ec_mult.c revision 296341
1/* crypto/ec/ec_mult.c */
2/*
3 * Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
4 */
5/* ====================================================================
6 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in
17 *    the documentation and/or other materials provided with the
18 *    distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 *    software must display the following acknowledgment:
22 *    "This product includes software developed by the OpenSSL Project
23 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 *    endorse or promote products derived from this software without
27 *    prior written permission. For written permission, please contact
28 *    openssl-core@openssl.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 *    nor may "OpenSSL" appear in their names without prior written
32 *    permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 *    acknowledgment:
36 *    "This product includes software developed by the OpenSSL Project
37 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com).  This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 *
57 */
58/* ====================================================================
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * Portions of this software developed by SUN MICROSYSTEMS, INC.,
61 * and contributed to the OpenSSL project.
62 */
63
64#include <string.h>
65
66#include <openssl/err.h>
67
68#include "ec_lcl.h"
69
70/*
71 * This file implements the wNAF-based interleaving multi-exponentation method
72 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
73 * for multiplication with precomputation, we use wNAF splitting
74 * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp>).
75 */
76
77/* structure for precomputed multiples of the generator */
78typedef struct ec_pre_comp_st {
79    const EC_GROUP *group;      /* parent EC_GROUP object */
80    size_t blocksize;           /* block size for wNAF splitting */
81    size_t numblocks;           /* max. number of blocks for which we have
82                                 * precomputation */
83    size_t w;                   /* window size */
84    EC_POINT **points;          /* array with pre-calculated multiples of
85                                 * generator: 'num' pointers to EC_POINT
86                                 * objects followed by a NULL */
87    size_t num;                 /* numblocks * 2^(w-1) */
88    int references;
89} EC_PRE_COMP;
90
91/* functions to manage EC_PRE_COMP within the EC_GROUP extra_data framework */
92static void *ec_pre_comp_dup(void *);
93static void ec_pre_comp_free(void *);
94static void ec_pre_comp_clear_free(void *);
95
96static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
97{
98    EC_PRE_COMP *ret = NULL;
99
100    if (!group)
101        return NULL;
102
103    ret = (EC_PRE_COMP *)OPENSSL_malloc(sizeof(EC_PRE_COMP));
104    if (!ret) {
105        ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE);
106        return ret;
107    }
108    ret->group = group;
109    ret->blocksize = 8;         /* default */
110    ret->numblocks = 0;
111    ret->w = 4;                 /* default */
112    ret->points = NULL;
113    ret->num = 0;
114    ret->references = 1;
115    return ret;
116}
117
118static void *ec_pre_comp_dup(void *src_)
119{
120    EC_PRE_COMP *src = src_;
121
122    /* no need to actually copy, these objects never change! */
123
124    CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
125
126    return src_;
127}
128
129static void ec_pre_comp_free(void *pre_)
130{
131    int i;
132    EC_PRE_COMP *pre = pre_;
133
134    if (!pre)
135        return;
136
137    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
138    if (i > 0)
139        return;
140
141    if (pre->points) {
142        EC_POINT **p;
143
144        for (p = pre->points; *p != NULL; p++)
145            EC_POINT_free(*p);
146        OPENSSL_free(pre->points);
147    }
148    OPENSSL_free(pre);
149}
150
151static void ec_pre_comp_clear_free(void *pre_)
152{
153    int i;
154    EC_PRE_COMP *pre = pre_;
155
156    if (!pre)
157        return;
158
159    i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
160    if (i > 0)
161        return;
162
163    if (pre->points) {
164        EC_POINT **p;
165
166        for (p = pre->points; *p != NULL; p++) {
167            EC_POINT_clear_free(*p);
168            OPENSSL_cleanse(p, sizeof *p);
169        }
170        OPENSSL_free(pre->points);
171    }
172    OPENSSL_cleanse(pre, sizeof *pre);
173    OPENSSL_free(pre);
174}
175
176/*-
177 * Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
178 * This is an array  r[]  of values that are either zero or odd with an
179 * absolute value less than  2^w  satisfying
180 *     scalar = \sum_j r[j]*2^j
181 * where at most one of any  w+1  consecutive digits is non-zero
182 * with the exception that the most significant digit may be only
183 * w-1 zeros away from that next non-zero digit.
184 */
185static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len)
186{
187    int window_val;
188    int ok = 0;
189    signed char *r = NULL;
190    int sign = 1;
191    int bit, next_bit, mask;
192    size_t len = 0, j;
193
194    if (BN_is_zero(scalar)) {
195        r = OPENSSL_malloc(1);
196        if (!r) {
197            ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
198            goto err;
199        }
200        r[0] = 0;
201        *ret_len = 1;
202        return r;
203    }
204
205    if (w <= 0 || w > 7) {      /* 'signed char' can represent integers with
206                                 * absolute values less than 2^7 */
207        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
208        goto err;
209    }
210    bit = 1 << w;               /* at most 128 */
211    next_bit = bit << 1;        /* at most 256 */
212    mask = next_bit - 1;        /* at most 255 */
213
214    if (BN_is_negative(scalar)) {
215        sign = -1;
216    }
217
218    if (scalar->d == NULL || scalar->top == 0) {
219        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
220        goto err;
221    }
222
223    len = BN_num_bits(scalar);
224    r = OPENSSL_malloc(len + 1); /* modified wNAF may be one digit longer
225                                  * than binary representation (*ret_len will
226                                  * be set to the actual length, i.e. at most
227                                  * BN_num_bits(scalar) + 1) */
228    if (r == NULL) {
229        ECerr(EC_F_COMPUTE_WNAF, ERR_R_MALLOC_FAILURE);
230        goto err;
231    }
232    window_val = scalar->d[0] & mask;
233    j = 0;
234    while ((window_val != 0) || (j + w + 1 < len)) { /* if j+w+1 >= len,
235                                                      * window_val will not
236                                                      * increase */
237        int digit = 0;
238
239        /* 0 <= window_val <= 2^(w+1) */
240
241        if (window_val & 1) {
242            /* 0 < window_val < 2^(w+1) */
243
244            if (window_val & bit) {
245                digit = window_val - next_bit; /* -2^w < digit < 0 */
246
247#if 1                           /* modified wNAF */
248                if (j + w + 1 >= len) {
249                    /*
250                     * special case for generating modified wNAFs: no new
251                     * bits will be added into window_val, so using a
252                     * positive digit here will decrease the total length of
253                     * the representation
254                     */
255
256                    digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
257                }
258#endif
259            } else {
260                digit = window_val; /* 0 < digit < 2^w */
261            }
262
263            if (digit <= -bit || digit >= bit || !(digit & 1)) {
264                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
265                goto err;
266            }
267
268            window_val -= digit;
269
270            /*
271             * now window_val is 0 or 2^(w+1) in standard wNAF generation;
272             * for modified window NAFs, it may also be 2^w
273             */
274            if (window_val != 0 && window_val != next_bit
275                && window_val != bit) {
276                ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
277                goto err;
278            }
279        }
280
281        r[j++] = sign * digit;
282
283        window_val >>= 1;
284        window_val += bit * BN_is_bit_set(scalar, j + w);
285
286        if (window_val > next_bit) {
287            ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
288            goto err;
289        }
290    }
291
292    if (j > len + 1) {
293        ECerr(EC_F_COMPUTE_WNAF, ERR_R_INTERNAL_ERROR);
294        goto err;
295    }
296    len = j;
297    ok = 1;
298
299 err:
300    if (!ok) {
301        OPENSSL_free(r);
302        r = NULL;
303    }
304    if (ok)
305        *ret_len = len;
306    return r;
307}
308
309/*
310 * TODO: table should be optimised for the wNAF-based implementation,
311 * sometimes smaller windows will give better performance (thus the
312 * boundaries should be increased)
313 */
314#define EC_window_bits_for_scalar_size(b) \
315                ((size_t) \
316                 ((b) >= 2000 ? 6 : \
317                  (b) >=  800 ? 5 : \
318                  (b) >=  300 ? 4 : \
319                  (b) >=   70 ? 3 : \
320                  (b) >=   20 ? 2 : \
321                  1))
322
323/*-
324 * Compute
325 *      \sum scalars[i]*points[i],
326 * also including
327 *      scalar*generator
328 * in the addition if scalar != NULL
329 */
330int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
331                size_t num, const EC_POINT *points[], const BIGNUM *scalars[],
332                BN_CTX *ctx)
333{
334    BN_CTX *new_ctx = NULL;
335    const EC_POINT *generator = NULL;
336    EC_POINT *tmp = NULL;
337    size_t totalnum;
338    size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
339    size_t pre_points_per_block = 0;
340    size_t i, j;
341    int k;
342    int r_is_inverted = 0;
343    int r_is_at_infinity = 1;
344    size_t *wsize = NULL;       /* individual window sizes */
345    signed char **wNAF = NULL;  /* individual wNAFs */
346    size_t *wNAF_len = NULL;
347    size_t max_len = 0;
348    size_t num_val;
349    EC_POINT **val = NULL;      /* precomputation */
350    EC_POINT **v;
351    EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
352                                 * 'pre_comp->points' */
353    const EC_PRE_COMP *pre_comp = NULL;
354    int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
355                                 * treated like other scalars, i.e.
356                                 * precomputation is not available */
357    int ret = 0;
358
359    if (group->meth != r->meth) {
360        ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
361        return 0;
362    }
363
364    if ((scalar == NULL) && (num == 0)) {
365        return EC_POINT_set_to_infinity(group, r);
366    }
367
368    for (i = 0; i < num; i++) {
369        if (group->meth != points[i]->meth) {
370            ECerr(EC_F_EC_WNAF_MUL, EC_R_INCOMPATIBLE_OBJECTS);
371            return 0;
372        }
373    }
374
375    if (ctx == NULL) {
376        ctx = new_ctx = BN_CTX_new();
377        if (ctx == NULL)
378            goto err;
379    }
380
381    if (scalar != NULL) {
382        generator = EC_GROUP_get0_generator(group);
383        if (generator == NULL) {
384            ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR);
385            goto err;
386        }
387
388        /* look if we can use precomputed multiples of generator */
389
390        pre_comp =
391            EC_EX_DATA_get_data(group->extra_data, ec_pre_comp_dup,
392                                ec_pre_comp_free, ec_pre_comp_clear_free);
393
394        if (pre_comp && pre_comp->numblocks
395            && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
396                0)) {
397            blocksize = pre_comp->blocksize;
398
399            /*
400             * determine maximum number of blocks that wNAF splitting may
401             * yield (NB: maximum wNAF length is bit length plus one)
402             */
403            numblocks = (BN_num_bits(scalar) / blocksize) + 1;
404
405            /*
406             * we cannot use more blocks than we have precomputation for
407             */
408            if (numblocks > pre_comp->numblocks)
409                numblocks = pre_comp->numblocks;
410
411            pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
412
413            /* check that pre_comp looks sane */
414            if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
415                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
416                goto err;
417            }
418        } else {
419            /* can't use precomputation */
420            pre_comp = NULL;
421            numblocks = 1;
422            num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
423                                 * 'scalars' */
424        }
425    }
426
427    totalnum = num + numblocks;
428
429    wsize = OPENSSL_malloc(totalnum * sizeof wsize[0]);
430    wNAF_len = OPENSSL_malloc(totalnum * sizeof wNAF_len[0]);
431    wNAF = OPENSSL_malloc((totalnum + 1) * sizeof wNAF[0]); /* includes space
432                                                             * for pivot */
433    val_sub = OPENSSL_malloc(totalnum * sizeof val_sub[0]);
434
435    /* Ensure wNAF is initialised in case we end up going to err */
436    if (wNAF)
437        wNAF[0] = NULL;         /* preliminary pivot */
438
439    if (!wsize || !wNAF_len || !wNAF || !val_sub) {
440        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
441        goto err;
442    }
443
444    /*
445     * num_val will be the total number of temporarily precomputed points
446     */
447    num_val = 0;
448
449    for (i = 0; i < num + num_scalar; i++) {
450        size_t bits;
451
452        bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
453        wsize[i] = EC_window_bits_for_scalar_size(bits);
454        num_val += (size_t)1 << (wsize[i] - 1);
455        wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
456        wNAF[i] =
457            compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
458                         &wNAF_len[i]);
459        if (wNAF[i] == NULL)
460            goto err;
461        if (wNAF_len[i] > max_len)
462            max_len = wNAF_len[i];
463    }
464
465    if (numblocks) {
466        /* we go here iff scalar != NULL */
467
468        if (pre_comp == NULL) {
469            if (num_scalar != 1) {
470                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
471                goto err;
472            }
473            /* we have already generated a wNAF for 'scalar' */
474        } else {
475            signed char *tmp_wNAF = NULL;
476            size_t tmp_len = 0;
477
478            if (num_scalar != 0) {
479                ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
480                goto err;
481            }
482
483            /*
484             * use the window size for which we have precomputation
485             */
486            wsize[num] = pre_comp->w;
487            tmp_wNAF = compute_wNAF(scalar, wsize[num], &tmp_len);
488            if (!tmp_wNAF)
489                goto err;
490
491            if (tmp_len <= max_len) {
492                /*
493                 * One of the other wNAFs is at least as long as the wNAF
494                 * belonging to the generator, so wNAF splitting will not buy
495                 * us anything.
496                 */
497
498                numblocks = 1;
499                totalnum = num + 1; /* don't use wNAF splitting */
500                wNAF[num] = tmp_wNAF;
501                wNAF[num + 1] = NULL;
502                wNAF_len[num] = tmp_len;
503                if (tmp_len > max_len)
504                    max_len = tmp_len;
505                /*
506                 * pre_comp->points starts with the points that we need here:
507                 */
508                val_sub[num] = pre_comp->points;
509            } else {
510                /*
511                 * don't include tmp_wNAF directly into wNAF array - use wNAF
512                 * splitting and include the blocks
513                 */
514
515                signed char *pp;
516                EC_POINT **tmp_points;
517
518                if (tmp_len < numblocks * blocksize) {
519                    /*
520                     * possibly we can do with fewer blocks than estimated
521                     */
522                    numblocks = (tmp_len + blocksize - 1) / blocksize;
523                    if (numblocks > pre_comp->numblocks) {
524                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
525                        goto err;
526                    }
527                    totalnum = num + numblocks;
528                }
529
530                /* split wNAF in 'numblocks' parts */
531                pp = tmp_wNAF;
532                tmp_points = pre_comp->points;
533
534                for (i = num; i < totalnum; i++) {
535                    if (i < totalnum - 1) {
536                        wNAF_len[i] = blocksize;
537                        if (tmp_len < blocksize) {
538                            ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
539                            goto err;
540                        }
541                        tmp_len -= blocksize;
542                    } else
543                        /*
544                         * last block gets whatever is left (this could be
545                         * more or less than 'blocksize'!)
546                         */
547                        wNAF_len[i] = tmp_len;
548
549                    wNAF[i + 1] = NULL;
550                    wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
551                    if (wNAF[i] == NULL) {
552                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
553                        OPENSSL_free(tmp_wNAF);
554                        goto err;
555                    }
556                    memcpy(wNAF[i], pp, wNAF_len[i]);
557                    if (wNAF_len[i] > max_len)
558                        max_len = wNAF_len[i];
559
560                    if (*tmp_points == NULL) {
561                        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
562                        OPENSSL_free(tmp_wNAF);
563                        goto err;
564                    }
565                    val_sub[i] = tmp_points;
566                    tmp_points += pre_points_per_block;
567                    pp += blocksize;
568                }
569                OPENSSL_free(tmp_wNAF);
570            }
571        }
572    }
573
574    /*
575     * All points we precompute now go into a single array 'val'.
576     * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
577     * subarray of 'pre_comp->points' if we already have precomputation.
578     */
579    val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
580    if (val == NULL) {
581        ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE);
582        goto err;
583    }
584    val[num_val] = NULL;        /* pivot element */
585
586    /* allocate points for precomputation */
587    v = val;
588    for (i = 0; i < num + num_scalar; i++) {
589        val_sub[i] = v;
590        for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
591            *v = EC_POINT_new(group);
592            if (*v == NULL)
593                goto err;
594            v++;
595        }
596    }
597    if (!(v == val + num_val)) {
598        ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR);
599        goto err;
600    }
601
602    if (!(tmp = EC_POINT_new(group)))
603        goto err;
604
605    /*-
606     * prepare precomputed values:
607     *    val_sub[i][0] :=     points[i]
608     *    val_sub[i][1] := 3 * points[i]
609     *    val_sub[i][2] := 5 * points[i]
610     *    ...
611     */
612    for (i = 0; i < num + num_scalar; i++) {
613        if (i < num) {
614            if (!EC_POINT_copy(val_sub[i][0], points[i]))
615                goto err;
616        } else {
617            if (!EC_POINT_copy(val_sub[i][0], generator))
618                goto err;
619        }
620
621        if (wsize[i] > 1) {
622            if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
623                goto err;
624            for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
625                if (!EC_POINT_add
626                    (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
627                    goto err;
628            }
629        }
630    }
631
632#if 1                           /* optional; EC_window_bits_for_scalar_size
633                                 * assumes we do this step */
634    if (!EC_POINTs_make_affine(group, num_val, val, ctx))
635        goto err;
636#endif
637
638    r_is_at_infinity = 1;
639
640    for (k = max_len - 1; k >= 0; k--) {
641        if (!r_is_at_infinity) {
642            if (!EC_POINT_dbl(group, r, r, ctx))
643                goto err;
644        }
645
646        for (i = 0; i < totalnum; i++) {
647            if (wNAF_len[i] > (size_t)k) {
648                int digit = wNAF[i][k];
649                int is_neg;
650
651                if (digit) {
652                    is_neg = digit < 0;
653
654                    if (is_neg)
655                        digit = -digit;
656
657                    if (is_neg != r_is_inverted) {
658                        if (!r_is_at_infinity) {
659                            if (!EC_POINT_invert(group, r, ctx))
660                                goto err;
661                        }
662                        r_is_inverted = !r_is_inverted;
663                    }
664
665                    /* digit > 0 */
666
667                    if (r_is_at_infinity) {
668                        if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
669                            goto err;
670                        r_is_at_infinity = 0;
671                    } else {
672                        if (!EC_POINT_add
673                            (group, r, r, val_sub[i][digit >> 1], ctx))
674                            goto err;
675                    }
676                }
677            }
678        }
679    }
680
681    if (r_is_at_infinity) {
682        if (!EC_POINT_set_to_infinity(group, r))
683            goto err;
684    } else {
685        if (r_is_inverted)
686            if (!EC_POINT_invert(group, r, ctx))
687                goto err;
688    }
689
690    ret = 1;
691
692 err:
693    if (new_ctx != NULL)
694        BN_CTX_free(new_ctx);
695    if (tmp != NULL)
696        EC_POINT_free(tmp);
697    if (wsize != NULL)
698        OPENSSL_free(wsize);
699    if (wNAF_len != NULL)
700        OPENSSL_free(wNAF_len);
701    if (wNAF != NULL) {
702        signed char **w;
703
704        for (w = wNAF; *w != NULL; w++)
705            OPENSSL_free(*w);
706
707        OPENSSL_free(wNAF);
708    }
709    if (val != NULL) {
710        for (v = val; *v != NULL; v++)
711            EC_POINT_clear_free(*v);
712
713        OPENSSL_free(val);
714    }
715    if (val_sub != NULL) {
716        OPENSSL_free(val_sub);
717    }
718    return ret;
719}
720
721/*-
722 * ec_wNAF_precompute_mult()
723 * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
724 * for use with wNAF splitting as implemented in ec_wNAF_mul().
725 *
726 * 'pre_comp->points' is an array of multiples of the generator
727 * of the following form:
728 * points[0] =     generator;
729 * points[1] = 3 * generator;
730 * ...
731 * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
732 * points[2^(w-1)]   =     2^blocksize * generator;
733 * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
734 * ...
735 * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
736 * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
737 * ...
738 * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
739 * points[2^(w-1)*numblocks]       = NULL
740 */
741int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
742{
743    const EC_POINT *generator;
744    EC_POINT *tmp_point = NULL, *base = NULL, **var;
745    BN_CTX *new_ctx = NULL;
746    BIGNUM *order;
747    size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
748    EC_POINT **points = NULL;
749    EC_PRE_COMP *pre_comp;
750    int ret = 0;
751
752    /* if there is an old EC_PRE_COMP object, throw it away */
753    EC_EX_DATA_free_data(&group->extra_data, ec_pre_comp_dup,
754                         ec_pre_comp_free, ec_pre_comp_clear_free);
755
756    if ((pre_comp = ec_pre_comp_new(group)) == NULL)
757        return 0;
758
759    generator = EC_GROUP_get0_generator(group);
760    if (generator == NULL) {
761        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR);
762        goto err;
763    }
764
765    if (ctx == NULL) {
766        ctx = new_ctx = BN_CTX_new();
767        if (ctx == NULL)
768            goto err;
769    }
770
771    BN_CTX_start(ctx);
772    order = BN_CTX_get(ctx);
773    if (order == NULL)
774        goto err;
775
776    if (!EC_GROUP_get_order(group, order, ctx))
777        goto err;
778    if (BN_is_zero(order)) {
779        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER);
780        goto err;
781    }
782
783    bits = BN_num_bits(order);
784    /*
785     * The following parameters mean we precompute (approximately) one point
786     * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
787     * bit lengths, other parameter combinations might provide better
788     * efficiency.
789     */
790    blocksize = 8;
791    w = 4;
792    if (EC_window_bits_for_scalar_size(bits) > w) {
793        /* let's not make the window too small ... */
794        w = EC_window_bits_for_scalar_size(bits);
795    }
796
797    numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
798                                                     * to use for wNAF
799                                                     * splitting */
800
801    pre_points_per_block = (size_t)1 << (w - 1);
802    num = pre_points_per_block * numblocks; /* number of points to compute
803                                             * and store */
804
805    points = OPENSSL_malloc(sizeof(EC_POINT *) * (num + 1));
806    if (!points) {
807        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
808        goto err;
809    }
810
811    var = points;
812    var[num] = NULL;            /* pivot */
813    for (i = 0; i < num; i++) {
814        if ((var[i] = EC_POINT_new(group)) == NULL) {
815            ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
816            goto err;
817        }
818    }
819
820    if (!(tmp_point = EC_POINT_new(group)) || !(base = EC_POINT_new(group))) {
821        ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE);
822        goto err;
823    }
824
825    if (!EC_POINT_copy(base, generator))
826        goto err;
827
828    /* do the precomputation */
829    for (i = 0; i < numblocks; i++) {
830        size_t j;
831
832        if (!EC_POINT_dbl(group, tmp_point, base, ctx))
833            goto err;
834
835        if (!EC_POINT_copy(*var++, base))
836            goto err;
837
838        for (j = 1; j < pre_points_per_block; j++, var++) {
839            /*
840             * calculate odd multiples of the current base point
841             */
842            if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
843                goto err;
844        }
845
846        if (i < numblocks - 1) {
847            /*
848             * get the next base (multiply current one by 2^blocksize)
849             */
850            size_t k;
851
852            if (blocksize <= 2) {
853                ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR);
854                goto err;
855            }
856
857            if (!EC_POINT_dbl(group, base, tmp_point, ctx))
858                goto err;
859            for (k = 2; k < blocksize; k++) {
860                if (!EC_POINT_dbl(group, base, base, ctx))
861                    goto err;
862            }
863        }
864    }
865
866    if (!EC_POINTs_make_affine(group, num, points, ctx))
867        goto err;
868
869    pre_comp->group = group;
870    pre_comp->blocksize = blocksize;
871    pre_comp->numblocks = numblocks;
872    pre_comp->w = w;
873    pre_comp->points = points;
874    points = NULL;
875    pre_comp->num = num;
876
877    if (!EC_EX_DATA_set_data(&group->extra_data, pre_comp,
878                             ec_pre_comp_dup, ec_pre_comp_free,
879                             ec_pre_comp_clear_free))
880        goto err;
881    pre_comp = NULL;
882
883    ret = 1;
884 err:
885    if (ctx != NULL)
886        BN_CTX_end(ctx);
887    if (new_ctx != NULL)
888        BN_CTX_free(new_ctx);
889    if (pre_comp)
890        ec_pre_comp_free(pre_comp);
891    if (points) {
892        EC_POINT **p;
893
894        for (p = points; *p != NULL; p++)
895            EC_POINT_free(*p);
896        OPENSSL_free(points);
897    }
898    if (tmp_point)
899        EC_POINT_free(tmp_point);
900    if (base)
901        EC_POINT_free(base);
902    return ret;
903}
904
905int ec_wNAF_have_precompute_mult(const EC_GROUP *group)
906{
907    if (EC_EX_DATA_get_data
908        (group->extra_data, ec_pre_comp_dup, ec_pre_comp_free,
909         ec_pre_comp_clear_free) != NULL)
910        return 1;
911    else
912        return 0;
913}
914