ah.c revision 222584
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ah.c 222584 2011-06-01 20:01:02Z adrian $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24#include "ah_eeprom.h"			/* for 5ghz fast clock flag */
25
26#include "ar5416/ar5416reg.h"		/* NB: includes ar5212reg.h */
27
28/* linker set of registered chips */
29OS_SET_DECLARE(ah_chips, struct ath_hal_chip);
30
31/*
32 * Check the set of registered chips to see if any recognize
33 * the device as one they can support.
34 */
35const char*
36ath_hal_probe(uint16_t vendorid, uint16_t devid)
37{
38	struct ath_hal_chip * const *pchip;
39
40	OS_SET_FOREACH(pchip, ah_chips) {
41		const char *name = (*pchip)->probe(vendorid, devid);
42		if (name != AH_NULL)
43			return name;
44	}
45	return AH_NULL;
46}
47
48/*
49 * Attach detects device chip revisions, initializes the hwLayer
50 * function list, reads EEPROM information,
51 * selects reset vectors, and performs a short self test.
52 * Any failures will return an error that should cause a hardware
53 * disable.
54 */
55struct ath_hal*
56ath_hal_attach(uint16_t devid, HAL_SOFTC sc,
57	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *error)
58{
59	struct ath_hal_chip * const *pchip;
60
61	OS_SET_FOREACH(pchip, ah_chips) {
62		struct ath_hal_chip *chip = *pchip;
63		struct ath_hal *ah;
64
65		/* XXX don't have vendorid, assume atheros one works */
66		if (chip->probe(ATHEROS_VENDOR_ID, devid) == AH_NULL)
67			continue;
68		ah = chip->attach(devid, sc, st, sh, eepromdata, error);
69		if (ah != AH_NULL) {
70			/* copy back private state to public area */
71			ah->ah_devid = AH_PRIVATE(ah)->ah_devid;
72			ah->ah_subvendorid = AH_PRIVATE(ah)->ah_subvendorid;
73			ah->ah_macVersion = AH_PRIVATE(ah)->ah_macVersion;
74			ah->ah_macRev = AH_PRIVATE(ah)->ah_macRev;
75			ah->ah_phyRev = AH_PRIVATE(ah)->ah_phyRev;
76			ah->ah_analog5GhzRev = AH_PRIVATE(ah)->ah_analog5GhzRev;
77			ah->ah_analog2GhzRev = AH_PRIVATE(ah)->ah_analog2GhzRev;
78			return ah;
79		}
80	}
81	return AH_NULL;
82}
83
84const char *
85ath_hal_mac_name(struct ath_hal *ah)
86{
87	switch (ah->ah_macVersion) {
88	case AR_SREV_VERSION_CRETE:
89	case AR_SREV_VERSION_MAUI_1:
90		return "5210";
91	case AR_SREV_VERSION_MAUI_2:
92	case AR_SREV_VERSION_OAHU:
93		return "5211";
94	case AR_SREV_VERSION_VENICE:
95		return "5212";
96	case AR_SREV_VERSION_GRIFFIN:
97		return "2413";
98	case AR_SREV_VERSION_CONDOR:
99		return "5424";
100	case AR_SREV_VERSION_EAGLE:
101		return "5413";
102	case AR_SREV_VERSION_COBRA:
103		return "2415";
104	case AR_SREV_2425:
105		return "2425";
106	case AR_SREV_2417:
107		return "2417";
108	case AR_XSREV_VERSION_OWL_PCI:
109		return "5416";
110	case AR_XSREV_VERSION_OWL_PCIE:
111		return "5418";
112	case AR_XSREV_VERSION_HOWL:
113		return "9130";
114	case AR_XSREV_VERSION_SOWL:
115		return "9160";
116	case AR_XSREV_VERSION_MERLIN:
117		return "9280";
118	case AR_XSREV_VERSION_KITE:
119		return "9285";
120	case AR_XSREV_VERSION_KIWI:
121		return "9287";
122	}
123	return "????";
124}
125
126/*
127 * Return the mask of available modes based on the hardware capabilities.
128 */
129u_int
130ath_hal_getwirelessmodes(struct ath_hal*ah)
131{
132	return ath_hal_getWirelessModes(ah);
133}
134
135/* linker set of registered RF backends */
136OS_SET_DECLARE(ah_rfs, struct ath_hal_rf);
137
138/*
139 * Check the set of registered RF backends to see if
140 * any recognize the device as one they can support.
141 */
142struct ath_hal_rf *
143ath_hal_rfprobe(struct ath_hal *ah, HAL_STATUS *ecode)
144{
145	struct ath_hal_rf * const *prf;
146
147	OS_SET_FOREACH(prf, ah_rfs) {
148		struct ath_hal_rf *rf = *prf;
149		if (rf->probe(ah))
150			return rf;
151	}
152	*ecode = HAL_ENOTSUPP;
153	return AH_NULL;
154}
155
156const char *
157ath_hal_rf_name(struct ath_hal *ah)
158{
159	switch (ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
160	case 0:			/* 5210 */
161		return "5110";	/* NB: made up */
162	case AR_RAD5111_SREV_MAJOR:
163	case AR_RAD5111_SREV_PROD:
164		return "5111";
165	case AR_RAD2111_SREV_MAJOR:
166		return "2111";
167	case AR_RAD5112_SREV_MAJOR:
168	case AR_RAD5112_SREV_2_0:
169	case AR_RAD5112_SREV_2_1:
170		return "5112";
171	case AR_RAD2112_SREV_MAJOR:
172	case AR_RAD2112_SREV_2_0:
173	case AR_RAD2112_SREV_2_1:
174		return "2112";
175	case AR_RAD2413_SREV_MAJOR:
176		return "2413";
177	case AR_RAD5413_SREV_MAJOR:
178		return "5413";
179	case AR_RAD2316_SREV_MAJOR:
180		return "2316";
181	case AR_RAD2317_SREV_MAJOR:
182		return "2317";
183	case AR_RAD5424_SREV_MAJOR:
184		return "5424";
185
186	case AR_RAD5133_SREV_MAJOR:
187		return "5133";
188	case AR_RAD2133_SREV_MAJOR:
189		return "2133";
190	case AR_RAD5122_SREV_MAJOR:
191		return "5122";
192	case AR_RAD2122_SREV_MAJOR:
193		return "2122";
194	}
195	return "????";
196}
197
198/*
199 * Poll the register looking for a specific value.
200 */
201HAL_BOOL
202ath_hal_wait(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val)
203{
204#define	AH_TIMEOUT	1000
205	return ath_hal_waitfor(ah, reg, mask, val, AH_TIMEOUT);
206#undef AH_TIMEOUT
207}
208
209HAL_BOOL
210ath_hal_waitfor(struct ath_hal *ah, u_int reg, uint32_t mask, uint32_t val, uint32_t timeout)
211{
212	int i;
213
214	for (i = 0; i < timeout; i++) {
215		if ((OS_REG_READ(ah, reg) & mask) == val)
216			return AH_TRUE;
217		OS_DELAY(10);
218	}
219	HALDEBUG(ah, HAL_DEBUG_REGIO | HAL_DEBUG_PHYIO,
220	    "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
221	    __func__, reg, OS_REG_READ(ah, reg), mask, val);
222	return AH_FALSE;
223}
224
225/*
226 * Reverse the bits starting at the low bit for a value of
227 * bit_count in size
228 */
229uint32_t
230ath_hal_reverseBits(uint32_t val, uint32_t n)
231{
232	uint32_t retval;
233	int i;
234
235	for (i = 0, retval = 0; i < n; i++) {
236		retval = (retval << 1) | (val & 1);
237		val >>= 1;
238	}
239	return retval;
240}
241
242/* 802.11n related timing definitions */
243
244#define	OFDM_PLCP_BITS	22
245#define	HT_L_STF	8
246#define	HT_L_LTF	8
247#define	HT_L_SIG	4
248#define	HT_SIG		8
249#define	HT_STF		4
250#define	HT_LTF(n)	((n) * 4)
251
252#define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
253#define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
254#define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
255
256/*
257 * Calculate the duration of a packet whether it is 11n or legacy.
258 */
259uint32_t
260ath_hal_pkt_txtime(struct ath_hal *ah, const HAL_RATE_TABLE *rates, uint32_t frameLen,
261    uint16_t rateix, HAL_BOOL isht40, HAL_BOOL shortPreamble)
262{
263	uint8_t rc;
264	int numStreams;
265
266	rc = rates->info[rateix].rateCode;
267
268	/* Legacy rate? Return the old way */
269	if (! IS_HT_RATE(rc))
270		return ath_hal_computetxtime(ah, rates, frameLen, rateix, shortPreamble);
271
272	/* 11n frame - extract out the number of spatial streams */
273	numStreams = HT_RC_2_STREAMS(rc);
274	KASSERT(numStreams == 1 || numStreams == 2, ("number of spatial streams needs to be 1 or 2: MCS rate 0x%x!", rateix));
275
276	return ath_computedur_ht(frameLen, rc, numStreams, isht40, shortPreamble);
277}
278
279/*
280 * Calculate the transmit duration of an 11n frame.
281 * This only works for MCS0->MCS15.
282 */
283uint32_t
284ath_computedur_ht(uint32_t frameLen, uint16_t rate, int streams, HAL_BOOL isht40,
285    HAL_BOOL isShortGI)
286{
287	static const uint16_t ht20_bps[16] = {
288	    26, 52, 78, 104, 156, 208, 234, 260,
289	    52, 104, 156, 208, 312, 416, 468, 520
290	};
291	static const uint16_t ht40_bps[16] = {
292	    54, 108, 162, 216, 324, 432, 486, 540,
293	    108, 216, 324, 432, 648, 864, 972, 1080,
294	};
295	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
296
297	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
298	KASSERT((rate &~ IEEE80211_RATE_MCS) < 16, ("bad mcs 0x%x", rate));
299
300	if (isht40)
301		bitsPerSymbol = ht40_bps[rate & 0xf];
302	else
303		bitsPerSymbol = ht20_bps[rate & 0xf];
304	numBits = OFDM_PLCP_BITS + (frameLen << 3);
305	numSymbols = howmany(numBits, bitsPerSymbol);
306	if (isShortGI)
307		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
308	else
309		txTime = numSymbols * 4;                /* 4us */
310	return txTime + HT_L_STF + HT_L_LTF +
311	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
312}
313
314/*
315 * Compute the time to transmit a frame of length frameLen bytes
316 * using the specified rate, phy, and short preamble setting.
317 */
318uint16_t
319ath_hal_computetxtime(struct ath_hal *ah,
320	const HAL_RATE_TABLE *rates, uint32_t frameLen, uint16_t rateix,
321	HAL_BOOL shortPreamble)
322{
323	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
324	uint32_t kbps;
325
326	/* Warn if this function is called for 11n rates; it should not be! */
327	if (IS_HT_RATE(rates->info[rateix].rateCode))
328		ath_hal_printf(ah, "%s: MCS rate? (index %d; hwrate 0x%x)\n",
329		    __func__, rateix, rates->info[rateix].rateCode);
330
331	kbps = rates->info[rateix].rateKbps;
332	/*
333	 * index can be invalid duting dynamic Turbo transitions.
334	 * XXX
335	 */
336	if (kbps == 0)
337		return 0;
338	switch (rates->info[rateix].phy) {
339	case IEEE80211_T_CCK:
340		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
341		if (shortPreamble && rates->info[rateix].shortPreamble)
342			phyTime >>= 1;
343		numBits		= frameLen << 3;
344		txTime		= CCK_SIFS_TIME + phyTime
345				+ ((numBits * 1000)/kbps);
346		break;
347	case IEEE80211_T_OFDM:
348		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
349		HALASSERT(bitsPerSymbol != 0);
350
351		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
352		numSymbols	= howmany(numBits, bitsPerSymbol);
353		txTime		= OFDM_SIFS_TIME
354				+ OFDM_PREAMBLE_TIME
355				+ (numSymbols * OFDM_SYMBOL_TIME);
356		break;
357	case IEEE80211_T_OFDM_HALF:
358		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
359		HALASSERT(bitsPerSymbol != 0);
360
361		numBits		= OFDM_HALF_PLCP_BITS + (frameLen << 3);
362		numSymbols	= howmany(numBits, bitsPerSymbol);
363		txTime		= OFDM_HALF_SIFS_TIME
364				+ OFDM_HALF_PREAMBLE_TIME
365				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
366		break;
367	case IEEE80211_T_OFDM_QUARTER:
368		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
369		HALASSERT(bitsPerSymbol != 0);
370
371		numBits		= OFDM_QUARTER_PLCP_BITS + (frameLen << 3);
372		numSymbols	= howmany(numBits, bitsPerSymbol);
373		txTime		= OFDM_QUARTER_SIFS_TIME
374				+ OFDM_QUARTER_PREAMBLE_TIME
375				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
376		break;
377	case IEEE80211_T_TURBO:
378		bitsPerSymbol	= (kbps * TURBO_SYMBOL_TIME) / 1000;
379		HALASSERT(bitsPerSymbol != 0);
380
381		numBits		= TURBO_PLCP_BITS + (frameLen << 3);
382		numSymbols	= howmany(numBits, bitsPerSymbol);
383		txTime		= TURBO_SIFS_TIME
384				+ TURBO_PREAMBLE_TIME
385				+ (numSymbols * TURBO_SYMBOL_TIME);
386		break;
387	default:
388		HALDEBUG(ah, HAL_DEBUG_PHYIO,
389		    "%s: unknown phy %u (rate ix %u)\n",
390		    __func__, rates->info[rateix].phy, rateix);
391		txTime = 0;
392		break;
393	}
394	return txTime;
395}
396
397typedef enum {
398	WIRELESS_MODE_11a   = 0,
399	WIRELESS_MODE_TURBO = 1,
400	WIRELESS_MODE_11b   = 2,
401	WIRELESS_MODE_11g   = 3,
402	WIRELESS_MODE_108g  = 4,
403
404	WIRELESS_MODE_MAX
405} WIRELESS_MODE;
406
407static WIRELESS_MODE
408ath_hal_chan2wmode(struct ath_hal *ah, const struct ieee80211_channel *chan)
409{
410	if (IEEE80211_IS_CHAN_B(chan))
411		return WIRELESS_MODE_11b;
412	if (IEEE80211_IS_CHAN_G(chan))
413		return WIRELESS_MODE_11g;
414	if (IEEE80211_IS_CHAN_108G(chan))
415		return WIRELESS_MODE_108g;
416	if (IEEE80211_IS_CHAN_TURBO(chan))
417		return WIRELESS_MODE_TURBO;
418	return WIRELESS_MODE_11a;
419}
420
421/*
422 * Convert between microseconds and core system clocks.
423 */
424                                     /* 11a Turbo  11b  11g  108g */
425static const uint8_t CLOCK_RATE[]  = { 40,  80,   22,  44,   88  };
426
427#define	CLOCK_FAST_RATE_5GHZ_OFDM	44
428
429u_int
430ath_hal_mac_clks(struct ath_hal *ah, u_int usecs)
431{
432	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
433	u_int clks;
434
435	/* NB: ah_curchan may be null when called attach time */
436	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
437	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
438		clks = usecs * CLOCK_FAST_RATE_5GHZ_OFDM;
439		if (IEEE80211_IS_CHAN_HT40(c))
440			clks <<= 1;
441	} else if (c != AH_NULL) {
442		clks = usecs * CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
443		if (IEEE80211_IS_CHAN_HT40(c))
444			clks <<= 1;
445	} else
446		clks = usecs * CLOCK_RATE[WIRELESS_MODE_11b];
447	return clks;
448}
449
450u_int
451ath_hal_mac_usec(struct ath_hal *ah, u_int clks)
452{
453	const struct ieee80211_channel *c = AH_PRIVATE(ah)->ah_curchan;
454	u_int usec;
455
456	/* NB: ah_curchan may be null when called attach time */
457	/* XXX merlin and later specific workaround - 5ghz fast clock is 44 */
458	if (c != AH_NULL && IS_5GHZ_FAST_CLOCK_EN(ah, c)) {
459		usec = clks / CLOCK_FAST_RATE_5GHZ_OFDM;
460		if (IEEE80211_IS_CHAN_HT40(c))
461			usec >>= 1;
462	} else if (c != AH_NULL) {
463		usec = clks / CLOCK_RATE[ath_hal_chan2wmode(ah, c)];
464		if (IEEE80211_IS_CHAN_HT40(c))
465			usec >>= 1;
466	} else
467		usec = clks / CLOCK_RATE[WIRELESS_MODE_11b];
468	return usec;
469}
470
471/*
472 * Setup a h/w rate table's reverse lookup table and
473 * fill in ack durations.  This routine is called for
474 * each rate table returned through the ah_getRateTable
475 * method.  The reverse lookup tables are assumed to be
476 * initialized to zero (or at least the first entry).
477 * We use this as a key that indicates whether or not
478 * we've previously setup the reverse lookup table.
479 *
480 * XXX not reentrant, but shouldn't matter
481 */
482void
483ath_hal_setupratetable(struct ath_hal *ah, HAL_RATE_TABLE *rt)
484{
485#define	N(a)	(sizeof(a)/sizeof(a[0]))
486	int i;
487
488	if (rt->rateCodeToIndex[0] != 0)	/* already setup */
489		return;
490	for (i = 0; i < N(rt->rateCodeToIndex); i++)
491		rt->rateCodeToIndex[i] = (uint8_t) -1;
492	for (i = 0; i < rt->rateCount; i++) {
493		uint8_t code = rt->info[i].rateCode;
494		uint8_t cix = rt->info[i].controlRate;
495
496		HALASSERT(code < N(rt->rateCodeToIndex));
497		rt->rateCodeToIndex[code] = i;
498		HALASSERT((code | rt->info[i].shortPreamble) <
499		    N(rt->rateCodeToIndex));
500		rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i;
501		/*
502		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
503		 *     depends on whether they are marked as basic rates;
504		 *     the static tables are setup with an 11b-compatible
505		 *     2Mb/s rate which will work but is suboptimal
506		 */
507		rt->info[i].lpAckDuration = ath_hal_computetxtime(ah, rt,
508			WLAN_CTRL_FRAME_SIZE, cix, AH_FALSE);
509		rt->info[i].spAckDuration = ath_hal_computetxtime(ah, rt,
510			WLAN_CTRL_FRAME_SIZE, cix, AH_TRUE);
511	}
512#undef N
513}
514
515HAL_STATUS
516ath_hal_getcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
517	uint32_t capability, uint32_t *result)
518{
519	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
520
521	switch (type) {
522	case HAL_CAP_REG_DMN:		/* regulatory domain */
523		*result = AH_PRIVATE(ah)->ah_currentRD;
524		return HAL_OK;
525	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
526	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
527		return HAL_ENOTSUPP;
528	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
529		return HAL_ENOTSUPP;
530	case HAL_CAP_PHYCOUNTERS:	/* hardware PHY error counters */
531		return pCap->halHwPhyCounterSupport ? HAL_OK : HAL_ENXIO;
532	case HAL_CAP_WME_TKIPMIC:   /* hardware can do TKIP MIC when WMM is turned on */
533		return HAL_ENOTSUPP;
534	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
535		return HAL_ENOTSUPP;
536	case HAL_CAP_KEYCACHE_SIZE:	/* hardware key cache size */
537		*result =  pCap->halKeyCacheSize;
538		return HAL_OK;
539	case HAL_CAP_NUM_TXQUEUES:	/* number of hardware tx queues */
540		*result = pCap->halTotalQueues;
541		return HAL_OK;
542	case HAL_CAP_VEOL:		/* hardware supports virtual EOL */
543		return pCap->halVEOLSupport ? HAL_OK : HAL_ENOTSUPP;
544	case HAL_CAP_PSPOLL:		/* hardware PS-Poll support works */
545		return pCap->halPSPollBroken ? HAL_ENOTSUPP : HAL_OK;
546	case HAL_CAP_COMPRESSION:
547		return pCap->halCompressSupport ? HAL_OK : HAL_ENOTSUPP;
548	case HAL_CAP_BURST:
549		return pCap->halBurstSupport ? HAL_OK : HAL_ENOTSUPP;
550	case HAL_CAP_FASTFRAME:
551		return pCap->halFastFramesSupport ? HAL_OK : HAL_ENOTSUPP;
552	case HAL_CAP_DIAG:		/* hardware diagnostic support */
553		*result = AH_PRIVATE(ah)->ah_diagreg;
554		return HAL_OK;
555	case HAL_CAP_TXPOW:		/* global tx power limit  */
556		switch (capability) {
557		case 0:			/* facility is supported */
558			return HAL_OK;
559		case 1:			/* current limit */
560			*result = AH_PRIVATE(ah)->ah_powerLimit;
561			return HAL_OK;
562		case 2:			/* current max tx power */
563			*result = AH_PRIVATE(ah)->ah_maxPowerLevel;
564			return HAL_OK;
565		case 3:			/* scale factor */
566			*result = AH_PRIVATE(ah)->ah_tpScale;
567			return HAL_OK;
568		}
569		return HAL_ENOTSUPP;
570	case HAL_CAP_BSSIDMASK:		/* hardware supports bssid mask */
571		return pCap->halBssIdMaskSupport ? HAL_OK : HAL_ENOTSUPP;
572	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
573		return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENOTSUPP;
574	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
575		return HAL_ENOTSUPP;
576	case HAL_CAP_RFSILENT:		/* rfsilent support  */
577		switch (capability) {
578		case 0:			/* facility is supported */
579			return pCap->halRfSilentSupport ? HAL_OK : HAL_ENOTSUPP;
580		case 1:			/* current setting */
581			return AH_PRIVATE(ah)->ah_rfkillEnabled ?
582				HAL_OK : HAL_ENOTSUPP;
583		case 2:			/* rfsilent config */
584			*result = AH_PRIVATE(ah)->ah_rfsilent;
585			return HAL_OK;
586		}
587		return HAL_ENOTSUPP;
588	case HAL_CAP_11D:
589		return HAL_OK;
590
591	case HAL_CAP_HT:
592		return pCap->halHTSupport ? HAL_OK : HAL_ENOTSUPP;
593	case HAL_CAP_GTXTO:
594		return pCap->halGTTSupport ? HAL_OK : HAL_ENOTSUPP;
595	case HAL_CAP_FAST_CC:
596		return pCap->halFastCCSupport ? HAL_OK : HAL_ENOTSUPP;
597	case HAL_CAP_TX_CHAINMASK:	/* mask of TX chains supported */
598		*result = pCap->halTxChainMask;
599		return HAL_OK;
600	case HAL_CAP_RX_CHAINMASK:	/* mask of RX chains supported */
601		*result = pCap->halRxChainMask;
602		return HAL_OK;
603	case HAL_CAP_NUM_GPIO_PINS:
604		*result = pCap->halNumGpioPins;
605		return HAL_OK;
606	case HAL_CAP_CST:
607		return pCap->halCSTSupport ? HAL_OK : HAL_ENOTSUPP;
608	case HAL_CAP_RTS_AGGR_LIMIT:
609		*result = pCap->halRtsAggrLimit;
610		return HAL_OK;
611	case HAL_CAP_4ADDR_AGGR:
612		return pCap->hal4AddrAggrSupport ? HAL_OK : HAL_ENOTSUPP;
613	case HAL_CAP_EXT_CHAN_DFS:
614		return pCap->halExtChanDfsSupport ? HAL_OK : HAL_ENOTSUPP;
615	case HAL_CAP_COMBINED_RADAR_RSSI:
616		return pCap->halUseCombinedRadarRssi ? HAL_OK : HAL_ENOTSUPP;
617	case HAL_CAP_AUTO_SLEEP:
618		return pCap->halAutoSleepSupport ? HAL_OK : HAL_ENOTSUPP;
619	case HAL_CAP_MBSSID_AGGR_SUPPORT:
620		return pCap->halMbssidAggrSupport ? HAL_OK : HAL_ENOTSUPP;
621	case HAL_CAP_SPLIT_4KB_TRANS:	/* hardware handles descriptors straddling 4k page boundary */
622		return pCap->hal4kbSplitTransSupport ? HAL_OK : HAL_ENOTSUPP;
623	case HAL_CAP_REG_FLAG:
624		*result = AH_PRIVATE(ah)->ah_currentRDext;
625		return HAL_OK;
626	case HAL_CAP_BT_COEX:
627		return pCap->halBtCoexSupport ? HAL_OK : HAL_ENOTSUPP;
628	case HAL_CAP_HT20_SGI:
629		return pCap->halHTSGI20Support ? HAL_OK : HAL_ENOTSUPP;
630	case HAL_CAP_RXTSTAMP_PREC:	/* rx desc tstamp precision (bits) */
631		*result = pCap->halTstampPrecision;
632		return HAL_OK;
633	case HAL_CAP_ENHANCED_DFS_SUPPORT:
634		return pCap->halEnhancedDfsSupport ? HAL_OK : HAL_ENOTSUPP;
635
636	/* FreeBSD-specific entries for now */
637	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
638		return AH_PRIVATE(ah)->ah_rxornIsFatal ? HAL_OK : HAL_ENOTSUPP;
639	case HAL_CAP_INTRMASK:		/* mask of supported interrupts */
640		*result = pCap->halIntrMask;
641		return HAL_OK;
642	case HAL_CAP_BSSIDMATCH:	/* hardware has disable bssid match */
643		return pCap->halBssidMatchSupport ? HAL_OK : HAL_ENOTSUPP;
644	case HAL_CAP_STREAMS:		/* number of 11n spatial streams */
645		switch (capability) {
646		case 0:			/* TX */
647			*result = pCap->halTxStreams;
648			return HAL_OK;
649		case 1:			/* RX */
650			*result = pCap->halRxStreams;
651			return HAL_OK;
652		default:
653			return HAL_ENOTSUPP;
654		}
655	case HAL_CAP_RXDESC_SELFLINK:	/* hardware supports self-linked final RX descriptors correctly */
656		return pCap->halHasRxSelfLinkedTail ? HAL_OK : HAL_ENOTSUPP;
657	default:
658		return HAL_EINVAL;
659	}
660}
661
662HAL_BOOL
663ath_hal_setcapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
664	uint32_t capability, uint32_t setting, HAL_STATUS *status)
665{
666
667	switch (type) {
668	case HAL_CAP_TXPOW:
669		switch (capability) {
670		case 3:
671			if (setting <= HAL_TP_SCALE_MIN) {
672				AH_PRIVATE(ah)->ah_tpScale = setting;
673				return AH_TRUE;
674			}
675			break;
676		}
677		break;
678	case HAL_CAP_RFSILENT:		/* rfsilent support  */
679		/*
680		 * NB: allow even if halRfSilentSupport is false
681		 *     in case the EEPROM is misprogrammed.
682		 */
683		switch (capability) {
684		case 1:			/* current setting */
685			AH_PRIVATE(ah)->ah_rfkillEnabled = (setting != 0);
686			return AH_TRUE;
687		case 2:			/* rfsilent config */
688			/* XXX better done per-chip for validation? */
689			AH_PRIVATE(ah)->ah_rfsilent = setting;
690			return AH_TRUE;
691		}
692		break;
693	case HAL_CAP_REG_DMN:		/* regulatory domain */
694		AH_PRIVATE(ah)->ah_currentRD = setting;
695		return AH_TRUE;
696	case HAL_CAP_RXORN_FATAL:	/* HAL_INT_RXORN treated as fatal  */
697		AH_PRIVATE(ah)->ah_rxornIsFatal = setting;
698		return AH_TRUE;
699	default:
700		break;
701	}
702	if (status)
703		*status = HAL_EINVAL;
704	return AH_FALSE;
705}
706
707/*
708 * Common support for getDiagState method.
709 */
710
711static u_int
712ath_hal_getregdump(struct ath_hal *ah, const HAL_REGRANGE *regs,
713	void *dstbuf, int space)
714{
715	uint32_t *dp = dstbuf;
716	int i;
717
718	for (i = 0; space >= 2*sizeof(uint32_t); i++) {
719		u_int r = regs[i].start;
720		u_int e = regs[i].end;
721		*dp++ = (r<<16) | e;
722		space -= sizeof(uint32_t);
723		do {
724			*dp++ = OS_REG_READ(ah, r);
725			r += sizeof(uint32_t);
726			space -= sizeof(uint32_t);
727		} while (r <= e && space >= sizeof(uint32_t));
728	}
729	return (char *) dp - (char *) dstbuf;
730}
731
732static void
733ath_hal_setregs(struct ath_hal *ah, const HAL_REGWRITE *regs, int space)
734{
735	while (space >= sizeof(HAL_REGWRITE)) {
736		OS_REG_WRITE(ah, regs->addr, regs->value);
737		regs++, space -= sizeof(HAL_REGWRITE);
738	}
739}
740
741HAL_BOOL
742ath_hal_getdiagstate(struct ath_hal *ah, int request,
743	const void *args, uint32_t argsize,
744	void **result, uint32_t *resultsize)
745{
746	switch (request) {
747	case HAL_DIAG_REVS:
748		*result = &AH_PRIVATE(ah)->ah_devid;
749		*resultsize = sizeof(HAL_REVS);
750		return AH_TRUE;
751	case HAL_DIAG_REGS:
752		*resultsize = ath_hal_getregdump(ah, args, *result,*resultsize);
753		return AH_TRUE;
754	case HAL_DIAG_SETREGS:
755		ath_hal_setregs(ah, args, argsize);
756		*resultsize = 0;
757		return AH_TRUE;
758	case HAL_DIAG_FATALERR:
759		*result = &AH_PRIVATE(ah)->ah_fatalState[0];
760		*resultsize = sizeof(AH_PRIVATE(ah)->ah_fatalState);
761		return AH_TRUE;
762	case HAL_DIAG_EEREAD:
763		if (argsize != sizeof(uint16_t))
764			return AH_FALSE;
765		if (!ath_hal_eepromRead(ah, *(const uint16_t *)args, *result))
766			return AH_FALSE;
767		*resultsize = sizeof(uint16_t);
768		return AH_TRUE;
769#ifdef AH_PRIVATE_DIAG
770	case HAL_DIAG_SETKEY: {
771		const HAL_DIAG_KEYVAL *dk;
772
773		if (argsize != sizeof(HAL_DIAG_KEYVAL))
774			return AH_FALSE;
775		dk = (const HAL_DIAG_KEYVAL *)args;
776		return ah->ah_setKeyCacheEntry(ah, dk->dk_keyix,
777			&dk->dk_keyval, dk->dk_mac, dk->dk_xor);
778	}
779	case HAL_DIAG_RESETKEY:
780		if (argsize != sizeof(uint16_t))
781			return AH_FALSE;
782		return ah->ah_resetKeyCacheEntry(ah, *(const uint16_t *)args);
783#ifdef AH_SUPPORT_WRITE_EEPROM
784	case HAL_DIAG_EEWRITE: {
785		const HAL_DIAG_EEVAL *ee;
786		if (argsize != sizeof(HAL_DIAG_EEVAL))
787			return AH_FALSE;
788		ee = (const HAL_DIAG_EEVAL *)args;
789		return ath_hal_eepromWrite(ah, ee->ee_off, ee->ee_data);
790	}
791#endif /* AH_SUPPORT_WRITE_EEPROM */
792#endif /* AH_PRIVATE_DIAG */
793	case HAL_DIAG_11NCOMPAT:
794		if (argsize == 0) {
795			*resultsize = sizeof(uint32_t);
796			*((uint32_t *)(*result)) =
797				AH_PRIVATE(ah)->ah_11nCompat;
798		} else if (argsize == sizeof(uint32_t)) {
799			AH_PRIVATE(ah)->ah_11nCompat = *(const uint32_t *)args;
800		} else
801			return AH_FALSE;
802		return AH_TRUE;
803	}
804	return AH_FALSE;
805}
806
807/*
808 * Set the properties of the tx queue with the parameters
809 * from qInfo.
810 */
811HAL_BOOL
812ath_hal_setTxQProps(struct ath_hal *ah,
813	HAL_TX_QUEUE_INFO *qi, const HAL_TXQ_INFO *qInfo)
814{
815	uint32_t cw;
816
817	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
818		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
819		    "%s: inactive queue\n", __func__);
820		return AH_FALSE;
821	}
822	/* XXX validate parameters */
823	qi->tqi_ver = qInfo->tqi_ver;
824	qi->tqi_subtype = qInfo->tqi_subtype;
825	qi->tqi_qflags = qInfo->tqi_qflags;
826	qi->tqi_priority = qInfo->tqi_priority;
827	if (qInfo->tqi_aifs != HAL_TXQ_USEDEFAULT)
828		qi->tqi_aifs = AH_MIN(qInfo->tqi_aifs, 255);
829	else
830		qi->tqi_aifs = INIT_AIFS;
831	if (qInfo->tqi_cwmin != HAL_TXQ_USEDEFAULT) {
832		cw = AH_MIN(qInfo->tqi_cwmin, 1024);
833		/* make sure that the CWmin is of the form (2^n - 1) */
834		qi->tqi_cwmin = 1;
835		while (qi->tqi_cwmin < cw)
836			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
837	} else
838		qi->tqi_cwmin = qInfo->tqi_cwmin;
839	if (qInfo->tqi_cwmax != HAL_TXQ_USEDEFAULT) {
840		cw = AH_MIN(qInfo->tqi_cwmax, 1024);
841		/* make sure that the CWmax is of the form (2^n - 1) */
842		qi->tqi_cwmax = 1;
843		while (qi->tqi_cwmax < cw)
844			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
845	} else
846		qi->tqi_cwmax = INIT_CWMAX;
847	/* Set retry limit values */
848	if (qInfo->tqi_shretry != 0)
849		qi->tqi_shretry = AH_MIN(qInfo->tqi_shretry, 15);
850	else
851		qi->tqi_shretry = INIT_SH_RETRY;
852	if (qInfo->tqi_lgretry != 0)
853		qi->tqi_lgretry = AH_MIN(qInfo->tqi_lgretry, 15);
854	else
855		qi->tqi_lgretry = INIT_LG_RETRY;
856	qi->tqi_cbrPeriod = qInfo->tqi_cbrPeriod;
857	qi->tqi_cbrOverflowLimit = qInfo->tqi_cbrOverflowLimit;
858	qi->tqi_burstTime = qInfo->tqi_burstTime;
859	qi->tqi_readyTime = qInfo->tqi_readyTime;
860
861	switch (qInfo->tqi_subtype) {
862	case HAL_WME_UPSD:
863		if (qi->tqi_type == HAL_TX_QUEUE_DATA)
864			qi->tqi_intFlags = HAL_TXQ_USE_LOCKOUT_BKOFF_DIS;
865		break;
866	default:
867		break;		/* NB: silence compiler */
868	}
869	return AH_TRUE;
870}
871
872HAL_BOOL
873ath_hal_getTxQProps(struct ath_hal *ah,
874	HAL_TXQ_INFO *qInfo, const HAL_TX_QUEUE_INFO *qi)
875{
876	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
877		HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
878		    "%s: inactive queue\n", __func__);
879		return AH_FALSE;
880	}
881
882	qInfo->tqi_qflags = qi->tqi_qflags;
883	qInfo->tqi_ver = qi->tqi_ver;
884	qInfo->tqi_subtype = qi->tqi_subtype;
885	qInfo->tqi_qflags = qi->tqi_qflags;
886	qInfo->tqi_priority = qi->tqi_priority;
887	qInfo->tqi_aifs = qi->tqi_aifs;
888	qInfo->tqi_cwmin = qi->tqi_cwmin;
889	qInfo->tqi_cwmax = qi->tqi_cwmax;
890	qInfo->tqi_shretry = qi->tqi_shretry;
891	qInfo->tqi_lgretry = qi->tqi_lgretry;
892	qInfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
893	qInfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
894	qInfo->tqi_burstTime = qi->tqi_burstTime;
895	qInfo->tqi_readyTime = qi->tqi_readyTime;
896	return AH_TRUE;
897}
898
899                                     /* 11a Turbo  11b  11g  108g */
900static const int16_t NOISE_FLOOR[] = { -96, -93,  -98, -96,  -93 };
901
902/*
903 * Read the current channel noise floor and return.
904 * If nf cal hasn't finished, channel noise floor should be 0
905 * and we return a nominal value based on band and frequency.
906 *
907 * NB: This is a private routine used by per-chip code to
908 *     implement the ah_getChanNoise method.
909 */
910int16_t
911ath_hal_getChanNoise(struct ath_hal *ah, const struct ieee80211_channel *chan)
912{
913	HAL_CHANNEL_INTERNAL *ichan;
914
915	ichan = ath_hal_checkchannel(ah, chan);
916	if (ichan == AH_NULL) {
917		HALDEBUG(ah, HAL_DEBUG_NFCAL,
918		    "%s: invalid channel %u/0x%x; no mapping\n",
919		    __func__, chan->ic_freq, chan->ic_flags);
920		return 0;
921	}
922	if (ichan->rawNoiseFloor == 0) {
923		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
924
925		HALASSERT(mode < WIRELESS_MODE_MAX);
926		return NOISE_FLOOR[mode] + ath_hal_getNfAdjust(ah, ichan);
927	} else
928		return ichan->rawNoiseFloor + ichan->noiseFloorAdjust;
929}
930
931/*
932 * Fetch the current setup of ctl/ext noise floor values.
933 *
934 * If the CHANNEL_MIMO_NF_VALID flag isn't set, the array is simply
935 * populated with values from NOISE_FLOOR[] + ath_hal_getNfAdjust().
936 *
937 * The caller must supply ctl/ext NF arrays which are at least
938 * AH_MIMO_MAX_CHAINS entries long.
939 */
940int
941ath_hal_get_mimo_chan_noise(struct ath_hal *ah,
942    const struct ieee80211_channel *chan, int16_t *nf_ctl,
943    int16_t *nf_ext)
944{
945#ifdef	AH_SUPPORT_AR5416
946	HAL_CHANNEL_INTERNAL *ichan;
947	int i;
948
949	ichan = ath_hal_checkchannel(ah, chan);
950	if (ichan == AH_NULL) {
951		HALDEBUG(ah, HAL_DEBUG_NFCAL,
952		    "%s: invalid channel %u/0x%x; no mapping\n",
953		    __func__, chan->ic_freq, chan->ic_flags);
954		for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
955			nf_ctl[i] = nf_ext[i] = 0;
956		}
957		return 0;
958	}
959
960	/* Return 0 if there's no valid MIMO values (yet) */
961	if (! (ichan->privFlags & CHANNEL_MIMO_NF_VALID)) {
962		for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
963			nf_ctl[i] = nf_ext[i] = 0;
964		}
965		return 0;
966	}
967	if (ichan->rawNoiseFloor == 0) {
968		WIRELESS_MODE mode = ath_hal_chan2wmode(ah, chan);
969		HALASSERT(mode < WIRELESS_MODE_MAX);
970		/*
971		 * See the comment below - this could cause issues for
972		 * stations which have a very low RSSI, below the
973		 * 'normalised' NF values in NOISE_FLOOR[].
974		 */
975		for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
976			nf_ctl[i] = nf_ext[i] = NOISE_FLOOR[mode] +
977			    ath_hal_getNfAdjust(ah, ichan);
978		}
979		return 1;
980	} else {
981		/*
982		 * The value returned here from a MIMO radio is presumed to be
983		 * "good enough" as a NF calculation. As RSSI values are calculated
984		 * against this, an adjusted NF may be higher than the RSSI value
985		 * returned from a vary weak station, resulting in an obscenely
986		 * high signal strength calculation being returned.
987		 *
988		 * This should be re-evaluated at a later date, along with any
989		 * signal strength calculations which are made. Quite likely the
990		 * RSSI values will need to be adjusted to ensure the calculations
991		 * don't "wrap" when RSSI is less than the "adjusted" NF value.
992		 * ("Adjust" here is via ichan->noiseFloorAdjust.)
993		 */
994		for (i = 0; i < AH_MIMO_MAX_CHAINS; i++) {
995			nf_ctl[i] = ichan->noiseFloorCtl[i] + ath_hal_getNfAdjust(ah, ichan);
996			nf_ext[i] = ichan->noiseFloorExt[i] + ath_hal_getNfAdjust(ah, ichan);
997		}
998		return 1;
999	}
1000#else
1001	return 0;
1002#endif	/* AH_SUPPORT_AR5416 */
1003}
1004
1005/*
1006 * Process all valid raw noise floors into the dBm noise floor values.
1007 * Though our device has no reference for a dBm noise floor, we perform
1008 * a relative minimization of NF's based on the lowest NF found across a
1009 * channel scan.
1010 */
1011void
1012ath_hal_process_noisefloor(struct ath_hal *ah)
1013{
1014	HAL_CHANNEL_INTERNAL *c;
1015	int16_t correct2, correct5;
1016	int16_t lowest2, lowest5;
1017	int i;
1018
1019	/*
1020	 * Find the lowest 2GHz and 5GHz noise floor values after adjusting
1021	 * for statistically recorded NF/channel deviation.
1022	 */
1023	correct2 = lowest2 = 0;
1024	correct5 = lowest5 = 0;
1025	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1026		WIRELESS_MODE mode;
1027		int16_t nf;
1028
1029		c = &AH_PRIVATE(ah)->ah_channels[i];
1030		if (c->rawNoiseFloor >= 0)
1031			continue;
1032		/* XXX can't identify proper mode */
1033		mode = IS_CHAN_5GHZ(c) ? WIRELESS_MODE_11a : WIRELESS_MODE_11g;
1034		nf = c->rawNoiseFloor + NOISE_FLOOR[mode] +
1035			ath_hal_getNfAdjust(ah, c);
1036		if (IS_CHAN_5GHZ(c)) {
1037			if (nf < lowest5) {
1038				lowest5 = nf;
1039				correct5 = NOISE_FLOOR[mode] -
1040				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1041			}
1042		} else {
1043			if (nf < lowest2) {
1044				lowest2 = nf;
1045				correct2 = NOISE_FLOOR[mode] -
1046				    (c->rawNoiseFloor + ath_hal_getNfAdjust(ah, c));
1047			}
1048		}
1049	}
1050
1051	/* Correct the channels to reach the expected NF value */
1052	for (i = 0; i < AH_PRIVATE(ah)->ah_nchan; i++) {
1053		c = &AH_PRIVATE(ah)->ah_channels[i];
1054		if (c->rawNoiseFloor >= 0)
1055			continue;
1056		/* Apply correction factor */
1057		c->noiseFloorAdjust = ath_hal_getNfAdjust(ah, c) +
1058			(IS_CHAN_5GHZ(c) ? correct5 : correct2);
1059		HALDEBUG(ah, HAL_DEBUG_NFCAL, "%u raw nf %d adjust %d\n",
1060		    c->channel, c->rawNoiseFloor, c->noiseFloorAdjust);
1061	}
1062}
1063
1064/*
1065 * INI support routines.
1066 */
1067
1068int
1069ath_hal_ini_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1070	int col, int regWr)
1071{
1072	int r;
1073
1074	HALASSERT(col < ia->cols);
1075	for (r = 0; r < ia->rows; r++) {
1076		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0),
1077		    HAL_INI_VAL(ia, r, col));
1078
1079		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
1080		if (HAL_INI_VAL(ia, r, 0) >= 0x7800 && HAL_INI_VAL(ia, r, 0) < 0x7900)
1081			OS_DELAY(100);
1082
1083		DMA_YIELD(regWr);
1084	}
1085	return regWr;
1086}
1087
1088void
1089ath_hal_ini_bank_setup(uint32_t data[], const HAL_INI_ARRAY *ia, int col)
1090{
1091	int r;
1092
1093	HALASSERT(col < ia->cols);
1094	for (r = 0; r < ia->rows; r++)
1095		data[r] = HAL_INI_VAL(ia, r, col);
1096}
1097
1098int
1099ath_hal_ini_bank_write(struct ath_hal *ah, const HAL_INI_ARRAY *ia,
1100	const uint32_t data[], int regWr)
1101{
1102	int r;
1103
1104	for (r = 0; r < ia->rows; r++) {
1105		OS_REG_WRITE(ah, HAL_INI_VAL(ia, r, 0), data[r]);
1106		DMA_YIELD(regWr);
1107	}
1108	return regWr;
1109}
1110
1111/*
1112 * These are EEPROM board related routines which should likely live in
1113 * a helper library of some sort.
1114 */
1115
1116/**************************************************************
1117 * ath_ee_getLowerUppderIndex
1118 *
1119 * Return indices surrounding the value in sorted integer lists.
1120 * Requirement: the input list must be monotonically increasing
1121 *     and populated up to the list size
1122 * Returns: match is set if an index in the array matches exactly
1123 *     or a the target is before or after the range of the array.
1124 */
1125HAL_BOOL
1126ath_ee_getLowerUpperIndex(uint8_t target, uint8_t *pList, uint16_t listSize,
1127                   uint16_t *indexL, uint16_t *indexR)
1128{
1129    uint16_t i;
1130
1131    /*
1132     * Check first and last elements for beyond ordered array cases.
1133     */
1134    if (target <= pList[0]) {
1135        *indexL = *indexR = 0;
1136        return AH_TRUE;
1137    }
1138    if (target >= pList[listSize-1]) {
1139        *indexL = *indexR = (uint16_t)(listSize - 1);
1140        return AH_TRUE;
1141    }
1142
1143    /* look for value being near or between 2 values in list */
1144    for (i = 0; i < listSize - 1; i++) {
1145        /*
1146         * If value is close to the current value of the list
1147         * then target is not between values, it is one of the values
1148         */
1149        if (pList[i] == target) {
1150            *indexL = *indexR = i;
1151            return AH_TRUE;
1152        }
1153        /*
1154         * Look for value being between current value and next value
1155         * if so return these 2 values
1156         */
1157        if (target < pList[i + 1]) {
1158            *indexL = i;
1159            *indexR = (uint16_t)(i + 1);
1160            return AH_FALSE;
1161        }
1162    }
1163    HALASSERT(0);
1164    *indexL = *indexR = 0;
1165    return AH_FALSE;
1166}
1167
1168/**************************************************************
1169 * ath_ee_FillVpdTable
1170 *
1171 * Fill the Vpdlist for indices Pmax-Pmin
1172 * Note: pwrMin, pwrMax and Vpdlist are all in dBm * 4
1173 */
1174HAL_BOOL
1175ath_ee_FillVpdTable(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
1176                   uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
1177{
1178    uint16_t  i, k;
1179    uint8_t   currPwr = pwrMin;
1180    uint16_t  idxL, idxR;
1181
1182    HALASSERT(pwrMax > pwrMin);
1183    for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
1184        ath_ee_getLowerUpperIndex(currPwr, pPwrList, numIntercepts,
1185                           &(idxL), &(idxR));
1186        if (idxR < 1)
1187            idxR = 1;           /* extrapolate below */
1188        if (idxL == numIntercepts - 1)
1189            idxL = (uint16_t)(numIntercepts - 2);   /* extrapolate above */
1190        if (pPwrList[idxL] == pPwrList[idxR])
1191            k = pVpdList[idxL];
1192        else
1193            k = (uint16_t)( ((currPwr - pPwrList[idxL]) * pVpdList[idxR] + (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
1194                  (pPwrList[idxR] - pPwrList[idxL]) );
1195        HALASSERT(k < 256);
1196        pRetVpdList[i] = (uint8_t)k;
1197        currPwr += 2;               /* half dB steps */
1198    }
1199
1200    return AH_TRUE;
1201}
1202
1203/**************************************************************************
1204 * ath_ee_interpolate
1205 *
1206 * Returns signed interpolated or the scaled up interpolated value
1207 */
1208int16_t
1209ath_ee_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
1210            int16_t targetLeft, int16_t targetRight)
1211{
1212    int16_t rv;
1213
1214    if (srcRight == srcLeft) {
1215        rv = targetLeft;
1216    } else {
1217        rv = (int16_t)( ((target - srcLeft) * targetRight +
1218              (srcRight - target) * targetLeft) / (srcRight - srcLeft) );
1219    }
1220    return rv;
1221}
1222