bn_lcl.h revision 296341
1/* crypto/bn/bn_lcl.h */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#ifndef HEADER_BN_LCL_H
113# define HEADER_BN_LCL_H
114
115# include <openssl/bn.h>
116
117#ifdef  __cplusplus
118extern "C" {
119#endif
120
121/*-
122 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
123 *
124 *
125 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
126 * the number of multiplications is a constant plus on average
127 *
128 *    2^(w-1) + (b-w)/(w+1);
129 *
130 * here  2^(w-1)  is for precomputing the table (we actually need
131 * entries only for windows that have the lowest bit set), and
132 * (b-w)/(w+1)  is an approximation for the expected number of
133 * w-bit windows, not counting the first one.
134 *
135 * Thus we should use
136 *
137 *    w >= 6  if        b > 671
138 *     w = 5  if  671 > b > 239
139 *     w = 4  if  239 > b >  79
140 *     w = 3  if   79 > b >  23
141 *    w <= 2  if   23 > b
142 *
143 * (with draws in between).  Very small exponents are often selected
144 * with low Hamming weight, so we use  w = 1  for b <= 23.
145 */
146# if 1
147#  define BN_window_bits_for_exponent_size(b) \
148                ((b) > 671 ? 6 : \
149                 (b) > 239 ? 5 : \
150                 (b) >  79 ? 4 : \
151                 (b) >  23 ? 3 : 1)
152# else
153/*
154 * Old SSLeay/OpenSSL table. Maximum window size was 5, so this table differs
155 * for b==1024; but it coincides for other interesting values (b==160,
156 * b==512).
157 */
158#  define BN_window_bits_for_exponent_size(b) \
159                ((b) > 255 ? 5 : \
160                 (b) > 127 ? 4 : \
161                 (b) >  17 ? 3 : 1)
162# endif
163
164/*
165 * BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
166 * line width of the target processor is at least the following value.
167 */
168# define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
169# define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
170
171/*
172 * Window sizes optimized for fixed window size modular exponentiation
173 * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
174 * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
175 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
176 * defined for cache line sizes of 32 and 64, cache line sizes where
177 * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
178 * used on processors that have a 128 byte or greater cache line size.
179 */
180# if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
181
182#  define BN_window_bits_for_ctime_exponent_size(b) \
183                ((b) > 937 ? 6 : \
184                 (b) > 306 ? 5 : \
185                 (b) >  89 ? 4 : \
186                 (b) >  22 ? 3 : 1)
187#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
188
189# elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
190
191#  define BN_window_bits_for_ctime_exponent_size(b) \
192                ((b) > 306 ? 5 : \
193                 (b) >  89 ? 4 : \
194                 (b) >  22 ? 3 : 1)
195#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
196
197# endif
198
199/* Pentium pro 16,16,16,32,64 */
200/* Alpha       16,16,16,16.64 */
201# define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
202# define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
203# define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
204# define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
205# define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
206
207# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
208/*
209 * BN_UMULT_HIGH section.
210 *
211 * No, I'm not trying to overwhelm you when stating that the
212 * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
213 * you to be impressed when I say that if the compiler doesn't
214 * support 2*N integer type, then you have to replace every N*N
215 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
216 * and additions which unavoidably results in severe performance
217 * penalties. Of course provided that the hardware is capable of
218 * producing 2*N result... That's when you normally start
219 * considering assembler implementation. However! It should be
220 * pointed out that some CPUs (most notably Alpha, PowerPC and
221 * upcoming IA-64 family:-) provide *separate* instruction
222 * calculating the upper half of the product placing the result
223 * into a general purpose register. Now *if* the compiler supports
224 * inline assembler, then it's not impossible to implement the
225 * "bignum" routines (and have the compiler optimize 'em)
226 * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
227 * macro is about:-)
228 *
229 *                                      <appro@fy.chalmers.se>
230 */
231#  if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
232#   if defined(__DECC)
233#    include <c_asm.h>
234#    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
235#   elif defined(__GNUC__) && __GNUC__>=2
236#    define BN_UMULT_HIGH(a,b)   ({      \
237        register BN_ULONG ret;          \
238        asm ("umulh     %1,%2,%0"       \
239             : "=r"(ret)                \
240             : "r"(a), "r"(b));         \
241        ret;                    })
242#   endif                       /* compiler */
243#  elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
244#   if defined(__GNUC__) && __GNUC__>=2
245#    define BN_UMULT_HIGH(a,b)   ({      \
246        register BN_ULONG ret;          \
247        asm ("mulhdu    %0,%1,%2"       \
248             : "=r"(ret)                \
249             : "r"(a), "r"(b));         \
250        ret;                    })
251#   endif                       /* compiler */
252#  elif (defined(__x86_64) || defined(__x86_64__)) && \
253       (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
254#   if defined(__GNUC__) && __GNUC__>=2
255#    define BN_UMULT_HIGH(a,b)   ({      \
256        register BN_ULONG ret,discard;  \
257        asm ("mulq      %3"             \
258             : "=a"(discard),"=d"(ret)  \
259             : "a"(a), "g"(b)           \
260             : "cc");                   \
261        ret;                    })
262#    define BN_UMULT_LOHI(low,high,a,b)  \
263        asm ("mulq      %3"             \
264                : "=a"(low),"=d"(high)  \
265                : "a"(a),"g"(b)         \
266                : "cc");
267#   endif
268#  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
269#   if defined(_MSC_VER) && _MSC_VER>=1400
270unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
271unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
272                          unsigned __int64 *h);
273#    pragma intrinsic(__umulh,_umul128)
274#    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
275#    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
276#   endif
277#  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
278#   if defined(__GNUC__) && __GNUC__>=2
279#    if __GNUC__>4 || (__GNUC__>=4 && __GNUC_MINOR__>=4)
280                                     /* "h" constraint is no more since 4.4 */
281#     define BN_UMULT_HIGH(a,b)          (((__uint128_t)(a)*(b))>>64)
282#     define BN_UMULT_LOHI(low,high,a,b) ({     \
283        __uint128_t ret=(__uint128_t)(a)*(b);   \
284        (high)=ret>>64; (low)=ret;       })
285#    else
286#     define BN_UMULT_HIGH(a,b) ({      \
287        register BN_ULONG ret;          \
288        asm ("dmultu    %1,%2"          \
289             : "=h"(ret)                \
290             : "r"(a), "r"(b) : "l");   \
291        ret;                    })
292#     define BN_UMULT_LOHI(low,high,a,b)\
293        asm ("dmultu    %2,%3"          \
294             : "=l"(low),"=h"(high)     \
295             : "r"(a), "r"(b));
296#    endif
297#   endif
298#  endif                        /* cpu */
299# endif                         /* OPENSSL_NO_ASM */
300
301/*************************************************************
302 * Using the long long type
303 */
304# define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
305# define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
306
307# ifdef BN_DEBUG_RAND
308#  define bn_clear_top2max(a) \
309        { \
310        int      ind = (a)->dmax - (a)->top; \
311        BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
312        for (; ind != 0; ind--) \
313                *(++ftl) = 0x0; \
314        }
315# else
316#  define bn_clear_top2max(a)
317# endif
318
319# ifdef BN_LLONG
320#  define mul_add(r,a,w,c) { \
321        BN_ULLONG t; \
322        t=(BN_ULLONG)w * (a) + (r) + (c); \
323        (r)= Lw(t); \
324        (c)= Hw(t); \
325        }
326
327#  define mul(r,a,w,c) { \
328        BN_ULLONG t; \
329        t=(BN_ULLONG)w * (a) + (c); \
330        (r)= Lw(t); \
331        (c)= Hw(t); \
332        }
333
334#  define sqr(r0,r1,a) { \
335        BN_ULLONG t; \
336        t=(BN_ULLONG)(a)*(a); \
337        (r0)=Lw(t); \
338        (r1)=Hw(t); \
339        }
340
341# elif defined(BN_UMULT_LOHI)
342#  define mul_add(r,a,w,c) {              \
343        BN_ULONG high,low,ret,tmp=(a);  \
344        ret =  (r);                     \
345        BN_UMULT_LOHI(low,high,w,tmp);  \
346        ret += (c);                     \
347        (c) =  (ret<(c))?1:0;           \
348        (c) += high;                    \
349        ret += low;                     \
350        (c) += (ret<low)?1:0;           \
351        (r) =  ret;                     \
352        }
353
354#  define mul(r,a,w,c)    {               \
355        BN_ULONG high,low,ret,ta=(a);   \
356        BN_UMULT_LOHI(low,high,w,ta);   \
357        ret =  low + (c);               \
358        (c) =  high;                    \
359        (c) += (ret<low)?1:0;           \
360        (r) =  ret;                     \
361        }
362
363#  define sqr(r0,r1,a)    {               \
364        BN_ULONG tmp=(a);               \
365        BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
366        }
367
368# elif defined(BN_UMULT_HIGH)
369#  define mul_add(r,a,w,c) {              \
370        BN_ULONG high,low,ret,tmp=(a);  \
371        ret =  (r);                     \
372        high=  BN_UMULT_HIGH(w,tmp);    \
373        ret += (c);                     \
374        low =  (w) * tmp;               \
375        (c) =  (ret<(c))?1:0;           \
376        (c) += high;                    \
377        ret += low;                     \
378        (c) += (ret<low)?1:0;           \
379        (r) =  ret;                     \
380        }
381
382#  define mul(r,a,w,c)    {               \
383        BN_ULONG high,low,ret,ta=(a);   \
384        low =  (w) * ta;                \
385        high=  BN_UMULT_HIGH(w,ta);     \
386        ret =  low + (c);               \
387        (c) =  high;                    \
388        (c) += (ret<low)?1:0;           \
389        (r) =  ret;                     \
390        }
391
392#  define sqr(r0,r1,a)    {               \
393        BN_ULONG tmp=(a);               \
394        (r0) = tmp * tmp;               \
395        (r1) = BN_UMULT_HIGH(tmp,tmp);  \
396        }
397
398# else
399/*************************************************************
400 * No long long type
401 */
402
403#  define LBITS(a)        ((a)&BN_MASK2l)
404#  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
405#  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
406
407#  define LLBITS(a)       ((a)&BN_MASKl)
408#  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
409#  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
410
411#  define mul64(l,h,bl,bh) \
412        { \
413        BN_ULONG m,m1,lt,ht; \
414 \
415        lt=l; \
416        ht=h; \
417        m =(bh)*(lt); \
418        lt=(bl)*(lt); \
419        m1=(bl)*(ht); \
420        ht =(bh)*(ht); \
421        m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
422        ht+=HBITS(m); \
423        m1=L2HBITS(m); \
424        lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
425        (l)=lt; \
426        (h)=ht; \
427        }
428
429#  define sqr64(lo,ho,in) \
430        { \
431        BN_ULONG l,h,m; \
432 \
433        h=(in); \
434        l=LBITS(h); \
435        h=HBITS(h); \
436        m =(l)*(h); \
437        l*=l; \
438        h*=h; \
439        h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
440        m =(m&BN_MASK2l)<<(BN_BITS4+1); \
441        l=(l+m)&BN_MASK2; if (l < m) h++; \
442        (lo)=l; \
443        (ho)=h; \
444        }
445
446#  define mul_add(r,a,bl,bh,c) { \
447        BN_ULONG l,h; \
448 \
449        h= (a); \
450        l=LBITS(h); \
451        h=HBITS(h); \
452        mul64(l,h,(bl),(bh)); \
453 \
454        /* non-multiply part */ \
455        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
456        (c)=(r); \
457        l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
458        (c)=h&BN_MASK2; \
459        (r)=l; \
460        }
461
462#  define mul(r,a,bl,bh,c) { \
463        BN_ULONG l,h; \
464 \
465        h= (a); \
466        l=LBITS(h); \
467        h=HBITS(h); \
468        mul64(l,h,(bl),(bh)); \
469 \
470        /* non-multiply part */ \
471        l+=(c); if ((l&BN_MASK2) < (c)) h++; \
472        (c)=h&BN_MASK2; \
473        (r)=l&BN_MASK2; \
474        }
475# endif                         /* !BN_LLONG */
476
477# if defined(OPENSSL_DOING_MAKEDEPEND) && defined(OPENSSL_FIPS)
478#  undef bn_div_words
479# endif
480
481void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
482void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
483void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
484void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
485void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
486void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
487int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
488int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
489void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
490                      int dna, int dnb, BN_ULONG *t);
491void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
492                           int n, int tna, int tnb, BN_ULONG *t);
493void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
494void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
495void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
496                          BN_ULONG *t);
497void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
498                 BN_ULONG *t);
499BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
500                           int cl, int dl);
501BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
502                           int cl, int dl);
503int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
504                const BN_ULONG *np, const BN_ULONG *n0, int num);
505
506#ifdef  __cplusplus
507}
508#endif
509
510#endif
511