wp_dgst.c revision 296341
1/**
2 * The Whirlpool hashing function.
3 *
4 * <P>
5 * <b>References</b>
6 *
7 * <P>
8 * The Whirlpool algorithm was developed by
9 * <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
10 * <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
11 *
12 * See
13 *      P.S.L.M. Barreto, V. Rijmen,
14 *      ``The Whirlpool hashing function,''
15 *      NESSIE submission, 2000 (tweaked version, 2001),
16 *      <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
17 *
18 * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
19 * Vincent Rijmen. Lookup "reference implementations" on
20 * <http://planeta.terra.com.br/informatica/paulobarreto/>
21 *
22 * =============================================================================
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
34 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 */
37
38/*
39 * OpenSSL-specific implementation notes.
40 *
41 * WHIRLPOOL_Update as well as one-stroke WHIRLPOOL both expect
42 * number of *bytes* as input length argument. Bit-oriented routine
43 * as specified by authors is called WHIRLPOOL_BitUpdate[!] and
44 * does not have one-stroke counterpart.
45 *
46 * WHIRLPOOL_BitUpdate implements byte-oriented loop, essentially
47 * to serve WHIRLPOOL_Update. This is done for performance.
48 *
49 * Unlike authors' reference implementation, block processing
50 * routine whirlpool_block is designed to operate on multi-block
51 * input. This is done for perfomance.
52 */
53
54#include "wp_locl.h"
55#include <openssl/crypto.h>
56#include <string.h>
57
58fips_md_init(WHIRLPOOL)
59{
60    memset(c, 0, sizeof(*c));
61    return (1);
62}
63
64int WHIRLPOOL_Update(WHIRLPOOL_CTX *c, const void *_inp, size_t bytes)
65{
66    /*
67     * Well, largest suitable chunk size actually is
68     * (1<<(sizeof(size_t)*8-3))-64, but below number is large enough for not
69     * to care about excessive calls to WHIRLPOOL_BitUpdate...
70     */
71    size_t chunk = ((size_t)1) << (sizeof(size_t) * 8 - 4);
72    const unsigned char *inp = _inp;
73
74    while (bytes >= chunk) {
75        WHIRLPOOL_BitUpdate(c, inp, chunk * 8);
76        bytes -= chunk;
77        inp += chunk;
78    }
79    if (bytes)
80        WHIRLPOOL_BitUpdate(c, inp, bytes * 8);
81
82    return (1);
83}
84
85void WHIRLPOOL_BitUpdate(WHIRLPOOL_CTX *c, const void *_inp, size_t bits)
86{
87    size_t n;
88    unsigned int bitoff = c->bitoff,
89        bitrem = bitoff % 8, inpgap = (8 - (unsigned int)bits % 8) & 7;
90    const unsigned char *inp = _inp;
91
92    /*
93     * This 256-bit increment procedure relies on the size_t being natural
94     * size of CPU register, so that we don't have to mask the value in order
95     * to detect overflows.
96     */
97    c->bitlen[0] += bits;
98    if (c->bitlen[0] < bits) {  /* overflow */
99        n = 1;
100        do {
101            c->bitlen[n]++;
102        } while (c->bitlen[n] == 0
103                 && ++n < (WHIRLPOOL_COUNTER / sizeof(size_t)));
104    }
105#ifndef OPENSSL_SMALL_FOOTPRINT
106 reconsider:
107    if (inpgap == 0 && bitrem == 0) { /* byte-oriented loop */
108        while (bits) {
109            if (bitoff == 0 && (n = bits / WHIRLPOOL_BBLOCK)) {
110                whirlpool_block(c, inp, n);
111                inp += n * WHIRLPOOL_BBLOCK / 8;
112                bits %= WHIRLPOOL_BBLOCK;
113            } else {
114                unsigned int byteoff = bitoff / 8;
115
116                bitrem = WHIRLPOOL_BBLOCK - bitoff; /* re-use bitrem */
117                if (bits >= bitrem) {
118                    bits -= bitrem;
119                    bitrem /= 8;
120                    memcpy(c->data + byteoff, inp, bitrem);
121                    inp += bitrem;
122                    whirlpool_block(c, c->data, 1);
123                    bitoff = 0;
124                } else {
125                    memcpy(c->data + byteoff, inp, bits / 8);
126                    bitoff += (unsigned int)bits;
127                    bits = 0;
128                }
129                c->bitoff = bitoff;
130            }
131        }
132    } else                      /* bit-oriented loop */
133#endif
134    {
135        /*-
136                   inp
137                   |
138                   +-------+-------+-------
139                      |||||||||||||||||||||
140                   +-------+-------+-------
141        +-------+-------+-------+-------+-------
142        ||||||||||||||                          c->data
143        +-------+-------+-------+-------+-------
144                |
145                c->bitoff/8
146        */
147        while (bits) {
148            unsigned int byteoff = bitoff / 8;
149            unsigned char b;
150
151#ifndef OPENSSL_SMALL_FOOTPRINT
152            if (bitrem == inpgap) {
153                c->data[byteoff++] |= inp[0] & (0xff >> inpgap);
154                inpgap = 8 - inpgap;
155                bitoff += inpgap;
156                bitrem = 0;     /* bitoff%8 */
157                bits -= inpgap;
158                inpgap = 0;     /* bits%8 */
159                inp++;
160                if (bitoff == WHIRLPOOL_BBLOCK) {
161                    whirlpool_block(c, c->data, 1);
162                    bitoff = 0;
163                }
164                c->bitoff = bitoff;
165                goto reconsider;
166            } else
167#endif
168            if (bits >= 8) {
169                b = ((inp[0] << inpgap) | (inp[1] >> (8 - inpgap)));
170                b &= 0xff;
171                if (bitrem)
172                    c->data[byteoff++] |= b >> bitrem;
173                else
174                    c->data[byteoff++] = b;
175                bitoff += 8;
176                bits -= 8;
177                inp++;
178                if (bitoff >= WHIRLPOOL_BBLOCK) {
179                    whirlpool_block(c, c->data, 1);
180                    byteoff = 0;
181                    bitoff %= WHIRLPOOL_BBLOCK;
182                }
183                if (bitrem)
184                    c->data[byteoff] = b << (8 - bitrem);
185            } else {            /* remaining less than 8 bits */
186
187                b = (inp[0] << inpgap) & 0xff;
188                if (bitrem)
189                    c->data[byteoff++] |= b >> bitrem;
190                else
191                    c->data[byteoff++] = b;
192                bitoff += (unsigned int)bits;
193                if (bitoff == WHIRLPOOL_BBLOCK) {
194                    whirlpool_block(c, c->data, 1);
195                    byteoff = 0;
196                    bitoff %= WHIRLPOOL_BBLOCK;
197                }
198                if (bitrem)
199                    c->data[byteoff] = b << (8 - bitrem);
200                bits = 0;
201            }
202            c->bitoff = bitoff;
203        }
204    }
205}
206
207int WHIRLPOOL_Final(unsigned char *md, WHIRLPOOL_CTX *c)
208{
209    unsigned int bitoff = c->bitoff, byteoff = bitoff / 8;
210    size_t i, j, v;
211    unsigned char *p;
212
213    bitoff %= 8;
214    if (bitoff)
215        c->data[byteoff] |= 0x80 >> bitoff;
216    else
217        c->data[byteoff] = 0x80;
218    byteoff++;
219
220    /* pad with zeros */
221    if (byteoff > (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER)) {
222        if (byteoff < WHIRLPOOL_BBLOCK / 8)
223            memset(&c->data[byteoff], 0, WHIRLPOOL_BBLOCK / 8 - byteoff);
224        whirlpool_block(c, c->data, 1);
225        byteoff = 0;
226    }
227    if (byteoff < (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER))
228        memset(&c->data[byteoff], 0,
229               (WHIRLPOOL_BBLOCK / 8 - WHIRLPOOL_COUNTER) - byteoff);
230    /* smash 256-bit c->bitlen in big-endian order */
231    p = &c->data[WHIRLPOOL_BBLOCK / 8 - 1]; /* last byte in c->data */
232    for (i = 0; i < WHIRLPOOL_COUNTER / sizeof(size_t); i++)
233        for (v = c->bitlen[i], j = 0; j < sizeof(size_t); j++, v >>= 8)
234            *p-- = (unsigned char)(v & 0xff);
235
236    whirlpool_block(c, c->data, 1);
237
238    if (md) {
239        memcpy(md, c->H.c, WHIRLPOOL_DIGEST_LENGTH);
240        memset(c, 0, sizeof(*c));
241        return (1);
242    }
243    return (0);
244}
245
246unsigned char *WHIRLPOOL(const void *inp, size_t bytes, unsigned char *md)
247{
248    WHIRLPOOL_CTX ctx;
249    static unsigned char m[WHIRLPOOL_DIGEST_LENGTH];
250
251    if (md == NULL)
252        md = m;
253    WHIRLPOOL_Init(&ctx);
254    WHIRLPOOL_Update(&ctx, inp, bytes);
255    WHIRLPOOL_Final(md, &ctx);
256    return (md);
257}
258