bn_sqrt.c revision 296341
1/* crypto/bn/bn_sqrt.c */
2/*
3 * Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> and Bodo
4 * Moeller for the OpenSSL project.
5 */
6/* ====================================================================
7 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in
18 *    the documentation and/or other materials provided with the
19 *    distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 *    software must display the following acknowledgment:
23 *    "This product includes software developed by the OpenSSL Project
24 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 *    endorse or promote products derived from this software without
28 *    prior written permission. For written permission, please contact
29 *    openssl-core@openssl.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 *    nor may "OpenSSL" appear in their names without prior written
33 *    permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 *    acknowledgment:
37 *    "This product includes software developed by the OpenSSL Project
38 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ====================================================================
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com).  This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59
60#include "cryptlib.h"
61#include "bn_lcl.h"
62
63BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
64/*
65 * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
66 * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
67 * Theory", algorithm 1.5.1). 'p' must be prime!
68 */
69{
70    BIGNUM *ret = in;
71    int err = 1;
72    int r;
73    BIGNUM *A, *b, *q, *t, *x, *y;
74    int e, i, j;
75
76    if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
77        if (BN_abs_is_word(p, 2)) {
78            if (ret == NULL)
79                ret = BN_new();
80            if (ret == NULL)
81                goto end;
82            if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
83                if (ret != in)
84                    BN_free(ret);
85                return NULL;
86            }
87            bn_check_top(ret);
88            return ret;
89        }
90
91        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
92        return (NULL);
93    }
94
95    if (BN_is_zero(a) || BN_is_one(a)) {
96        if (ret == NULL)
97            ret = BN_new();
98        if (ret == NULL)
99            goto end;
100        if (!BN_set_word(ret, BN_is_one(a))) {
101            if (ret != in)
102                BN_free(ret);
103            return NULL;
104        }
105        bn_check_top(ret);
106        return ret;
107    }
108
109    BN_CTX_start(ctx);
110    A = BN_CTX_get(ctx);
111    b = BN_CTX_get(ctx);
112    q = BN_CTX_get(ctx);
113    t = BN_CTX_get(ctx);
114    x = BN_CTX_get(ctx);
115    y = BN_CTX_get(ctx);
116    if (y == NULL)
117        goto end;
118
119    if (ret == NULL)
120        ret = BN_new();
121    if (ret == NULL)
122        goto end;
123
124    /* A = a mod p */
125    if (!BN_nnmod(A, a, p, ctx))
126        goto end;
127
128    /* now write  |p| - 1  as  2^e*q  where  q  is odd */
129    e = 1;
130    while (!BN_is_bit_set(p, e))
131        e++;
132    /* we'll set  q  later (if needed) */
133
134    if (e == 1) {
135        /*-
136         * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
137         * modulo  (|p|-1)/2,  and square roots can be computed
138         * directly by modular exponentiation.
139         * We have
140         *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
141         * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
142         */
143        if (!BN_rshift(q, p, 2))
144            goto end;
145        q->neg = 0;
146        if (!BN_add_word(q, 1))
147            goto end;
148        if (!BN_mod_exp(ret, A, q, p, ctx))
149            goto end;
150        err = 0;
151        goto vrfy;
152    }
153
154    if (e == 2) {
155        /*-
156         * |p| == 5  (mod 8)
157         *
158         * In this case  2  is always a non-square since
159         * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
160         * So if  a  really is a square, then  2*a  is a non-square.
161         * Thus for
162         *      b := (2*a)^((|p|-5)/8),
163         *      i := (2*a)*b^2
164         * we have
165         *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
166         *         = (2*a)^((p-1)/2)
167         *         = -1;
168         * so if we set
169         *      x := a*b*(i-1),
170         * then
171         *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
172         *         = a^2 * b^2 * (-2*i)
173         *         = a*(-i)*(2*a*b^2)
174         *         = a*(-i)*i
175         *         = a.
176         *
177         * (This is due to A.O.L. Atkin,
178         * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
179         * November 1992.)
180         */
181
182        /* t := 2*a */
183        if (!BN_mod_lshift1_quick(t, A, p))
184            goto end;
185
186        /* b := (2*a)^((|p|-5)/8) */
187        if (!BN_rshift(q, p, 3))
188            goto end;
189        q->neg = 0;
190        if (!BN_mod_exp(b, t, q, p, ctx))
191            goto end;
192
193        /* y := b^2 */
194        if (!BN_mod_sqr(y, b, p, ctx))
195            goto end;
196
197        /* t := (2*a)*b^2 - 1 */
198        if (!BN_mod_mul(t, t, y, p, ctx))
199            goto end;
200        if (!BN_sub_word(t, 1))
201            goto end;
202
203        /* x = a*b*t */
204        if (!BN_mod_mul(x, A, b, p, ctx))
205            goto end;
206        if (!BN_mod_mul(x, x, t, p, ctx))
207            goto end;
208
209        if (!BN_copy(ret, x))
210            goto end;
211        err = 0;
212        goto vrfy;
213    }
214
215    /*
216     * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
217     * find some y that is not a square.
218     */
219    if (!BN_copy(q, p))
220        goto end;               /* use 'q' as temp */
221    q->neg = 0;
222    i = 2;
223    do {
224        /*
225         * For efficiency, try small numbers first; if this fails, try random
226         * numbers.
227         */
228        if (i < 22) {
229            if (!BN_set_word(y, i))
230                goto end;
231        } else {
232            if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0))
233                goto end;
234            if (BN_ucmp(y, p) >= 0) {
235                if (!(p->neg ? BN_add : BN_sub) (y, y, p))
236                    goto end;
237            }
238            /* now 0 <= y < |p| */
239            if (BN_is_zero(y))
240                if (!BN_set_word(y, i))
241                    goto end;
242        }
243
244        r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
245        if (r < -1)
246            goto end;
247        if (r == 0) {
248            /* m divides p */
249            BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
250            goto end;
251        }
252    }
253    while (r == 1 && ++i < 82);
254
255    if (r != -1) {
256        /*
257         * Many rounds and still no non-square -- this is more likely a bug
258         * than just bad luck. Even if p is not prime, we should have found
259         * some y such that r == -1.
260         */
261        BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
262        goto end;
263    }
264
265    /* Here's our actual 'q': */
266    if (!BN_rshift(q, q, e))
267        goto end;
268
269    /*
270     * Now that we have some non-square, we can find an element of order 2^e
271     * by computing its q'th power.
272     */
273    if (!BN_mod_exp(y, y, q, p, ctx))
274        goto end;
275    if (BN_is_one(y)) {
276        BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
277        goto end;
278    }
279
280    /*-
281     * Now we know that (if  p  is indeed prime) there is an integer
282     * k,  0 <= k < 2^e,  such that
283     *
284     *      a^q * y^k == 1   (mod p).
285     *
286     * As  a^q  is a square and  y  is not,  k  must be even.
287     * q+1  is even, too, so there is an element
288     *
289     *     X := a^((q+1)/2) * y^(k/2),
290     *
291     * and it satisfies
292     *
293     *     X^2 = a^q * a     * y^k
294     *         = a,
295     *
296     * so it is the square root that we are looking for.
297     */
298
299    /* t := (q-1)/2  (note that  q  is odd) */
300    if (!BN_rshift1(t, q))
301        goto end;
302
303    /* x := a^((q-1)/2) */
304    if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */
305        if (!BN_nnmod(t, A, p, ctx))
306            goto end;
307        if (BN_is_zero(t)) {
308            /* special case: a == 0  (mod p) */
309            BN_zero(ret);
310            err = 0;
311            goto end;
312        } else if (!BN_one(x))
313            goto end;
314    } else {
315        if (!BN_mod_exp(x, A, t, p, ctx))
316            goto end;
317        if (BN_is_zero(x)) {
318            /* special case: a == 0  (mod p) */
319            BN_zero(ret);
320            err = 0;
321            goto end;
322        }
323    }
324
325    /* b := a*x^2  (= a^q) */
326    if (!BN_mod_sqr(b, x, p, ctx))
327        goto end;
328    if (!BN_mod_mul(b, b, A, p, ctx))
329        goto end;
330
331    /* x := a*x    (= a^((q+1)/2)) */
332    if (!BN_mod_mul(x, x, A, p, ctx))
333        goto end;
334
335    while (1) {
336        /*-
337         * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
338         * where  E  refers to the original value of  e,  which we
339         * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
340         *
341         * We have  a*b = x^2,
342         *    y^2^(e-1) = -1,
343         *    b^2^(e-1) = 1.
344         */
345
346        if (BN_is_one(b)) {
347            if (!BN_copy(ret, x))
348                goto end;
349            err = 0;
350            goto vrfy;
351        }
352
353        /* find smallest  i  such that  b^(2^i) = 1 */
354        i = 1;
355        if (!BN_mod_sqr(t, b, p, ctx))
356            goto end;
357        while (!BN_is_one(t)) {
358            i++;
359            if (i == e) {
360                BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
361                goto end;
362            }
363            if (!BN_mod_mul(t, t, t, p, ctx))
364                goto end;
365        }
366
367        /* t := y^2^(e - i - 1) */
368        if (!BN_copy(t, y))
369            goto end;
370        for (j = e - i - 1; j > 0; j--) {
371            if (!BN_mod_sqr(t, t, p, ctx))
372                goto end;
373        }
374        if (!BN_mod_mul(y, t, t, p, ctx))
375            goto end;
376        if (!BN_mod_mul(x, x, t, p, ctx))
377            goto end;
378        if (!BN_mod_mul(b, b, y, p, ctx))
379            goto end;
380        e = i;
381    }
382
383 vrfy:
384    if (!err) {
385        /*
386         * verify the result -- the input might have been not a square (test
387         * added in 0.9.8)
388         */
389
390        if (!BN_mod_sqr(x, ret, p, ctx))
391            err = 1;
392
393        if (!err && 0 != BN_cmp(x, A)) {
394            BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
395            err = 1;
396        }
397    }
398
399 end:
400    if (err) {
401        if (ret != NULL && ret != in) {
402            BN_clear_free(ret);
403        }
404        ret = NULL;
405    }
406    BN_CTX_end(ctx);
407    bn_check_top(ret);
408    return ret;
409}
410