mkfs.c revision 114877
1/*
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program.
10 *
11 * Copyright (c) 1980, 1989, 1993
12 *	The Regents of the University of California.  All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. All advertising materials mentioning features or use of this software
23 *    must display the following acknowledgement:
24 *	This product includes software developed by the University of
25 *	California, Berkeley and its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 */
42
43#if 0
44#ifndef lint
45static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
46#endif /* not lint */
47#endif
48#include <sys/cdefs.h>
49__FBSDID("$FreeBSD: head/sbin/newfs/mkfs.c 114877 2003-05-10 18:58:17Z iedowse $");
50
51#include <err.h>
52#include <limits.h>
53#include <signal.h>
54#include <stdlib.h>
55#include <string.h>
56#include <stdint.h>
57#include <stdio.h>
58#include <unistd.h>
59#include <sys/param.h>
60#include <sys/time.h>
61#include <sys/types.h>
62#include <sys/wait.h>
63#include <sys/resource.h>
64#include <sys/stat.h>
65#include <ufs/ufs/dinode.h>
66#include <ufs/ufs/dir.h>
67#include <ufs/ffs/fs.h>
68#include <sys/disklabel.h>
69#include <sys/file.h>
70#include <sys/mman.h>
71#include <sys/ioctl.h>
72#include "newfs.h"
73
74/*
75 * make file system for cylinder-group style file systems
76 */
77#define UMASK		0755
78#define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
79
80static struct	csum *fscs;
81#define	sblock	disk.d_fs
82#define	acg	disk.d_cg
83
84union dinode {
85	struct ufs1_dinode dp1;
86	struct ufs2_dinode dp2;
87};
88#define DIP(dp, field) \
89	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
90	(dp)->dp1.field : (dp)->dp2.field)
91
92static caddr_t iobuf;
93static long iobufsize;
94static ufs2_daddr_t alloc(int size, int mode);
95static int charsperline(void);
96static void clrblock(struct fs *, unsigned char *, int);
97static void fsinit(time_t);
98static int ilog2(int);
99static void initcg(int, time_t);
100static int isblock(struct fs *, unsigned char *, int);
101static void iput(union dinode *, ino_t);
102static int makedir(struct direct *, int);
103static void setblock(struct fs *, unsigned char *, int);
104static void wtfs(ufs2_daddr_t, int, char *);
105static u_int32_t newfs_random(void);
106
107void
108mkfs(struct partition *pp, char *fsys)
109{
110	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
111	long i, j, cylno, csfrags;
112	time_t utime;
113	quad_t sizepb;
114	int width;
115	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
116
117	/*
118	 * Our blocks == sector size, and the version of UFS we are using is
119	 * specified by Oflag.
120	 */
121	disk.d_bsize = sectorsize;
122	disk.d_ufs = Oflag;
123	if (Rflag) {
124		utime = 1000000000;
125	} else {
126		time(&utime);
127		arc4random_stir();
128	}
129	sblock.fs_old_flags = FS_FLAGS_UPDATED;
130	sblock.fs_flags = 0;
131	if (Uflag)
132		sblock.fs_flags |= FS_DOSOFTDEP;
133	if (Lflag)
134		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
135	/*
136	 * Validate the given file system size.
137	 * Verify that its last block can actually be accessed.
138	 * Convert to file system fragment sized units.
139	 */
140	if (fssize <= 0) {
141		printf("preposterous size %jd\n", (intmax_t)fssize);
142		exit(13);
143	}
144	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
145	    (char *)&sblock);
146	/*
147	 * collect and verify the file system density info
148	 */
149	sblock.fs_avgfilesize = avgfilesize;
150	sblock.fs_avgfpdir = avgfilesperdir;
151	if (sblock.fs_avgfilesize <= 0)
152		printf("illegal expected average file size %d\n",
153		    sblock.fs_avgfilesize), exit(14);
154	if (sblock.fs_avgfpdir <= 0)
155		printf("illegal expected number of files per directory %d\n",
156		    sblock.fs_avgfpdir), exit(15);
157	/*
158	 * collect and verify the block and fragment sizes
159	 */
160	sblock.fs_bsize = bsize;
161	sblock.fs_fsize = fsize;
162	if (!POWEROF2(sblock.fs_bsize)) {
163		printf("block size must be a power of 2, not %d\n",
164		    sblock.fs_bsize);
165		exit(16);
166	}
167	if (!POWEROF2(sblock.fs_fsize)) {
168		printf("fragment size must be a power of 2, not %d\n",
169		    sblock.fs_fsize);
170		exit(17);
171	}
172	if (sblock.fs_fsize < sectorsize) {
173		printf("increasing fragment size from %d to sector size (%d)\n",
174		    sblock.fs_fsize, sectorsize);
175		sblock.fs_fsize = sectorsize;
176	}
177	if (sblock.fs_bsize > MAXBSIZE) {
178		printf("decreasing block size from %d to maximum (%d)\n",
179		    sblock.fs_bsize, MAXBSIZE);
180		sblock.fs_bsize = MAXBSIZE;
181	}
182	if (sblock.fs_bsize < MINBSIZE) {
183		printf("increasing block size from %d to minimum (%d)\n",
184		    sblock.fs_bsize, MINBSIZE);
185		sblock.fs_bsize = MINBSIZE;
186	}
187	if (sblock.fs_fsize > MAXBSIZE) {
188		printf("decreasing fragment size from %d to maximum (%d)\n",
189		    sblock.fs_fsize, MAXBSIZE);
190		sblock.fs_fsize = MAXBSIZE;
191	}
192	if (sblock.fs_bsize < sblock.fs_fsize) {
193		printf("increasing block size from %d to fragment size (%d)\n",
194		    sblock.fs_bsize, sblock.fs_fsize);
195		sblock.fs_bsize = sblock.fs_fsize;
196	}
197	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
198		printf(
199		"increasing fragment size from %d to block size / %d (%d)\n",
200		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
201		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
202	}
203	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
204		sblock.fs_maxbsize = sblock.fs_bsize;
205		printf("Extent size set to %d\n", sblock.fs_maxbsize);
206	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
207		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
208		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
209	} else {
210		sblock.fs_maxbsize = maxbsize;
211	}
212	sblock.fs_maxcontig = maxcontig;
213	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
214		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
215		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
216	}
217	if (sblock.fs_maxcontig > 1)
218		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
219	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
220	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
221	sblock.fs_qbmask = ~sblock.fs_bmask;
222	sblock.fs_qfmask = ~sblock.fs_fmask;
223	sblock.fs_bshift = ilog2(sblock.fs_bsize);
224	sblock.fs_fshift = ilog2(sblock.fs_fsize);
225	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
226	sblock.fs_fragshift = ilog2(sblock.fs_frag);
227	if (sblock.fs_frag > MAXFRAG) {
228		printf("fragment size %d is still too small (can't happen)\n",
229		    sblock.fs_bsize / MAXFRAG);
230		exit(21);
231	}
232	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
233	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
234	if (Oflag == 1) {
235		sblock.fs_magic = FS_UFS1_MAGIC;
236		sblock.fs_sblockloc = SBLOCK_UFS1;
237		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
238		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
239		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
240		    sizeof(ufs1_daddr_t));
241		sblock.fs_old_inodefmt = FS_44INODEFMT;
242		sblock.fs_old_cgoffset = 0;
243		sblock.fs_old_cgmask = 0xffffffff;
244		sblock.fs_old_size = sblock.fs_size;
245		sblock.fs_old_rotdelay = 0;
246		sblock.fs_old_rps = 60;
247		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
248		sblock.fs_old_cpg = 1;
249		sblock.fs_old_interleave = 1;
250		sblock.fs_old_trackskew = 0;
251		sblock.fs_old_cpc = 0;
252		sblock.fs_old_postblformat = 1;
253		sblock.fs_old_nrpos = 1;
254	} else {
255		sblock.fs_magic = FS_UFS2_MAGIC;
256		sblock.fs_sblockloc = SBLOCK_UFS2;
257		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
258		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
259		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
260		    sizeof(ufs2_daddr_t));
261	}
262	sblock.fs_sblkno =
263	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
264		sblock.fs_frag);
265	sblock.fs_cblkno = sblock.fs_sblkno +
266	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
267	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
268	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
269	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
270		sizepb *= NINDIR(&sblock);
271		sblock.fs_maxfilesize += sizepb;
272	}
273	/*
274	 * Calculate the number of blocks to put into each cylinder group.
275	 *
276	 * This algorithm selects the number of blocks per cylinder
277	 * group. The first goal is to have at least enough data blocks
278	 * in each cylinder group to meet the density requirement. Once
279	 * this goal is achieved we try to expand to have at least
280	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
281	 * pack as many blocks into each cylinder group map as will fit.
282	 *
283	 * We start by calculating the smallest number of blocks that we
284	 * can put into each cylinder group. If this is too big, we reduce
285	 * the density until it fits.
286	 */
287	origdensity = density;
288	for (;;) {
289		fragsperinode = MAX(numfrags(&sblock, density), 1);
290		minfpg = fragsperinode * INOPB(&sblock);
291		if (minfpg > sblock.fs_size)
292			minfpg = sblock.fs_size;
293		sblock.fs_ipg = INOPB(&sblock);
294		sblock.fs_fpg = roundup(sblock.fs_iblkno +
295		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
296		if (sblock.fs_fpg < minfpg)
297			sblock.fs_fpg = minfpg;
298		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
299		    INOPB(&sblock));
300		sblock.fs_fpg = roundup(sblock.fs_iblkno +
301		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
302		if (sblock.fs_fpg < minfpg)
303			sblock.fs_fpg = minfpg;
304		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
305		    INOPB(&sblock));
306		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
307			break;
308		density -= sblock.fs_fsize;
309	}
310	if (density != origdensity)
311		printf("density reduced from %d to %d\n", origdensity, density);
312	/*
313	 * Start packing more blocks into the cylinder group until
314	 * it cannot grow any larger, the number of cylinder groups
315	 * drops below MINCYLGRPS, or we reach the size requested.
316	 */
317	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
318		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
319		    INOPB(&sblock));
320		if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
321			break;
322		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
323			continue;
324		if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
325			break;
326		sblock.fs_fpg -= sblock.fs_frag;
327		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
328		    INOPB(&sblock));
329		break;
330	}
331	/*
332	 * Check to be sure that the last cylinder group has enough blocks
333	 * to be viable. If it is too small, reduce the number of blocks
334	 * per cylinder group which will have the effect of moving more
335	 * blocks into the last cylinder group.
336	 */
337	optimalfpg = sblock.fs_fpg;
338	for (;;) {
339		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
340		lastminfpg = roundup(sblock.fs_iblkno +
341		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
342		if (sblock.fs_size < lastminfpg) {
343			printf("Filesystem size %jd < minimum size of %d\n",
344			    (intmax_t)sblock.fs_size, lastminfpg);
345			exit(28);
346		}
347		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
348		    sblock.fs_size % sblock.fs_fpg == 0)
349			break;
350		sblock.fs_fpg -= sblock.fs_frag;
351		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
352		    INOPB(&sblock));
353	}
354	if (optimalfpg != sblock.fs_fpg)
355		printf("Reduced frags per cylinder group from %d to %d %s\n",
356		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
357	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
358	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
359	if (Oflag == 1) {
360		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
361		sblock.fs_old_nsect = sblock.fs_old_spc;
362		sblock.fs_old_npsect = sblock.fs_old_spc;
363		sblock.fs_old_ncyl = sblock.fs_ncg;
364	}
365	/*
366	 * fill in remaining fields of the super block
367	 */
368	sblock.fs_csaddr = cgdmin(&sblock, 0);
369	sblock.fs_cssize =
370	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
371	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
372	if (fscs == NULL)
373		errx(31, "calloc failed");
374	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
375	if (sblock.fs_sbsize > SBLOCKSIZE)
376		sblock.fs_sbsize = SBLOCKSIZE;
377	sblock.fs_minfree = minfree;
378	sblock.fs_maxbpg = maxbpg;
379	sblock.fs_optim = opt;
380	sblock.fs_cgrotor = 0;
381	sblock.fs_pendingblocks = 0;
382	sblock.fs_pendinginodes = 0;
383	sblock.fs_fmod = 0;
384	sblock.fs_ronly = 0;
385	sblock.fs_state = 0;
386	sblock.fs_clean = 1;
387	sblock.fs_id[0] = (long)utime;
388	sblock.fs_id[1] = newfs_random();
389	sblock.fs_fsmnt[0] = '\0';
390	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
391	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
392	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
393	sblock.fs_cstotal.cs_nbfree =
394	    fragstoblks(&sblock, sblock.fs_dsize) -
395	    howmany(csfrags, sblock.fs_frag);
396	sblock.fs_cstotal.cs_nffree =
397	    fragnum(&sblock, sblock.fs_size) +
398	    (fragnum(&sblock, csfrags) > 0 ?
399	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
400	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
401	sblock.fs_cstotal.cs_ndir = 0;
402	sblock.fs_dsize -= csfrags;
403	sblock.fs_time = utime;
404	if (Oflag == 1) {
405		sblock.fs_old_time = utime;
406		sblock.fs_old_dsize = sblock.fs_dsize;
407		sblock.fs_old_csaddr = sblock.fs_csaddr;
408		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
409		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
410		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
411		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
412	}
413
414	/*
415	 * Dump out summary information about file system.
416	 */
417#	define B2MBFACTOR (1 / (1024.0 * 1024.0))
418	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
419	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
420	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
421	    sblock.fs_fsize);
422	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
423	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
424	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
425	if (sblock.fs_flags & FS_DOSOFTDEP)
426		printf("\twith soft updates\n");
427#	undef B2MBFACTOR
428	/*
429	 * Now build the cylinders group blocks and
430	 * then print out indices of cylinder groups.
431	 */
432	printf("super-block backups (for fsck -b #) at:\n");
433	i = 0;
434	width = charsperline();
435	/*
436	 * allocate space for superblock, cylinder group map, and
437	 * two sets of inode blocks.
438	 */
439	if (sblock.fs_bsize < SBLOCKSIZE)
440		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
441	else
442		iobufsize = 4 * sblock.fs_bsize;
443	if ((iobuf = malloc(iobufsize)) == 0) {
444		printf("Cannot allocate I/O buffer\n");
445		exit(38);
446	}
447	bzero(iobuf, iobufsize);
448	/*
449	 * Make a copy of the superblock into the buffer that we will be
450	 * writing out in each cylinder group.
451	 */
452	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
453	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
454		initcg(cylno, utime);
455		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
456		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
457		    cylno < (sblock.fs_ncg-1) ? "," : "");
458		if (j < 0)
459			tmpbuf[j = 0] = '\0';
460		if (i + j >= width) {
461			printf("\n");
462			i = 0;
463		}
464		i += j;
465		printf("%s", tmpbuf);
466		fflush(stdout);
467	}
468	printf("\n");
469	if (Nflag)
470		exit(0);
471	/*
472	 * Now construct the initial file system,
473	 * then write out the super-block.
474	 */
475	fsinit(utime);
476	if (Oflag == 1) {
477		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
478		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
479		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
480		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
481	}
482	if (!Nflag)
483		sbwrite(&disk, 0);
484	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
485		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
486			sblock.fs_cssize - i < sblock.fs_bsize ?
487			sblock.fs_cssize - i : sblock.fs_bsize,
488			((char *)fscs) + i);
489	/*
490	 * Update information about this partion in pack
491	 * label, to that it may be updated on disk.
492	 */
493	if (pp != NULL) {
494		pp->p_fstype = FS_BSDFFS;
495		pp->p_fsize = sblock.fs_fsize;
496		pp->p_frag = sblock.fs_frag;
497		pp->p_cpg = sblock.fs_fpg;
498	}
499}
500
501/*
502 * Initialize a cylinder group.
503 */
504void
505initcg(int cylno, time_t utime)
506{
507	long i, j, d, dlower, dupper, blkno, start;
508	ufs2_daddr_t cbase, dmax;
509	struct ufs1_dinode *dp1;
510	struct ufs2_dinode *dp2;
511	struct csum *cs;
512
513	/*
514	 * Determine block bounds for cylinder group.
515	 * Allow space for super block summary information in first
516	 * cylinder group.
517	 */
518	cbase = cgbase(&sblock, cylno);
519	dmax = cbase + sblock.fs_fpg;
520	if (dmax > sblock.fs_size)
521		dmax = sblock.fs_size;
522	dlower = cgsblock(&sblock, cylno) - cbase;
523	dupper = cgdmin(&sblock, cylno) - cbase;
524	if (cylno == 0)
525		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
526	cs = &fscs[cylno];
527	memset(&acg, 0, sblock.fs_cgsize);
528	acg.cg_time = utime;
529	acg.cg_magic = CG_MAGIC;
530	acg.cg_cgx = cylno;
531	acg.cg_niblk = sblock.fs_ipg;
532	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
533	    sblock.fs_ipg : 2 * INOPB(&sblock);
534	acg.cg_ndblk = dmax - cbase;
535	if (sblock.fs_contigsumsize > 0)
536		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
537	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
538	if (Oflag == 2) {
539		acg.cg_iusedoff = start;
540	} else {
541		acg.cg_old_ncyl = sblock.fs_old_cpg;
542		acg.cg_old_time = acg.cg_time;
543		acg.cg_time = 0;
544		acg.cg_old_niblk = acg.cg_niblk;
545		acg.cg_niblk = 0;
546		acg.cg_initediblk = 0;
547		acg.cg_old_btotoff = start;
548		acg.cg_old_boff = acg.cg_old_btotoff +
549		    sblock.fs_old_cpg * sizeof(int32_t);
550		acg.cg_iusedoff = acg.cg_old_boff +
551		    sblock.fs_old_cpg * sizeof(u_int16_t);
552	}
553	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
554	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
555	if (sblock.fs_contigsumsize > 0) {
556		acg.cg_clustersumoff =
557		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
558		acg.cg_clustersumoff -= sizeof(u_int32_t);
559		acg.cg_clusteroff = acg.cg_clustersumoff +
560		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
561		acg.cg_nextfreeoff = acg.cg_clusteroff +
562		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
563	}
564	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
565		printf("Panic: cylinder group too big\n");
566		exit(37);
567	}
568	acg.cg_cs.cs_nifree += sblock.fs_ipg;
569	if (cylno == 0)
570		for (i = 0; i < (long)ROOTINO; i++) {
571			setbit(cg_inosused(&acg), i);
572			acg.cg_cs.cs_nifree--;
573		}
574	if (cylno > 0) {
575		/*
576		 * In cylno 0, beginning space is reserved
577		 * for boot and super blocks.
578		 */
579		for (d = 0; d < dlower; d += sblock.fs_frag) {
580			blkno = d / sblock.fs_frag;
581			setblock(&sblock, cg_blksfree(&acg), blkno);
582			if (sblock.fs_contigsumsize > 0)
583				setbit(cg_clustersfree(&acg), blkno);
584			acg.cg_cs.cs_nbfree++;
585		}
586	}
587	if ((i = dupper % sblock.fs_frag)) {
588		acg.cg_frsum[sblock.fs_frag - i]++;
589		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
590			setbit(cg_blksfree(&acg), dupper);
591			acg.cg_cs.cs_nffree++;
592		}
593	}
594	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
595	     d += sblock.fs_frag) {
596		blkno = d / sblock.fs_frag;
597		setblock(&sblock, cg_blksfree(&acg), blkno);
598		if (sblock.fs_contigsumsize > 0)
599			setbit(cg_clustersfree(&acg), blkno);
600		acg.cg_cs.cs_nbfree++;
601	}
602	if (d < acg.cg_ndblk) {
603		acg.cg_frsum[acg.cg_ndblk - d]++;
604		for (; d < acg.cg_ndblk; d++) {
605			setbit(cg_blksfree(&acg), d);
606			acg.cg_cs.cs_nffree++;
607		}
608	}
609	if (sblock.fs_contigsumsize > 0) {
610		int32_t *sump = cg_clustersum(&acg);
611		u_char *mapp = cg_clustersfree(&acg);
612		int map = *mapp++;
613		int bit = 1;
614		int run = 0;
615
616		for (i = 0; i < acg.cg_nclusterblks; i++) {
617			if ((map & bit) != 0)
618				run++;
619			else if (run != 0) {
620				if (run > sblock.fs_contigsumsize)
621					run = sblock.fs_contigsumsize;
622				sump[run]++;
623				run = 0;
624			}
625			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
626				bit <<= 1;
627			else {
628				map = *mapp++;
629				bit = 1;
630			}
631		}
632		if (run != 0) {
633			if (run > sblock.fs_contigsumsize)
634				run = sblock.fs_contigsumsize;
635			sump[run]++;
636		}
637	}
638	*cs = acg.cg_cs;
639	/*
640	 * Write out the duplicate super block, the cylinder group map
641	 * and two blocks worth of inodes in a single write.
642	 */
643	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
644	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
645	start += sblock.fs_bsize;
646	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
647	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
648	for (i = 0; i < acg.cg_initediblk; i++) {
649		if (sblock.fs_magic == FS_UFS1_MAGIC) {
650			dp1->di_gen = newfs_random();
651			dp1++;
652		} else {
653			dp2->di_gen = newfs_random();
654			dp2++;
655		}
656	}
657	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
658	/*
659	 * For the old file system, we have to initialize all the inodes.
660	 */
661	if (Oflag == 1) {
662		for (i = 2 * sblock.fs_frag;
663		     i < sblock.fs_ipg / INOPF(&sblock);
664		     i += sblock.fs_frag) {
665			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
666			for (j = 0; j < INOPB(&sblock); j++) {
667				dp1->di_gen = newfs_random();
668				dp1++;
669			}
670			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
671			    sblock.fs_bsize, &iobuf[start]);
672		}
673	}
674}
675
676/*
677 * initialize the file system
678 */
679#define PREDEFDIR 2
680
681struct direct root_dir[] = {
682	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
683	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
684};
685
686void
687fsinit(time_t utime)
688{
689	union dinode node;
690
691	memset(&node, 0, sizeof node);
692	if (sblock.fs_magic == FS_UFS1_MAGIC) {
693		/*
694		 * initialize the node
695		 */
696		node.dp1.di_atime = utime;
697		node.dp1.di_mtime = utime;
698		node.dp1.di_ctime = utime;
699		/*
700		 * create the root directory
701		 */
702		node.dp1.di_mode = IFDIR | UMASK;
703		node.dp1.di_nlink = PREDEFDIR;
704		node.dp1.di_size = makedir(root_dir, PREDEFDIR);
705		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
706		node.dp1.di_blocks =
707		    btodb(fragroundup(&sblock, node.dp1.di_size));
708		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
709		    iobuf);
710	} else {
711		/*
712		 * initialize the node
713		 */
714		node.dp2.di_atime = utime;
715		node.dp2.di_mtime = utime;
716		node.dp2.di_ctime = utime;
717		node.dp2.di_birthtime = utime;
718		/*
719		 * create the root directory
720		 */
721		node.dp2.di_mode = IFDIR | UMASK;
722		node.dp2.di_nlink = PREDEFDIR;
723		node.dp2.di_size = makedir(root_dir, PREDEFDIR);
724		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
725		node.dp2.di_blocks =
726		    btodb(fragroundup(&sblock, node.dp2.di_size));
727		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
728		    iobuf);
729	}
730	iput(&node, ROOTINO);
731}
732
733/*
734 * construct a set of directory entries in "iobuf".
735 * return size of directory.
736 */
737int
738makedir(struct direct *protodir, int entries)
739{
740	char *cp;
741	int i, spcleft;
742
743	spcleft = DIRBLKSIZ;
744	memset(iobuf, 0, DIRBLKSIZ);
745	for (cp = iobuf, i = 0; i < entries - 1; i++) {
746		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
747		memmove(cp, &protodir[i], protodir[i].d_reclen);
748		cp += protodir[i].d_reclen;
749		spcleft -= protodir[i].d_reclen;
750	}
751	protodir[i].d_reclen = spcleft;
752	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
753	return (DIRBLKSIZ);
754}
755
756/*
757 * allocate a block or frag
758 */
759ufs2_daddr_t
760alloc(int size, int mode)
761{
762	int i, d, blkno, frag;
763
764	bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
765	    sblock.fs_cgsize);
766	if (acg.cg_magic != CG_MAGIC) {
767		printf("cg 0: bad magic number\n");
768		return (0);
769	}
770	if (acg.cg_cs.cs_nbfree == 0) {
771		printf("first cylinder group ran out of space\n");
772		return (0);
773	}
774	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
775		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
776			goto goth;
777	printf("internal error: can't find block in cyl 0\n");
778	return (0);
779goth:
780	blkno = fragstoblks(&sblock, d);
781	clrblock(&sblock, cg_blksfree(&acg), blkno);
782	if (sblock.fs_contigsumsize > 0)
783		clrbit(cg_clustersfree(&acg), blkno);
784	acg.cg_cs.cs_nbfree--;
785	sblock.fs_cstotal.cs_nbfree--;
786	fscs[0].cs_nbfree--;
787	if (mode & IFDIR) {
788		acg.cg_cs.cs_ndir++;
789		sblock.fs_cstotal.cs_ndir++;
790		fscs[0].cs_ndir++;
791	}
792	if (size != sblock.fs_bsize) {
793		frag = howmany(size, sblock.fs_fsize);
794		fscs[0].cs_nffree += sblock.fs_frag - frag;
795		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
796		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
797		acg.cg_frsum[sblock.fs_frag - frag]++;
798		for (i = frag; i < sblock.fs_frag; i++)
799			setbit(cg_blksfree(&acg), d + i);
800	}
801	/* XXX cgwrite(&disk, 0)??? */
802	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
803	    (char *)&acg);
804	return ((ufs2_daddr_t)d);
805}
806
807/*
808 * Allocate an inode on the disk
809 */
810void
811iput(union dinode *ip, ino_t ino)
812{
813	ufs2_daddr_t d;
814	int c;
815
816	c = ino_to_cg(&sblock, ino);
817	bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
818	    sblock.fs_cgsize);
819	if (acg.cg_magic != CG_MAGIC) {
820		printf("cg 0: bad magic number\n");
821		exit(31);
822	}
823	acg.cg_cs.cs_nifree--;
824	setbit(cg_inosused(&acg), ino);
825	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
826	    (char *)&acg);
827	sblock.fs_cstotal.cs_nifree--;
828	fscs[0].cs_nifree--;
829	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
830		printf("fsinit: inode value out of range (%d).\n", ino);
831		exit(32);
832	}
833	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
834	bread(&disk, d, (char *)iobuf, sblock.fs_bsize);
835	if (sblock.fs_magic == FS_UFS1_MAGIC)
836		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
837		    ip->dp1;
838	else
839		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
840		    ip->dp2;
841	wtfs(d, sblock.fs_bsize, (char *)iobuf);
842}
843
844/*
845 * possibly write to disk
846 */
847static void
848wtfs(ufs2_daddr_t bno, int size, char *bf)
849{
850	if (Nflag)
851		return;
852	if (bwrite(&disk, bno, bf, size) < 0)
853		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
854}
855
856/*
857 * check if a block is available
858 */
859static int
860isblock(struct fs *fs, unsigned char *cp, int h)
861{
862	unsigned char mask;
863
864	switch (fs->fs_frag) {
865	case 8:
866		return (cp[h] == 0xff);
867	case 4:
868		mask = 0x0f << ((h & 0x1) << 2);
869		return ((cp[h >> 1] & mask) == mask);
870	case 2:
871		mask = 0x03 << ((h & 0x3) << 1);
872		return ((cp[h >> 2] & mask) == mask);
873	case 1:
874		mask = 0x01 << (h & 0x7);
875		return ((cp[h >> 3] & mask) == mask);
876	default:
877		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
878		return (0);
879	}
880}
881
882/*
883 * take a block out of the map
884 */
885static void
886clrblock(struct fs *fs, unsigned char *cp, int h)
887{
888	switch ((fs)->fs_frag) {
889	case 8:
890		cp[h] = 0;
891		return;
892	case 4:
893		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
894		return;
895	case 2:
896		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
897		return;
898	case 1:
899		cp[h >> 3] &= ~(0x01 << (h & 0x7));
900		return;
901	default:
902		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
903		return;
904	}
905}
906
907/*
908 * put a block into the map
909 */
910static void
911setblock(struct fs *fs, unsigned char *cp, int h)
912{
913	switch (fs->fs_frag) {
914	case 8:
915		cp[h] = 0xff;
916		return;
917	case 4:
918		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
919		return;
920	case 2:
921		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
922		return;
923	case 1:
924		cp[h >> 3] |= (0x01 << (h & 0x7));
925		return;
926	default:
927		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
928		return;
929	}
930}
931
932/*
933 * Determine the number of characters in a
934 * single line.
935 */
936
937static int
938charsperline(void)
939{
940	int columns;
941	char *cp;
942	struct winsize ws;
943
944	columns = 0;
945	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
946		columns = ws.ws_col;
947	if (columns == 0 && (cp = getenv("COLUMNS")))
948		columns = atoi(cp);
949	if (columns == 0)
950		columns = 80;	/* last resort */
951	return (columns);
952}
953
954static int
955ilog2(int val)
956{
957	u_int n;
958
959	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
960		if (1 << n == val)
961			return (n);
962	errx(1, "ilog2: %d is not a power of 2\n", val);
963}
964
965/*
966 * For the regression test, return predictable random values.
967 * Otherwise use a true random number generator.
968 */
969static u_int32_t
970newfs_random(void)
971{
972	static int nextnum = 1;
973
974	if (Rflag)
975		return (nextnum++);
976	return (arc4random());
977}
978