bn_gcd.c revision 296341
1/* crypto/bn/bn_gcd.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include "cryptlib.h"
113#include "bn_lcl.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118{
119    BIGNUM *a, *b, *t;
120    int ret = 0;
121
122    bn_check_top(in_a);
123    bn_check_top(in_b);
124
125    BN_CTX_start(ctx);
126    a = BN_CTX_get(ctx);
127    b = BN_CTX_get(ctx);
128    if (a == NULL || b == NULL)
129        goto err;
130
131    if (BN_copy(a, in_a) == NULL)
132        goto err;
133    if (BN_copy(b, in_b) == NULL)
134        goto err;
135    a->neg = 0;
136    b->neg = 0;
137
138    if (BN_cmp(a, b) < 0) {
139        t = a;
140        a = b;
141        b = t;
142    }
143    t = euclid(a, b);
144    if (t == NULL)
145        goto err;
146
147    if (BN_copy(r, t) == NULL)
148        goto err;
149    ret = 1;
150 err:
151    BN_CTX_end(ctx);
152    bn_check_top(r);
153    return (ret);
154}
155
156static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
157{
158    BIGNUM *t;
159    int shifts = 0;
160
161    bn_check_top(a);
162    bn_check_top(b);
163
164    /* 0 <= b <= a */
165    while (!BN_is_zero(b)) {
166        /* 0 < b <= a */
167
168        if (BN_is_odd(a)) {
169            if (BN_is_odd(b)) {
170                if (!BN_sub(a, a, b))
171                    goto err;
172                if (!BN_rshift1(a, a))
173                    goto err;
174                if (BN_cmp(a, b) < 0) {
175                    t = a;
176                    a = b;
177                    b = t;
178                }
179            } else {            /* a odd - b even */
180
181                if (!BN_rshift1(b, b))
182                    goto err;
183                if (BN_cmp(a, b) < 0) {
184                    t = a;
185                    a = b;
186                    b = t;
187                }
188            }
189        } else {                /* a is even */
190
191            if (BN_is_odd(b)) {
192                if (!BN_rshift1(a, a))
193                    goto err;
194                if (BN_cmp(a, b) < 0) {
195                    t = a;
196                    a = b;
197                    b = t;
198                }
199            } else {            /* a even - b even */
200
201                if (!BN_rshift1(a, a))
202                    goto err;
203                if (!BN_rshift1(b, b))
204                    goto err;
205                shifts++;
206            }
207        }
208        /* 0 <= b <= a */
209    }
210
211    if (shifts) {
212        if (!BN_lshift(a, a, shifts))
213            goto err;
214    }
215    bn_check_top(a);
216    return (a);
217 err:
218    return (NULL);
219}
220
221/* solves ax == 1 (mod n) */
222static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
223                                        const BIGNUM *a, const BIGNUM *n,
224                                        BN_CTX *ctx);
225
226BIGNUM *BN_mod_inverse(BIGNUM *in,
227                       const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
228{
229    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
230    BIGNUM *ret = NULL;
231    int sign;
232
233    if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)
234        || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
235        return BN_mod_inverse_no_branch(in, a, n, ctx);
236    }
237
238    bn_check_top(a);
239    bn_check_top(n);
240
241    BN_CTX_start(ctx);
242    A = BN_CTX_get(ctx);
243    B = BN_CTX_get(ctx);
244    X = BN_CTX_get(ctx);
245    D = BN_CTX_get(ctx);
246    M = BN_CTX_get(ctx);
247    Y = BN_CTX_get(ctx);
248    T = BN_CTX_get(ctx);
249    if (T == NULL)
250        goto err;
251
252    if (in == NULL)
253        R = BN_new();
254    else
255        R = in;
256    if (R == NULL)
257        goto err;
258
259    BN_one(X);
260    BN_zero(Y);
261    if (BN_copy(B, a) == NULL)
262        goto err;
263    if (BN_copy(A, n) == NULL)
264        goto err;
265    A->neg = 0;
266    if (B->neg || (BN_ucmp(B, A) >= 0)) {
267        if (!BN_nnmod(B, B, A, ctx))
268            goto err;
269    }
270    sign = -1;
271    /*-
272     * From  B = a mod |n|,  A = |n|  it follows that
273     *
274     *      0 <= B < A,
275     *     -sign*X*a  ==  B   (mod |n|),
276     *      sign*Y*a  ==  A   (mod |n|).
277     */
278
279    if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) {
280        /*
281         * Binary inversion algorithm; requires odd modulus. This is faster
282         * than the general algorithm if the modulus is sufficiently small
283         * (about 400 .. 500 bits on 32-bit sytems, but much more on 64-bit
284         * systems)
285         */
286        int shift;
287
288        while (!BN_is_zero(B)) {
289            /*-
290             *      0 < B < |n|,
291             *      0 < A <= |n|,
292             * (1) -sign*X*a  ==  B   (mod |n|),
293             * (2)  sign*Y*a  ==  A   (mod |n|)
294             */
295
296            /*
297             * Now divide B by the maximum possible power of two in the
298             * integers, and divide X by the same value mod |n|. When we're
299             * done, (1) still holds.
300             */
301            shift = 0;
302            while (!BN_is_bit_set(B, shift)) { /* note that 0 < B */
303                shift++;
304
305                if (BN_is_odd(X)) {
306                    if (!BN_uadd(X, X, n))
307                        goto err;
308                }
309                /*
310                 * now X is even, so we can easily divide it by two
311                 */
312                if (!BN_rshift1(X, X))
313                    goto err;
314            }
315            if (shift > 0) {
316                if (!BN_rshift(B, B, shift))
317                    goto err;
318            }
319
320            /*
321             * Same for A and Y.  Afterwards, (2) still holds.
322             */
323            shift = 0;
324            while (!BN_is_bit_set(A, shift)) { /* note that 0 < A */
325                shift++;
326
327                if (BN_is_odd(Y)) {
328                    if (!BN_uadd(Y, Y, n))
329                        goto err;
330                }
331                /* now Y is even */
332                if (!BN_rshift1(Y, Y))
333                    goto err;
334            }
335            if (shift > 0) {
336                if (!BN_rshift(A, A, shift))
337                    goto err;
338            }
339
340            /*-
341             * We still have (1) and (2).
342             * Both  A  and  B  are odd.
343             * The following computations ensure that
344             *
345             *     0 <= B < |n|,
346             *      0 < A < |n|,
347             * (1) -sign*X*a  ==  B   (mod |n|),
348             * (2)  sign*Y*a  ==  A   (mod |n|),
349             *
350             * and that either  A  or  B  is even in the next iteration.
351             */
352            if (BN_ucmp(B, A) >= 0) {
353                /* -sign*(X + Y)*a == B - A  (mod |n|) */
354                if (!BN_uadd(X, X, Y))
355                    goto err;
356                /*
357                 * NB: we could use BN_mod_add_quick(X, X, Y, n), but that
358                 * actually makes the algorithm slower
359                 */
360                if (!BN_usub(B, B, A))
361                    goto err;
362            } else {
363                /*  sign*(X + Y)*a == A - B  (mod |n|) */
364                if (!BN_uadd(Y, Y, X))
365                    goto err;
366                /*
367                 * as above, BN_mod_add_quick(Y, Y, X, n) would slow things
368                 * down
369                 */
370                if (!BN_usub(A, A, B))
371                    goto err;
372            }
373        }
374    } else {
375        /* general inversion algorithm */
376
377        while (!BN_is_zero(B)) {
378            BIGNUM *tmp;
379
380            /*-
381             *      0 < B < A,
382             * (*) -sign*X*a  ==  B   (mod |n|),
383             *      sign*Y*a  ==  A   (mod |n|)
384             */
385
386            /* (D, M) := (A/B, A%B) ... */
387            if (BN_num_bits(A) == BN_num_bits(B)) {
388                if (!BN_one(D))
389                    goto err;
390                if (!BN_sub(M, A, B))
391                    goto err;
392            } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
393                /* A/B is 1, 2, or 3 */
394                if (!BN_lshift1(T, B))
395                    goto err;
396                if (BN_ucmp(A, T) < 0) {
397                    /* A < 2*B, so D=1 */
398                    if (!BN_one(D))
399                        goto err;
400                    if (!BN_sub(M, A, B))
401                        goto err;
402                } else {
403                    /* A >= 2*B, so D=2 or D=3 */
404                    if (!BN_sub(M, A, T))
405                        goto err;
406                    if (!BN_add(D, T, B))
407                        goto err; /* use D (:= 3*B) as temp */
408                    if (BN_ucmp(A, D) < 0) {
409                        /* A < 3*B, so D=2 */
410                        if (!BN_set_word(D, 2))
411                            goto err;
412                        /*
413                         * M (= A - 2*B) already has the correct value
414                         */
415                    } else {
416                        /* only D=3 remains */
417                        if (!BN_set_word(D, 3))
418                            goto err;
419                        /*
420                         * currently M = A - 2*B, but we need M = A - 3*B
421                         */
422                        if (!BN_sub(M, M, B))
423                            goto err;
424                    }
425                }
426            } else {
427                if (!BN_div(D, M, A, B, ctx))
428                    goto err;
429            }
430
431            /*-
432             * Now
433             *      A = D*B + M;
434             * thus we have
435             * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
436             */
437
438            tmp = A;            /* keep the BIGNUM object, the value does not
439                                 * matter */
440
441            /* (A, B) := (B, A mod B) ... */
442            A = B;
443            B = M;
444            /* ... so we have  0 <= B < A  again */
445
446            /*-
447             * Since the former  M  is now  B  and the former  B  is now  A,
448             * (**) translates into
449             *       sign*Y*a  ==  D*A + B    (mod |n|),
450             * i.e.
451             *       sign*Y*a - D*A  ==  B    (mod |n|).
452             * Similarly, (*) translates into
453             *      -sign*X*a  ==  A          (mod |n|).
454             *
455             * Thus,
456             *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
457             * i.e.
458             *        sign*(Y + D*X)*a  ==  B  (mod |n|).
459             *
460             * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
461             *      -sign*X*a  ==  B   (mod |n|),
462             *       sign*Y*a  ==  A   (mod |n|).
463             * Note that  X  and  Y  stay non-negative all the time.
464             */
465
466            /*
467             * most of the time D is very small, so we can optimize tmp :=
468             * D*X+Y
469             */
470            if (BN_is_one(D)) {
471                if (!BN_add(tmp, X, Y))
472                    goto err;
473            } else {
474                if (BN_is_word(D, 2)) {
475                    if (!BN_lshift1(tmp, X))
476                        goto err;
477                } else if (BN_is_word(D, 4)) {
478                    if (!BN_lshift(tmp, X, 2))
479                        goto err;
480                } else if (D->top == 1) {
481                    if (!BN_copy(tmp, X))
482                        goto err;
483                    if (!BN_mul_word(tmp, D->d[0]))
484                        goto err;
485                } else {
486                    if (!BN_mul(tmp, D, X, ctx))
487                        goto err;
488                }
489                if (!BN_add(tmp, tmp, Y))
490                    goto err;
491            }
492
493            M = Y;              /* keep the BIGNUM object, the value does not
494                                 * matter */
495            Y = X;
496            X = tmp;
497            sign = -sign;
498        }
499    }
500
501    /*-
502     * The while loop (Euclid's algorithm) ends when
503     *      A == gcd(a,n);
504     * we have
505     *       sign*Y*a  ==  A  (mod |n|),
506     * where  Y  is non-negative.
507     */
508
509    if (sign < 0) {
510        if (!BN_sub(Y, n, Y))
511            goto err;
512    }
513    /* Now  Y*a  ==  A  (mod |n|).  */
514
515    if (BN_is_one(A)) {
516        /* Y*a == 1  (mod |n|) */
517        if (!Y->neg && BN_ucmp(Y, n) < 0) {
518            if (!BN_copy(R, Y))
519                goto err;
520        } else {
521            if (!BN_nnmod(R, Y, n, ctx))
522                goto err;
523        }
524    } else {
525        BNerr(BN_F_BN_MOD_INVERSE, BN_R_NO_INVERSE);
526        goto err;
527    }
528    ret = R;
529 err:
530    if ((ret == NULL) && (in == NULL))
531        BN_free(R);
532    BN_CTX_end(ctx);
533    bn_check_top(ret);
534    return (ret);
535}
536
537/*
538 * BN_mod_inverse_no_branch is a special version of BN_mod_inverse. It does
539 * not contain branches that may leak sensitive information.
540 */
541static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in,
542                                        const BIGNUM *a, const BIGNUM *n,
543                                        BN_CTX *ctx)
544{
545    BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
546    BIGNUM local_A, local_B;
547    BIGNUM *pA, *pB;
548    BIGNUM *ret = NULL;
549    int sign;
550
551    bn_check_top(a);
552    bn_check_top(n);
553
554    BN_CTX_start(ctx);
555    A = BN_CTX_get(ctx);
556    B = BN_CTX_get(ctx);
557    X = BN_CTX_get(ctx);
558    D = BN_CTX_get(ctx);
559    M = BN_CTX_get(ctx);
560    Y = BN_CTX_get(ctx);
561    T = BN_CTX_get(ctx);
562    if (T == NULL)
563        goto err;
564
565    if (in == NULL)
566        R = BN_new();
567    else
568        R = in;
569    if (R == NULL)
570        goto err;
571
572    BN_one(X);
573    BN_zero(Y);
574    if (BN_copy(B, a) == NULL)
575        goto err;
576    if (BN_copy(A, n) == NULL)
577        goto err;
578    A->neg = 0;
579
580    if (B->neg || (BN_ucmp(B, A) >= 0)) {
581        /*
582         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
583         * BN_div_no_branch will be called eventually.
584         */
585        pB = &local_B;
586        BN_with_flags(pB, B, BN_FLG_CONSTTIME);
587        if (!BN_nnmod(B, pB, A, ctx))
588            goto err;
589    }
590    sign = -1;
591    /*-
592     * From  B = a mod |n|,  A = |n|  it follows that
593     *
594     *      0 <= B < A,
595     *     -sign*X*a  ==  B   (mod |n|),
596     *      sign*Y*a  ==  A   (mod |n|).
597     */
598
599    while (!BN_is_zero(B)) {
600        BIGNUM *tmp;
601
602        /*-
603         *      0 < B < A,
604         * (*) -sign*X*a  ==  B   (mod |n|),
605         *      sign*Y*a  ==  A   (mod |n|)
606         */
607
608        /*
609         * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
610         * BN_div_no_branch will be called eventually.
611         */
612        pA = &local_A;
613        BN_with_flags(pA, A, BN_FLG_CONSTTIME);
614
615        /* (D, M) := (A/B, A%B) ... */
616        if (!BN_div(D, M, pA, B, ctx))
617            goto err;
618
619        /*-
620         * Now
621         *      A = D*B + M;
622         * thus we have
623         * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
624         */
625
626        tmp = A;                /* keep the BIGNUM object, the value does not
627                                 * matter */
628
629        /* (A, B) := (B, A mod B) ... */
630        A = B;
631        B = M;
632        /* ... so we have  0 <= B < A  again */
633
634        /*-
635         * Since the former  M  is now  B  and the former  B  is now  A,
636         * (**) translates into
637         *       sign*Y*a  ==  D*A + B    (mod |n|),
638         * i.e.
639         *       sign*Y*a - D*A  ==  B    (mod |n|).
640         * Similarly, (*) translates into
641         *      -sign*X*a  ==  A          (mod |n|).
642         *
643         * Thus,
644         *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
645         * i.e.
646         *        sign*(Y + D*X)*a  ==  B  (mod |n|).
647         *
648         * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
649         *      -sign*X*a  ==  B   (mod |n|),
650         *       sign*Y*a  ==  A   (mod |n|).
651         * Note that  X  and  Y  stay non-negative all the time.
652         */
653
654        if (!BN_mul(tmp, D, X, ctx))
655            goto err;
656        if (!BN_add(tmp, tmp, Y))
657            goto err;
658
659        M = Y;                  /* keep the BIGNUM object, the value does not
660                                 * matter */
661        Y = X;
662        X = tmp;
663        sign = -sign;
664    }
665
666    /*-
667     * The while loop (Euclid's algorithm) ends when
668     *      A == gcd(a,n);
669     * we have
670     *       sign*Y*a  ==  A  (mod |n|),
671     * where  Y  is non-negative.
672     */
673
674    if (sign < 0) {
675        if (!BN_sub(Y, n, Y))
676            goto err;
677    }
678    /* Now  Y*a  ==  A  (mod |n|).  */
679
680    if (BN_is_one(A)) {
681        /* Y*a == 1  (mod |n|) */
682        if (!Y->neg && BN_ucmp(Y, n) < 0) {
683            if (!BN_copy(R, Y))
684                goto err;
685        } else {
686            if (!BN_nnmod(R, Y, n, ctx))
687                goto err;
688        }
689    } else {
690        BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH, BN_R_NO_INVERSE);
691        goto err;
692    }
693    ret = R;
694 err:
695    if ((ret == NULL) && (in == NULL))
696        BN_free(R);
697    BN_CTX_end(ctx);
698    bn_check_top(ret);
699    return (ret);
700}
701