mkfs.c revision 38579
1/*
2 * Copyright (c) 1980, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34#ifndef lint
35#if 0
36static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
37#endif
38static const char rcsid[] =
39	"$Id: mkfs.c,v 1.25 1998/08/12 06:07:43 charnier Exp $";
40#endif /* not lint */
41
42#include <err.h>
43#include <signal.h>
44#include <string.h>
45#include <stdio.h>
46#include <unistd.h>
47#include <sys/param.h>
48#include <sys/time.h>
49#include <sys/types.h>
50#include <sys/wait.h>
51#include <sys/resource.h>
52#include <ufs/ufs/dinode.h>
53#include <ufs/ufs/dir.h>
54#include <ufs/ffs/fs.h>
55#include <sys/disklabel.h>
56#include <sys/file.h>
57#include <sys/mman.h>
58#include <sys/ioctl.h>
59
60#ifndef STANDALONE
61#include <stdlib.h>
62#else
63extern int atoi __P((char *));
64extern char * getenv __P((char *));
65#endif
66
67#ifdef FSIRAND
68extern long random __P((void));
69extern void srandomdev __P((void));
70#endif
71
72/*
73 * make file system for cylinder-group style file systems
74 */
75
76/*
77 * We limit the size of the inode map to be no more than a
78 * third of the cylinder group space, since we must leave at
79 * least an equal amount of space for the block map.
80 *
81 * N.B.: MAXIPG must be a multiple of INOPB(fs).
82 */
83#define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
84
85#define UMASK		0755
86#define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
87#define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
88
89/*
90 * variables set up by front end.
91 */
92extern int	mfs;		/* run as the memory based filesystem */
93extern int	Nflag;		/* run mkfs without writing file system */
94extern int	Oflag;		/* format as an 4.3BSD file system */
95extern int	fssize;		/* file system size */
96extern int	ntracks;	/* # tracks/cylinder */
97extern int	nsectors;	/* # sectors/track */
98extern int	nphyssectors;	/* # sectors/track including spares */
99extern int	secpercyl;	/* sectors per cylinder */
100extern int	sectorsize;	/* bytes/sector */
101extern int	realsectorsize;	/* bytes/sector in hardware*/
102extern int	rpm;		/* revolutions/minute of drive */
103extern int	interleave;	/* hardware sector interleave */
104extern int	trackskew;	/* sector 0 skew, per track */
105extern int	fsize;		/* fragment size */
106extern int	bsize;		/* block size */
107extern int	cpg;		/* cylinders/cylinder group */
108extern int	cpgflg;		/* cylinders/cylinder group flag was given */
109extern int	minfree;	/* free space threshold */
110extern int	opt;		/* optimization preference (space or time) */
111extern int	density;	/* number of bytes per inode */
112extern int	maxcontig;	/* max contiguous blocks to allocate */
113extern int	rotdelay;	/* rotational delay between blocks */
114extern int	maxbpg;		/* maximum blocks per file in a cyl group */
115extern int	nrpos;		/* # of distinguished rotational positions */
116extern int	bbsize;		/* boot block size */
117extern int	sbsize;		/* superblock size */
118extern u_long	memleft;	/* virtual memory available */
119extern caddr_t	membase;	/* start address of memory based filesystem */
120extern char *	filename;
121
122union {
123	struct fs fs;
124	char pad[SBSIZE];
125} fsun;
126#define	sblock	fsun.fs
127struct	csum *fscs;
128
129union {
130	struct cg cg;
131	char pad[MAXBSIZE];
132} cgun;
133#define	acg	cgun.cg
134
135struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
136
137int	fsi, fso;
138#ifdef FSIRAND
139int     randinit;
140#endif
141daddr_t	alloc();
142long	calcipg();
143static int charsperline();
144void clrblock __P((struct fs *, unsigned char *, int));
145void fsinit __P((time_t));
146void initcg __P((int, time_t));
147int isblock __P((struct fs *, unsigned char *, int));
148void iput __P((struct dinode *, ino_t));
149int makedir __P((struct direct *, int));
150void rdfs __P((daddr_t, int, char *));
151void setblock __P((struct fs *, unsigned char *, int));
152void wtfs __P((daddr_t, int, char *));
153
154#ifndef STANDALONE
155void get_memleft __P((void));
156void raise_data_limit __P((void));
157#else
158void free __P((char *));
159char * calloc __P((u_long, u_long));
160caddr_t malloc __P((u_long));
161caddr_t realloc __P((char *, u_long));
162#endif
163
164void
165mkfs(pp, fsys, fi, fo)
166	struct partition *pp;
167	char *fsys;
168	int fi, fo;
169{
170	register long i, mincpc, mincpg, inospercg;
171	long cylno, rpos, blk, j, warn = 0;
172	long used, mincpgcnt, bpcg;
173	off_t usedb;
174	long mapcramped, inodecramped;
175	long postblsize, rotblsize, totalsbsize;
176	int ppid = 0, status, fd;
177	time_t utime;
178	quad_t sizepb;
179	void started();
180	int width;
181	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
182
183#ifndef STANDALONE
184	time(&utime);
185#endif
186#ifdef FSIRAND
187	if (!randinit) {
188		randinit = 1;
189		srandomdev();
190	}
191#endif
192	if (mfs) {
193		ppid = getpid();
194		(void) signal(SIGUSR1, started);
195		if ((i = fork())) {
196			if (i == -1)
197				err(10, "mfs");
198			if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
199				exit(WEXITSTATUS(status));
200			exit(11);
201			/* NOTREACHED */
202		}
203#ifdef STANDALONE
204		(void)malloc(0);
205#else
206		raise_data_limit();
207#endif
208		if(filename) {
209			unsigned char buf[BUFSIZ];
210			unsigned long l,l1;
211			fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644);
212			if(fd < 0)
213				err(12, "%s", filename);
214			for(l=0;l< fssize * sectorsize;l += l1) {
215				l1 = fssize * sectorsize;
216				if (BUFSIZ < l1)
217					l1 = BUFSIZ;
218				if (l1 != write(fd,buf,l1))
219					err(12, "%s", filename);
220			}
221			membase = mmap(
222				0,
223				fssize * sectorsize,
224				PROT_READ|PROT_WRITE,
225				MAP_SHARED,
226				fd,
227				0);
228			if(membase == MAP_FAILED)
229				err(12, "mmap");
230			close(fd);
231		} else {
232#ifndef STANDALONE
233			get_memleft();
234#endif
235			if (fssize * sectorsize > (memleft - 131072))
236				fssize = (memleft - 131072) / sectorsize;
237			if ((membase = malloc(fssize * sectorsize)) == NULL)
238				errx(13, "malloc failed");
239		}
240	}
241	fsi = fi;
242	fso = fo;
243	if (Oflag) {
244		sblock.fs_inodefmt = FS_42INODEFMT;
245		sblock.fs_maxsymlinklen = 0;
246	} else {
247		sblock.fs_inodefmt = FS_44INODEFMT;
248		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
249	}
250	/*
251	 * Validate the given file system size.
252	 * Verify that its last block can actually be accessed.
253	 */
254	if (fssize <= 0)
255		printf("preposterous size %d\n", fssize), exit(13);
256	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
257		 (char *)&sblock);
258	/*
259	 * collect and verify the sector and track info
260	 */
261	sblock.fs_nsect = nsectors;
262	sblock.fs_ntrak = ntracks;
263	if (sblock.fs_ntrak <= 0)
264		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
265	if (sblock.fs_nsect <= 0)
266		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
267	/*
268	 * collect and verify the block and fragment sizes
269	 */
270	sblock.fs_bsize = bsize;
271	sblock.fs_fsize = fsize;
272	if (!POWEROF2(sblock.fs_bsize)) {
273		printf("block size must be a power of 2, not %d\n",
274		    sblock.fs_bsize);
275		exit(16);
276	}
277	if (!POWEROF2(sblock.fs_fsize)) {
278		printf("fragment size must be a power of 2, not %d\n",
279		    sblock.fs_fsize);
280		exit(17);
281	}
282	if (sblock.fs_fsize < sectorsize) {
283		printf("fragment size %d is too small, minimum is %d\n",
284		    sblock.fs_fsize, sectorsize);
285		exit(18);
286	}
287	if (sblock.fs_bsize < MINBSIZE) {
288		printf("block size %d is too small, minimum is %d\n",
289		    sblock.fs_bsize, MINBSIZE);
290		exit(19);
291	}
292	if (sblock.fs_bsize < sblock.fs_fsize) {
293		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
294		    sblock.fs_bsize, sblock.fs_fsize);
295		exit(20);
296	}
297	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
298	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
299	sblock.fs_qbmask = ~sblock.fs_bmask;
300	sblock.fs_qfmask = ~sblock.fs_fmask;
301	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
302		sblock.fs_bshift++;
303	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
304		sblock.fs_fshift++;
305	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
306	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
307		sblock.fs_fragshift++;
308	if (sblock.fs_frag > MAXFRAG) {
309		printf("fragment size %d is too small, minimum with block size %d is %d\n",
310		    sblock.fs_fsize, sblock.fs_bsize,
311		    sblock.fs_bsize / MAXFRAG);
312		exit(21);
313	}
314	sblock.fs_nrpos = nrpos;
315	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
316	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
317	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
318	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
319		sblock.fs_fsbtodb++;
320	sblock.fs_sblkno =
321	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
322	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
323	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
324	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
325	sblock.fs_cgoffset = roundup(
326	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
327	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
328		sblock.fs_cgmask <<= 1;
329	if (!POWEROF2(sblock.fs_ntrak))
330		sblock.fs_cgmask <<= 1;
331	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
332	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
333		sizepb *= NINDIR(&sblock);
334		sblock.fs_maxfilesize += sizepb;
335	}
336	/*
337	 * Validate specified/determined secpercyl
338	 * and calculate minimum cylinders per group.
339	 */
340	sblock.fs_spc = secpercyl;
341	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
342	     sblock.fs_cpc > 1 && (i & 1) == 0;
343	     sblock.fs_cpc >>= 1, i >>= 1)
344		/* void */;
345	mincpc = sblock.fs_cpc;
346	bpcg = sblock.fs_spc * sectorsize;
347	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
348	if (inospercg > MAXIPG(&sblock))
349		inospercg = MAXIPG(&sblock);
350	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
351	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
352	    sblock.fs_spc);
353	mincpg = roundup(mincpgcnt, mincpc);
354	/*
355	 * Ensure that cylinder group with mincpg has enough space
356	 * for block maps.
357	 */
358	sblock.fs_cpg = mincpg;
359	sblock.fs_ipg = inospercg;
360	if (maxcontig > 1)
361		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
362	mapcramped = 0;
363	while (CGSIZE(&sblock) > sblock.fs_bsize) {
364		mapcramped = 1;
365		if (sblock.fs_bsize < MAXBSIZE) {
366			sblock.fs_bsize <<= 1;
367			if ((i & 1) == 0) {
368				i >>= 1;
369			} else {
370				sblock.fs_cpc <<= 1;
371				mincpc <<= 1;
372				mincpg = roundup(mincpgcnt, mincpc);
373				sblock.fs_cpg = mincpg;
374			}
375			sblock.fs_frag <<= 1;
376			sblock.fs_fragshift += 1;
377			if (sblock.fs_frag <= MAXFRAG)
378				continue;
379		}
380		if (sblock.fs_fsize == sblock.fs_bsize) {
381			printf("There is no block size that");
382			printf(" can support this disk\n");
383			exit(22);
384		}
385		sblock.fs_frag >>= 1;
386		sblock.fs_fragshift -= 1;
387		sblock.fs_fsize <<= 1;
388		sblock.fs_nspf <<= 1;
389	}
390	/*
391	 * Ensure that cylinder group with mincpg has enough space for inodes.
392	 */
393	inodecramped = 0;
394	inospercg = calcipg(mincpg, bpcg, &usedb);
395	sblock.fs_ipg = inospercg;
396	while (inospercg > MAXIPG(&sblock)) {
397		inodecramped = 1;
398		if (mincpc == 1 || sblock.fs_frag == 1 ||
399		    sblock.fs_bsize == MINBSIZE)
400			break;
401		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
402		       "minimum bytes per inode is",
403		       (int)((mincpg * (off_t)bpcg - usedb)
404			     / MAXIPG(&sblock) + 1));
405		sblock.fs_bsize >>= 1;
406		sblock.fs_frag >>= 1;
407		sblock.fs_fragshift -= 1;
408		mincpc >>= 1;
409		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
410		if (CGSIZE(&sblock) > sblock.fs_bsize) {
411			sblock.fs_bsize <<= 1;
412			break;
413		}
414		mincpg = sblock.fs_cpg;
415		inospercg = calcipg(mincpg, bpcg, &usedb);
416		sblock.fs_ipg = inospercg;
417	}
418	if (inodecramped) {
419		if (inospercg > MAXIPG(&sblock)) {
420			printf("Minimum bytes per inode is %d\n",
421			       (int)((mincpg * (off_t)bpcg - usedb)
422				     / MAXIPG(&sblock) + 1));
423		} else if (!mapcramped) {
424			printf("With %d bytes per inode, ", density);
425			printf("minimum cylinders per group is %ld\n", mincpg);
426		}
427	}
428	if (mapcramped) {
429		printf("With %d sectors per cylinder, ", sblock.fs_spc);
430		printf("minimum cylinders per group is %ld\n", mincpg);
431	}
432	if (inodecramped || mapcramped) {
433		if (sblock.fs_bsize != bsize)
434			printf("%s to be changed from %d to %d\n",
435			    "This requires the block size",
436			    bsize, sblock.fs_bsize);
437		if (sblock.fs_fsize != fsize)
438			printf("\t%s to be changed from %d to %d\n",
439			    "and the fragment size",
440			    fsize, sblock.fs_fsize);
441		exit(23);
442	}
443	/*
444	 * Calculate the number of cylinders per group
445	 */
446	sblock.fs_cpg = cpg;
447	if (sblock.fs_cpg % mincpc != 0) {
448		printf("%s groups must have a multiple of %ld cylinders\n",
449			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
450		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
451		if (!cpgflg)
452			cpg = sblock.fs_cpg;
453	}
454	/*
455	 * Must ensure there is enough space for inodes.
456	 */
457	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
458	while (sblock.fs_ipg > MAXIPG(&sblock)) {
459		inodecramped = 1;
460		sblock.fs_cpg -= mincpc;
461		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
462	}
463	/*
464	 * Must ensure there is enough space to hold block map.
465	 */
466	while (CGSIZE(&sblock) > sblock.fs_bsize) {
467		mapcramped = 1;
468		sblock.fs_cpg -= mincpc;
469		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
470	}
471	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
472	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
473		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
474		exit(24);
475	}
476	if (sblock.fs_cpg < mincpg) {
477		printf("cylinder groups must have at least %ld cylinders\n",
478			mincpg);
479		exit(25);
480	} else if (sblock.fs_cpg != cpg) {
481		if (!cpgflg)
482			printf("Warning: ");
483		else if (!mapcramped && !inodecramped)
484			exit(26);
485		if (mapcramped && inodecramped)
486			printf("Block size and bytes per inode restrict");
487		else if (mapcramped)
488			printf("Block size restricts");
489		else
490			printf("Bytes per inode restrict");
491		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
492		if (cpgflg)
493			exit(27);
494	}
495	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
496	/*
497	 * Now have size for file system and nsect and ntrak.
498	 * Determine number of cylinders and blocks in the file system.
499	 */
500	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
501	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
502	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
503		sblock.fs_ncyl++;
504		warn = 1;
505	}
506	if (sblock.fs_ncyl < 1) {
507		printf("file systems must have at least one cylinder\n");
508		exit(28);
509	}
510	/*
511	 * Determine feasability/values of rotational layout tables.
512	 *
513	 * The size of the rotational layout tables is limited by the
514	 * size of the superblock, SBSIZE. The amount of space available
515	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
516	 * The size of these tables is inversely proportional to the block
517	 * size of the file system. The size increases if sectors per track
518	 * are not powers of two, because more cylinders must be described
519	 * by the tables before the rotational pattern repeats (fs_cpc).
520	 */
521	sblock.fs_interleave = interleave;
522	sblock.fs_trackskew = trackskew;
523	sblock.fs_npsect = nphyssectors;
524	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
525	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
526	if (sblock.fs_sbsize > SBSIZE)
527		sblock.fs_sbsize = SBSIZE;
528	if (sblock.fs_ntrak == 1) {
529		sblock.fs_cpc = 0;
530		goto next;
531	}
532	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
533	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
534	totalsbsize = sizeof(struct fs) + rotblsize;
535	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
536		/* use old static table space */
537		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
538		    (char *)(&sblock.fs_firstfield);
539		sblock.fs_rotbloff = &sblock.fs_space[0] -
540		    (u_char *)(&sblock.fs_firstfield);
541	} else {
542		/* use dynamic table space */
543		sblock.fs_postbloff = &sblock.fs_space[0] -
544		    (u_char *)(&sblock.fs_firstfield);
545		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
546		totalsbsize += postblsize;
547	}
548	if (totalsbsize > SBSIZE ||
549	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
550		printf("%s %s %d %s %d.%s",
551		    "Warning: insufficient space in super block for\n",
552		    "rotational layout tables with nsect", sblock.fs_nsect,
553		    "and ntrak", sblock.fs_ntrak,
554		    "\nFile system performance may be impaired.\n");
555		sblock.fs_cpc = 0;
556		goto next;
557	}
558	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
559	if (sblock.fs_sbsize > SBSIZE)
560		sblock.fs_sbsize = SBSIZE;
561	/*
562	 * calculate the available blocks for each rotational position
563	 */
564	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
565		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
566			fs_postbl(&sblock, cylno)[rpos] = -1;
567	for (i = (rotblsize - 1) * sblock.fs_frag;
568	     i >= 0; i -= sblock.fs_frag) {
569		cylno = cbtocylno(&sblock, i);
570		rpos = cbtorpos(&sblock, i);
571		blk = fragstoblks(&sblock, i);
572		if (fs_postbl(&sblock, cylno)[rpos] == -1)
573			fs_rotbl(&sblock)[blk] = 0;
574		else
575			fs_rotbl(&sblock)[blk] =
576			    fs_postbl(&sblock, cylno)[rpos] - blk;
577		fs_postbl(&sblock, cylno)[rpos] = blk;
578	}
579next:
580	/*
581	 * Compute/validate number of cylinder groups.
582	 */
583	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
584	if (sblock.fs_ncyl % sblock.fs_cpg)
585		sblock.fs_ncg++;
586	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
587	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
588	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
589		printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
590		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
591		    (long)(sblock.fs_fpg / sblock.fs_frag));
592		printf("number of cylinders per cylinder group (%d) %s.\n",
593		    sblock.fs_cpg, "must be increased");
594		exit(29);
595	}
596	j = sblock.fs_ncg - 1;
597	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
598	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
599		if (j == 0) {
600			printf("Filesystem must have at least %d sectors\n",
601			    NSPF(&sblock) *
602			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
603			exit(30);
604		}
605		printf(
606"Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
607		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
608		    i / sblock.fs_frag);
609		printf(
610"    cylinder group. This implies %ld sector(s) cannot be allocated.\n",
611		    i * NSPF(&sblock));
612		sblock.fs_ncg--;
613		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
614		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
615		    NSPF(&sblock);
616		warn = 0;
617	}
618	if (warn && !mfs) {
619		printf("Warning: %d sector(s) in last cylinder unallocated\n",
620		    sblock.fs_spc -
621		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
622		    * sblock.fs_spc));
623	}
624	/*
625	 * fill in remaining fields of the super block
626	 */
627	sblock.fs_csaddr = cgdmin(&sblock, 0);
628	sblock.fs_cssize =
629	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
630	i = sblock.fs_bsize / sizeof(struct csum);
631	sblock.fs_csmask = ~(i - 1);
632	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
633		sblock.fs_csshift++;
634	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
635	if (fscs == NULL)
636		errx(31, "calloc failed");
637	sblock.fs_magic = FS_MAGIC;
638	sblock.fs_rotdelay = rotdelay;
639	sblock.fs_minfree = minfree;
640	sblock.fs_maxcontig = maxcontig;
641	sblock.fs_maxbpg = maxbpg;
642	sblock.fs_rps = rpm / 60;
643	sblock.fs_optim = opt;
644	sblock.fs_cgrotor = 0;
645	sblock.fs_cstotal.cs_ndir = 0;
646	sblock.fs_cstotal.cs_nbfree = 0;
647	sblock.fs_cstotal.cs_nifree = 0;
648	sblock.fs_cstotal.cs_nffree = 0;
649	sblock.fs_fmod = 0;
650	sblock.fs_ronly = 0;
651	sblock.fs_clean = 1;
652#ifdef FSIRAND
653	sblock.fs_id[0] = (long)utime;
654	sblock.fs_id[1] = random();
655#endif
656
657	/*
658	 * Dump out summary information about file system.
659	 */
660	if (!mfs) {
661		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
662		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
663		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
664#define B2MBFACTOR (1 / (1024.0 * 1024.0))
665		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
666		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
667		    sblock.fs_ncg, sblock.fs_cpg,
668		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
669		    sblock.fs_ipg);
670#undef B2MBFACTOR
671	}
672	/*
673	 * Now build the cylinders group blocks and
674	 * then print out indices of cylinder groups.
675	 */
676	if (!mfs)
677		printf("super-block backups (for fsck -b #) at:\n");
678	i = 0;
679	width = charsperline();
680	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
681		initcg(cylno, utime);
682		if (mfs)
683			continue;
684		j = sprintf(tmpbuf, " %ld,",
685		    fsbtodb(&sblock, cgsblock(&sblock, cylno)));
686		if (i + j >= width) {
687			printf("\n");
688			i = 0;
689		}
690		i += j;
691		printf("%s", tmpbuf);
692		fflush(stdout);
693	}
694	if (!mfs)
695		printf("\n");
696	if (Nflag && !mfs)
697		exit(0);
698	/*
699	 * Now construct the initial file system,
700	 * then write out the super-block.
701	 */
702	fsinit(utime);
703	sblock.fs_time = utime;
704	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
705	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
706		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
707			sblock.fs_cssize - i < sblock.fs_bsize ?
708			    sblock.fs_cssize - i : sblock.fs_bsize,
709			((char *)fscs) + i);
710	/*
711	 * Write out the duplicate super blocks
712	 */
713	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
714		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
715		    sbsize, (char *)&sblock);
716	/*
717	 * Update information about this partion in pack
718	 * label, to that it may be updated on disk.
719	 */
720	pp->p_fstype = FS_BSDFFS;
721	pp->p_fsize = sblock.fs_fsize;
722	pp->p_frag = sblock.fs_frag;
723	pp->p_cpg = sblock.fs_cpg;
724	/*
725	 * Notify parent process of success.
726	 * Dissociate from session and tty.
727	 */
728	if (mfs) {
729		kill(ppid, SIGUSR1);
730		(void) setsid();
731		(void) close(0);
732		(void) close(1);
733		(void) close(2);
734		(void) chdir("/");
735	}
736}
737
738/*
739 * Initialize a cylinder group.
740 */
741void
742initcg(cylno, utime)
743	int cylno;
744	time_t utime;
745{
746	daddr_t cbase, d, dlower, dupper, dmax, blkno;
747	long i;
748	register struct csum *cs;
749#ifdef FSIRAND
750	long j;
751#endif
752
753	/*
754	 * Determine block bounds for cylinder group.
755	 * Allow space for super block summary information in first
756	 * cylinder group.
757	 */
758	cbase = cgbase(&sblock, cylno);
759	dmax = cbase + sblock.fs_fpg;
760	if (dmax > sblock.fs_size)
761		dmax = sblock.fs_size;
762	dlower = cgsblock(&sblock, cylno) - cbase;
763	dupper = cgdmin(&sblock, cylno) - cbase;
764	if (cylno == 0)
765		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
766	cs = fscs + cylno;
767	memset(&acg, 0, sblock.fs_cgsize);
768	acg.cg_time = utime;
769	acg.cg_magic = CG_MAGIC;
770	acg.cg_cgx = cylno;
771	if (cylno == sblock.fs_ncg - 1)
772		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
773	else
774		acg.cg_ncyl = sblock.fs_cpg;
775	acg.cg_niblk = sblock.fs_ipg;
776	acg.cg_ndblk = dmax - cbase;
777	if (sblock.fs_contigsumsize > 0)
778		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
779	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
780	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
781	acg.cg_iusedoff = acg.cg_boff +
782		sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
783	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
784	if (sblock.fs_contigsumsize <= 0) {
785		acg.cg_nextfreeoff = acg.cg_freeoff +
786		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
787	} else {
788		acg.cg_clustersumoff = acg.cg_freeoff + howmany
789		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
790		    sizeof(u_int32_t);
791		acg.cg_clustersumoff =
792		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
793		acg.cg_clusteroff = acg.cg_clustersumoff +
794		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
795		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
796		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
797	}
798	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
799		printf("Panic: cylinder group too big\n");
800		exit(37);
801	}
802	acg.cg_cs.cs_nifree += sblock.fs_ipg;
803	if (cylno == 0)
804		for (i = 0; i < ROOTINO; i++) {
805			setbit(cg_inosused(&acg), i);
806			acg.cg_cs.cs_nifree--;
807		}
808	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
809#ifdef FSIRAND
810		for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++)
811			zino[j].di_gen = random();
812#endif
813		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
814		    sblock.fs_bsize, (char *)zino);
815	}
816	if (cylno > 0) {
817		/*
818		 * In cylno 0, beginning space is reserved
819		 * for boot and super blocks.
820		 */
821		for (d = 0; d < dlower; d += sblock.fs_frag) {
822			blkno = d / sblock.fs_frag;
823			setblock(&sblock, cg_blksfree(&acg), blkno);
824			if (sblock.fs_contigsumsize > 0)
825				setbit(cg_clustersfree(&acg), blkno);
826			acg.cg_cs.cs_nbfree++;
827			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
828			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
829			    [cbtorpos(&sblock, d)]++;
830		}
831		sblock.fs_dsize += dlower;
832	}
833	sblock.fs_dsize += acg.cg_ndblk - dupper;
834	if ((i = dupper % sblock.fs_frag)) {
835		acg.cg_frsum[sblock.fs_frag - i]++;
836		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
837			setbit(cg_blksfree(&acg), dupper);
838			acg.cg_cs.cs_nffree++;
839		}
840	}
841	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
842		blkno = d / sblock.fs_frag;
843		setblock(&sblock, cg_blksfree(&acg), blkno);
844		if (sblock.fs_contigsumsize > 0)
845			setbit(cg_clustersfree(&acg), blkno);
846		acg.cg_cs.cs_nbfree++;
847		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
848		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
849		    [cbtorpos(&sblock, d)]++;
850		d += sblock.fs_frag;
851	}
852	if (d < dmax - cbase) {
853		acg.cg_frsum[dmax - cbase - d]++;
854		for (; d < dmax - cbase; d++) {
855			setbit(cg_blksfree(&acg), d);
856			acg.cg_cs.cs_nffree++;
857		}
858	}
859	if (sblock.fs_contigsumsize > 0) {
860		int32_t *sump = cg_clustersum(&acg);
861		u_char *mapp = cg_clustersfree(&acg);
862		int map = *mapp++;
863		int bit = 1;
864		int run = 0;
865
866		for (i = 0; i < acg.cg_nclusterblks; i++) {
867			if ((map & bit) != 0) {
868				run++;
869			} else if (run != 0) {
870				if (run > sblock.fs_contigsumsize)
871					run = sblock.fs_contigsumsize;
872				sump[run]++;
873				run = 0;
874			}
875			if ((i & (NBBY - 1)) != (NBBY - 1)) {
876				bit <<= 1;
877			} else {
878				map = *mapp++;
879				bit = 1;
880			}
881		}
882		if (run != 0) {
883			if (run > sblock.fs_contigsumsize)
884				run = sblock.fs_contigsumsize;
885			sump[run]++;
886		}
887	}
888	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
889	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
890	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
891	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
892	*cs = acg.cg_cs;
893	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
894		sblock.fs_bsize, (char *)&acg);
895}
896
897/*
898 * initialize the file system
899 */
900struct dinode node;
901
902#ifdef LOSTDIR
903#define PREDEFDIR 3
904#else
905#define PREDEFDIR 2
906#endif
907
908struct direct root_dir[] = {
909	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
910	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
911#ifdef LOSTDIR
912	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
913#endif
914};
915struct odirect {
916	u_long	d_ino;
917	u_short	d_reclen;
918	u_short	d_namlen;
919	u_char	d_name[MAXNAMLEN + 1];
920} oroot_dir[] = {
921	{ ROOTINO, sizeof(struct direct), 1, "." },
922	{ ROOTINO, sizeof(struct direct), 2, ".." },
923#ifdef LOSTDIR
924	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
925#endif
926};
927#ifdef LOSTDIR
928struct direct lost_found_dir[] = {
929	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
930	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
931	{ 0, DIRBLKSIZ, 0, 0, 0 },
932};
933struct odirect olost_found_dir[] = {
934	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
935	{ ROOTINO, sizeof(struct direct), 2, ".." },
936	{ 0, DIRBLKSIZ, 0, 0 },
937};
938#endif
939char buf[MAXBSIZE];
940
941void
942fsinit(utime)
943	time_t utime;
944{
945#ifdef LOSTDIR
946	int i;
947#endif
948
949	/*
950	 * initialize the node
951	 */
952	node.di_atime = utime;
953	node.di_mtime = utime;
954	node.di_ctime = utime;
955#ifdef LOSTDIR
956	/*
957	 * create the lost+found directory
958	 */
959	if (Oflag) {
960		(void)makedir((struct direct *)olost_found_dir, 2);
961		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
962			memmove(&buf[i], &olost_found_dir[2],
963			    DIRSIZ(0, &olost_found_dir[2]));
964	} else {
965		(void)makedir(lost_found_dir, 2);
966		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
967			memmove(&buf[i], &lost_found_dir[2],
968			    DIRSIZ(0, &lost_found_dir[2]));
969	}
970	node.di_mode = IFDIR | UMASK;
971	node.di_nlink = 2;
972	node.di_size = sblock.fs_bsize;
973	node.di_db[0] = alloc(node.di_size, node.di_mode);
974	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
975	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
976	iput(&node, LOSTFOUNDINO);
977#endif
978	/*
979	 * create the root directory
980	 */
981	if (mfs)
982		node.di_mode = IFDIR | 01777;
983	else
984		node.di_mode = IFDIR | UMASK;
985	node.di_nlink = PREDEFDIR;
986	if (Oflag)
987		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
988	else
989		node.di_size = makedir(root_dir, PREDEFDIR);
990	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
991	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
992	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
993	iput(&node, ROOTINO);
994}
995
996/*
997 * construct a set of directory entries in "buf".
998 * return size of directory.
999 */
1000int
1001makedir(protodir, entries)
1002	register struct direct *protodir;
1003	int entries;
1004{
1005	char *cp;
1006	int i, spcleft;
1007
1008	spcleft = DIRBLKSIZ;
1009	for (cp = buf, i = 0; i < entries - 1; i++) {
1010		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1011		memmove(cp, &protodir[i], protodir[i].d_reclen);
1012		cp += protodir[i].d_reclen;
1013		spcleft -= protodir[i].d_reclen;
1014	}
1015	protodir[i].d_reclen = spcleft;
1016	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1017	return (DIRBLKSIZ);
1018}
1019
1020/*
1021 * allocate a block or frag
1022 */
1023daddr_t
1024alloc(size, mode)
1025	int size;
1026	int mode;
1027{
1028	int i, frag;
1029	daddr_t d, blkno;
1030
1031	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1032	    (char *)&acg);
1033	if (acg.cg_magic != CG_MAGIC) {
1034		printf("cg 0: bad magic number\n");
1035		return (0);
1036	}
1037	if (acg.cg_cs.cs_nbfree == 0) {
1038		printf("first cylinder group ran out of space\n");
1039		return (0);
1040	}
1041	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1042		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1043			goto goth;
1044	printf("internal error: can't find block in cyl 0\n");
1045	return (0);
1046goth:
1047	blkno = fragstoblks(&sblock, d);
1048	clrblock(&sblock, cg_blksfree(&acg), blkno);
1049	if (sblock.fs_contigsumsize > 0)
1050		clrbit(cg_clustersfree(&acg), blkno);
1051	acg.cg_cs.cs_nbfree--;
1052	sblock.fs_cstotal.cs_nbfree--;
1053	fscs[0].cs_nbfree--;
1054	if (mode & IFDIR) {
1055		acg.cg_cs.cs_ndir++;
1056		sblock.fs_cstotal.cs_ndir++;
1057		fscs[0].cs_ndir++;
1058	}
1059	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1060	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1061	if (size != sblock.fs_bsize) {
1062		frag = howmany(size, sblock.fs_fsize);
1063		fscs[0].cs_nffree += sblock.fs_frag - frag;
1064		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1065		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1066		acg.cg_frsum[sblock.fs_frag - frag]++;
1067		for (i = frag; i < sblock.fs_frag; i++)
1068			setbit(cg_blksfree(&acg), d + i);
1069	}
1070	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1071	    (char *)&acg);
1072	return (d);
1073}
1074
1075/*
1076 * Calculate number of inodes per group.
1077 */
1078long
1079calcipg(cpg, bpcg, usedbp)
1080	long cpg;
1081	long bpcg;
1082	off_t *usedbp;
1083{
1084	int i;
1085	long ipg, new_ipg, ncg, ncyl;
1086	off_t usedb;
1087
1088	/*
1089	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1090	 * Note that fssize is still in sectors, not filesystem blocks.
1091	 */
1092	ncyl = howmany(fssize, (u_int)secpercyl);
1093	ncg = howmany(ncyl, cpg);
1094	/*
1095	 * Iterate a few times to allow for ipg depending on itself.
1096	 */
1097	ipg = 0;
1098	for (i = 0; i < 10; i++) {
1099		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1100			* NSPF(&sblock) * (off_t)sectorsize;
1101		new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
1102			  / ncg / secpercyl / cpg;
1103		new_ipg = roundup(new_ipg, INOPB(&sblock));
1104		if (new_ipg == ipg)
1105			break;
1106		ipg = new_ipg;
1107	}
1108	*usedbp = usedb;
1109	return (ipg);
1110}
1111
1112/*
1113 * Allocate an inode on the disk
1114 */
1115void
1116iput(ip, ino)
1117	register struct dinode *ip;
1118	register ino_t ino;
1119{
1120	struct dinode buf[MAXINOPB];
1121	daddr_t d;
1122	int c;
1123
1124#ifdef FSIRAND
1125	ip->di_gen = random();
1126#endif
1127	c = ino_to_cg(&sblock, ino);
1128	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1129	    (char *)&acg);
1130	if (acg.cg_magic != CG_MAGIC) {
1131		printf("cg 0: bad magic number\n");
1132		exit(31);
1133	}
1134	acg.cg_cs.cs_nifree--;
1135	setbit(cg_inosused(&acg), ino);
1136	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1137	    (char *)&acg);
1138	sblock.fs_cstotal.cs_nifree--;
1139	fscs[0].cs_nifree--;
1140	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1141		printf("fsinit: inode value out of range (%d).\n", ino);
1142		exit(32);
1143	}
1144	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1145	rdfs(d, sblock.fs_bsize, (char *)buf);
1146	buf[ino_to_fsbo(&sblock, ino)] = *ip;
1147	wtfs(d, sblock.fs_bsize, (char *)buf);
1148}
1149
1150/*
1151 * Notify parent process that the filesystem has created itself successfully.
1152 */
1153void
1154started()
1155{
1156
1157	exit(0);
1158}
1159
1160#ifdef STANDALONE
1161/*
1162 * Replace libc function with one suited to our needs.
1163 */
1164caddr_t
1165malloc(size)
1166	register u_long size;
1167{
1168	char *base, *i;
1169	static u_long pgsz;
1170	struct rlimit rlp;
1171
1172	if (pgsz == 0) {
1173		base = sbrk(0);
1174		pgsz = getpagesize() - 1;
1175		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1176		base = sbrk(i - base);
1177		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1178			warn("getrlimit");
1179		rlp.rlim_cur = rlp.rlim_max;
1180		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1181			warn("setrlimit");
1182		memleft = rlp.rlim_max - (u_long)base;
1183	}
1184	size = (size + pgsz) &~ pgsz;
1185	if (size > memleft)
1186		size = memleft;
1187	memleft -= size;
1188	if (size == 0)
1189		return (0);
1190	return ((caddr_t)sbrk(size));
1191}
1192
1193/*
1194 * Replace libc function with one suited to our needs.
1195 */
1196caddr_t
1197realloc(ptr, size)
1198	char *ptr;
1199	u_long size;
1200{
1201	void *p;
1202
1203	if ((p = malloc(size)) == NULL)
1204		return (NULL);
1205	memmove(p, ptr, size);
1206	free(ptr);
1207	return (p);
1208}
1209
1210/*
1211 * Replace libc function with one suited to our needs.
1212 */
1213char *
1214calloc(size, numelm)
1215	u_long size, numelm;
1216{
1217	caddr_t base;
1218
1219	size *= numelm;
1220	if ((base = malloc(size)) == NULL)
1221		return (NULL);
1222	memset(base, 0, size);
1223	return (base);
1224}
1225
1226/*
1227 * Replace libc function with one suited to our needs.
1228 */
1229void
1230free(ptr)
1231	char *ptr;
1232{
1233
1234	/* do not worry about it for now */
1235}
1236
1237#else   /* !STANDALONE */
1238
1239void
1240raise_data_limit()
1241{
1242	struct rlimit rlp;
1243
1244	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1245		warn("getrlimit");
1246	rlp.rlim_cur = rlp.rlim_max;
1247	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1248		warn("setrlimit");
1249}
1250
1251#ifdef __ELF__
1252extern char *_etext;
1253#define etext _etext
1254#else
1255extern char *etext;
1256#endif
1257
1258void
1259get_memleft()
1260{
1261	static u_long pgsz;
1262	struct rlimit rlp;
1263	u_long freestart;
1264	u_long dstart;
1265	u_long memused;
1266
1267	pgsz = getpagesize() - 1;
1268	dstart = ((u_long)&etext) &~ pgsz;
1269	freestart = ((u_long)(sbrk(0) + pgsz) &~ pgsz);
1270	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1271		warn("getrlimit");
1272	memused = freestart - dstart;
1273	memleft = rlp.rlim_cur - memused;
1274}
1275#endif  /* STANDALONE */
1276
1277/*
1278 * read a block from the file system
1279 */
1280void
1281rdfs(bno, size, bf)
1282	daddr_t bno;
1283	int size;
1284	char *bf;
1285{
1286	int n;
1287
1288	if (mfs) {
1289		memmove(bf, membase + bno * sectorsize, size);
1290		return;
1291	}
1292	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1293		printf("seek error: %ld\n", (long)bno);
1294		err(33, "rdfs");
1295	}
1296	n = read(fsi, bf, size);
1297	if (n != size) {
1298		printf("read error: %ld\n", (long)bno);
1299		err(34, "rdfs");
1300	}
1301}
1302
1303/*
1304 * write a block to the file system
1305 */
1306void
1307wtfs(bno, size, bf)
1308	daddr_t bno;
1309	int size;
1310	char *bf;
1311{
1312	int n;
1313
1314	if (mfs) {
1315		memmove(membase + bno * sectorsize, bf, size);
1316		return;
1317	}
1318	if (Nflag)
1319		return;
1320	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1321		printf("seek error: %ld\n", (long)bno);
1322		err(35, "wtfs");
1323	}
1324	n = write(fso, bf, size);
1325	if (n != size) {
1326		printf("write error: %ld\n", (long)bno);
1327		err(36, "wtfs");
1328	}
1329}
1330
1331/*
1332 * check if a block is available
1333 */
1334int
1335isblock(fs, cp, h)
1336	struct fs *fs;
1337	unsigned char *cp;
1338	int h;
1339{
1340	unsigned char mask;
1341
1342	switch (fs->fs_frag) {
1343	case 8:
1344		return (cp[h] == 0xff);
1345	case 4:
1346		mask = 0x0f << ((h & 0x1) << 2);
1347		return ((cp[h >> 1] & mask) == mask);
1348	case 2:
1349		mask = 0x03 << ((h & 0x3) << 1);
1350		return ((cp[h >> 2] & mask) == mask);
1351	case 1:
1352		mask = 0x01 << (h & 0x7);
1353		return ((cp[h >> 3] & mask) == mask);
1354	default:
1355#ifdef STANDALONE
1356		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1357#else
1358		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1359#endif
1360		return (0);
1361	}
1362}
1363
1364/*
1365 * take a block out of the map
1366 */
1367void
1368clrblock(fs, cp, h)
1369	struct fs *fs;
1370	unsigned char *cp;
1371	int h;
1372{
1373	switch ((fs)->fs_frag) {
1374	case 8:
1375		cp[h] = 0;
1376		return;
1377	case 4:
1378		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1379		return;
1380	case 2:
1381		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1382		return;
1383	case 1:
1384		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1385		return;
1386	default:
1387#ifdef STANDALONE
1388		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1389#else
1390		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1391#endif
1392		return;
1393	}
1394}
1395
1396/*
1397 * put a block into the map
1398 */
1399void
1400setblock(fs, cp, h)
1401	struct fs *fs;
1402	unsigned char *cp;
1403	int h;
1404{
1405	switch (fs->fs_frag) {
1406	case 8:
1407		cp[h] = 0xff;
1408		return;
1409	case 4:
1410		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1411		return;
1412	case 2:
1413		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1414		return;
1415	case 1:
1416		cp[h >> 3] |= (0x01 << (h & 0x7));
1417		return;
1418	default:
1419#ifdef STANDALONE
1420		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1421#else
1422		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1423#endif
1424		return;
1425	}
1426}
1427
1428/*
1429 * Determine the number of characters in a
1430 * single line.
1431 */
1432
1433static int
1434charsperline()
1435{
1436	int columns;
1437	char *cp;
1438	struct winsize ws;
1439
1440	columns = 0;
1441	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1442		columns = ws.ws_col;
1443	if (columns == 0 && (cp = getenv("COLUMNS")))
1444		columns = atoi(cp);
1445	if (columns == 0)
1446		columns = 80;	/* last resort */
1447	return columns;
1448}
1449