acpi_cpu.c revision 203776
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 203776 2010-02-11 08:50:21Z avg $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48
49#include <contrib/dev/acpica/include/acpi.h>
50#include <contrib/dev/acpica/include/accommon.h>
51
52#include <dev/acpica/acpivar.h>
53
54/*
55 * Support for ACPI Processor devices, including C[1-3] sleep states.
56 */
57
58/* Hooks for the ACPI CA debugging infrastructure */
59#define _COMPONENT	ACPI_PROCESSOR
60ACPI_MODULE_NAME("PROCESSOR")
61
62struct acpi_cx {
63    struct resource	*p_lvlx;	/* Register to read to enter state. */
64    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
65    uint32_t		 trans_lat;	/* Transition latency (usec). */
66    uint32_t		 power;		/* Power consumed (mW). */
67    int			 res_type;	/* Resource type for p_lvlx. */
68};
69#define MAX_CX_STATES	 8
70
71struct acpi_cpu_softc {
72    device_t		 cpu_dev;
73    ACPI_HANDLE		 cpu_handle;
74    struct pcpu		*cpu_pcpu;
75    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
76    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
77    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
78    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
79    int			 cpu_cx_count;	/* Number of valid Cx states. */
80    int			 cpu_prev_sleep;/* Last idle sleep duration. */
81    int			 cpu_features;	/* Child driver supported features. */
82    /* Runtime state. */
83    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
84    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
85    /* Values for sysctl. */
86    struct sysctl_ctx_list cpu_sysctl_ctx;
87    struct sysctl_oid	*cpu_sysctl_tree;
88    int			 cpu_cx_lowest;
89    char 		 cpu_cx_supported[64];
90    int			 cpu_rid;
91};
92
93struct acpi_cpu_device {
94    struct resource_list	ad_rl;
95};
96
97#define CPU_GET_REG(reg, width) 					\
98    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
99		      rman_get_bushandle((reg)), 0))
100#define CPU_SET_REG(reg, width, val)					\
101    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
102		       rman_get_bushandle((reg)), 0, (val)))
103
104#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
105
106#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
107
108#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
109#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
110
111#define PCI_VENDOR_INTEL	0x8086
112#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
113#define PCI_REVISION_A_STEP	0
114#define PCI_REVISION_B_STEP	1
115#define PCI_REVISION_4E		2
116#define PCI_REVISION_4M		3
117#define PIIX4_DEVACTB_REG	0x58
118#define PIIX4_BRLD_EN_IRQ0	(1<<0)
119#define PIIX4_BRLD_EN_IRQ	(1<<1)
120#define PIIX4_BRLD_EN_IRQ8	(1<<5)
121#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
122#define PIIX4_PCNTRL_BST_EN	(1<<10)
123
124/* Platform hardware resource information. */
125static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
126static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
127static int		 cpu_quirks;	/* Indicate any hardware bugs. */
128
129/* Runtime state. */
130static int		 cpu_disable_idle; /* Disable entry to idle function */
131static int		 cpu_cx_count;	/* Number of valid Cx states */
132
133/* Values for sysctl. */
134static struct sysctl_ctx_list cpu_sysctl_ctx;
135static struct sysctl_oid *cpu_sysctl_tree;
136static int		 cpu_cx_generic;
137static int		 cpu_cx_lowest;
138
139static device_t		*cpu_devices;
140static int		 cpu_ndevices;
141static struct acpi_cpu_softc **cpu_softc;
142ACPI_SERIAL_DECL(cpu, "ACPI CPU");
143
144static int	acpi_cpu_probe(device_t dev);
145static int	acpi_cpu_attach(device_t dev);
146static int	acpi_cpu_suspend(device_t dev);
147static int	acpi_cpu_resume(device_t dev);
148static int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
149		    uint32_t *cpu_id);
150static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
151static device_t	acpi_cpu_add_child(device_t dev, int order, const char *name,
152		    int unit);
153static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
154		    uintptr_t *result);
155static int	acpi_cpu_shutdown(device_t dev);
156static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
157static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
158static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
159static void	acpi_cpu_startup(void *arg);
160static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
161static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
162static void	acpi_cpu_idle(void);
163static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
164static int	acpi_cpu_quirks(void);
165static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
166static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val);
167static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
168static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
169
170static device_method_t acpi_cpu_methods[] = {
171    /* Device interface */
172    DEVMETHOD(device_probe,	acpi_cpu_probe),
173    DEVMETHOD(device_attach,	acpi_cpu_attach),
174    DEVMETHOD(device_detach,	bus_generic_detach),
175    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
176    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
177    DEVMETHOD(device_resume,	acpi_cpu_resume),
178
179    /* Bus interface */
180    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
181    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
182    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
183    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
184    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
185    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
186    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
187    DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
188    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
189    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
190    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
191    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
192
193    {0, 0}
194};
195
196static driver_t acpi_cpu_driver = {
197    "cpu",
198    acpi_cpu_methods,
199    sizeof(struct acpi_cpu_softc),
200};
201
202static devclass_t acpi_cpu_devclass;
203DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
204MODULE_DEPEND(cpu, acpi, 1, 1, 1);
205
206static int
207acpi_cpu_probe(device_t dev)
208{
209    int			   acpi_id, cpu_id;
210    ACPI_BUFFER		   buf;
211    ACPI_HANDLE		   handle;
212    ACPI_OBJECT		   *obj;
213    ACPI_STATUS		   status;
214
215    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
216	return (ENXIO);
217
218    handle = acpi_get_handle(dev);
219    if (cpu_softc == NULL)
220	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
221	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
222
223    /* Get our Processor object. */
224    buf.Pointer = NULL;
225    buf.Length = ACPI_ALLOCATE_BUFFER;
226    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
227    if (ACPI_FAILURE(status)) {
228	device_printf(dev, "probe failed to get Processor obj - %s\n",
229		      AcpiFormatException(status));
230	return (ENXIO);
231    }
232    obj = (ACPI_OBJECT *)buf.Pointer;
233    if (obj->Type != ACPI_TYPE_PROCESSOR) {
234	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
235	AcpiOsFree(obj);
236	return (ENXIO);
237    }
238
239    /*
240     * Find the processor associated with our unit.  We could use the
241     * ProcId as a key, however, some boxes do not have the same values
242     * in their Processor object as the ProcId values in the MADT.
243     */
244    acpi_id = obj->Processor.ProcId;
245    AcpiOsFree(obj);
246    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
247	return (ENXIO);
248
249    /*
250     * Check if we already probed this processor.  We scan the bus twice
251     * so it's possible we've already seen this one.
252     */
253    if (cpu_softc[cpu_id] != NULL)
254	return (ENXIO);
255
256    /* Mark this processor as in-use and save our derived id for attach. */
257    cpu_softc[cpu_id] = (void *)1;
258    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
259    device_set_desc(dev, "ACPI CPU");
260
261    return (0);
262}
263
264static int
265acpi_cpu_attach(device_t dev)
266{
267    ACPI_BUFFER		   buf;
268    ACPI_OBJECT		   arg[4], *obj;
269    ACPI_OBJECT_LIST	   arglist;
270    struct pcpu		   *pcpu_data;
271    struct acpi_cpu_softc *sc;
272    struct acpi_softc	  *acpi_sc;
273    ACPI_STATUS		   status;
274    u_int		   features;
275    int			   cpu_id, drv_count, i;
276    driver_t 		  **drivers;
277    uint32_t		   cap_set[3];
278
279    /* UUID needed by _OSC evaluation */
280    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
281				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
282				       0x58, 0x71, 0x39, 0x53 };
283
284    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
285
286    sc = device_get_softc(dev);
287    sc->cpu_dev = dev;
288    sc->cpu_handle = acpi_get_handle(dev);
289    cpu_id = (int)(intptr_t)acpi_get_private(dev);
290    cpu_softc[cpu_id] = sc;
291    pcpu_data = pcpu_find(cpu_id);
292    pcpu_data->pc_device = dev;
293    sc->cpu_pcpu = pcpu_data;
294    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
295    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
296
297    buf.Pointer = NULL;
298    buf.Length = ACPI_ALLOCATE_BUFFER;
299    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
300    if (ACPI_FAILURE(status)) {
301	device_printf(dev, "attach failed to get Processor obj - %s\n",
302		      AcpiFormatException(status));
303	return (ENXIO);
304    }
305    obj = (ACPI_OBJECT *)buf.Pointer;
306    sc->cpu_p_blk = obj->Processor.PblkAddress;
307    sc->cpu_p_blk_len = obj->Processor.PblkLength;
308    sc->cpu_acpi_id = obj->Processor.ProcId;
309    AcpiOsFree(obj);
310    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
311		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
312
313    /*
314     * If this is the first cpu we attach, create and initialize the generic
315     * resources that will be used by all acpi cpu devices.
316     */
317    if (device_get_unit(dev) == 0) {
318	/* Assume we won't be using generic Cx mode by default */
319	cpu_cx_generic = FALSE;
320
321	/* Install hw.acpi.cpu sysctl tree */
322	acpi_sc = acpi_device_get_parent_softc(dev);
323	sysctl_ctx_init(&cpu_sysctl_ctx);
324	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
325	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
326	    CTLFLAG_RD, 0, "node for CPU children");
327
328	/* Queue post cpu-probing task handler */
329	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
330    }
331
332    /*
333     * Before calling any CPU methods, collect child driver feature hints
334     * and notify ACPI of them.  We support unified SMP power control
335     * so advertise this ourselves.  Note this is not the same as independent
336     * SMP control where each CPU can have different settings.
337     */
338    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
339    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
340	for (i = 0; i < drv_count; i++) {
341	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
342		sc->cpu_features |= features;
343	}
344	free(drivers, M_TEMP);
345    }
346
347    /*
348     * CPU capabilities are specified in
349     * Intel Processor Vendor-Specific ACPI Interface Specification.
350     */
351    if (sc->cpu_features) {
352	arglist.Pointer = arg;
353	arglist.Count = 4;
354	arg[0].Type = ACPI_TYPE_BUFFER;
355	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
356	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
357	arg[1].Type = ACPI_TYPE_INTEGER;
358	arg[1].Integer.Value = 1;		/* revision */
359	arg[2].Type = ACPI_TYPE_INTEGER;
360	arg[2].Integer.Value = 1;		/* count */
361	arg[3].Type = ACPI_TYPE_BUFFER;
362	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
363	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
364	cap_set[0] = 0;				/* status */
365	cap_set[1] = sc->cpu_features;
366	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
367	if (ACPI_SUCCESS(status)) {
368	    if (cap_set[0] != 0)
369		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
370	}
371	else {
372	    arglist.Pointer = arg;
373	    arglist.Count = 1;
374	    arg[0].Type = ACPI_TYPE_BUFFER;
375	    arg[0].Buffer.Length = sizeof(cap_set);
376	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
377	    cap_set[0] = 1; /* revision */
378	    cap_set[1] = 1; /* number of capabilities integers */
379	    cap_set[2] = sc->cpu_features;
380	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
381	}
382    }
383
384    /* Probe for Cx state support. */
385    acpi_cpu_cx_probe(sc);
386
387    return (0);
388}
389
390static void
391acpi_cpu_postattach(void *unused __unused)
392{
393    device_t *devices;
394    int err;
395    int i, n;
396
397    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
398    if (err != 0) {
399	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
400	return;
401    }
402    for (i = 0; i < n; i++)
403	bus_generic_probe(devices[i]);
404    for (i = 0; i < n; i++)
405	bus_generic_attach(devices[i]);
406    free(devices, M_TEMP);
407}
408
409SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
410    acpi_cpu_postattach, NULL);
411
412/*
413 * Disable any entry to the idle function during suspend and re-enable it
414 * during resume.
415 */
416static int
417acpi_cpu_suspend(device_t dev)
418{
419    int error;
420
421    error = bus_generic_suspend(dev);
422    if (error)
423	return (error);
424    cpu_disable_idle = TRUE;
425    return (0);
426}
427
428static int
429acpi_cpu_resume(device_t dev)
430{
431
432    cpu_disable_idle = FALSE;
433    return (bus_generic_resume(dev));
434}
435
436/*
437 * Find the nth present CPU and return its pc_cpuid as well as set the
438 * pc_acpi_id from the most reliable source.
439 */
440static int
441acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
442{
443    struct pcpu	*pcpu_data;
444    uint32_t	 i;
445
446    KASSERT(acpi_id != NULL, ("Null acpi_id"));
447    KASSERT(cpu_id != NULL, ("Null cpu_id"));
448    for (i = 0; i <= mp_maxid; i++) {
449	if (CPU_ABSENT(i))
450	    continue;
451	pcpu_data = pcpu_find(i);
452	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
453	if (idx-- == 0) {
454	    /*
455	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
456	     * override it with the value from the ASL.  Otherwise, if the
457	     * two don't match, prefer the MADT-derived value.  Finally,
458	     * return the pc_cpuid to reference this processor.
459	     */
460	    if (pcpu_data->pc_acpi_id == 0xffffffff)
461		pcpu_data->pc_acpi_id = *acpi_id;
462	    else if (pcpu_data->pc_acpi_id != *acpi_id)
463		*acpi_id = pcpu_data->pc_acpi_id;
464	    *cpu_id = pcpu_data->pc_cpuid;
465	    return (0);
466	}
467    }
468
469    return (ESRCH);
470}
471
472static struct resource_list *
473acpi_cpu_get_rlist(device_t dev, device_t child)
474{
475    struct acpi_cpu_device *ad;
476
477    ad = device_get_ivars(child);
478    if (ad == NULL)
479	return (NULL);
480    return (&ad->ad_rl);
481}
482
483static device_t
484acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
485{
486    struct acpi_cpu_device *ad;
487    device_t child;
488
489    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
490	return (NULL);
491
492    resource_list_init(&ad->ad_rl);
493
494    child = device_add_child_ordered(dev, order, name, unit);
495    if (child != NULL)
496	device_set_ivars(child, ad);
497    else
498	free(ad, M_TEMP);
499    return (child);
500}
501
502static int
503acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
504{
505    struct acpi_cpu_softc *sc;
506
507    sc = device_get_softc(dev);
508    switch (index) {
509    case ACPI_IVAR_HANDLE:
510	*result = (uintptr_t)sc->cpu_handle;
511	break;
512    case CPU_IVAR_PCPU:
513	*result = (uintptr_t)sc->cpu_pcpu;
514	break;
515    default:
516	return (ENOENT);
517    }
518    return (0);
519}
520
521static int
522acpi_cpu_shutdown(device_t dev)
523{
524    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
525
526    /* Allow children to shutdown first. */
527    bus_generic_shutdown(dev);
528
529    /*
530     * Disable any entry to the idle function.  There is a small race where
531     * an idle thread have passed this check but not gone to sleep.  This
532     * is ok since device_shutdown() does not free the softc, otherwise
533     * we'd have to be sure all threads were evicted before returning.
534     */
535    cpu_disable_idle = TRUE;
536
537    return_VALUE (0);
538}
539
540static void
541acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
542{
543    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
544
545    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
546    sc->cpu_prev_sleep = 1000000;
547    sc->cpu_cx_lowest = 0;
548
549    /*
550     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
551     * any, we'll revert to generic FADT/P_BLK Cx control method which will
552     * be handled by acpi_cpu_startup. We need to defer to after having
553     * probed all the cpus in the system before probing for generic Cx
554     * states as we may already have found cpus with valid _CST packages
555     */
556    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
557	/*
558	 * We were unable to find a _CST package for this cpu or there
559	 * was an error parsing it. Switch back to generic mode.
560	 */
561	cpu_cx_generic = TRUE;
562	if (bootverbose)
563	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
564    }
565
566    /*
567     * TODO: _CSD Package should be checked here.
568     */
569}
570
571static void
572acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
573{
574    ACPI_GENERIC_ADDRESS	 gas;
575    struct acpi_cx		*cx_ptr;
576
577    sc->cpu_cx_count = 0;
578    cx_ptr = sc->cpu_cx_states;
579
580    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
581    sc->cpu_prev_sleep = 1000000;
582
583    /* C1 has been required since just after ACPI 1.0 */
584    cx_ptr->type = ACPI_STATE_C1;
585    cx_ptr->trans_lat = 0;
586    cx_ptr++;
587    sc->cpu_cx_count++;
588
589    /*
590     * The spec says P_BLK must be 6 bytes long.  However, some systems
591     * use it to indicate a fractional set of features present so we
592     * take 5 as C2.  Some may also have a value of 7 to indicate
593     * another C3 but most use _CST for this (as required) and having
594     * "only" C1-C3 is not a hardship.
595     */
596    if (sc->cpu_p_blk_len < 5)
597	return;
598
599    /* Validate and allocate resources for C2 (P_LVL2). */
600    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
601    gas.BitWidth = 8;
602    if (AcpiGbl_FADT.C2Latency <= 100) {
603	gas.Address = sc->cpu_p_blk + 4;
604	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
605	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
606	if (cx_ptr->p_lvlx != NULL) {
607	    sc->cpu_rid++;
608	    cx_ptr->type = ACPI_STATE_C2;
609	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
610	    cx_ptr++;
611	    sc->cpu_cx_count++;
612	}
613    }
614    if (sc->cpu_p_blk_len < 6)
615	return;
616
617    /* Validate and allocate resources for C3 (P_LVL3). */
618    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
619	gas.Address = sc->cpu_p_blk + 5;
620	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
621	    &cx_ptr->p_lvlx, RF_SHAREABLE);
622	if (cx_ptr->p_lvlx != NULL) {
623	    sc->cpu_rid++;
624	    cx_ptr->type = ACPI_STATE_C3;
625	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
626	    cx_ptr++;
627	    sc->cpu_cx_count++;
628	}
629    }
630}
631
632/*
633 * Parse a _CST package and set up its Cx states.  Since the _CST object
634 * can change dynamically, our notify handler may call this function
635 * to clean up and probe the new _CST package.
636 */
637static int
638acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
639{
640    struct	 acpi_cx *cx_ptr;
641    ACPI_STATUS	 status;
642    ACPI_BUFFER	 buf;
643    ACPI_OBJECT	*top;
644    ACPI_OBJECT	*pkg;
645    uint32_t	 count;
646    int		 i;
647
648    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
649
650    buf.Pointer = NULL;
651    buf.Length = ACPI_ALLOCATE_BUFFER;
652    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
653    if (ACPI_FAILURE(status))
654	return (ENXIO);
655
656    /* _CST is a package with a count and at least one Cx package. */
657    top = (ACPI_OBJECT *)buf.Pointer;
658    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
659	device_printf(sc->cpu_dev, "invalid _CST package\n");
660	AcpiOsFree(buf.Pointer);
661	return (ENXIO);
662    }
663    if (count != top->Package.Count - 1) {
664	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
665	       count, top->Package.Count - 1);
666	count = top->Package.Count - 1;
667    }
668    if (count > MAX_CX_STATES) {
669	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
670	count = MAX_CX_STATES;
671    }
672
673    /* Set up all valid states. */
674    sc->cpu_cx_count = 0;
675    cx_ptr = sc->cpu_cx_states;
676    for (i = 0; i < count; i++) {
677	pkg = &top->Package.Elements[i + 1];
678	if (!ACPI_PKG_VALID(pkg, 4) ||
679	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
680	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
681	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
682
683	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
684	    continue;
685	}
686
687	/* Validate the state to see if we should use it. */
688	switch (cx_ptr->type) {
689	case ACPI_STATE_C1:
690	    sc->cpu_non_c3 = i;
691	    cx_ptr++;
692	    sc->cpu_cx_count++;
693	    continue;
694	case ACPI_STATE_C2:
695	    if (cx_ptr->trans_lat > 100) {
696		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
697				 "acpi_cpu%d: C2[%d] not available.\n",
698				 device_get_unit(sc->cpu_dev), i));
699		continue;
700	    }
701	    sc->cpu_non_c3 = i;
702	    break;
703	case ACPI_STATE_C3:
704	default:
705	    if (cx_ptr->trans_lat > 1000 ||
706		(cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
707
708		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
709				 "acpi_cpu%d: C3[%d] not available.\n",
710				 device_get_unit(sc->cpu_dev), i));
711		continue;
712	    }
713	    break;
714	}
715
716#ifdef notyet
717	/* Free up any previous register. */
718	if (cx_ptr->p_lvlx != NULL) {
719	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
720	    cx_ptr->p_lvlx = NULL;
721	}
722#endif
723
724	/* Allocate the control register for C2 or C3. */
725	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
726	    &cx_ptr->p_lvlx, RF_SHAREABLE);
727	if (cx_ptr->p_lvlx) {
728	    sc->cpu_rid++;
729	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
730			     "acpi_cpu%d: Got C%d - %d latency\n",
731			     device_get_unit(sc->cpu_dev), cx_ptr->type,
732			     cx_ptr->trans_lat));
733	    cx_ptr++;
734	    sc->cpu_cx_count++;
735	}
736    }
737    AcpiOsFree(buf.Pointer);
738
739    return (0);
740}
741
742/*
743 * Call this *after* all CPUs have been attached.
744 */
745static void
746acpi_cpu_startup(void *arg)
747{
748    struct acpi_cpu_softc *sc;
749    int i;
750
751    /* Get set of CPU devices */
752    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
753
754    /*
755     * Setup any quirks that might necessary now that we have probed
756     * all the CPUs
757     */
758    acpi_cpu_quirks();
759
760    cpu_cx_count = 0;
761    if (cpu_cx_generic) {
762	/*
763	 * We are using generic Cx mode, probe for available Cx states
764	 * for all processors.
765	 */
766	for (i = 0; i < cpu_ndevices; i++) {
767	    sc = device_get_softc(cpu_devices[i]);
768	    acpi_cpu_generic_cx_probe(sc);
769	    if (sc->cpu_cx_count > cpu_cx_count)
770		    cpu_cx_count = sc->cpu_cx_count;
771	}
772
773	/*
774	 * Find the highest Cx state common to all CPUs
775	 * in the system, taking quirks into account.
776	 */
777	for (i = 0; i < cpu_ndevices; i++) {
778	    sc = device_get_softc(cpu_devices[i]);
779	    if (sc->cpu_cx_count < cpu_cx_count)
780		cpu_cx_count = sc->cpu_cx_count;
781	}
782    } else {
783	/*
784	 * We are using _CST mode, remove C3 state if necessary.
785	 * Update the largest Cx state supported in the global cpu_cx_count.
786	 * It will be used in the global Cx sysctl handler.
787	 * As we now know for sure that we will be using _CST mode
788	 * install our notify handler.
789	 */
790	for (i = 0; i < cpu_ndevices; i++) {
791	    sc = device_get_softc(cpu_devices[i]);
792	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
793		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
794	    }
795	    if (sc->cpu_cx_count > cpu_cx_count)
796		cpu_cx_count = sc->cpu_cx_count;
797	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
798		acpi_cpu_notify, sc);
799	}
800    }
801
802    /* Perform Cx final initialization. */
803    for (i = 0; i < cpu_ndevices; i++) {
804	sc = device_get_softc(cpu_devices[i]);
805	acpi_cpu_startup_cx(sc);
806    }
807
808    /* Add a sysctl handler to handle global Cx lowest setting */
809    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
810	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
811	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
812	"Global lowest Cx sleep state to use");
813
814    /* Take over idling from cpu_idle_default(). */
815    cpu_cx_lowest = 0;
816    cpu_disable_idle = FALSE;
817    cpu_idle_hook = acpi_cpu_idle;
818}
819
820static void
821acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
822{
823    struct sbuf sb;
824    int i;
825
826    /*
827     * Set up the list of Cx states
828     */
829    sc->cpu_non_c3 = 0;
830    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
831	SBUF_FIXEDLEN);
832    for (i = 0; i < sc->cpu_cx_count; i++) {
833	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
834	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
835	    sc->cpu_non_c3 = i;
836    }
837    sbuf_trim(&sb);
838    sbuf_finish(&sb);
839}
840
841static void
842acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
843{
844    acpi_cpu_cx_list(sc);
845
846    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
847		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
848		      OID_AUTO, "cx_supported", CTLFLAG_RD,
849		      sc->cpu_cx_supported, 0,
850		      "Cx/microsecond values for supported Cx states");
851    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
852		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
853		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
854		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
855		    "lowest Cx sleep state to use");
856    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
857		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
858		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
859		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
860		    "percent usage for each Cx state");
861
862#ifdef notyet
863    /* Signal platform that we can handle _CST notification. */
864    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
865	ACPI_LOCK(acpi);
866	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
867	ACPI_UNLOCK(acpi);
868    }
869#endif
870}
871
872/*
873 * Idle the CPU in the lowest state possible.  This function is called with
874 * interrupts disabled.  Note that once it re-enables interrupts, a task
875 * switch can occur so do not access shared data (i.e. the softc) after
876 * interrupts are re-enabled.
877 */
878static void
879acpi_cpu_idle()
880{
881    struct	acpi_cpu_softc *sc;
882    struct	acpi_cx *cx_next;
883    uint32_t	start_time, end_time;
884    int		bm_active, cx_next_idx, i;
885
886    /* If disabled, return immediately. */
887    if (cpu_disable_idle) {
888	ACPI_ENABLE_IRQS();
889	return;
890    }
891
892    /*
893     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
894     * since there is no ACPI processor object for this CPU.  This occurs
895     * for logical CPUs in the HTT case.
896     */
897    sc = cpu_softc[PCPU_GET(cpuid)];
898    if (sc == NULL) {
899	acpi_cpu_c1();
900	return;
901    }
902
903    /* Find the lowest state that has small enough latency. */
904    cx_next_idx = 0;
905    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
906	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
907	    cx_next_idx = i;
908	    break;
909	}
910    }
911
912    /*
913     * Check for bus master activity.  If there was activity, clear
914     * the bit and use the lowest non-C3 state.  Note that the USB
915     * driver polling for new devices keeps this bit set all the
916     * time if USB is loaded.
917     */
918    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
919	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
920	if (bm_active != 0) {
921	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
922	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
923	}
924    }
925
926    /* Select the next state and update statistics. */
927    cx_next = &sc->cpu_cx_states[cx_next_idx];
928    sc->cpu_cx_stats[cx_next_idx]++;
929    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
930
931    /*
932     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
933     * calculate the time spent in C1 since the place we wake up is an
934     * ISR.  Assume we slept half of quantum and return.
935     */
936    if (cx_next->type == ACPI_STATE_C1) {
937	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + 500000 / hz) / 4;
938	acpi_cpu_c1();
939	return;
940    }
941
942    /*
943     * For C3, disable bus master arbitration and enable bus master wake
944     * if BM control is available, otherwise flush the CPU cache.
945     */
946    if (cx_next->type == ACPI_STATE_C3) {
947	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
948	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
949	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
950	} else
951	    ACPI_FLUSH_CPU_CACHE();
952    }
953
954    /*
955     * Read from P_LVLx to enter C2(+), checking time spent asleep.
956     * Use the ACPI timer for measuring sleep time.  Since we need to
957     * get the time very close to the CPU start/stop clock logic, this
958     * is the only reliable time source.
959     */
960    AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
961    CPU_GET_REG(cx_next->p_lvlx, 1);
962
963    /*
964     * Read the end time twice.  Since it may take an arbitrary time
965     * to enter the idle state, the first read may be executed before
966     * the processor has stopped.  Doing it again provides enough
967     * margin that we are certain to have a correct value.
968     */
969    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
970    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
971
972    /* Enable bus master arbitration and disable bus master wakeup. */
973    if (cx_next->type == ACPI_STATE_C3 &&
974	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
975	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
976	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
977    }
978    ACPI_ENABLE_IRQS();
979
980    /* Find the actual time asleep in microseconds. */
981    end_time = acpi_TimerDelta(end_time, start_time);
982    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
983}
984
985/*
986 * Re-evaluate the _CST object when we are notified that it changed.
987 *
988 * XXX Re-evaluation disabled until locking is done.
989 */
990static void
991acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
992{
993    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
994    struct acpi_cpu_softc *isc;
995    int i;
996
997    if (notify != ACPI_NOTIFY_CX_STATES)
998	return;
999
1000    /* Update the list of Cx states. */
1001    acpi_cpu_cx_cst(sc);
1002    acpi_cpu_cx_list(sc);
1003
1004    /* Update the new lowest useable Cx state for all CPUs. */
1005    ACPI_SERIAL_BEGIN(cpu);
1006    cpu_cx_count = 0;
1007    for (i = 0; i < cpu_ndevices; i++) {
1008	isc = device_get_softc(cpu_devices[i]);
1009	if (isc->cpu_cx_count > cpu_cx_count)
1010	    cpu_cx_count = isc->cpu_cx_count;
1011    }
1012    ACPI_SERIAL_END(cpu);
1013}
1014
1015static int
1016acpi_cpu_quirks(void)
1017{
1018    device_t acpi_dev;
1019    uint32_t val;
1020
1021    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1022
1023    /*
1024     * Bus mastering arbitration control is needed to keep caches coherent
1025     * while sleeping in C3.  If it's not present but a working flush cache
1026     * instruction is present, flush the caches before entering C3 instead.
1027     * Otherwise, just disable C3 completely.
1028     */
1029    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1030	AcpiGbl_FADT.Pm2ControlLength == 0) {
1031	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1032	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1033	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1034	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1035		"acpi_cpu: no BM control, using flush cache method\n"));
1036	} else {
1037	    cpu_quirks |= CPU_QUIRK_NO_C3;
1038	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1039		"acpi_cpu: no BM control, C3 not available\n"));
1040	}
1041    }
1042
1043    /*
1044     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1045     * the expensive flush cache instruction.
1046     */
1047    if (cpu_cx_generic && mp_ncpus > 1) {
1048	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1049	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1050	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1051    }
1052
1053    /* Look for various quirks of the PIIX4 part. */
1054    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1055    if (acpi_dev != NULL) {
1056	switch (pci_get_revid(acpi_dev)) {
1057	/*
1058	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1059	 * do not report the BMIDE status to the BM status register and
1060	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1061	 * works around the BMIDE bug by reading the BM status directly
1062	 * but we take the simpler approach of disabling C3 for these
1063	 * parts.
1064	 *
1065	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1066	 * Livelock") from the January 2002 PIIX4 specification update.
1067	 * Applies to all PIIX4 models.
1068	 *
1069	 * Also, make sure that all interrupts cause a "Stop Break"
1070	 * event to exit from C2 state.
1071	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1072	 * should be set to zero, otherwise it causes C2 to short-sleep.
1073	 * PIIX4 doesn't properly support C3 and bus master activity
1074	 * need not break out of C2.
1075	 */
1076	case PCI_REVISION_A_STEP:
1077	case PCI_REVISION_B_STEP:
1078	case PCI_REVISION_4E:
1079	case PCI_REVISION_4M:
1080	    cpu_quirks |= CPU_QUIRK_NO_C3;
1081	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1082		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1083
1084	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1085	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1086		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1087		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1088	    	val |= PIIX4_STOP_BREAK_MASK;
1089		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1090	    }
1091	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1092	    if (val) {
1093		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1094		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1095		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1096	    }
1097	    break;
1098	default:
1099	    break;
1100	}
1101    }
1102
1103    return (0);
1104}
1105
1106static int
1107acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1108{
1109    struct acpi_cpu_softc *sc;
1110    struct sbuf	 sb;
1111    char	 buf[128];
1112    int		 i;
1113    uintmax_t	 fract, sum, whole;
1114
1115    sc = (struct acpi_cpu_softc *) arg1;
1116    sum = 0;
1117    for (i = 0; i < sc->cpu_cx_count; i++)
1118	sum += sc->cpu_cx_stats[i];
1119    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1120    for (i = 0; i < sc->cpu_cx_count; i++) {
1121	if (sum > 0) {
1122	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1123	    fract = (whole % sum) * 100;
1124	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1125		(u_int)(fract / sum));
1126	} else
1127	    sbuf_printf(&sb, "0.00%% ");
1128    }
1129    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1130    sbuf_trim(&sb);
1131    sbuf_finish(&sb);
1132    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1133    sbuf_delete(&sb);
1134
1135    return (0);
1136}
1137
1138static int
1139acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc, int val)
1140{
1141    int i;
1142
1143    ACPI_SERIAL_ASSERT(cpu);
1144    sc->cpu_cx_lowest = val;
1145
1146    /* If not disabling, cache the new lowest non-C3 state. */
1147    sc->cpu_non_c3 = 0;
1148    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1149	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1150	    sc->cpu_non_c3 = i;
1151	    break;
1152	}
1153    }
1154
1155    /* Reset the statistics counters. */
1156    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1157    return (0);
1158}
1159
1160static int
1161acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1162{
1163    struct	 acpi_cpu_softc *sc;
1164    char	 state[8];
1165    int		 val, error;
1166
1167    sc = (struct acpi_cpu_softc *) arg1;
1168    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1169    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1170    if (error != 0 || req->newptr == NULL)
1171	return (error);
1172    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1173	return (EINVAL);
1174    val = (int) strtol(state + 1, NULL, 10) - 1;
1175    if (val < 0 || val > sc->cpu_cx_count - 1)
1176	return (EINVAL);
1177
1178    ACPI_SERIAL_BEGIN(cpu);
1179    acpi_cpu_set_cx_lowest(sc, val);
1180    ACPI_SERIAL_END(cpu);
1181
1182    return (0);
1183}
1184
1185static int
1186acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1187{
1188    struct	acpi_cpu_softc *sc;
1189    char	state[8];
1190    int		val, error, i;
1191
1192    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1193    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1194    if (error != 0 || req->newptr == NULL)
1195	return (error);
1196    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1197	return (EINVAL);
1198    val = (int) strtol(state + 1, NULL, 10) - 1;
1199    if (val < 0 || val > cpu_cx_count - 1)
1200	return (EINVAL);
1201    cpu_cx_lowest = val;
1202
1203    /* Update the new lowest useable Cx state for all CPUs. */
1204    ACPI_SERIAL_BEGIN(cpu);
1205    for (i = 0; i < cpu_ndevices; i++) {
1206	sc = device_get_softc(cpu_devices[i]);
1207	acpi_cpu_set_cx_lowest(sc, val);
1208    }
1209    ACPI_SERIAL_END(cpu);
1210
1211    return (0);
1212}
1213