1650		ichan->mainSpur = finalSpur;
1651	}
1652
1653	/* Write spur immunity data */
1654	if (finalSpur == AR_NO_SPUR) {
1655		/* Disable Spur Immunity Regs if they appear set */
1656		if (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER) {
1657			/* Clear Spur Delta Phase, Spur Freq, and enable bits */
1658			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0);
1659			val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1660			val &= ~(AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1661				 AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1662				 AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1663			OS_REG_WRITE(ah, AR_PHY_MASK_CTL, val);
1664			OS_REG_WRITE(ah, AR_PHY_TIMING11, 0);
1665
1666			/* Clear pilot masks */
1667			OS_REG_WRITE(ah, AR_PHY_TIMING7, 0);
1668			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, 0);
1669			OS_REG_WRITE(ah, AR_PHY_TIMING9, 0);
1670			OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, 0);
1671
1672			/* Clear magnitude masks */
1673			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, 0);
1674			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, 0);
1675			OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, 0);
1676			OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, 0);
1677			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, 0);
1678			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, 0);
1679			OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, 0);
1680			OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, 0);
1681		}
1682	} else {
1683		spurOffset = finalSpur - curChanAsSpur;
1684		/*
1685		 * Spur calculations:
1686		 * spurDeltaPhase is (spurOffsetIn100KHz / chipFrequencyIn100KHz) << 21
1687		 * spurFreqSd is (spurOffsetIn100KHz / sampleFrequencyIn100KHz) << 11
1688		 */
1689		if (IEEE80211_IS_CHAN_TURBO(chan)) {
1690			/* Chip Frequency & sampleFrequency are 80 MHz */
1691			spurDeltaPhase = (spurOffset << 16) / 25;
1692			spurFreqSd = spurDeltaPhase >> 10;
1693			binWidth = HAL_BIN_WIDTH_TURBO_100HZ;
1694		} else if (IEEE80211_IS_CHAN_G(chan)) {
1695			/* Chip Frequency is 44MHz, sampleFrequency is 40 MHz */
1696			spurFreqSd = (spurOffset << 8) / 55;
1697			spurDeltaPhase = (spurOffset << 17) / 25;
1698			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1699		} else {
1700			HALASSERT(!IEEE80211_IS_CHAN_B(chan));
1701			/* Chip Frequency & sampleFrequency are 40 MHz */
1702			spurDeltaPhase = (spurOffset << 17) / 25;
1703			spurFreqSd = spurDeltaPhase >> 10;
1704			binWidth = HAL_BIN_WIDTH_BASE_100HZ;
1705		}
1706
1707		/* Compute Pilot Mask */
1708		binOffsetNumT16 = ((spurOffset * 1000) << 4) / binWidth;
1709		/* The spur is on a bin if it's remainder at times 16 is 0 */
1710		if (binOffsetNumT16 & 0xF) {
1711			numBinOffsets = 4;
1712			pMagMap = magMapFor4;
1713		} else {
1714			numBinOffsets = 3;
1715			pMagMap = magMapFor3;
1716		}
1717		for (i = 0; i < numBinOffsets; i++) {
1718			if ((binOffsetNumT16 >> 4) > HAL_MAX_BINS_ALLOWED) {
1719				HALDEBUG(ah, HAL_DEBUG_ANY,
1720				    "Too man bins in spur mitigation\n");
1721				return;
1722			}
1723
1724			/* Get Pilot Mask values */
1725			curBinOffset = (binOffsetNumT16 >> 4) + i + 25;
1726			if ((curBinOffset >= 0) && (curBinOffset <= 32)) {
1727				if (curBinOffset <= 25)
1728					pilotMask[0] |= 1 << curBinOffset;
1729				else if (curBinOffset >= 27)
1730					pilotMask[0] |= 1 << (curBinOffset - 1);
1731			} else if ((curBinOffset >= 33) && (curBinOffset <= 52))
1732				pilotMask[1] |= 1 << (curBinOffset - 33);
1733
1734			/* Get viterbi values */
1735			if ((curBinOffset >= -1) && (curBinOffset <= 14))
1736				binMagMask[0] |= pMagMap[i] << (curBinOffset + 1) * 2;
1737			else if ((curBinOffset >= 15) && (curBinOffset <= 30))
1738				binMagMask[1] |= pMagMap[i] << (curBinOffset - 15) * 2;
1739			else if ((curBinOffset >= 31) && (curBinOffset <= 46))
1740				binMagMask[2] |= pMagMap[i] << (curBinOffset -31) * 2;
1741			else if((curBinOffset >= 47) && (curBinOffset <= 53))
1742				binMagMask[3] |= pMagMap[i] << (curBinOffset -47) * 2;
1743		}
1744
1745		/* Write Spur Delta Phase, Spur Freq, and enable bits */
1746		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_RATE, 0xFF);
1747		val = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4);
1748		val |= (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1749			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1750			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1751		OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, val);
1752		OS_REG_WRITE(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1753			     SM(spurFreqSd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1754			     SM(spurDeltaPhase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1755
1756		/* Write pilot masks */
1757		OS_REG_WRITE(ah, AR_PHY_TIMING7, pilotMask[0]);
1758		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING8, AR_PHY_TIMING8_PILOT_MASK_2, pilotMask[1]);
1759		OS_REG_WRITE(ah, AR_PHY_TIMING9, pilotMask[0]);
1760		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING10, AR_PHY_TIMING10_PILOT_MASK_2, pilotMask[1]);
1761
1762		/* Write magnitude masks */
1763		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_1, binMagMask[0]);
1764		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_2, binMagMask[1]);
1765		OS_REG_WRITE(ah, AR_PHY_BIN_MASK_3, binMagMask[2]);
1766		OS_REG_RMW_FIELD(ah, AR_PHY_MASK_CTL, AR_PHY_MASK_CTL_MASK_4, binMagMask[3]);
1767		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_1, binMagMask[0]);
1768		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_2, binMagMask[1]);
1769		OS_REG_WRITE(ah, AR_PHY_BIN_MASK2_3, binMagMask[2]);
1770		OS_REG_RMW_FIELD(ah, AR_PHY_BIN_MASK2_4, AR_PHY_BIN_MASK2_4_MASK_4, binMagMask[3]);
1771	}
1772#undef CHAN_TO_SPUR
1773}
1774
1775
1776/*
1777 * Delta slope coefficient computation.
1778 * Required for OFDM operation.
1779 */
1780void
1781ar5212SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
1782{
1783#define COEF_SCALE_S 24
1784#define INIT_CLOCKMHZSCALED	0x64000000
1785	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1786	unsigned long coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man;
1787	unsigned long clockMhzScaled = INIT_CLOCKMHZSCALED;
1788
1789	if (IEEE80211_IS_CHAN_TURBO(chan))
1790		clockMhzScaled *= 2;
1791	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
1792	/* scale for selected channel bandwidth */
1793	if (IEEE80211_IS_CHAN_HALF(chan)) {
1794		clockMhzScaled = clockMhzScaled >> 1;
1795	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
1796		clockMhzScaled = clockMhzScaled >> 2;
1797	}
1798
1799	/*
1800	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
1801	 * scaled coef to provide precision for this floating calculation
1802	 */
1803	coef_scaled = clockMhzScaled / freq;
1804
1805	/*
1806	 * ALGO -> coef_exp = 14-floor(log2(coef));
1807	 * floor(log2(x)) is the highest set bit position
1808	 */
1809	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1810		if ((coef_scaled >> coef_exp) & 0x1)
1811			break;
1812	/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
1813	HALASSERT(coef_exp);
1814	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1815
1816	/*
1817	 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
1818	 * The coefficient is already shifted up for scaling
1819	 */
1820	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1821	ds_coef_man = coef_man >> (COEF_SCALE_S - coef_exp);
1822	ds_coef_exp = coef_exp - 16;
1823
1824	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1825		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1826	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1827		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1828#undef INIT_CLOCKMHZSCALED
1829#undef COEF_SCALE_S
1830}
1831
1832/*
1833 * Set a limit on the overall output power.  Used for dynamic
1834 * transmit power control and the like.
1835 *
1836 * NB: limit is in units of 0.5 dbM.
1837 */
1838HAL_BOOL
1839ar5212SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1840{
1841	/* XXX blech, construct local writable copy */
1842	struct ieee80211_channel dummy = *AH_PRIVATE(ah)->ah_curchan;
1843	uint16_t dummyXpdGains[2];
1844	HAL_BOOL isBmode;
1845
1846	SAVE_CCK(ah, &dummy, isBmode);
1847	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1848	return ar5212SetTransmitPower(ah, &dummy, dummyXpdGains);
1849}
1850
1851/*
1852 * Set the transmit power in the baseband for the given
1853 * operating channel and mode.
1854 */
1855HAL_BOOL
1856ar5212SetTransmitPower(struct ath_hal *ah,
1857	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1858{
1859#define	POW_OFDM(_r, _s)	(((0 & 1)<< ((_s)+6)) | (((_r) & 0x3f) << (_s)))
1860#define	POW_CCK(_r, _s)		(((_r) & 0x3f) << (_s))
1861#define	N(a)			(sizeof (a) / sizeof (a[0]))
1862	static const uint16_t tpcScaleReductionTable[5] =
1863		{ 0, 3, 6, 9, MAX_RATE_POWER };
1864	struct ath_hal_5212 *ahp = AH5212(ah);
1865	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1866	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1867	int16_t minPower, maxPower, tpcInDb, powerLimit;
1868	int i;
1869
1870	HALASSERT(ah->ah_magic == AR5212_MAGIC);
1871
1872	OS_MEMZERO(ahp->ah_pcdacTable, ahp->ah_pcdacTableSize);
1873	OS_MEMZERO(ahp->ah_ratesArray, sizeof(ahp->ah_ratesArray));
1874
1875	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1876	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
1877		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
1878	else
1879		tpcInDb = 0;
1880	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
1881				AH_TRUE, &minPower, &maxPower)) {
1882		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set rate table\n",
1883		    __func__);
1884		return AH_FALSE;
1885	}
1886	if (!ahp->ah_rfHal->setPowerTable(ah,
1887		&minPower, &maxPower, chan, rfXpdGain)) {
1888		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1889		    __func__);
1890		return AH_FALSE;
1891	}
1892
1893	/*
1894	 * Adjust XR power/rate up by 2 dB to account for greater peak
1895	 * to avg ratio - except in newer avg power designs
1896	 */
1897	if (!IS_2413(ah) && !IS_5413(ah))
1898		ahp->ah_ratesArray[15] += 4;
1899	/*
1900	 * txPowerIndexOffset is set by the SetPowerTable() call -
1901	 *  adjust the rate table
1902	 */
1903	for (i = 0; i < N(ahp->ah_ratesArray); i++) {
1904		ahp->ah_ratesArray[i] += ahp->ah_txPowerIndexOffset;
1905		if (ahp->ah_ratesArray[i] > 63)
1906			ahp->ah_ratesArray[i] = 63;
1907	}
1908
1909	if (ee->ee_eepMap < 2) {
1910		/*
1911		 * Correct gain deltas for 5212 G operation -
1912		 * Removed with revised chipset
1913		 */
1914		if (AH_PRIVATE(ah)->ah_phyRev < AR_PHY_CHIP_ID_REV_2 &&
1915		    IEEE80211_IS_CHAN_G(chan)) {
1916			uint16_t cckOfdmPwrDelta;
1917
1918			if (freq == 2484)
1919				cckOfdmPwrDelta = SCALE_OC_DELTA(
1920					ee->ee_cckOfdmPwrDelta -
1921					ee->ee_scaledCh14FilterCckDelta);
1922			else
1923				cckOfdmPwrDelta = SCALE_OC_DELTA(
1924					ee->ee_cckOfdmPwrDelta);
1925			ar5212CorrectGainDelta(ah, cckOfdmPwrDelta);
1926		}
1927		/*
1928		 * Finally, write the power values into the
1929		 * baseband power table
1930		 */
1931		for (i = 0; i < (PWR_TABLE_SIZE/2); i++) {
1932			OS_REG_WRITE(ah, AR_PHY_PCDAC_TX_POWER(i),
1933				 ((((ahp->ah_pcdacTable[2*i + 1] << 8) | 0xff) & 0xffff) << 16)
1934				| (((ahp->ah_pcdacTable[2*i]     << 8) | 0xff) & 0xffff)
1935			);
1936		}
1937	}
1938
1939	/* Write the OFDM power per rate set */
1940	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1941		POW_OFDM(ahp->ah_ratesArray[3], 24)
1942	      | POW_OFDM(ahp->ah_ratesArray[2], 16)
1943	      | POW_OFDM(ahp->ah_ratesArray[1],  8)
1944	      | POW_OFDM(ahp->ah_ratesArray[0],  0)
1945	);
1946	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1947		POW_OFDM(ahp->ah_ratesArray[7], 24)
1948	      | POW_OFDM(ahp->ah_ratesArray[6], 16)
1949	      | POW_OFDM(ahp->ah_ratesArray[5],  8)
1950	      | POW_OFDM(ahp->ah_ratesArray[4],  0)
1951	);
1952
1953	/* Write the CCK power per rate set */
1954	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1955		POW_CCK(ahp->ah_ratesArray[10], 24)
1956	      | POW_CCK(ahp->ah_ratesArray[9],  16)
1957	      | POW_CCK(ahp->ah_ratesArray[15],  8)	/* XR target power */
1958	      | POW_CCK(ahp->ah_ratesArray[8],   0)
1959	);
1960	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1961		POW_CCK(ahp->ah_ratesArray[14], 24)
1962	      | POW_CCK(ahp->ah_ratesArray[13], 16)
1963	      | POW_CCK(ahp->ah_ratesArray[12],  8)
1964	      | POW_CCK(ahp->ah_ratesArray[11],  0)
1965	);
1966
1967	/*
1968	 * Set max power to 30 dBm and, optionally,
1969	 * enable TPC in tx descriptors.
1970	 */
1971	OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1972		(ahp->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1973
1974	return AH_TRUE;
1975#undef N
1976#undef POW_CCK
1977#undef POW_OFDM
1978}
1979
1980/*
1981 * Sets the transmit power in the baseband for the given
1982 * operating channel and mode.
1983 */
1984static HAL_BOOL
1985ar5212SetRateTable(struct ath_hal *ah, const struct ieee80211_channel *chan,
1986	int16_t tpcScaleReduction, int16_t powerLimit, HAL_BOOL commit,
1987	int16_t *pMinPower, int16_t *pMaxPower)
1988{
1989	struct ath_hal_5212 *ahp = AH5212(ah);
1990	uint16_t freq = ath_hal_gethwchannel(ah, chan);
1991	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1992	uint16_t *rpow = ahp->ah_ratesArray;
1993	uint16_t twiceMaxEdgePower = MAX_RATE_POWER;
1994	uint16_t twiceMaxEdgePowerCck = MAX_RATE_POWER;
1995	uint16_t twiceMaxRDPower = MAX_RATE_POWER;
1996	int i;
1997	uint8_t cfgCtl;
1998	int8_t twiceAntennaGain, twiceAntennaReduction;
1999	const RD_EDGES_POWER *rep;
2000	TRGT_POWER_INFO targetPowerOfdm, targetPowerCck;
2001	int16_t scaledPower, maxAvailPower = 0;
2002	int16_t r13, r9, r7, r0;
2003
2004	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2005
2006	twiceMaxRDPower = chan->ic_maxregpower * 2;
2007	*pMaxPower = -MAX_RATE_POWER;
2008	*pMinPower = MAX_RATE_POWER;
2009
2010	/* Get conformance test limit maximum for this channel */
2011	cfgCtl = ath_hal_getctl(ah, chan);
2012	for (i = 0; i < ee->ee_numCtls; i++) {
2013		uint16_t twiceMinEdgePower;
2014
2015		if (ee->ee_ctl[i] == 0)
2016			continue;
2017		if (ee->ee_ctl[i] == cfgCtl ||
2018		    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2019			rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2020			twiceMinEdgePower = ar5212GetMaxEdgePower(freq, rep);
2021			if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2022				/* Find the minimum of all CTL edge powers that apply to this channel */
2023				twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
2024			} else {
2025				twiceMaxEdgePower = twiceMinEdgePower;
2026				break;
2027			}
2028		}
2029	}
2030
2031	if (IEEE80211_IS_CHAN_G(chan)) {
2032		/* Check for a CCK CTL for 11G CCK powers */
2033		cfgCtl = (cfgCtl & ~CTL_MODE_M) | CTL_11B;
2034		for (i = 0; i < ee->ee_numCtls; i++) {
2035			uint16_t twiceMinEdgePowerCck;
2036
2037			if (ee->ee_ctl[i] == 0)
2038				continue;
2039			if (ee->ee_ctl[i] == cfgCtl ||
2040			    cfgCtl == ((ee->ee_ctl[i] & CTL_MODE_M) | SD_NO_CTL)) {
2041				rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
2042				twiceMinEdgePowerCck = ar5212GetMaxEdgePower(freq, rep);
2043				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
2044					/* Find the minimum of all CTL edge powers that apply to this channel */
2045					twiceMaxEdgePowerCck = AH_MIN(twiceMaxEdgePowerCck, twiceMinEdgePowerCck);
2046				} else {
2047					twiceMaxEdgePowerCck = twiceMinEdgePowerCck;
2048					break;
2049				}
2050			}
2051		}
2052	} else {
2053		/* Set the 11B cck edge power to the one found before */
2054		twiceMaxEdgePowerCck = twiceMaxEdgePower;
2055	}
2056
2057	/* Get Antenna Gain reduction */
2058	if (IEEE80211_IS_CHAN_5GHZ(chan)) {
2059		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_5, &twiceAntennaGain);
2060	} else {
2061		ath_hal_eepromGet(ah, AR_EEP_ANTGAINMAX_2, &twiceAntennaGain);
2062	}
2063	twiceAntennaReduction =
2064		ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
2065
2066	if (IEEE80211_IS_CHAN_OFDM(chan)) {
2067		/* Get final OFDM target powers */
2068		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2069			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11g,
2070				ee->ee_numTargetPwr_11g, &targetPowerOfdm);
2071		} else {
2072			ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11a,
2073				ee->ee_numTargetPwr_11a, &targetPowerOfdm);
2074		}
2075
2076		/* Get Maximum OFDM power */
2077		/* Minimum of target and edge powers */
2078		scaledPower = AH_MIN(twiceMaxEdgePower,
2079				twiceMaxRDPower - twiceAntennaReduction);
2080
2081		/*
2082		 * If turbo is set, reduce power to keep power
2083		 * consumption under 2 Watts.  Note that we always do
2084		 * this unless specially configured.  Then we limit
2085		 * power only for non-AP operation.
2086		 */
2087		if (IEEE80211_IS_CHAN_TURBO(chan)
2088#ifdef AH_ENABLE_AP_SUPPORT
2089		    && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
2090#endif
2091		) {
2092			/*
2093			 * If turbo is set, reduce power to keep power
2094			 * consumption under 2 Watts
2095			 */
2096			if (ee->ee_version >= AR_EEPROM_VER3_1)
2097				scaledPower = AH_MIN(scaledPower,
2098					ee->ee_turbo2WMaxPower5);
2099			/*
2100			 * EEPROM version 4.0 added an additional
2101			 * constraint on 2.4GHz channels.
2102			 */
2103			if (ee->ee_version >= AR_EEPROM_VER4_0 &&
2104			    IEEE80211_IS_CHAN_2GHZ(chan))
2105				scaledPower = AH_MIN(scaledPower,
2106					ee->ee_turbo2WMaxPower2);
2107		}
2108
2109		maxAvailPower = AH_MIN(scaledPower,
2110					targetPowerOfdm.twicePwr6_24);
2111
2112		/* Reduce power by max regulatory domain allowed restrictions */
2113		scaledPower = maxAvailPower - (tpcScaleReduction * 2);
2114		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2115		scaledPower = AH_MIN(scaledPower, powerLimit);
2116
2117		if (commit) {
2118			/* Set OFDM rates 9, 12, 18, 24 */
2119			r0 = rpow[0] = rpow[1] = rpow[2] = rpow[3] = rpow[4] = scaledPower;
2120
2121			/* Set OFDM rates 36, 48, 54, XR */
2122			rpow[5] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr36);
2123			rpow[6] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr48);
2124			r7 = rpow[7] = AH_MIN(rpow[0], targetPowerOfdm.twicePwr54);
2125
2126			if (ee->ee_version >= AR_EEPROM_VER4_0) {
2127				/* Setup XR target power from EEPROM */
2128				rpow[15] = AH_MIN(scaledPower, IEEE80211_IS_CHAN_2GHZ(chan) ?
2129						  ee->ee_xrTargetPower2 : ee->ee_xrTargetPower5);
2130			} else {
2131				/* XR uses 6mb power */
2132				rpow[15] = rpow[0];
2133			}
2134			ahp->ah_ofdmTxPower = *pMaxPower;
2135
2136		} else {
2137			r0 = scaledPower;
2138			r7 = AH_MIN(r0, targetPowerOfdm.twicePwr54);
2139		}
2140		*pMinPower = r7;
2141		*pMaxPower = r0;
2142
2143		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2144		    "%s: MaxRD: %d TurboMax: %d MaxCTL: %d "
2145		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2146		    __func__, twiceMaxRDPower, ee->ee_turbo2WMaxPower5,
2147		    twiceMaxEdgePower, tpcScaleReduction * 2,
2148		    chan->ic_freq, chan->ic_flags,
2149		    maxAvailPower, targetPowerOfdm.twicePwr6_24, *pMaxPower);
2150	}
2151
2152	if (IEEE80211_IS_CHAN_CCK(chan)) {
2153		/* Get final CCK target powers */
2154		ar5212GetTargetPowers(ah, chan, ee->ee_trgtPwr_11b,
2155			ee->ee_numTargetPwr_11b, &targetPowerCck);
2156
2157		/* Reduce power by max regulatory domain allowed restrictions */
2158		scaledPower = AH_MIN(twiceMaxEdgePowerCck,
2159			twiceMaxRDPower - twiceAntennaReduction);
2160		if (maxAvailPower < AH_MIN(scaledPower, targetPowerCck.twicePwr6_24))
2161			maxAvailPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2162
2163		/* Reduce power by user selection */
2164		scaledPower = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24) - (tpcScaleReduction * 2);
2165		scaledPower = (scaledPower < 0) ? 0 : scaledPower;
2166		scaledPower = AH_MIN(scaledPower, powerLimit);
2167
2168		if (commit) {
2169			/* Set CCK rates 2L, 2S, 5.5L, 5.5S, 11L, 11S */
2170			rpow[8]  = AH_MIN(scaledPower, targetPowerCck.twicePwr6_24);
2171			r9 = rpow[9]  = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2172			rpow[10] = rpow[9];
2173			rpow[11] = AH_MIN(scaledPower, targetPowerCck.twicePwr48);
2174			rpow[12] = rpow[11];
2175			r13 = rpow[13] = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2176			rpow[14] = rpow[13];
2177		} else {
2178			r9 = AH_MIN(scaledPower, targetPowerCck.twicePwr36);
2179			r13 = AH_MIN(scaledPower, targetPowerCck.twicePwr54);
2180		}
2181
2182		/* Set min/max power based off OFDM values or initialization */
2183		if (r13 < *pMinPower)
2184			*pMinPower = r13;
2185		if (r9 > *pMaxPower)
2186			*pMaxPower = r9;
2187
2188		HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2189		    "%s: cck: MaxRD: %d MaxCTL: %d "
2190		    "TPC_Reduction %d chan=%d (0x%x) maxAvailPower=%d pwr6_24=%d, maxPower=%d\n",
2191		    __func__, twiceMaxRDPower, twiceMaxEdgePowerCck,
2192		    tpcScaleReduction * 2, chan->ic_freq, chan->ic_flags,
2193		    maxAvailPower, targetPowerCck.twicePwr6_24, *pMaxPower);
2194	}
2195	if (commit) {
2196		ahp->ah_tx6PowerInHalfDbm = *pMaxPower;
2197		AH_PRIVATE(ah)->ah_maxPowerLevel = ahp->ah_tx6PowerInHalfDbm;
2198	}
2199	return AH_TRUE;
2200}
2201
2202HAL_BOOL
2203ar5212GetChipPowerLimits(struct ath_hal *ah, struct ieee80211_channel *chan)
2204{
2205	struct ath_hal_5212 *ahp = AH5212(ah);
2206#if 0
2207	static const uint16_t tpcScaleReductionTable[5] =
2208		{ 0, 3, 6, 9, MAX_RATE_POWER };
2209	int16_t tpcInDb, powerLimit;
2210#endif
2211	int16_t minPower, maxPower;
2212
2213	/*
2214	 * Get Pier table max and min powers.
2215	 */
2216	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
2217		/* NB: rf code returns 1/4 dBm units, convert */
2218		chan->ic_maxpower = maxPower / 2;
2219		chan->ic_minpower = minPower / 2;
2220	} else {
2221		HALDEBUG(ah, HAL_DEBUG_ANY,
2222		    "%s: no min/max power for %u/0x%x\n",
2223		    __func__, chan->ic_freq, chan->ic_flags);
2224		chan->ic_maxpower = MAX_RATE_POWER;
2225		chan->ic_minpower = 0;
2226	}
2227#if 0
2228	/*
2229	 * Now adjust to reflect any global scale and/or CTL's.
2230	 * (XXX is that correct?)
2231	 */
2232	powerLimit = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
2233	if (powerLimit >= MAX_RATE_POWER || powerLimit == 0)
2234		tpcInDb = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
2235	else
2236		tpcInDb = 0;
2237	if (!ar5212SetRateTable(ah, chan, tpcInDb, powerLimit,
2238				AH_FALSE, &minPower, &maxPower)) {
2239		HALDEBUG(ah, HAL_DEBUG_ANY,
2240		    "%s: unable to find max/min power\n",__func__);
2241		return AH_FALSE;
2242	}
2243	if (maxPower < chan->ic_maxpower)
2244		chan->ic_maxpower = maxPower;
2245	if (minPower < chan->ic_minpower)
2246		chan->ic_minpower = minPower;
2247	HALDEBUG(ah, HAL_DEBUG_RESET,
2248	    "Chan %d: MaxPow = %d MinPow = %d\n",
2249	    chan->ic_freq, chan->ic_maxpower, chans->ic_minpower);
2250#endif
2251	return AH_TRUE;
2252}
2253
2254/*
2255 * Correct for the gain-delta between ofdm and cck mode target
2256 * powers. Write the results to the rate table and the power table.
2257 *
2258 *   Conventions :
2259 *   1. rpow[ii] is the integer value of 2*(desired power
2260 *    for the rate ii in dBm) to provide 0.5dB resolution. rate
2261 *    mapping is as following :
2262 *     [0..7]  --> ofdm 6, 9, .. 48, 54
2263 *     [8..14] --> cck 1L, 2L, 2S, .. 11L, 11S
2264 *     [15]    --> XR (all rates get the same power)
2265 *   2. powv[ii]  is the pcdac corresponding to ii/2 dBm.
2266 */
2267static void
2268ar5212CorrectGainDelta(struct ath_hal *ah, int twiceOfdmCckDelta)
2269{
2270#define	N(_a)	(sizeof(_a) / sizeof(_a[0]))
2271	struct ath_hal_5212 *ahp = AH5212(ah);
2272	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2273	int16_t ratesIndex[N(ahp->ah_ratesArray)];
2274	uint16_t ii, jj, iter;
2275	int32_t cckIndex;
2276	int16_t gainDeltaAdjust;
2277
2278	HALASSERT(ah->ah_magic == AR5212_MAGIC);
2279
2280	gainDeltaAdjust = ee->ee_cckOfdmGainDelta;
2281
2282	/* make a local copy of desired powers as initial indices */
2283	OS_MEMCPY(ratesIndex, ahp->ah_ratesArray, sizeof(ratesIndex));
2284
2285	/* fix only the CCK indices */
2286	for (ii = 8; ii < 15; ii++) {
2287		/* apply a gain_delta correction of -15 for CCK */
2288		ratesIndex[ii] -= gainDeltaAdjust;
2289
2290		/* Now check for contention with all ofdm target powers */
2291		jj = 0;
2292		iter = 0;
2293		/* indicates not all ofdm rates checked forcontention yet */
2294		while (jj < 16) {
2295			if (ratesIndex[ii] < 0)
2296				ratesIndex[ii] = 0;
2297			if (jj == 8) {		/* skip CCK rates */
2298				jj = 15;
2299				continue;
2300			}
2301			if (ratesIndex[ii] == ahp->ah_ratesArray[jj]) {
2302				if (ahp->ah_ratesArray[jj] == 0)
2303					ratesIndex[ii]++;
2304				else if (iter > 50) {
2305					/*
2306					 * To avoid pathological case of of
2307					 * dm target powers 0 and 0.5dBm
2308					 */
2309					ratesIndex[ii]++;
2310				} else
2311					ratesIndex[ii]--;
2312				/* check with all rates again */
2313				jj = 0;
2314				iter++;
2315			} else
2316				jj++;
2317		}
2318		if (ratesIndex[ii] >= PWR_TABLE_SIZE)
2319			ratesIndex[ii] = PWR_TABLE_SIZE -1;
2320		cckIndex = ahp->ah_ratesArray[ii] - twiceOfdmCckDelta;
2321		if (cckIndex < 0)
2322			cckIndex = 0;
2323
2324		/*
2325		 * Validate that the indexes for the powv are not
2326		 * out of bounds.
2327		 */
2328		HALASSERT(cckIndex < PWR_TABLE_SIZE);
2329		HALASSERT(ratesIndex[ii] < PWR_TABLE_SIZE);
2330		ahp->ah_pcdacTable[ratesIndex[ii]] =
2331			ahp->ah_pcdacTable[cckIndex];
2332	}
2333	/* Override rate per power table with new values */
2334	for (ii = 8; ii < 15; ii++)
2335		ahp->ah_ratesArray[ii] = ratesIndex[ii];
2336#undef N
2337}
2338
2339/*
2340 * Find the maximum conformance test limit for the given channel and CTL info
2341 */
2342static uint16_t
2343ar5212GetMaxEdgePower(uint16_t channel, const RD_EDGES_POWER *pRdEdgesPower)
2344{
2345	/* temp array for holding edge channels */
2346	uint16_t tempChannelList[NUM_EDGES];
2347	uint16_t clo, chi, twiceMaxEdgePower;
2348	int i, numEdges;
2349
2350	/* Get the edge power */
2351	for (i = 0; i < NUM_EDGES; i++) {
2352		if (pRdEdgesPower[i].rdEdge == 0)
2353			break;
2354		tempChannelList[i] = pRdEdgesPower[i].rdEdge;
2355	}
2356	numEdges = i;
2357
2358	ar5212GetLowerUpperValues(channel, tempChannelList,
2359		numEdges, &clo, &chi);
2360	/* Get the index for the lower channel */
2361	for (i = 0; i < numEdges && clo != tempChannelList[i]; i++)
2362		;
2363	/* Is lower channel ever outside the rdEdge? */
2364	HALASSERT(i != numEdges);
2365
2366	if ((clo == chi && clo == channel) || (pRdEdgesPower[i].flag)) {
2367		/*
2368		 * If there's an exact channel match or an inband flag set
2369		 * on the lower channel use the given rdEdgePower
2370		 */
2371		twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
2372		HALASSERT(twiceMaxEdgePower > 0);
2373	} else
2374		twiceMaxEdgePower = MAX_RATE_POWER;
2375	return twiceMaxEdgePower;
2376}
2377
2378/*
2379 * Returns interpolated or the scaled up interpolated value
2380 */
2381static uint16_t
2382interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
2383	uint16_t targetLeft, uint16_t targetRight)
2384{
2385	uint16_t rv;
2386	int16_t lRatio;
2387
2388	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
2389	if ((targetLeft * targetRight) == 0)
2390		return 0;
2391
2392	if (srcRight != srcLeft) {
2393		/*
2394		 * Note the ratio always need to be scaled,
2395		 * since it will be a fraction.
2396		 */
2397		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
2398		if (lRatio < 0) {
2399		    /* Return as Left target if value would be negative */
2400		    rv = targetLeft;
2401		} else if (lRatio > EEP_SCALE) {
2402		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
2403		    rv = targetRight;
2404		} else {
2405			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
2406					targetLeft) / EEP_SCALE;
2407		}
2408	} else {
2409		rv = targetLeft;
2410	}
2411	return rv;
2412}
2413
2414/*
2415 * Return the four rates of target power for the given target power table
2416 * channel, and number of channels
2417 */
2418static void
2419ar5212GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2420	const TRGT_POWER_INFO *powInfo,
2421	uint16_t numChannels, TRGT_POWER_INFO *pNewPower)
2422{
2423	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2424	/* temp array for holding target power channels */
2425	uint16_t tempChannelList[NUM_TEST_FREQUENCIES];
2426	uint16_t clo, chi, ixlo, ixhi;
2427	int i;
2428
2429	/* Copy the target powers into the temp channel list */
2430	for (i = 0; i < numChannels; i++)
2431		tempChannelList[i] = powInfo[i].testChannel;
2432
2433	ar5212GetLowerUpperValues(freq, tempChannelList,
2434		numChannels, &clo, &chi);
2435
2436	/* Get the indices for the channel */
2437	ixlo = ixhi = 0;
2438	for (i = 0; i < numChannels; i++) {
2439		if (clo == tempChannelList[i]) {
2440			ixlo = i;
2441		}
2442		if (chi == tempChannelList[i]) {
2443			ixhi = i;
2444			break;
2445		}
2446	}
2447
2448	/*
2449	 * Get the lower and upper channels, target powers,
2450	 * and interpolate between them.
2451	 */
2452	pNewPower->twicePwr6_24 = interpolate(freq, clo, chi,
2453		powInfo[ixlo].twicePwr6_24, powInfo[ixhi].twicePwr6_24);
2454	pNewPower->twicePwr36 = interpolate(freq, clo, chi,
2455		powInfo[ixlo].twicePwr36, powInfo[ixhi].twicePwr36);
2456	pNewPower->twicePwr48 = interpolate(freq, clo, chi,
2457		powInfo[ixlo].twicePwr48, powInfo[ixhi].twicePwr48);
2458	pNewPower->twicePwr54 = interpolate(freq, clo, chi,
2459		powInfo[ixlo].twicePwr54, powInfo[ixhi].twicePwr54);
2460}
2461
2462/*
2463 * Search a list for a specified value v that is within
2464 * EEP_DELTA of the search values.  Return the closest
2465 * values in the list above and below the desired value.
2466 * EEP_DELTA is a factional value; everything is scaled
2467 * so only integer arithmetic is used.
2468 *
2469 * NB: the input list is assumed to be sorted in ascending order
2470 */
2471void
2472ar5212GetLowerUpperValues(uint16_t v, uint16_t *lp, uint16_t listSize,
2473                          uint16_t *vlo, uint16_t *vhi)
2474{
2475	uint32_t target = v * EEP_SCALE;
2476	uint16_t *ep = lp+listSize;
2477
2478	/*
2479	 * Check first and last elements for out-of-bounds conditions.
2480	 */
2481	if (target < (uint32_t)(lp[0] * EEP_SCALE - EEP_DELTA)) {
2482		*vlo = *vhi = lp[0];
2483		return;
2484	}
2485	if (target > (uint32_t)(ep[-1] * EEP_SCALE + EEP_DELTA)) {
2486		*vlo = *vhi = ep[-1];
2487		return;
2488	}
2489
2490	/* look for value being near or between 2 values in list */
2491	for (; lp < ep; lp++) {
2492		/*
2493		 * If value is close to the current value of the list
2494		 * then target is not between values, it is one of the values
2495		 */
2496		if (abs(lp[0] * EEP_SCALE - target) < EEP_DELTA) {
2497			*vlo = *vhi = lp[0];
2498			return;
2499		}
2500		/*
2501		 * Look for value being between current value and next value
2502		 * if so return these 2 values
2503		 */
2504		if (target < (uint32_t)(lp[1] * EEP_SCALE - EEP_DELTA)) {
2505			*vlo = lp[0];
2506			*vhi = lp[1];
2507			return;
2508		}
2509	}
2510	HALASSERT(AH_FALSE);		/* should not reach here */
2511}
2512
2513/*
2514 * Perform analog "swizzling" of parameters into their location
2515 *
2516 * NB: used by RF backends
2517 */
2518void
2519ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, uint32_t numBits,
2520                     uint32_t firstBit, uint32_t column)
2521{
2522#define	MAX_ANALOG_START	319		/* XXX */
2523	uint32_t tmp32, mask, arrayEntry, lastBit;
2524	int32_t bitPosition, bitsLeft;
2525
2526	HALASSERT(column <= 3);
2527	HALASSERT(numBits <= 32);
2528	HALASSERT(firstBit + numBits <= MAX_ANALOG_START);
2529
2530	tmp32 = ath_hal_reverseBits(reg32, numBits);
2531	arrayEntry = (firstBit - 1) / 8;
2532	bitPosition = (firstBit - 1) % 8;
2533	bitsLeft = numBits;
2534	while (bitsLeft > 0) {
2535		lastBit = (bitPosition + bitsLeft > 8) ?
2536			8 : bitPosition + bitsLeft;
2537		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
2538			(column * 8);
2539		rfBuf[arrayEntry] &= ~mask;
2540		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
2541			(column * 8)) & mask;
2542		bitsLeft -= 8 - bitPosition;
2543		tmp32 = tmp32 >> (8 - bitPosition);
2544		bitPosition = 0;
2545		arrayEntry++;
2546	}
2547#undef MAX_ANALOG_START
2548}
2549
2550/*
2551 * Sets the rate to duration values in MAC - used for multi-
2552 * rate retry.
2553 * The rate duration table needs to cover all valid rate codes;
2554 * the 11g table covers all ofdm rates, while the 11b table
2555 * covers all cck rates => all valid rates get covered between
2556 * these two mode's ratetables!
2557 * But if we're turbo, the ofdm phy is replaced by the turbo phy
2558 * and cck is not valid with turbo => all rates get covered
2559 * by the turbo ratetable only
2560 */
2561void
2562ar5212SetRateDurationTable(struct ath_hal *ah,
2563	const struct ieee80211_channel *chan)
2564{
2565	const HAL_RATE_TABLE *rt;
2566	int i;
2567
2568	/* NB: band doesn't matter for 1/2 and 1/4 rate */
2569	if (IEEE80211_IS_CHAN_HALF(chan)) {
2570		rt = ar5212GetRateTable(ah, HAL_MODE_11A_HALF_RATE);
2571	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
2572		rt = ar5212GetRateTable(ah, HAL_MODE_11A_QUARTER_RATE);
2573	} else {
2574		rt = ar5212GetRateTable(ah,
2575			IEEE80211_IS_CHAN_TURBO(chan) ? HAL_MODE_TURBO : HAL_MODE_11G);
2576	}
2577
2578	for (i = 0; i < rt->rateCount; ++i)
2579		OS_REG_WRITE(ah,
2580			AR_RATE_DURATION(rt->info[i].rateCode),
2581			ath_hal_computetxtime(ah, rt,
2582				WLAN_CTRL_FRAME_SIZE,
2583				rt->info[i].controlRate, AH_FALSE));
2584	if (!IEEE80211_IS_CHAN_TURBO(chan)) {
2585		/* 11g Table is used to cover the CCK rates. */
2586		rt = ar5212GetRateTable(ah, HAL_MODE_11G);
2587		for (i = 0; i < rt->rateCount; ++i) {
2588			uint32_t reg = AR_RATE_DURATION(rt->info[i].rateCode);
2589
2590			if (rt->info[i].phy != IEEE80211_T_CCK)
2591				continue;
2592
2593			OS_REG_WRITE(ah, reg,
2594				ath_hal_computetxtime(ah, rt,
2595					WLAN_CTRL_FRAME_SIZE,
2596					rt->info[i].controlRate, AH_FALSE));
2597			/* cck rates have short preamble option also */
2598			if (rt->info[i].shortPreamble) {
2599				reg += rt->info[i].shortPreamble << 2;
2600				OS_REG_WRITE(ah, reg,
2601					ath_hal_computetxtime(ah, rt,
2602						WLAN_CTRL_FRAME_SIZE,
2603						rt->info[i].controlRate,
2604						AH_TRUE));
2605			}
2606		}
2607	}
2608}
2609
2610/* Adjust various register settings based on half/quarter rate clock setting.
2611 * This includes: +USEC, TX/RX latency,
2612 *                + IFS params: slot, eifs, misc etc.
2613 */
2614void
2615ar5212SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2616{
2617	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2618
2619	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2620		  IEEE80211_IS_CHAN_QUARTER(chan));
2621
2622	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2623	if (IEEE80211_IS_CHAN_HALF(chan)) {
2624		slot = IFS_SLOT_HALF_RATE;
2625		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2626		txLat = TX_HALF_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2627		usec = HALF_RATE_USEC;
2628		eifs = IFS_EIFS_HALF_RATE;
2629		init_usec = INIT_USEC >> 1;
2630	} else { /* quarter rate */
2631		slot = IFS_SLOT_QUARTER_RATE;
2632		rxLat = RX_NON_FULL_RATE_LATENCY << AR5212_USEC_RX_LAT_S;
2633		txLat = TX_QUARTER_RATE_LATENCY << AR5212_USEC_TX_LAT_S;
2634		usec = QUARTER_RATE_USEC;
2635		eifs = IFS_EIFS_QUARTER_RATE;
2636		init_usec = INIT_USEC >> 2;
2637	}
2638
2639	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2640	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2641	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2642	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2643				AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2644}
2645