acpi_cpu.c revision 130704
1/*-
2 * Copyright (c) 2003 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 130704 2004-06-19 02:27:23Z njl $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/kernel.h>
35#include <sys/malloc.h>
36#include <sys/module.h>
37#include <sys/pcpu.h>
38#include <sys/power.h>
39#include <sys/proc.h>
40#include <sys/sbuf.h>
41#include <sys/smp.h>
42
43#include <dev/pci/pcivar.h>
44#include <machine/atomic.h>
45#include <machine/bus.h>
46#ifdef __ia64__
47#include <machine/pal.h>
48#endif
49#include <sys/rman.h>
50
51#include "acpi.h"
52#include <dev/acpica/acpivar.h>
53
54/*
55 * Support for ACPI Processor devices, including ACPI 2.0 throttling
56 * and C[1-3] sleep states.
57 *
58 * TODO: implement scans of all CPUs to be sure all Cx states are
59 * equivalent.
60 */
61
62/* Hooks for the ACPI CA debugging infrastructure */
63#define _COMPONENT	ACPI_PROCESSOR
64ACPI_MODULE_NAME("PROCESSOR")
65
66struct acpi_cx {
67    struct resource	*p_lvlx;	/* Register to read to enter state. */
68    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
69    uint32_t		 trans_lat;	/* Transition latency (usec). */
70    uint32_t		 power;		/* Power consumed (mW). */
71};
72#define MAX_CX_STATES	 8
73
74struct acpi_cpu_softc {
75    device_t		 cpu_dev;
76    ACPI_HANDLE		 cpu_handle;
77    uint32_t		 acpi_id;	/* ACPI processor id */
78    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
79    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
80    struct resource	*cpu_p_cnt;	/* Throttling control register */
81    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
82    int			 cpu_cx_count;	/* Number of valid Cx states. */
83    int			 cpu_prev_sleep;/* Last idle sleep duration. */
84};
85
86#define CPU_GET_REG(reg, width) 					\
87    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
88		      rman_get_bushandle((reg)), 0))
89#define CPU_SET_REG(reg, width, val)					\
90    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
91		       rman_get_bushandle((reg)), 0, (val)))
92
93/*
94 * Speeds are stored in counts, from 1 to CPU_MAX_SPEED, and
95 * reported to the user in tenths of a percent.
96 */
97static uint32_t		 cpu_duty_offset;
98static uint32_t		 cpu_duty_width;
99#define CPU_MAX_SPEED		(1 << cpu_duty_width)
100#define CPU_SPEED_PERCENT(x)	((1000 * (x)) / CPU_MAX_SPEED)
101#define CPU_SPEED_PRINTABLE(x)	(CPU_SPEED_PERCENT(x) / 10),	\
102				(CPU_SPEED_PERCENT(x) % 10)
103#define CPU_P_CNT_THT_EN (1<<4)
104#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
105
106#define ACPI_CPU_NOTIFY_PERF_STATES	0x80	/* _PSS changed. */
107#define ACPI_CPU_NOTIFY_CX_STATES	0x81	/* _CST changed. */
108
109#define CPU_QUIRK_NO_C3		0x0001	/* C3-type states are not usable. */
110#define CPU_QUIRK_NO_THROTTLE	0x0002	/* Throttling is not usable. */
111
112#define PCI_VENDOR_INTEL	0x8086
113#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
114#define PCI_REVISION_A_STEP	0
115#define PCI_REVISION_B_STEP	1
116#define PCI_REVISION_4E		2
117#define PCI_REVISION_4M		3
118
119/* Platform hardware resource information. */
120static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
121static uint8_t		 cpu_pstate_cnt;/* Register to take over throttling. */
122static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
123static int		 cpu_rid;	/* Driver-wide resource id. */
124static int		 cpu_quirks;	/* Indicate any hardware bugs. */
125
126/* Runtime state. */
127static int		 cpu_cx_count;	/* Number of valid states */
128static int		 cpu_non_c3;	/* Index of lowest non-C3 state. */
129static u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
130
131/* Values for sysctl. */
132static uint32_t		 cpu_throttle_state;
133static uint32_t		 cpu_throttle_max;
134static int		 cpu_cx_lowest;
135static char 		 cpu_cx_supported[64];
136
137static device_t		*cpu_devices;
138static int		 cpu_ndevices;
139static struct acpi_cpu_softc **cpu_softc;
140
141static struct sysctl_ctx_list	acpi_cpu_sysctl_ctx;
142static struct sysctl_oid	*acpi_cpu_sysctl_tree;
143
144static int	acpi_cpu_probe(device_t dev);
145static int	acpi_cpu_attach(device_t dev);
146static int	acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
147				 uint32_t *cpu_id);
148static int	acpi_cpu_shutdown(device_t dev);
149static int	acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc);
150static int	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
151static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
152static void	acpi_cpu_startup(void *arg);
153static void	acpi_cpu_startup_throttling(void);
154static void	acpi_cpu_startup_cx(void);
155static void	acpi_cpu_throttle_set(uint32_t speed);
156static void	acpi_cpu_idle(void);
157static void	acpi_cpu_c1(void);
158static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
159static int	acpi_cpu_quirks(struct acpi_cpu_softc *sc);
160static int	acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS);
161static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
162static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
163
164static device_method_t acpi_cpu_methods[] = {
165    /* Device interface */
166    DEVMETHOD(device_probe,	acpi_cpu_probe),
167    DEVMETHOD(device_attach,	acpi_cpu_attach),
168    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
169
170    {0, 0}
171};
172
173static driver_t acpi_cpu_driver = {
174    "cpu",
175    acpi_cpu_methods,
176    sizeof(struct acpi_cpu_softc),
177};
178
179static devclass_t acpi_cpu_devclass;
180DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
181MODULE_DEPEND(cpu, acpi, 1, 1, 1);
182
183static int
184acpi_cpu_probe(device_t dev)
185{
186    int			   acpi_id, cpu_id, cx_count;
187    ACPI_BUFFER		   buf;
188    ACPI_HANDLE		   handle;
189    char		   msg[32];
190    ACPI_OBJECT		   *obj;
191    ACPI_STATUS		   status;
192
193    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
194	return (ENXIO);
195
196    handle = acpi_get_handle(dev);
197    if (cpu_softc == NULL)
198	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
199	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
200
201    /* Get our Processor object. */
202    buf.Pointer = NULL;
203    buf.Length = ACPI_ALLOCATE_BUFFER;
204    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
205    if (ACPI_FAILURE(status)) {
206	device_printf(dev, "probe failed to get Processor obj - %s\n",
207		      AcpiFormatException(status));
208	return (ENXIO);
209    }
210    obj = (ACPI_OBJECT *)buf.Pointer;
211    if (obj->Type != ACPI_TYPE_PROCESSOR) {
212	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
213	AcpiOsFree(obj);
214	return (ENXIO);
215    }
216
217    /*
218     * Find the processor associated with our unit.  We could use the
219     * ProcId as a key, however, some boxes do not have the same values
220     * in their Processor object as the ProcId values in the MADT.
221     */
222    acpi_id = obj->Processor.ProcId;
223    AcpiOsFree(obj);
224    if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
225	return (ENXIO);
226
227    /*
228     * Check if we already probed this processor.  We scan the bus twice
229     * so it's possible we've already seen this one.
230     */
231    if (cpu_softc[cpu_id] != NULL)
232	return (ENXIO);
233
234    /* Get a count of Cx states for our device string. */
235    cx_count = 0;
236    buf.Pointer = NULL;
237    buf.Length = ACPI_ALLOCATE_BUFFER;
238    status = AcpiEvaluateObject(handle, "_CST", NULL, &buf);
239    if (ACPI_SUCCESS(status)) {
240	obj = (ACPI_OBJECT *)buf.Pointer;
241	if (ACPI_PKG_VALID(obj, 2))
242	    acpi_PkgInt32(obj, 0, &cx_count);
243	AcpiOsFree(obj);
244    } else {
245	if (AcpiGbl_FADT->Plvl2Lat <= 100)
246	    cx_count++;
247	if (AcpiGbl_FADT->Plvl3Lat <= 1000)
248	    cx_count++;
249	if (cx_count > 0)
250	    cx_count++;
251    }
252    if (cx_count > 0)
253	snprintf(msg, sizeof(msg), "ACPI CPU (%d Cx states)", cx_count);
254    else
255	strlcpy(msg, "ACPI CPU", sizeof(msg));
256    device_set_desc_copy(dev, msg);
257
258    /* Mark this processor as in-use and save our derived id for attach. */
259    cpu_softc[cpu_id] = (void *)1;
260    acpi_set_magic(dev, cpu_id);
261
262    return (0);
263}
264
265static int
266acpi_cpu_attach(device_t dev)
267{
268    ACPI_BUFFER		   buf;
269    ACPI_OBJECT		   *obj;
270    struct acpi_cpu_softc *sc;
271    struct acpi_softc	  *acpi_sc;
272    ACPI_STATUS		   status;
273    int			   thr_ret, cx_ret;
274
275    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
276
277    ACPI_ASSERTLOCK;
278
279    sc = device_get_softc(dev);
280    sc->cpu_dev = dev;
281    sc->cpu_handle = acpi_get_handle(dev);
282    cpu_softc[acpi_get_magic(dev)] = sc;
283
284    buf.Pointer = NULL;
285    buf.Length = ACPI_ALLOCATE_BUFFER;
286    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
287    if (ACPI_FAILURE(status)) {
288	device_printf(dev, "attach failed to get Processor obj - %s\n",
289		      AcpiFormatException(status));
290	return (ENXIO);
291    }
292    obj = (ACPI_OBJECT *)buf.Pointer;
293    sc->cpu_p_blk = obj->Processor.PblkAddress;
294    sc->cpu_p_blk_len = obj->Processor.PblkLength;
295    sc->acpi_id = obj->Processor.ProcId;
296    AcpiOsFree(obj);
297    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
298		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
299
300    acpi_sc = acpi_device_get_parent_softc(dev);
301    sysctl_ctx_init(&acpi_cpu_sysctl_ctx);
302    acpi_cpu_sysctl_tree = SYSCTL_ADD_NODE(&acpi_cpu_sysctl_ctx,
303				SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree),
304				OID_AUTO, "cpu", CTLFLAG_RD, 0, "");
305
306    /* If this is the first device probed, check for quirks. */
307    if (device_get_unit(dev) == 0)
308	acpi_cpu_quirks(sc);
309
310    /*
311     * Probe for throttling and Cx state support.
312     * If none of these is present, free up unused resources.
313     */
314    thr_ret = acpi_cpu_throttle_probe(sc);
315    cx_ret = acpi_cpu_cx_probe(sc);
316    if (thr_ret == 0 || cx_ret == 0) {
317	status = AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
318					  acpi_cpu_notify, sc);
319	if (device_get_unit(dev) == 0)
320	    AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
321    } else {
322	sysctl_ctx_free(&acpi_cpu_sysctl_ctx);
323    }
324
325    return_VALUE (0);
326}
327
328/*
329 * Find the nth present CPU and return its pc_cpuid as well as set the
330 * pc_acpi_id from the most reliable source.
331 */
332static int
333acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
334{
335    struct pcpu	*pcpu_data;
336    uint32_t	 i;
337
338    KASSERT(acpi_id != NULL, ("Null acpi_id"));
339    KASSERT(cpu_id != NULL, ("Null cpu_id"));
340    for (i = 0; i <= mp_maxid; i++) {
341	if (CPU_ABSENT(i))
342	    continue;
343	pcpu_data = pcpu_find(i);
344	KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
345	if (idx-- == 0) {
346	    /*
347	     * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
348	     * override it with the value from the ASL.  Otherwise, if the
349	     * two don't match, prefer the MADT-derived value.  Finally,
350	     * return the pc_cpuid to reference this processor.
351	     */
352	    if (pcpu_data->pc_acpi_id == 0xffffffff)
353		 pcpu_data->pc_acpi_id = *acpi_id;
354	    else if (pcpu_data->pc_acpi_id != *acpi_id)
355		*acpi_id = pcpu_data->pc_acpi_id;
356	    *cpu_id = pcpu_data->pc_cpuid;
357	    return (0);
358	}
359    }
360
361    return (ESRCH);
362}
363
364static int
365acpi_cpu_shutdown(device_t dev)
366{
367    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
368
369    /* Disable any entry to the idle function. */
370    cpu_cx_count = 0;
371
372    /* Signal and wait for all processors to exit acpi_cpu_idle(). */
373    smp_rendezvous(NULL, NULL, NULL, NULL);
374
375    return_VALUE (0);
376}
377
378static int
379acpi_cpu_throttle_probe(struct acpi_cpu_softc *sc)
380{
381    uint32_t		 duty_end;
382    ACPI_BUFFER		 buf;
383    ACPI_OBJECT		 obj;
384    ACPI_GENERIC_ADDRESS gas;
385    ACPI_STATUS		 status;
386
387    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
388
389    ACPI_ASSERTLOCK;
390
391    /* Get throttling parameters from the FADT.  0 means not supported. */
392    if (device_get_unit(sc->cpu_dev) == 0) {
393	cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
394	cpu_pstate_cnt = AcpiGbl_FADT->PstateCnt;
395	cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
396	cpu_duty_offset = AcpiGbl_FADT->DutyOffset;
397	cpu_duty_width = AcpiGbl_FADT->DutyWidth;
398    }
399    if (cpu_duty_width == 0 || (cpu_quirks & CPU_QUIRK_NO_THROTTLE) != 0)
400	return (ENXIO);
401
402    /* Validate the duty offset/width. */
403    duty_end = cpu_duty_offset + cpu_duty_width - 1;
404    if (duty_end > 31) {
405	device_printf(sc->cpu_dev, "CLK_VAL field overflows P_CNT register\n");
406	return (ENXIO);
407    }
408    if (cpu_duty_offset <= 4 && duty_end >= 4) {
409	device_printf(sc->cpu_dev, "CLK_VAL field overlaps THT_EN bit\n");
410	return (ENXIO);
411    }
412
413    /*
414     * If not present, fall back to using the processor's P_BLK to find
415     * the P_CNT register.
416     *
417     * Note that some systems seem to duplicate the P_BLK pointer
418     * across multiple CPUs, so not getting the resource is not fatal.
419     */
420    buf.Pointer = &obj;
421    buf.Length = sizeof(obj);
422    status = AcpiEvaluateObject(sc->cpu_handle, "_PTC", NULL, &buf);
423    if (ACPI_SUCCESS(status)) {
424	if (obj.Buffer.Length < sizeof(ACPI_GENERIC_ADDRESS) + 3) {
425	    device_printf(sc->cpu_dev, "_PTC buffer too small\n");
426	    return (ENXIO);
427	}
428	memcpy(&gas, obj.Buffer.Pointer + 3, sizeof(gas));
429	sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
430	if (sc->cpu_p_cnt != NULL) {
431	    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from _PTC\n",
432			     device_get_unit(sc->cpu_dev)));
433	}
434    }
435
436    /* If _PTC not present or other failure, try the P_BLK. */
437    if (sc->cpu_p_cnt == NULL) {
438	/*
439	 * The spec says P_BLK must be 6 bytes long.  However, some
440	 * systems use it to indicate a fractional set of features
441	 * present so we take anything >= 4.
442	 */
443	if (sc->cpu_p_blk_len < 4)
444	    return (ENXIO);
445	gas.Address = sc->cpu_p_blk;
446	gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
447	gas.RegisterBitWidth = 32;
448	sc->cpu_p_cnt = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
449	if (sc->cpu_p_cnt != NULL) {
450	    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_CNT from P_BLK\n",
451			     device_get_unit(sc->cpu_dev)));
452	} else {
453	    device_printf(sc->cpu_dev, "Failed to attach throttling P_CNT\n");
454	    return (ENXIO);
455	}
456    }
457    cpu_rid++;
458
459    return (0);
460}
461
462static int
463acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
464{
465    ACPI_GENERIC_ADDRESS gas;
466    struct acpi_cx	*cx_ptr;
467    int			 error;
468
469    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
470
471    /* Bus mastering arbitration control is needed for C3. */
472    if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
473	cpu_quirks |= CPU_QUIRK_NO_C3;
474	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
475			 "acpi_cpu%d: No BM control, C3 disabled\n",
476			 device_get_unit(sc->cpu_dev)));
477    }
478
479    /*
480     * First, check for the ACPI 2.0 _CST sleep states object.
481     * If not usable, fall back to the P_BLK's P_LVL2 and P_LVL3.
482     */
483    sc->cpu_cx_count = 0;
484    error = acpi_cpu_cx_cst(sc);
485    if (error != 0) {
486	cx_ptr = sc->cpu_cx_states;
487
488	/* C1 has been required since just after ACPI 1.0 */
489	cx_ptr->type = ACPI_STATE_C1;
490	cx_ptr->trans_lat = 0;
491	cpu_non_c3 = 0;
492	cx_ptr++;
493	sc->cpu_cx_count++;
494
495	/*
496	 * The spec says P_BLK must be 6 bytes long.  However, some systems
497	 * use it to indicate a fractional set of features present so we
498	 * take 5 as C2.  Some may also have a value of 7 to indicate
499	 * another C3 but most use _CST for this (as required) and having
500	 * "only" C1-C3 is not a hardship.
501	 */
502	if (sc->cpu_p_blk_len < 5)
503	    goto done;
504
505	/* Validate and allocate resources for C2 (P_LVL2). */
506	gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
507	gas.RegisterBitWidth = 8;
508	if (AcpiGbl_FADT->Plvl2Lat <= 100) {
509	    gas.Address = sc->cpu_p_blk + 4;
510	    cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
511	    if (cx_ptr->p_lvlx != NULL) {
512		cpu_rid++;
513		cx_ptr->type = ACPI_STATE_C2;
514		cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
515		cpu_non_c3 = 1;
516		cx_ptr++;
517		sc->cpu_cx_count++;
518	    }
519	}
520	if (sc->cpu_p_blk_len < 6)
521	    goto done;
522
523	/* Validate and allocate resources for C3 (P_LVL3). */
524	if (AcpiGbl_FADT->Plvl3Lat <= 1000 &&
525	    (cpu_quirks & CPU_QUIRK_NO_C3) == 0) {
526
527	    gas.Address = sc->cpu_p_blk + 5;
528	    cx_ptr->p_lvlx = acpi_bus_alloc_gas(sc->cpu_dev, &cpu_rid, &gas);
529	    if (cx_ptr->p_lvlx != NULL) {
530		cpu_rid++;
531		cx_ptr->type = ACPI_STATE_C3;
532		cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
533		cx_ptr++;
534		sc->cpu_cx_count++;
535	    }
536	}
537    }
538
539done:
540    /* If no valid registers were found, don't attach. */
541    if (sc->cpu_cx_count == 0)
542	return (ENXIO);
543
544    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
545    sc->cpu_prev_sleep = 1000000;
546
547    return (0);
548}
549
550/*
551 * Parse a _CST package and set up its Cx states.  Since the _CST object
552 * can change dynamically, our notify handler may call this function
553 * to clean up and probe the new _CST package.
554 */
555static int
556acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
557{
558    struct	 acpi_cx *cx_ptr;
559    ACPI_STATUS	 status;
560    ACPI_BUFFER	 buf;
561    ACPI_OBJECT	*top;
562    ACPI_OBJECT	*pkg;
563    uint32_t	 count;
564    int		 i;
565
566    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
567
568    buf.Pointer = NULL;
569    buf.Length = ACPI_ALLOCATE_BUFFER;
570    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
571    if (ACPI_FAILURE(status))
572	return (ENXIO);
573
574    /* _CST is a package with a count and at least one Cx package. */
575    top = (ACPI_OBJECT *)buf.Pointer;
576    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
577	device_printf(sc->cpu_dev, "Invalid _CST package\n");
578	AcpiOsFree(buf.Pointer);
579	return (ENXIO);
580    }
581    if (count != top->Package.Count - 1) {
582	device_printf(sc->cpu_dev, "Invalid _CST state count (%d != %d)\n",
583	       count, top->Package.Count - 1);
584	count = top->Package.Count - 1;
585    }
586    if (count > MAX_CX_STATES) {
587	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
588	count = MAX_CX_STATES;
589    }
590
591    /* Set up all valid states. */
592    sc->cpu_cx_count = 0;
593    cx_ptr = sc->cpu_cx_states;
594    for (i = 0; i < count; i++) {
595	pkg = &top->Package.Elements[i + 1];
596	if (!ACPI_PKG_VALID(pkg, 4) ||
597	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
598	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
599	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
600
601	    device_printf(sc->cpu_dev, "Skipping invalid Cx state package\n");
602	    continue;
603	}
604
605	/* Validate the state to see if we should use it. */
606	switch (cx_ptr->type) {
607	case ACPI_STATE_C1:
608	    cpu_non_c3 = i;
609	    cx_ptr++;
610	    sc->cpu_cx_count++;
611	    continue;
612	case ACPI_STATE_C2:
613	    if (cx_ptr->trans_lat > 100) {
614		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
615				 "acpi_cpu%d: C2[%d] not available.\n",
616				 device_get_unit(sc->cpu_dev), i));
617		continue;
618	    }
619	    cpu_non_c3 = i;
620	    break;
621	case ACPI_STATE_C3:
622	default:
623	    if (cx_ptr->trans_lat > 1000 ||
624		(cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
625
626		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
627				 "acpi_cpu%d: C3[%d] not available.\n",
628				 device_get_unit(sc->cpu_dev), i));
629		continue;
630	    }
631	    break;
632	}
633
634#ifdef notyet
635	/* Free up any previous register. */
636	if (cx_ptr->p_lvlx != NULL) {
637	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
638	    cx_ptr->p_lvlx = NULL;
639	}
640#endif
641
642	/* Allocate the control register for C2 or C3. */
643	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cpu_rid, &cx_ptr->p_lvlx);
644	if (cx_ptr->p_lvlx != NULL) {
645	    cpu_rid++;
646	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
647			     "acpi_cpu%d: Got C%d - %d latency\n",
648			     device_get_unit(sc->cpu_dev), cx_ptr->type,
649			     cx_ptr->trans_lat));
650	    cx_ptr++;
651	    sc->cpu_cx_count++;
652	}
653    }
654    AcpiOsFree(buf.Pointer);
655
656    return (0);
657}
658
659/*
660 * Call this *after* all CPUs have been attached.
661 */
662static void
663acpi_cpu_startup(void *arg)
664{
665    struct acpi_cpu_softc *sc;
666    int count, i;
667
668    /* Get set of CPU devices */
669    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
670
671    /*
672     * Make sure all the processors' Cx counts match.  We should probably
673     * also check the contents of each.  However, no known systems have
674     * non-matching Cx counts so we'll deal with this later.
675     */
676    count = MAX_CX_STATES;
677    for (i = 0; i < cpu_ndevices; i++) {
678	sc = device_get_softc(cpu_devices[i]);
679	count = min(sc->cpu_cx_count, count);
680    }
681    cpu_cx_count = count;
682
683    /* Perform throttling and Cx final initialization. */
684    sc = device_get_softc(cpu_devices[0]);
685    if (sc->cpu_p_cnt != NULL)
686	acpi_cpu_startup_throttling();
687    if (cpu_cx_count > 0)
688	acpi_cpu_startup_cx();
689}
690
691/*
692 * Takes the ACPI lock to avoid fighting anyone over the SMI command
693 * port.
694 */
695static void
696acpi_cpu_startup_throttling()
697{
698    ACPI_LOCK_DECL;
699
700    /* Initialise throttling states */
701    cpu_throttle_max = CPU_MAX_SPEED;
702    cpu_throttle_state = CPU_MAX_SPEED;
703
704    SYSCTL_ADD_INT(&acpi_cpu_sysctl_ctx,
705		   SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
706		   OID_AUTO, "throttle_max", CTLFLAG_RD,
707		   &cpu_throttle_max, 0, "maximum CPU speed");
708    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
709		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
710		    OID_AUTO, "throttle_state",
711		    CTLTYPE_INT | CTLFLAG_RW, &cpu_throttle_state,
712		    0, acpi_cpu_throttle_sysctl, "I", "current CPU speed");
713
714    /* If ACPI 2.0+, signal platform that we are taking over throttling. */
715    ACPI_LOCK;
716    if (cpu_pstate_cnt != 0)
717	AcpiOsWritePort(cpu_smi_cmd, cpu_pstate_cnt, 8);
718
719    /* Set initial speed to maximum. */
720    acpi_cpu_throttle_set(cpu_throttle_max);
721    ACPI_UNLOCK;
722
723    printf("acpi_cpu: throttling enabled, %d steps (100%% to %d.%d%%), "
724	   "currently %d.%d%%\n", CPU_MAX_SPEED, CPU_SPEED_PRINTABLE(1),
725	   CPU_SPEED_PRINTABLE(cpu_throttle_state));
726}
727
728static void
729acpi_cpu_startup_cx()
730{
731    struct acpi_cpu_softc *sc;
732    struct sbuf		 sb;
733    int i;
734    ACPI_LOCK_DECL;
735
736    sc = device_get_softc(cpu_devices[0]);
737    sbuf_new(&sb, cpu_cx_supported, sizeof(cpu_cx_supported), SBUF_FIXEDLEN);
738    for (i = 0; i < cpu_cx_count; i++)
739	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
740    sbuf_trim(&sb);
741    sbuf_finish(&sb);
742    SYSCTL_ADD_STRING(&acpi_cpu_sysctl_ctx,
743		      SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
744		      OID_AUTO, "cx_supported", CTLFLAG_RD, cpu_cx_supported,
745		      0, "Cx/microsecond values for supported Cx states");
746    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
747		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
748		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
749		    NULL, 0, acpi_cpu_cx_lowest_sysctl, "A",
750		    "lowest Cx sleep state to use");
751    SYSCTL_ADD_PROC(&acpi_cpu_sysctl_ctx,
752		    SYSCTL_CHILDREN(acpi_cpu_sysctl_tree),
753		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
754		    NULL, 0, acpi_cpu_usage_sysctl, "A",
755		    "percent usage for each Cx state");
756
757#ifdef notyet
758    /* Signal platform that we can handle _CST notification. */
759    if (cpu_cst_cnt != 0) {
760	ACPI_LOCK;
761	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
762	ACPI_UNLOCK;
763    }
764#endif
765
766    /* Take over idling from cpu_idle_default(). */
767    cpu_idle_hook = acpi_cpu_idle;
768}
769
770/*
771 * Set CPUs to the new state.
772 *
773 * Must be called with the ACPI lock held.
774 */
775static void
776acpi_cpu_throttle_set(uint32_t speed)
777{
778    struct acpi_cpu_softc	*sc;
779    int				i;
780    uint32_t			p_cnt, clk_val;
781
782    ACPI_ASSERTLOCK;
783
784    /* Iterate over processors */
785    for (i = 0; i < cpu_ndevices; i++) {
786	sc = device_get_softc(cpu_devices[i]);
787	if (sc->cpu_p_cnt == NULL)
788	    continue;
789
790	/* Get the current P_CNT value and disable throttling */
791	p_cnt = CPU_GET_REG(sc->cpu_p_cnt, 4);
792	p_cnt &= ~CPU_P_CNT_THT_EN;
793	CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
794
795	/* If we're at maximum speed, that's all */
796	if (speed < CPU_MAX_SPEED) {
797	    /* Mask the old CLK_VAL off and or-in the new value */
798	    clk_val = (CPU_MAX_SPEED - 1) << cpu_duty_offset;
799	    p_cnt &= ~clk_val;
800	    p_cnt |= (speed << cpu_duty_offset);
801
802	    /* Write the new P_CNT value and then enable throttling */
803	    CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
804	    p_cnt |= CPU_P_CNT_THT_EN;
805	    CPU_SET_REG(sc->cpu_p_cnt, 4, p_cnt);
806	}
807	ACPI_VPRINT(sc->cpu_dev, acpi_device_get_parent_softc(sc->cpu_dev),
808		    "set speed to %d.%d%%\n", CPU_SPEED_PRINTABLE(speed));
809    }
810    cpu_throttle_state = speed;
811}
812
813/*
814 * Idle the CPU in the lowest state possible.  This function is called with
815 * interrupts disabled.  Note that once it re-enables interrupts, a task
816 * switch can occur so do not access shared data (i.e. the softc) after
817 * interrupts are re-enabled.
818 */
819static void
820acpi_cpu_idle()
821{
822    struct	acpi_cpu_softc *sc;
823    struct	acpi_cx *cx_next;
824    uint32_t	start_time, end_time;
825    int		bm_active, cx_next_idx, i;
826
827    /* If disabled, return immediately. */
828    if (cpu_cx_count == 0) {
829	ACPI_ENABLE_IRQS();
830	return;
831    }
832
833    /*
834     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
835     * since there is no ACPI processor object for this CPU.  This occurs
836     * for logical CPUs in the HTT case.
837     */
838    sc = cpu_softc[PCPU_GET(cpuid)];
839    if (sc == NULL) {
840	acpi_cpu_c1();
841	return;
842    }
843
844    /*
845     * If we slept 100 us or more, use the lowest Cx state.  Otherwise,
846     * find the lowest state that has a latency less than or equal to
847     * the length of our last sleep.
848     */
849    cx_next_idx = cpu_cx_lowest;
850    if (sc->cpu_prev_sleep < 100)
851	for (i = cpu_cx_lowest; i >= 0; i--)
852	    if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
853		cx_next_idx = i;
854		break;
855	    }
856
857    /*
858     * Check for bus master activity.  If there was activity, clear
859     * the bit and use the lowest non-C3 state.  Note that the USB
860     * driver polling for new devices keeps this bit set all the
861     * time if USB is loaded.
862     */
863    AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
864		    ACPI_MTX_DO_NOT_LOCK);
865    if (bm_active != 0) {
866	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
867			ACPI_MTX_DO_NOT_LOCK);
868	cx_next_idx = min(cx_next_idx, cpu_non_c3);
869    }
870
871    /* Select the next state and update statistics. */
872    cx_next = &sc->cpu_cx_states[cx_next_idx];
873    cpu_cx_stats[cx_next_idx]++;
874    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
875
876    /*
877     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
878     * calculate the time spent in C1 since the place we wake up is an
879     * ISR.  Assume we slept one quantum and return.
880     */
881    if (cx_next->type == ACPI_STATE_C1) {
882	sc->cpu_prev_sleep = 1000000 / hz;
883	acpi_cpu_c1();
884	return;
885    }
886
887    /* For C3, disable bus master arbitration and enable bus master wake. */
888    if (cx_next->type == ACPI_STATE_C3) {
889	AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
890	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1, ACPI_MTX_DO_NOT_LOCK);
891    }
892
893    /*
894     * Read from P_LVLx to enter C2(+), checking time spent asleep.
895     * Use the ACPI timer for measuring sleep time.  Since we need to
896     * get the time very close to the CPU start/stop clock logic, this
897     * is the only reliable time source.
898     */
899    AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
900    CPU_GET_REG(cx_next->p_lvlx, 1);
901
902    /*
903     * Read the end time twice.  Since it may take an arbitrary time
904     * to enter the idle state, the first read may be executed before
905     * the processor has stopped.  Doing it again provides enough
906     * margin that we are certain to have a correct value.
907     */
908    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
909    AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
910
911    /* Enable bus master arbitration and disable bus master wakeup. */
912    if (cx_next->type == ACPI_STATE_C3) {
913	AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
914	AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
915    }
916
917    /* Find the actual time asleep in microseconds, minus overhead. */
918    end_time = acpi_TimerDelta(end_time, start_time);
919    sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
920    ACPI_ENABLE_IRQS();
921}
922
923/* Put the CPU in C1 in a machine-dependant way. */
924static void
925acpi_cpu_c1()
926{
927#ifdef __ia64__
928    ia64_call_pal_static(PAL_HALT_LIGHT, 0, 0, 0);
929#else
930    __asm __volatile("sti; hlt");
931#endif
932}
933
934/*
935 * Re-evaluate the _PSS and _CST objects when we are notified that they
936 * have changed.
937 *
938 * XXX Re-evaluation disabled until locking is done.
939 */
940static void
941acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
942{
943    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
944
945    switch (notify) {
946    case ACPI_CPU_NOTIFY_PERF_STATES:
947	device_printf(sc->cpu_dev, "Performance states changed\n");
948	/* acpi_cpu_px_available(sc); */
949	break;
950    case ACPI_CPU_NOTIFY_CX_STATES:
951	device_printf(sc->cpu_dev, "Cx states changed\n");
952	/* acpi_cpu_cx_cst(sc); */
953	break;
954    default:
955	device_printf(sc->cpu_dev, "Unknown notify %#x\n", notify);
956	break;
957    }
958}
959
960static int
961acpi_cpu_quirks(struct acpi_cpu_softc *sc)
962{
963
964    /*
965     * C3 is not supported on multiple CPUs since this would require
966     * flushing all caches which is currently too expensive.
967     */
968    if (mp_ncpus > 1)
969	cpu_quirks |= CPU_QUIRK_NO_C3;
970
971#ifdef notyet
972    /* Look for various quirks of the PIIX4 part. */
973    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
974    if (acpi_dev != NULL) {
975	switch (pci_get_revid(acpi_dev)) {
976	/*
977	 * Disable throttling control on PIIX4 A and B-step.
978	 * See specification changes #13 ("Manual Throttle Duty Cycle")
979	 * and #14 ("Enabling and Disabling Manual Throttle"), plus
980	 * erratum #5 ("STPCLK# Deassertion Time") from the January
981	 * 2002 PIIX4 specification update.  Note that few (if any)
982	 * mobile systems ever used this part.
983	 */
984	case PCI_REVISION_A_STEP:
985	case PCI_REVISION_B_STEP:
986	    cpu_quirks |= CPU_QUIRK_NO_THROTTLE;
987	    /* FALLTHROUGH */
988	/*
989	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
990	 * do not report the BMIDE status to the BM status register and
991	 * others have a livelock bug if Type-F DMA is enabled.  Linux
992	 * works around the BMIDE bug by reading the BM status directly
993	 * but we take the simpler approach of disabling C3 for these
994	 * parts.
995	 *
996	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
997	 * Livelock") from the January 2002 PIIX4 specification update.
998	 * Applies to all PIIX4 models.
999	 */
1000	case PCI_REVISION_4E:
1001	case PCI_REVISION_4M:
1002	    cpu_quirks |= CPU_QUIRK_NO_C3;
1003	    break;
1004	default:
1005	    break;
1006	}
1007    }
1008#endif
1009
1010    return (0);
1011}
1012
1013/* Handle changes in the CPU throttling setting. */
1014static int
1015acpi_cpu_throttle_sysctl(SYSCTL_HANDLER_ARGS)
1016{
1017    uint32_t	*argp;
1018    uint32_t	 arg;
1019    int		 error;
1020    ACPI_LOCK_DECL;
1021
1022    argp = (uint32_t *)oidp->oid_arg1;
1023    arg = *argp;
1024    error = sysctl_handle_int(oidp, &arg, 0, req);
1025
1026    /* Error or no new value */
1027    if (error != 0 || req->newptr == NULL)
1028	return (error);
1029    if (arg < 1 || arg > cpu_throttle_max)
1030	return (EINVAL);
1031
1032    /* If throttling changed, notify the BIOS of the new rate. */
1033    ACPI_LOCK;
1034    if (*argp != arg) {
1035	*argp = arg;
1036	acpi_cpu_throttle_set(arg);
1037    }
1038    ACPI_UNLOCK;
1039
1040    return (0);
1041}
1042
1043static int
1044acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1045{
1046    struct sbuf	 sb;
1047    char	 buf[128];
1048    int		 i;
1049    uint64_t	 fract, sum, whole;
1050
1051    sum = 0;
1052    for (i = 0; i < cpu_cx_count; i++)
1053	sum += cpu_cx_stats[i];
1054    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1055    for (i = 0; i < cpu_cx_count; i++) {
1056	if (sum > 0) {
1057	    whole = cpu_cx_stats[i] * 100;
1058	    fract = (whole % sum) * 100;
1059	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1060		(u_int)(fract / sum));
1061	} else
1062	    sbuf_printf(&sb, "0%% ");
1063    }
1064    sbuf_trim(&sb);
1065    sbuf_finish(&sb);
1066    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1067    sbuf_delete(&sb);
1068
1069    return (0);
1070}
1071
1072static int
1073acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1074{
1075    struct	 acpi_cpu_softc *sc;
1076    char	 state[8];
1077    int		 val, error, i;
1078
1079    sc = device_get_softc(cpu_devices[0]);
1080    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1081    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1082    if (error != 0 || req->newptr == NULL)
1083	return (error);
1084    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1085	return (EINVAL);
1086    val = (int) strtol(state + 1, NULL, 10) - 1;
1087    if (val < 0 || val > cpu_cx_count - 1)
1088	return (EINVAL);
1089
1090    cpu_cx_lowest = val;
1091
1092    /* If not disabling, cache the new lowest non-C3 state. */
1093    cpu_non_c3 = 0;
1094    for (i = cpu_cx_lowest; i >= 0; i--) {
1095	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1096	    cpu_non_c3 = i;
1097	    break;
1098	}
1099    }
1100
1101    /* Reset the statistics counters. */
1102    bzero(cpu_cx_stats, sizeof(cpu_cx_stats));
1103
1104    return (0);
1105}
1106