acpi_cpu.c revision 136366
1/*-
2 * Copyright (c) 2003 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 136366 2004-10-11 05:39:15Z njl $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/kernel.h>
35#include <sys/malloc.h>
36#include <sys/module.h>
37#include <sys/pcpu.h>
38#include <sys/power.h>
39#include <sys/proc.h>
40#include <sys/sbuf.h>
41#include <sys/smp.h>
42
43#include <dev/pci/pcivar.h>
44#include <machine/atomic.h>
45#include <machine/bus.h>
46#include <sys/rman.h>
47
48#include "acpi.h"
49#include <dev/acpica/acpivar.h>
50
51/*
52 * Support for ACPI Processor devices, including ACPI 2.0 throttling
53 * and C[1-3] sleep states.
54 *
55 * TODO: implement scans of all CPUs to be sure all Cx states are
56 * equivalent.
57 */
58
59/* Hooks for the ACPI CA debugging infrastructure */
60#define _COMPONENT	ACPI_PROCESSOR
61ACPI_MODULE_NAME("PROCESSOR")
62
63struct acpi_cx {
64    struct resource	*p_lvlx;	/* Register to read to enter state. */
65    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
66    uint32_t		 trans_lat;	/* Transition latency (usec). */
67    uint32_t		 power;		/* Power consumed (mW). */
68};
69#define MAX_CX_STATES	 8
70
71struct acpi_cpu_softc {
72    device_t		 cpu_dev;
73    ACPI_HANDLE		 cpu_handle;
74    uint32_t		 acpi_id;	/* ACPI processor id */
75    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
76    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
77    struct resource	*cpu_p_cnt;	/* Throttling control register */
78    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
79    int			 cpu_cx_count;	/* Number of valid Cx states. */
80    int			 cpu_prev_sleep;/* Last idle sleep duration. */
81};
82
83#define CPU_GET_REG(reg, width) 					\
84    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
85		      rman_get_bushandle((reg)), 0))
86#define CPU_SET_REG(reg, width, val)					\
87    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
88		       rman_get_bushandle((reg)), 0, (val)))
89
90/*
91 * Speeds are stored in counts, from 1 to CPU_MAX_SPEED, and
92 * reported to the user in tenths of a percent.
93 */
94static uint32_t		 cpu_duty_offset;
95static uint32_t		 cpu_duty_width;
96#define CPU_MAX_SPEED		(1 << cpu_duty_width)
97#define CPU_SPEED_PERCENT(x)	((1000 * (x)) / CPU_MAX_SPEED)
98#define CPU_SPEED_PRINTABLE(x)	(CPU_SPEED_PERCENT(x) / 10),	\
99				(CPU_SPEED_PERCENT(x) % 10)
100#define CPU_P_CNT_THT_EN (1<<4)
101#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
102
103#define ACPI_CPU_NOTIFY_PERF_STATES	0x80	/* _PSS changed. */
104#define ACPI_CPU_NOTIFY_CX_STATES	0x81	/* _CST changed. */
105
106#define CPU_QUIRK_NO_C3		0x0001	/* C3-type states are not usable. */
107#define CPU_QUIRK_NO_THROTTLE	0x0002	/* Throttling is not usable. */
108
109#define PCI_VENDOR_INTEL	0x8086
110#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
111#define PCI_REVISION_A_STEP	0
112#define PCI_REVISION_B_STEP	1
113#define PCI_REVISION_4E		2
114#define PCI_REVISION_4M		3
115
116/* Platform hardware resource information. */
117static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
118static uint8_t		 cpu_pstate_cnt;/* Register to take over throttling. */
119static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
120static int		 cpu_rid;	/* Driver-wide resource id. */
121static int		 cpu_quirks;	/* Indicate any hardware bugs. */
122
123/* Runtime state. */
124static int		 cpu_cx_count;	/* Number of valid states */
125static int		 cpu_non_c3;	/* Index of lowest non-C3 state. */
126static u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
127
128/* Values for sysctl. */
129static uint32_t		 cpu_throttle_state;
130static uint32_t		 cpu_throttle_max;
131static int		 cpu_cx_lowest;
132static char 		 cpu_cx_supported[64];
133
134static device_t		*cpu_devices;
135static int		 cpu_ndevices;
136static struct acpi_cpu_softc **cpu_softc;
137ACPI_SERIAL_DECL(cpu, "ACPI CPU");
138
139static struct sysctl_ctx_list	acpi_cpu_sysctl_ctx;
140static struct sysctl_oid	*acpi_cpu_sysctl_tree;
141
142static int	acpi_cpu_probe(device_t dev);
143static int	acpi_cpu_attach(device_t dev);
144static int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
145				 uint32_t *cpu_id);
146static int	acpi_cpu_shutdown(device_t dev);
147static int	acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc);
148static int	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
149static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
150static void	acpi_cpu_startup(void *arg);
151static void	acpi_cpu_startup_throttling(void);
152static void	acpi_cpu_startup_cx(void);
153static void	acpi_cpu_throttle_set(uint32_t speed);
154static void	acpi_cpu_idle(void);
155static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
156static int	acpi_cpu_quirks(struct acpi_cpu_softc *sc);
157static int	acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS);
158static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
159static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
160
161static device_method_t acpi_cpu_methods[] = {
162    /* Device interface */
163    DEVMETHOD(device_probe,	acpi_cpu_probe),
164    DEVMETHOD(device_attach,	acpi_cpu_attach),
165    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
166
167    {0, 0}
168};
169
170static driver_t acpi_cpu_driver = {
171    "cpu",
172    acpi_cpu_methods,
173    sizeof(struct acpi_cpu_softc),
174};
175
176static devclass_t acpi_cpu_devclass;
177DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
178MODULE_DEPEND(cpu, acpi, 1, 1, 1);
179
180static int
181acpi_cpu_probe(device_t dev)
182{
183    int			   acpi_id, cpu_id, cx_count;
184    ACPI_BUFFER		   buf;
185    ACPI_HANDLE		   handle;
186    char		   msg[32];
187    ACPI_OBJECT		   *obj;
188    ACPI_STATUS		   status;
189
190    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
191	return (ENXIO);
192
193    handle = acpi_get_handle(dev);
194    if (cpu_softc == NULL)
195	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
196	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
197
198    /* Get our Processor object. */
199    buf.Pointer = NULL;
200    buf.Length = ACPI_ALLOCATE_BUFFER;
201    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
202    if (ACPI_FAILURE(status)) {
203	device_printf(dev, "probe failed to get Processor obj - %s\n",
204		      AcpiFormatException(status));
205	return (ENXIO);
206    }
207    obj = (ACPI_OBJECT *)buf.Pointer;
208    if (obj->Type != ACPI_TYPE_PROCESSOR) {
209	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
210	AcpiOsFree(obj);
211	return (ENXIO);
212    }
213
214    /*
215     * Find the processor associated with our unit.  We could use the
216     * ProcId as a key, however, some boxes do not have the same values
217     * in their Processor object as the ProcId values in the MADT.
218     */
219    acpi_id = obj->Processor.ProcId;
220    AcpiOsFree(obj);
221    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
222	return (ENXIO);
223
224    /*
225     * Check if we already probed this processor.  We scan the bus twice
226     * so it's possible we've already seen this one.
227     */
228    if (cpu_softc[cpu_id] != NULL)
229	return (ENXIO);
230
231    /* Get a count of Cx states for our device string. */
232    cx_count = 0;
233    buf.Pointer = NULL;
234    buf.Length = ACPI_ALLOCATE_BUFFER;
235    status = AcpiEvaluateObject(handle, "_CST", NULL, &buf);
236    if (ACPI_SUCCESS(status)) {
237	obj = (ACPI_OBJECT *)buf.Pointer;
238	if (ACPI_PKG_VALID(obj, 2))
239	    acpi_PkgInt32(obj, 0, &cx_count);
240	AcpiOsFree(obj);
241    } else {
242	if (AcpiGbl_FADT->Plvl2Lat <= 100)
243	    cx_count++;
244	if (AcpiGbl_FADT->Plvl3Lat <= 1000)
245	    cx_count++;
246	if (cx_count > 0)
247	    cx_count++;
248    }
249    if (cx_count > 0)
250	snprintf(msg, sizeof(msg), "ACPI CPU (%d Cx states)", cx_count);
251    else
252	strlcpy(msg, "ACPI CPU", sizeof(msg));
253    device_set_desc_copy(dev, msg);
254
255    /* Mark this processor as in-use and save our derived id for attach. */
256    cpu_softc[cpu_id] = (void *)1;
257    acpi_set_magic(dev, cpu_id);
258
259    return (0);
260}
261
262static int
263acpi_cpu_attach(device_t dev)
264{
265    ACPI_BUFFER		   buf;
266    ACPI_OBJECT		   *obj;
267    struct acpi_cpu_softc *sc;
268    struct acpi_softc	  *acpi_sc;
269    ACPI_STATUS		   status;
270    int			   thr_ret, cx_ret;
271
272    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
273
274    sc = device_get_softc(dev);
275    sc->cpu_dev = dev;
276    sc->cpu_handle = acpi_get_handle(dev);
277    cpu_softc[acpi_get_magic(dev)] = sc;
278
279    buf.Pointer = NULL;
280    buf.Length = ACPI_ALLOCATE_BUFFER;
281    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
282    if (ACPI_FAILURE(status)) {
283	device_printf(dev, "attach failed to get Processor obj - %s\n",
284		      AcpiFormatException(status));
285	return (ENXIO);
286    }
287    obj = (ACPI_OBJECT *)buf.Pointer;
288    sc->cpu_p_blk = obj->Processor.PblkAddress;
289    sc->cpu_p_blk_len = obj->Processor.PblkLength;
290    sc->acpi_id = obj->Processor.ProcId;
291    AcpiOsFree(obj);
292    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
293		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
294
295    acpi_sc = acpi_device_get_parent_softc(dev);
296    sysctl_ctx_init(&acpi_cpu_sysctl_ctx);
297    acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx,
298				SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree),
299				OID_AUTO, "cpu", CTLFLAG_RD, 0, "");
300
301    /* If this is the first device probed, check for quirks. */
302    if (device_get_unit(dev) == 0)
303	acpi_cpu_quirks(sc);
304
305    /*
306     * Probe for throttling and Cx state support.
307     * If none of these is present, free up unused resources.
308     */
309    thr_ret = acpi_cpu_throttle_probe(sc);
310    cx_ret = acpi_cpu_cx_probe(sc);
311    if (thr_ret == 0 || cx_ret == 0) {
312	status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
313					  acpi_cpu_notify, sc);
314	if (device_get_unit(dev) == 0)
315	    AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
316    } else {
317	sysctl_ctx_free(&acpi_cpu_sysctl_ctx);
318    }
319
320    return_VALUE (0);
321}
322
323/*
324 * Find the nth present CPU and return its pc_cpuid as well as set the
325 * pc_acpi_id from the most reliable source.
326 */
327static int
328acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
329{
330    struct pcpu	*pcpu_data;
331    uint32_t	 i;
332
333    KASSERT(acpi_id != NULL, ("Null acpi_id"));
334    KASSERT(cpu_id != NULL, ("Null cpu_id"));
335    for (i = 0; i <= mp_maxid; i++) {
336	if (CPU_ABSENT(i))
337	    continue;
338	pcpu_data = pcpu_find(i);
339	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
340	if (idx-- == 0) {
341	    /*
342	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
343	     * override it with the value from the ASL.  Otherwise, if the
344	     * two don't match, prefer the MADT-derived value.  Finally,
345	     * return the pc_cpuid to reference this processor.
346	     */
347	    if (pcpu_data->pc_acpi_id == 0xffffffff)
348		 pcpu_data->pc_acpi_id = *acpi_id;
349	    else if (pcpu_data->pc_acpi_id != *acpi_id)
350		*acpi_id = pcpu_data->pc_acpi_id;
351	    *cpu_id = pcpu_data->pc_cpuid;
352	    return (0);
353	}
354    }
355
356    return (ESRCH);
357}
358
359static int
360acpi_cpu_shutdown(device_t dev)
361{
362    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
363
364    /* Disable any entry to the idle function. */
365    cpu_cx_count = 0;
366
367    /* Signal and wait for all processors to exit acpi_cpu_idle(). */
368    smp_rendezvous(NULL, NULL, NULL, NULL);
369
370    return_VALUE (0);
371}
372
373static int
374acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc)
375{
376    uint32_t		 duty_end;
377    ACPI_BUFFER		 buf;
378    ACPI_OBJECT		 obj;
379    ACPI_GENERIC_ADDRESS gas;
380    ACPI_STATUS		 status;
381
382    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
383
384    /* Get throttling parameters from the FADT.  0 means not supported. */
385    if (device_get_unit(sc->cpu_dev) == 0) {
386	cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
387	cpu_pstate_cnt = AcpiGbl_FADT->PstateCnt;
388	cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
389	cpu_duty_offset = AcpiGbl_FADT->DutyOffset;
390	cpu_duty_width = AcpiGbl_FADT->DutyWidth;
391    }
392    if (cpu_duty_width == 0 || (cpu_quirks & CPU_QUIRK_NO_THROTTLE) != 0)
393	return (ENXIO);
394
395    /* Validate the duty offset/width. */
396    duty_end = cpu_duty_offset + cpu_duty_width - 1;
397    if (duty_end > 31) {
398	device_printf(sc->cpu_dev, "CLK_VAL field overflows P_CNT register\n");
399	return (ENXIO);
400    }
401    if (cpu_duty_offset <= 4 && duty_end >= 4) {
402	device_printf(sc->cpu_dev, "CLK_VAL field overlaps THT_EN bit\n");
403	return (ENXIO);
404    }
405
406    /*
407     * If not present, fall back to using the processor's P_BLK to find
408     * the P_CNT register.
409     *
410     * Note that some systems seem to duplicate the P_BLK pointer
411     * across multiple CPUs, so not getting the resource is not fatal.
412     */
413    buf.Pointer = &obj;
414    buf.Length = sizeof(obj);
415    status = AcpiEvaluateObject(sc->cpu_handle, "_PTC", NULL, &buf);
416    if (ACPI_SUCCESS(status)) {
417	if (obj.Buffer.Length < sizeof(ACPI_GENERIC_ADDRESS) + 3) {
418	    device_printf(sc->cpu_dev, "_PTC buffer too small\n");
419	    return (ENXIO);
420	}
421	memcpy(&gas, obj.Buffer.Pointer + 3, sizeof(gas));
422	sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
423	if (sc->cpu_p_cnt != NULL) {
424	    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from _PTC\n",
425			     device_get_unit(sc->cpu_dev)));
426	}
427    }
428
429    /* If _PTC not present or other failure, try the P_BLK. */
430    if (sc->cpu_p_cnt == NULL) {
431	/*
432	 * The spec says P_BLK must be 6 bytes long.  However, some
433	 * systems use it to indicate a fractional set of features
434	 * present so we take anything >= 4.
435	 */
436	if (sc->cpu_p_blk_len < 4)
437	    return (ENXIO);
438	gas.Address = sc->cpu_p_blk;
439	gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
440	gas.RegisterBitWidth = 32;
441	sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
442	if (sc->cpu_p_cnt != NULL) {
443	    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from P_BLK\n",
444			     device_get_unit(sc->cpu_dev)));
445	} else {
446	    device_printf(sc->cpu_dev, "Failed to attach throttling P_CNT\n");
447	    return (ENXIO);
448	}
449    }
450    cpu_rid++;
451
452    return (0);
453}
454
455static int
456acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
457{
458    ACPI_GENERIC_ADDRESS gas;
459    struct acpi_cx	*cx_ptr;
460    int			 error;
461
462    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
463
464    /* Bus mastering arbitration control is needed for C3. */
465    if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
466	cpu_quirks |= CPU_QUIRK_NO_C3;
467	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
468			 "acpi_cpu%d: No BM control, C3 disabled\n",
469			 device_get_unit(sc->cpu_dev)));
470    }
471
472    /*
473     * First, check for the ACPI 2.0 _CST sleep states object.
474     * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3.
475     */
476    sc->cpu_cx_count = 0;
477    error = acpi_cpu_cx_cst(sc);
478    if (error != 0) {
479	cx_ptr = sc->cpu_cx_states;
480
481	/* C1 has been required since just after ACPI 1.0 */
482	cx_ptr->type = ACPI_STATE_C1;
483	cx_ptr->trans_lat = 0;
484	cpu_non_c3 = 0;
485	cx_ptr++;
486	sc->cpu_cx_count++;
487
488	/*
489	 * The spec says P_BLK must be 6 bytes long.  However, some systems
490	 * use it to indicate a fractional set of features present so we
491	 * take 5 as C2.  Some may also have a value of 7 to indicate
492	 * another C3 but most use _CST for this (as required) and having
493	 * "only" C1-C3 is not a hardship.
494	 */
495	if (sc->cpu_p_blk_len < 5)
496	    goto done;
497
498	/* Validate and allocate resources for C2 (P_LVL2). */
499	gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
500	gas.RegisterBitWidth = 8;
501	if (AcpiGbl_FADT->Plvl2Lat <= 100) {
502	    gas.Address = sc->cpu_p_blk + 4;
503	    cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
504	    if (cx_ptr->p_lvlx != NULL) {
505		cpu_rid++;
506		cx_ptr->type = ACPI_STATE_C2;
507		cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
508		cpu_non_c3 = 1;
509		cx_ptr++;
510		sc->cpu_cx_count++;
511	    }
512	}
513	if (sc->cpu_p_blk_len < 6)
514	    goto done;
515
516	/* Validate and allocate resources for C3 (P_LVL3). */
517	if (AcpiGbl_FADT->Plvl3Lat <= 1000 &&
518	    (cpu_quirks & CPU_QUIRK_NO_C3) == 0) {
519
520	    gas.Address = sc->cpu_p_blk + 5;
521	    cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
522	    if (cx_ptr->p_lvlx != NULL) {
523		cpu_rid++;
524		cx_ptr->type = ACPI_STATE_C3;
525		cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
526		cx_ptr++;
527		sc->cpu_cx_count++;
528	    }
529	}
530    }
531
532done:
533    /* If no valid registers were found, don't attach. */
534    if (sc->cpu_cx_count == 0)
535	return (ENXIO);
536
537    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
538    sc->cpu_prev_sleep = 1000000;
539
540    return (0);
541}
542
543/*
544 * Parse a _CST package and set up its Cx states.  Since the _CST object
545 * can change dynamically, our notify handler may call this function
546 * to clean up and probe the new _CST package.
547 */
548static int
549acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
550{
551    struct	 acpi_cx *cx_ptr;
552    ACPI_STATUS	 status;
553    ACPI_BUFFER	 buf;
554    ACPI_OBJECT	*top;
555    ACPI_OBJECT	*pkg;
556    uint32_t	 count;
557    int		 i;
558
559    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
560
561    buf.Pointer = NULL;
562    buf.Length = ACPI_ALLOCATE_BUFFER;
563    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
564    if (ACPI_FAILURE(status))
565	return (ENXIO);
566
567    /* _CST is a package with a count and at least one Cx package. */
568    top = (ACPI_OBJECT *)buf.Pointer;
569    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
570	device_printf(sc->cpu_dev, "Invalid _CST package\n");
571	AcpiOsFree(buf.Pointer);
572	return (ENXIO);
573    }
574    if (count != top->Package.Count - 1) {
575	device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n",
576	       count, top->Package.Count - 1);
577	count = top->Package.Count - 1;
578    }
579    if (count > MAX_CX_STATES) {
580	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
581	count = MAX_CX_STATES;
582    }
583
584    /* Set up all valid states. */
585    sc->cpu_cx_count = 0;
586    cx_ptr = sc->cpu_cx_states;
587    for (i = 0; i < count; i++) {
588	pkg = &top->Package.Elements[i + 1];
589	if (!ACPI_PKG_VALID(pkg, 4) ||
590	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
591	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
592	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
593
594	    device_printf(sc->cpu_dev, "Skipping invalid Cx state package\n");
595	    continue;
596	}
597
598	/* Validate the state to see if we should use it. */
599	switch (cx_ptr->type) {
600	case ACPI_STATE_C1:
601	    cpu_non_c3 = i;
602	    cx_ptr++;
603	    sc->cpu_cx_count++;
604	    continue;
605	case ACPI_STATE_C2:
606	    if (cx_ptr->trans_lat > 100) {
607		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
608				 "acpi_cpu%d: C2[%d] not available.\n",
609				 device_get_unit(sc->cpu_dev), i));
610		continue;
611	    }
612	    cpu_non_c3 = i;
613	    break;
614	case ACPI_STATE_C3:
615	default:
616	    if (cx_ptr->trans_lat > 1000 ||
617		(cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
618
619		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
620				 "acpi_cpu%d: C3[%d] not available.\n",
621				 device_get_unit(sc->cpu_dev), i));
622		continue;
623	    }
624	    break;
625	}
626
627#ifdef notyet
628	/* Free up any previous register. */
629	if (cx_ptr->p_lvlx != NULL) {
630	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
631	    cx_ptr->p_lvlx = NULL;
632	}
633#endif
634
635	/* Allocate the control register for C2 or C3. */
636	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cpu_rid, &cx_ptr->p_lvlx);
637	if (cx_ptr->p_lvlx != NULL) {
638	    cpu_rid++;
639	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
640			     "acpi_cpu%d: Got C%d - %d latency\n",
641			     device_get_unit(sc->cpu_dev), cx_ptr->type,
642			     cx_ptr->trans_lat));
643	    cx_ptr++;
644	    sc->cpu_cx_count++;
645	}
646    }
647    AcpiOsFree(buf.Pointer);
648
649    return (0);
650}
651
652/*
653 * Call this *after* all CPUs have been attached.
654 */
655static void
656acpi_cpu_startup(void *arg)
657{
658    struct acpi_cpu_softc *sc;
659    int count, i;
660
661    /* Get set of CPU devices */
662    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
663
664    /*
665     * Make sure all the processors' Cx counts match.  We should probably
666     * also check the contents of each.  However, no known systems have
667     * non-matching Cx counts so we'll deal with this later.
668     */
669    count = MAX_CX_STATES;
670    for (i = 0; i < cpu_ndevices; i++) {
671	sc = device_get_softc(cpu_devices[i]);
672	count = min(sc->cpu_cx_count, count);
673    }
674    cpu_cx_count = count;
675
676    /* Perform throttling and Cx final initialization. */
677    sc = device_get_softc(cpu_devices[0]);
678    if (sc->cpu_p_cnt != NULL)
679	acpi_cpu_startup_throttling();
680    if (cpu_cx_count > 0)
681	acpi_cpu_startup_cx();
682}
683
684/*
685 * Takes the ACPI lock to avoid fighting anyone over the SMI command
686 * port.
687 */
688static void
689acpi_cpu_startup_throttling()
690{
691
692    /* Initialise throttling states */
693    cpu_throttle_max = CPU_MAX_SPEED;
694    cpu_throttle_state = CPU_MAX_SPEED;
695
696    SYSCTL_ADD_INT(&acpi_cpu_sysctl_ctx,
697		   SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
698		   OID_AUTO, "throttle_max", CTLFLAG_RD,
699		   &cpu_throttle_max, 0, "maximum CPU speed");
700    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
701		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
702		    OID_AUTO, "throttle_state",
703		    CTLTYPE_INT | CTLFLAG_RW, &cpu_throttle_state,
704		    0, acpi_cpu_throttle_sysctl, "I", "current CPU speed");
705
706    /* If ACPI 2.0+, signal platform that we are taking over throttling. */
707    if (cpu_pstate_cnt != 0) {
708	ACPI_LOCK(acpi);
709	AcpiOsWritePort(cpu_smi_cmd, cpu_pstate_cnt, 8);
710	ACPI_UNLOCK(acpi);
711    }
712
713    /* Set initial speed to maximum. */
714    ACPI_SERIAL_BEGIN(cpu);
715    acpi_cpu_throttle_set(cpu_throttle_max);
716    ACPI_SERIAL_END(cpu);
717
718    printf("acpi_cpu: throttling enabled, %d steps (100%% to %d.%d%%), "
719	   "currently %d.%d%%\n", CPU_MAX_SPEED, CPU_SPEED_PRINTABLE(1),
720	   CPU_SPEED_PRINTABLE(cpu_throttle_state));
721}
722
723static void
724acpi_cpu_startup_cx()
725{
726    struct acpi_cpu_softc *sc;
727    struct sbuf		 sb;
728    int i;
729
730    sc = device_get_softc(cpu_devices[0]);
731    sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN);
732    for (i = 0; i < cpu_cx_count; i++)
733	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
734    sbuf_trim(&sb);
735    sbuf_finish(&sb);
736    SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx,
737		      SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
738		      OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported,
739		      0, "Cx/microsecond values for supported Cx states");
740    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
741		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
742		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
743		    NULL, 0, acpi_cpu_cx_lowest_sysctl, "A",
744		    "lowest Cx sleep state to use");
745    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
746		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
747		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
748		    NULL, 0, acpi_cpu_usage_sysctl, "A",
749		    "percent usage for each Cx state");
750
751#ifdef notyet
752    /* Signal platform that we can handle _CST notification. */
753    if (cpu_cst_cnt != 0) {
754	ACPI_LOCK(acpi);
755	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
756	ACPI_UNLOCK(acpi);
757    }
758#endif
759
760    /* Take over idling from cpu_idle_default(). */
761    cpu_idle_hook = acpi_cpu_idle;
762}
763
764/*
765 * Set CPUs to the new state.
766 *
767 * Must be called with the ACPI lock held.
768 */
769static void
770acpi_cpu_throttle_set(uint32_t speed)
771{
772    struct acpi_cpu_softc	*sc;
773    int				i;
774    uint32_t			p_cnt, clk_val;
775
776    ACPI_SERIAL_ASSERT(cpu);
777
778    /* Iterate over processors */
779    for (i = 0; i < cpu_ndevices; i++) {
780	sc = device_get_softc(cpu_devices[i]);
781	if (sc->cpu_p_cnt == NULL)
782	    continue;
783
784	/* Get the current P_CNT value and disable throttling */
785	p_cnt = CPU_GET_REG(sc->cpu_p_cnt, 4);
786	p_cnt &= ~CPU_P_CNT_THT_EN;
787	CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
788
789	/* If we're at maximum speed, that's all */
790	if (speed < CPU_MAX_SPEED) {
791	    /* Mask the old CLK_VAL off and or-in the new value */
792	    clk_val = (CPU_MAX_SPEED - 1) << cpu_duty_offset;
793	    p_cnt &= ~clk_val;
794	    p_cnt |= (speed << cpu_duty_offset);
795
796	    /* Write the new P_CNT value and then enable throttling */
797	    CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
798	    p_cnt |= CPU_P_CNT_THT_EN;
799	    CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
800	}
801	ACPI_VPRINT(sc->cpu_dev, acpi_device_get_parent_softc(sc->cpu_dev),
802		    "set speed to %d.%d%%\n", CPU_SPEED_PRINTABLE(speed));
803    }
804    cpu_throttle_state = speed;
805}
806
807/*
808 * Idle the CPU in the lowest state possible.  This function is called with
809 * interrupts disabled.  Note that once it re-enables interrupts, a task
810 * switch can occur so do not access shared data (i.e. the softc) after
811 * interrupts are re-enabled.
812 */
813static void
814acpi_cpu_idle()
815{
816    struct	acpi_cpu_softc *sc;
817    struct	acpi_cx *cx_next;
818    uint32_t	start_time, end_time;
819    int		bm_active, cx_next_idx, i;
820
821    /* If disabled, return immediately. */
822    if (cpu_cx_count == 0) {
823	ACPI_ENABLE_IRQS();
824	return;
825    }
826
827    /*
828     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
829     * since there is no ACPI processor object for this CPU.  This occurs
830     * for logical CPUs in the HTT case.
831     */
832    sc = cpu_softc[PCPU_GET(cpuid)];
833    if (sc == NULL) {
834	acpi_cpu_c1();
835	return;
836    }
837
838    /*
839     * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
840     * find the lowest state that has a latency less than or equal to
841     * the length of our last sleep.
842     */
843    cx_next_idx = cpu_cx_lowest;
844    if (sc->cpu_prev_sleep < 100)
845	for (i = cpu_cx_lowest; i >= 0; i--)
846	    if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
847		cx_next_idx = i;
848		break;
849	    }
850
851    /*
852     * Check for bus master activity.  If there was activity, clear
853     * the bit and use the lowest non-C3 state.  Note that the USB
854     * driver polling for new devices keeps this bit set all the
855     * time if USB is loaded.
856     */
857    AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
858		    ACPI_MTX_DO_NOT_LOCK);
859    if (bm_active != 0) {
860	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
861			ACPI_MTX_DO_NOT_LOCK);
862	cx_next_idx = min(cx_next_idx, cpu_non_c3);
863    }
864
865    /* Select the next state and update statistics. */
866    cx_next = &sc->cpu_cx_states[cx_next_idx];
867    cpu_cx_stats[cx_next_idx]++;
868    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
869
870    /*
871     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
872     * calculate the time spent in C1 since the place we wake up is an
873     * ISR.  Assume we slept one quantum and return.
874     */
875    if (cx_next->type == ACPI_STATE_C1) {
876	sc->cpu_prev_sleep = 1000000 / hz;
877	acpi_cpu_c1();
878	return;
879    }
880
881    /* For C3, disable bus master arbitration and enable bus master wake. */
882    if (cx_next->type == ACPI_STATE_C3) {
883	AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
884	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
885    }
886
887    /*
888     * Read from P_LVLx to enter C2(+), checking time spent asleep.
889     * Use the ACPI timer for measuring sleep time.  Since we need to
890     * get the time very close to the CPU start/stop clock logic, this
891     * is the only reliable time source.
892     */
893    AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
894    CPU_GET_REG(cx_next->p_lvlx, 1);
895
896    /*
897     * Read the end time twice.  Since it may take an arbitrary time
898     * to enter the idle state, the first read may be executed before
899     * the processor has stopped.  Doing it again provides enough
900     * margin that we are certain to have a correct value.
901     */
902    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
903    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
904
905    /* Enable bus master arbitration and disable bus master wakeup. */
906    if (cx_next->type == ACPI_STATE_C3) {
907	AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
908	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
909    }
910
911    /* Find the actual time asleep in microseconds, minus overhead. */
912    end_time = acpi_TimerDelta(end_time, start_time);
913    sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
914    ACPI_ENABLE_IRQS();
915}
916
917/*
918 * Re-evaluate the _PSS and _CST objects when we are notified that they
919 * have changed.
920 *
921 * XXX Re-evaluation disabled until locking is done.
922 */
923static void
924acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
925{
926    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
927
928    switch (notify) {
929    case ACPI_CPU_NOTIFY_PERF_STATES:
930	device_printf(sc->cpu_dev, "Performance states changed\n");
931	/* acpi_cpu_px_available(sc); */
932	break;
933    case ACPI_CPU_NOTIFY_CX_STATES:
934	device_printf(sc->cpu_dev, "Cx states changed\n");
935	/* acpi_cpu_cx_cst(sc); */
936	break;
937    default:
938	device_printf(sc->cpu_dev, "Unknown notify %#x\n", notify);
939	break;
940    }
941}
942
943static int
944acpi_cpu_quirks(struct acpi_cpu_softc *sc)
945{
946
947    /*
948     * C3 is not supported on multiple CPUs since this would require
949     * flushing all caches which is currently too expensive.
950     */
951    if (mp_ncpus > 1)
952	cpu_quirks |= CPU_QUIRK_NO_C3;
953
954#ifdef notyet
955    /* Look for various quirks of the PIIX4 part. */
956    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
957    if (acpi_dev != NULL) {
958	switch (pci_get_revid(acpi_dev)) {
959	/*
960	 * Disable throttling control on PIIX4 A and B-step.
961	 * See specification changes #13 ("Manual Throttle Duty Cycle")
962	 * and #14 ("Enabling and Disabling Manual Throttle"), plus
963	 * erratum #5 ("STPCLK# Deassertion Time") from the January
964	 * 2002 PIIX4 specification update.  Note that few (if any)
965	 * mobile systems ever used this part.
966	 */
967	case PCI_REVISION_A_STEP:
968	case PCI_REVISION_B_STEP:
969	    cpu_quirks |= CPU_QUIRK_NO_THROTTLE;
970	    /* FALLTHROUGH */
971	/*
972	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
973	 * do not report the BMIDE status to the BM status register and
974	 * others have a livelock bug if Type-F DMA is enabled.  Linux
975	 * works around the BMIDE bug by reading the BM status directly
976	 * but we take the simpler approach of disabling C3 for these
977	 * parts.
978	 *
979	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
980	 * Livelock") from the January 2002 PIIX4 specification update.
981	 * Applies to all PIIX4 models.
982	 */
983	case PCI_REVISION_4E:
984	case PCI_REVISION_4M:
985	    cpu_quirks |= CPU_QUIRK_NO_C3;
986	    break;
987	default:
988	    break;
989	}
990    }
991#endif
992
993    return (0);
994}
995
996/* Handle changes in the CPU throttling setting. */
997static int
998acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS)
999{
1000    uint32_t	*argp;
1001    uint32_t	 arg;
1002    int		 error;
1003
1004    argp = (uint32_t *)oidp->oid_arg1;
1005    arg = *argp;
1006    error = sysctl_handle_int(oidp, &arg, 0, req);
1007
1008    /* Error or no new value */
1009    if (error != 0 || req->newptr == NULL)
1010	return (error);
1011    if (arg < 1 || arg > cpu_throttle_max)
1012	return (EINVAL);
1013
1014    /* If throttling changed, notify the BIOS of the new rate. */
1015    ACPI_SERIAL_BEGIN(cpu);
1016    if (*argp != arg) {
1017	*argp = arg;
1018	acpi_cpu_throttle_set(arg);
1019    }
1020    ACPI_SERIAL_END(cpu);
1021
1022    return (0);
1023}
1024
1025static int
1026acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1027{
1028    struct sbuf	 sb;
1029    char	 buf[128];
1030    int		 i;
1031    uintmax_t	 fract, sum, whole;
1032
1033    sum = 0;
1034    for (i = 0; i < cpu_cx_count; i++)
1035	sum += cpu_cx_stats[i];
1036    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1037    for (i = 0; i < cpu_cx_count; i++) {
1038	if (sum > 0) {
1039	    whole = (uintmax_t)cpu_cx_stats[i] * 100;
1040	    fract = (whole % sum) * 100;
1041	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1042		(u_int)(fract / sum));
1043	} else
1044	    sbuf_printf(&sb, "0%% ");
1045    }
1046    sbuf_trim(&sb);
1047    sbuf_finish(&sb);
1048    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1049    sbuf_delete(&sb);
1050
1051    return (0);
1052}
1053
1054static int
1055acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1056{
1057    struct	 acpi_cpu_softc *sc;
1058    char	 state[8];
1059    int		 val, error, i;
1060
1061    sc = device_get_softc(cpu_devices[0]);
1062    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1063    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1064    if (error != 0 || req->newptr == NULL)
1065	return (error);
1066    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1067	return (EINVAL);
1068    val = (int) strtol(state + 1, NULL, 10) - 1;
1069    if (val < 0 || val > cpu_cx_count - 1)
1070	return (EINVAL);
1071
1072    ACPI_SERIAL_BEGIN(cpu);
1073    cpu_cx_lowest = val;
1074
1075    /* If not disabling, cache the new lowest non-C3 state. */
1076    cpu_non_c3 = 0;
1077    for (i = cpu_cx_lowest; i >= 0; i--) {
1078	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1079	    cpu_non_c3 = i;
1080	    break;
1081	}
1082    }
1083
1084    /* Reset the statistics counters. */
1085    bzero(cpu_cx_stats, sizeof(cpu_cx_stats));
1086    ACPI_SERIAL_END(cpu);
1087
1088    return (0);
1089}
1090