key.c revision 149753
1/*
2 * read_bignum():
3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
4 *
5 * As far as I am concerned, the code I have written for this software
6 * can be used freely for any purpose.  Any derived versions of this
7 * software must be clearly marked as such, and if the derived work is
8 * incompatible with the protocol description in the RFC file, it must be
9 * called by a name other than "ssh" or "Secure Shell".
10 *
11 *
12 * Copyright (c) 2000, 2001 Markus Friedl.  All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34#include "includes.h"
35RCSID("$OpenBSD: key.c,v 1.58 2005/06/17 02:44:32 djm Exp $");
36
37#include <openssl/evp.h>
38
39#include "xmalloc.h"
40#include "key.h"
41#include "rsa.h"
42#include "uuencode.h"
43#include "buffer.h"
44#include "bufaux.h"
45#include "log.h"
46
47Key *
48key_new(int type)
49{
50	Key *k;
51	RSA *rsa;
52	DSA *dsa;
53	k = xmalloc(sizeof(*k));
54	k->type = type;
55	k->flags = 0;
56	k->dsa = NULL;
57	k->rsa = NULL;
58	switch (k->type) {
59	case KEY_RSA1:
60	case KEY_RSA:
61		if ((rsa = RSA_new()) == NULL)
62			fatal("key_new: RSA_new failed");
63		if ((rsa->n = BN_new()) == NULL)
64			fatal("key_new: BN_new failed");
65		if ((rsa->e = BN_new()) == NULL)
66			fatal("key_new: BN_new failed");
67		k->rsa = rsa;
68		break;
69	case KEY_DSA:
70		if ((dsa = DSA_new()) == NULL)
71			fatal("key_new: DSA_new failed");
72		if ((dsa->p = BN_new()) == NULL)
73			fatal("key_new: BN_new failed");
74		if ((dsa->q = BN_new()) == NULL)
75			fatal("key_new: BN_new failed");
76		if ((dsa->g = BN_new()) == NULL)
77			fatal("key_new: BN_new failed");
78		if ((dsa->pub_key = BN_new()) == NULL)
79			fatal("key_new: BN_new failed");
80		k->dsa = dsa;
81		break;
82	case KEY_UNSPEC:
83		break;
84	default:
85		fatal("key_new: bad key type %d", k->type);
86		break;
87	}
88	return k;
89}
90
91Key *
92key_new_private(int type)
93{
94	Key *k = key_new(type);
95	switch (k->type) {
96	case KEY_RSA1:
97	case KEY_RSA:
98		if ((k->rsa->d = BN_new()) == NULL)
99			fatal("key_new_private: BN_new failed");
100		if ((k->rsa->iqmp = BN_new()) == NULL)
101			fatal("key_new_private: BN_new failed");
102		if ((k->rsa->q = BN_new()) == NULL)
103			fatal("key_new_private: BN_new failed");
104		if ((k->rsa->p = BN_new()) == NULL)
105			fatal("key_new_private: BN_new failed");
106		if ((k->rsa->dmq1 = BN_new()) == NULL)
107			fatal("key_new_private: BN_new failed");
108		if ((k->rsa->dmp1 = BN_new()) == NULL)
109			fatal("key_new_private: BN_new failed");
110		break;
111	case KEY_DSA:
112		if ((k->dsa->priv_key = BN_new()) == NULL)
113			fatal("key_new_private: BN_new failed");
114		break;
115	case KEY_UNSPEC:
116		break;
117	default:
118		break;
119	}
120	return k;
121}
122
123void
124key_free(Key *k)
125{
126	switch (k->type) {
127	case KEY_RSA1:
128	case KEY_RSA:
129		if (k->rsa != NULL)
130			RSA_free(k->rsa);
131		k->rsa = NULL;
132		break;
133	case KEY_DSA:
134		if (k->dsa != NULL)
135			DSA_free(k->dsa);
136		k->dsa = NULL;
137		break;
138	case KEY_UNSPEC:
139		break;
140	default:
141		fatal("key_free: bad key type %d", k->type);
142		break;
143	}
144	xfree(k);
145}
146
147int
148key_equal(const Key *a, const Key *b)
149{
150	if (a == NULL || b == NULL || a->type != b->type)
151		return 0;
152	switch (a->type) {
153	case KEY_RSA1:
154	case KEY_RSA:
155		return a->rsa != NULL && b->rsa != NULL &&
156		    BN_cmp(a->rsa->e, b->rsa->e) == 0 &&
157		    BN_cmp(a->rsa->n, b->rsa->n) == 0;
158		break;
159	case KEY_DSA:
160		return a->dsa != NULL && b->dsa != NULL &&
161		    BN_cmp(a->dsa->p, b->dsa->p) == 0 &&
162		    BN_cmp(a->dsa->q, b->dsa->q) == 0 &&
163		    BN_cmp(a->dsa->g, b->dsa->g) == 0 &&
164		    BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0;
165		break;
166	default:
167		fatal("key_equal: bad key type %d", a->type);
168		break;
169	}
170	return 0;
171}
172
173u_char*
174key_fingerprint_raw(const Key *k, enum fp_type dgst_type,
175    u_int *dgst_raw_length)
176{
177	const EVP_MD *md = NULL;
178	EVP_MD_CTX ctx;
179	u_char *blob = NULL;
180	u_char *retval = NULL;
181	u_int len = 0;
182	int nlen, elen;
183
184	*dgst_raw_length = 0;
185
186	switch (dgst_type) {
187	case SSH_FP_MD5:
188		md = EVP_md5();
189		break;
190	case SSH_FP_SHA1:
191		md = EVP_sha1();
192		break;
193	default:
194		fatal("key_fingerprint_raw: bad digest type %d",
195		    dgst_type);
196	}
197	switch (k->type) {
198	case KEY_RSA1:
199		nlen = BN_num_bytes(k->rsa->n);
200		elen = BN_num_bytes(k->rsa->e);
201		len = nlen + elen;
202		blob = xmalloc(len);
203		BN_bn2bin(k->rsa->n, blob);
204		BN_bn2bin(k->rsa->e, blob + nlen);
205		break;
206	case KEY_DSA:
207	case KEY_RSA:
208		key_to_blob(k, &blob, &len);
209		break;
210	case KEY_UNSPEC:
211		return retval;
212		break;
213	default:
214		fatal("key_fingerprint_raw: bad key type %d", k->type);
215		break;
216	}
217	if (blob != NULL) {
218		retval = xmalloc(EVP_MAX_MD_SIZE);
219		EVP_DigestInit(&ctx, md);
220		EVP_DigestUpdate(&ctx, blob, len);
221		EVP_DigestFinal(&ctx, retval, dgst_raw_length);
222		memset(blob, 0, len);
223		xfree(blob);
224	} else {
225		fatal("key_fingerprint_raw: blob is null");
226	}
227	return retval;
228}
229
230static char *
231key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len)
232{
233	char *retval;
234	u_int i;
235
236	retval = xmalloc(dgst_raw_len * 3 + 1);
237	retval[0] = '\0';
238	for (i = 0; i < dgst_raw_len; i++) {
239		char hex[4];
240		snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]);
241		strlcat(retval, hex, dgst_raw_len * 3 + 1);
242	}
243
244	/* Remove the trailing ':' character */
245	retval[(dgst_raw_len * 3) - 1] = '\0';
246	return retval;
247}
248
249static char *
250key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len)
251{
252	char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' };
253	char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm',
254	    'n', 'p', 'r', 's', 't', 'v', 'z', 'x' };
255	u_int i, j = 0, rounds, seed = 1;
256	char *retval;
257
258	rounds = (dgst_raw_len / 2) + 1;
259	retval = xmalloc(sizeof(char) * (rounds*6));
260	retval[j++] = 'x';
261	for (i = 0; i < rounds; i++) {
262		u_int idx0, idx1, idx2, idx3, idx4;
263		if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) {
264			idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) +
265			    seed) % 6;
266			idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15;
267			idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) +
268			    (seed / 6)) % 6;
269			retval[j++] = vowels[idx0];
270			retval[j++] = consonants[idx1];
271			retval[j++] = vowels[idx2];
272			if ((i + 1) < rounds) {
273				idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15;
274				idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15;
275				retval[j++] = consonants[idx3];
276				retval[j++] = '-';
277				retval[j++] = consonants[idx4];
278				seed = ((seed * 5) +
279				    ((((u_int)(dgst_raw[2 * i])) * 7) +
280				    ((u_int)(dgst_raw[(2 * i) + 1])))) % 36;
281			}
282		} else {
283			idx0 = seed % 6;
284			idx1 = 16;
285			idx2 = seed / 6;
286			retval[j++] = vowels[idx0];
287			retval[j++] = consonants[idx1];
288			retval[j++] = vowels[idx2];
289		}
290	}
291	retval[j++] = 'x';
292	retval[j++] = '\0';
293	return retval;
294}
295
296char *
297key_fingerprint(const Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep)
298{
299	char *retval = NULL;
300	u_char *dgst_raw;
301	u_int dgst_raw_len;
302
303	dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len);
304	if (!dgst_raw)
305		fatal("key_fingerprint: null from key_fingerprint_raw()");
306	switch (dgst_rep) {
307	case SSH_FP_HEX:
308		retval = key_fingerprint_hex(dgst_raw, dgst_raw_len);
309		break;
310	case SSH_FP_BUBBLEBABBLE:
311		retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len);
312		break;
313	default:
314		fatal("key_fingerprint_ex: bad digest representation %d",
315		    dgst_rep);
316		break;
317	}
318	memset(dgst_raw, 0, dgst_raw_len);
319	xfree(dgst_raw);
320	return retval;
321}
322
323/*
324 * Reads a multiple-precision integer in decimal from the buffer, and advances
325 * the pointer.  The integer must already be initialized.  This function is
326 * permitted to modify the buffer.  This leaves *cpp to point just beyond the
327 * last processed (and maybe modified) character.  Note that this may modify
328 * the buffer containing the number.
329 */
330static int
331read_bignum(char **cpp, BIGNUM * value)
332{
333	char *cp = *cpp;
334	int old;
335
336	/* Skip any leading whitespace. */
337	for (; *cp == ' ' || *cp == '\t'; cp++)
338		;
339
340	/* Check that it begins with a decimal digit. */
341	if (*cp < '0' || *cp > '9')
342		return 0;
343
344	/* Save starting position. */
345	*cpp = cp;
346
347	/* Move forward until all decimal digits skipped. */
348	for (; *cp >= '0' && *cp <= '9'; cp++)
349		;
350
351	/* Save the old terminating character, and replace it by \0. */
352	old = *cp;
353	*cp = 0;
354
355	/* Parse the number. */
356	if (BN_dec2bn(&value, *cpp) == 0)
357		return 0;
358
359	/* Restore old terminating character. */
360	*cp = old;
361
362	/* Move beyond the number and return success. */
363	*cpp = cp;
364	return 1;
365}
366
367static int
368write_bignum(FILE *f, BIGNUM *num)
369{
370	char *buf = BN_bn2dec(num);
371	if (buf == NULL) {
372		error("write_bignum: BN_bn2dec() failed");
373		return 0;
374	}
375	fprintf(f, " %s", buf);
376	OPENSSL_free(buf);
377	return 1;
378}
379
380/* returns 1 ok, -1 error */
381int
382key_read(Key *ret, char **cpp)
383{
384	Key *k;
385	int success = -1;
386	char *cp, *space;
387	int len, n, type;
388	u_int bits;
389	u_char *blob;
390
391	cp = *cpp;
392
393	switch (ret->type) {
394	case KEY_RSA1:
395		/* Get number of bits. */
396		if (*cp < '0' || *cp > '9')
397			return -1;	/* Bad bit count... */
398		for (bits = 0; *cp >= '0' && *cp <= '9'; cp++)
399			bits = 10 * bits + *cp - '0';
400		if (bits == 0)
401			return -1;
402		*cpp = cp;
403		/* Get public exponent, public modulus. */
404		if (!read_bignum(cpp, ret->rsa->e))
405			return -1;
406		if (!read_bignum(cpp, ret->rsa->n))
407			return -1;
408		success = 1;
409		break;
410	case KEY_UNSPEC:
411	case KEY_RSA:
412	case KEY_DSA:
413		space = strchr(cp, ' ');
414		if (space == NULL) {
415			debug3("key_read: missing whitespace");
416			return -1;
417		}
418		*space = '\0';
419		type = key_type_from_name(cp);
420		*space = ' ';
421		if (type == KEY_UNSPEC) {
422			debug3("key_read: missing keytype");
423			return -1;
424		}
425		cp = space+1;
426		if (*cp == '\0') {
427			debug3("key_read: short string");
428			return -1;
429		}
430		if (ret->type == KEY_UNSPEC) {
431			ret->type = type;
432		} else if (ret->type != type) {
433			/* is a key, but different type */
434			debug3("key_read: type mismatch");
435			return -1;
436		}
437		len = 2*strlen(cp);
438		blob = xmalloc(len);
439		n = uudecode(cp, blob, len);
440		if (n < 0) {
441			error("key_read: uudecode %s failed", cp);
442			xfree(blob);
443			return -1;
444		}
445		k = key_from_blob(blob, (u_int)n);
446		xfree(blob);
447		if (k == NULL) {
448			error("key_read: key_from_blob %s failed", cp);
449			return -1;
450		}
451		if (k->type != type) {
452			error("key_read: type mismatch: encoding error");
453			key_free(k);
454			return -1;
455		}
456/*XXXX*/
457		if (ret->type == KEY_RSA) {
458			if (ret->rsa != NULL)
459				RSA_free(ret->rsa);
460			ret->rsa = k->rsa;
461			k->rsa = NULL;
462			success = 1;
463#ifdef DEBUG_PK
464			RSA_print_fp(stderr, ret->rsa, 8);
465#endif
466		} else {
467			if (ret->dsa != NULL)
468				DSA_free(ret->dsa);
469			ret->dsa = k->dsa;
470			k->dsa = NULL;
471			success = 1;
472#ifdef DEBUG_PK
473			DSA_print_fp(stderr, ret->dsa, 8);
474#endif
475		}
476/*XXXX*/
477		key_free(k);
478		if (success != 1)
479			break;
480		/* advance cp: skip whitespace and data */
481		while (*cp == ' ' || *cp == '\t')
482			cp++;
483		while (*cp != '\0' && *cp != ' ' && *cp != '\t')
484			cp++;
485		*cpp = cp;
486		break;
487	default:
488		fatal("key_read: bad key type: %d", ret->type);
489		break;
490	}
491	return success;
492}
493
494int
495key_write(const Key *key, FILE *f)
496{
497	int n, success = 0;
498	u_int len, bits = 0;
499	u_char *blob;
500	char *uu;
501
502	if (key->type == KEY_RSA1 && key->rsa != NULL) {
503		/* size of modulus 'n' */
504		bits = BN_num_bits(key->rsa->n);
505		fprintf(f, "%u", bits);
506		if (write_bignum(f, key->rsa->e) &&
507		    write_bignum(f, key->rsa->n)) {
508			success = 1;
509		} else {
510			error("key_write: failed for RSA key");
511		}
512	} else if ((key->type == KEY_DSA && key->dsa != NULL) ||
513	    (key->type == KEY_RSA && key->rsa != NULL)) {
514		key_to_blob(key, &blob, &len);
515		uu = xmalloc(2*len);
516		n = uuencode(blob, len, uu, 2*len);
517		if (n > 0) {
518			fprintf(f, "%s %s", key_ssh_name(key), uu);
519			success = 1;
520		}
521		xfree(blob);
522		xfree(uu);
523	}
524	return success;
525}
526
527const char *
528key_type(const Key *k)
529{
530	switch (k->type) {
531	case KEY_RSA1:
532		return "RSA1";
533		break;
534	case KEY_RSA:
535		return "RSA";
536		break;
537	case KEY_DSA:
538		return "DSA";
539		break;
540	}
541	return "unknown";
542}
543
544const char *
545key_ssh_name(const Key *k)
546{
547	switch (k->type) {
548	case KEY_RSA:
549		return "ssh-rsa";
550		break;
551	case KEY_DSA:
552		return "ssh-dss";
553		break;
554	}
555	return "ssh-unknown";
556}
557
558u_int
559key_size(const Key *k)
560{
561	switch (k->type) {
562	case KEY_RSA1:
563	case KEY_RSA:
564		return BN_num_bits(k->rsa->n);
565		break;
566	case KEY_DSA:
567		return BN_num_bits(k->dsa->p);
568		break;
569	}
570	return 0;
571}
572
573static RSA *
574rsa_generate_private_key(u_int bits)
575{
576	RSA *private;
577	private = RSA_generate_key(bits, 35, NULL, NULL);
578	if (private == NULL)
579		fatal("rsa_generate_private_key: key generation failed.");
580	return private;
581}
582
583static DSA*
584dsa_generate_private_key(u_int bits)
585{
586	DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL);
587	if (private == NULL)
588		fatal("dsa_generate_private_key: DSA_generate_parameters failed");
589	if (!DSA_generate_key(private))
590		fatal("dsa_generate_private_key: DSA_generate_key failed.");
591	if (private == NULL)
592		fatal("dsa_generate_private_key: NULL.");
593	return private;
594}
595
596Key *
597key_generate(int type, u_int bits)
598{
599	Key *k = key_new(KEY_UNSPEC);
600	switch (type) {
601	case KEY_DSA:
602		k->dsa = dsa_generate_private_key(bits);
603		break;
604	case KEY_RSA:
605	case KEY_RSA1:
606		k->rsa = rsa_generate_private_key(bits);
607		break;
608	default:
609		fatal("key_generate: unknown type %d", type);
610	}
611	k->type = type;
612	return k;
613}
614
615Key *
616key_from_private(const Key *k)
617{
618	Key *n = NULL;
619	switch (k->type) {
620	case KEY_DSA:
621		n = key_new(k->type);
622		BN_copy(n->dsa->p, k->dsa->p);
623		BN_copy(n->dsa->q, k->dsa->q);
624		BN_copy(n->dsa->g, k->dsa->g);
625		BN_copy(n->dsa->pub_key, k->dsa->pub_key);
626		break;
627	case KEY_RSA:
628	case KEY_RSA1:
629		n = key_new(k->type);
630		BN_copy(n->rsa->n, k->rsa->n);
631		BN_copy(n->rsa->e, k->rsa->e);
632		break;
633	default:
634		fatal("key_from_private: unknown type %d", k->type);
635		break;
636	}
637	return n;
638}
639
640int
641key_type_from_name(char *name)
642{
643	if (strcmp(name, "rsa1") == 0) {
644		return KEY_RSA1;
645	} else if (strcmp(name, "rsa") == 0) {
646		return KEY_RSA;
647	} else if (strcmp(name, "dsa") == 0) {
648		return KEY_DSA;
649	} else if (strcmp(name, "ssh-rsa") == 0) {
650		return KEY_RSA;
651	} else if (strcmp(name, "ssh-dss") == 0) {
652		return KEY_DSA;
653	}
654	debug2("key_type_from_name: unknown key type '%s'", name);
655	return KEY_UNSPEC;
656}
657
658int
659key_names_valid2(const char *names)
660{
661	char *s, *cp, *p;
662
663	if (names == NULL || strcmp(names, "") == 0)
664		return 0;
665	s = cp = xstrdup(names);
666	for ((p = strsep(&cp, ",")); p && *p != '\0';
667	    (p = strsep(&cp, ","))) {
668		switch (key_type_from_name(p)) {
669		case KEY_RSA1:
670		case KEY_UNSPEC:
671			xfree(s);
672			return 0;
673		}
674	}
675	debug3("key names ok: [%s]", names);
676	xfree(s);
677	return 1;
678}
679
680Key *
681key_from_blob(const u_char *blob, u_int blen)
682{
683	Buffer b;
684	int rlen, type;
685	char *ktype = NULL;
686	Key *key = NULL;
687
688#ifdef DEBUG_PK
689	dump_base64(stderr, blob, blen);
690#endif
691	buffer_init(&b);
692	buffer_append(&b, blob, blen);
693	if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) {
694		error("key_from_blob: can't read key type");
695		goto out;
696	}
697
698	type = key_type_from_name(ktype);
699
700	switch (type) {
701	case KEY_RSA:
702		key = key_new(type);
703		if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 ||
704		    buffer_get_bignum2_ret(&b, key->rsa->n) == -1) {
705			error("key_from_blob: can't read rsa key");
706			key_free(key);
707			key = NULL;
708			goto out;
709		}
710#ifdef DEBUG_PK
711		RSA_print_fp(stderr, key->rsa, 8);
712#endif
713		break;
714	case KEY_DSA:
715		key = key_new(type);
716		if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 ||
717		    buffer_get_bignum2_ret(&b, key->dsa->q) == -1 ||
718		    buffer_get_bignum2_ret(&b, key->dsa->g) == -1 ||
719		    buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) {
720			error("key_from_blob: can't read dsa key");
721			key_free(key);
722			key = NULL;
723			goto out;
724		}
725#ifdef DEBUG_PK
726		DSA_print_fp(stderr, key->dsa, 8);
727#endif
728		break;
729	case KEY_UNSPEC:
730		key = key_new(type);
731		break;
732	default:
733		error("key_from_blob: cannot handle type %s", ktype);
734		goto out;
735	}
736	rlen = buffer_len(&b);
737	if (key != NULL && rlen != 0)
738		error("key_from_blob: remaining bytes in key blob %d", rlen);
739 out:
740	if (ktype != NULL)
741		xfree(ktype);
742	buffer_free(&b);
743	return key;
744}
745
746int
747key_to_blob(const Key *key, u_char **blobp, u_int *lenp)
748{
749	Buffer b;
750	int len;
751
752	if (key == NULL) {
753		error("key_to_blob: key == NULL");
754		return 0;
755	}
756	buffer_init(&b);
757	switch (key->type) {
758	case KEY_DSA:
759		buffer_put_cstring(&b, key_ssh_name(key));
760		buffer_put_bignum2(&b, key->dsa->p);
761		buffer_put_bignum2(&b, key->dsa->q);
762		buffer_put_bignum2(&b, key->dsa->g);
763		buffer_put_bignum2(&b, key->dsa->pub_key);
764		break;
765	case KEY_RSA:
766		buffer_put_cstring(&b, key_ssh_name(key));
767		buffer_put_bignum2(&b, key->rsa->e);
768		buffer_put_bignum2(&b, key->rsa->n);
769		break;
770	default:
771		error("key_to_blob: unsupported key type %d", key->type);
772		buffer_free(&b);
773		return 0;
774	}
775	len = buffer_len(&b);
776	if (lenp != NULL)
777		*lenp = len;
778	if (blobp != NULL) {
779		*blobp = xmalloc(len);
780		memcpy(*blobp, buffer_ptr(&b), len);
781	}
782	memset(buffer_ptr(&b), 0, len);
783	buffer_free(&b);
784	return len;
785}
786
787int
788key_sign(
789    const Key *key,
790    u_char **sigp, u_int *lenp,
791    const u_char *data, u_int datalen)
792{
793	switch (key->type) {
794	case KEY_DSA:
795		return ssh_dss_sign(key, sigp, lenp, data, datalen);
796		break;
797	case KEY_RSA:
798		return ssh_rsa_sign(key, sigp, lenp, data, datalen);
799		break;
800	default:
801		error("key_sign: invalid key type %d", key->type);
802		return -1;
803		break;
804	}
805}
806
807/*
808 * key_verify returns 1 for a correct signature, 0 for an incorrect signature
809 * and -1 on error.
810 */
811int
812key_verify(
813    const Key *key,
814    const u_char *signature, u_int signaturelen,
815    const u_char *data, u_int datalen)
816{
817	if (signaturelen == 0)
818		return -1;
819
820	switch (key->type) {
821	case KEY_DSA:
822		return ssh_dss_verify(key, signature, signaturelen, data, datalen);
823		break;
824	case KEY_RSA:
825		return ssh_rsa_verify(key, signature, signaturelen, data, datalen);
826		break;
827	default:
828		error("key_verify: invalid key type %d", key->type);
829		return -1;
830		break;
831	}
832}
833
834/* Converts a private to a public key */
835Key *
836key_demote(const Key *k)
837{
838	Key *pk;
839
840	pk = xmalloc(sizeof(*pk));
841	pk->type = k->type;
842	pk->flags = k->flags;
843	pk->dsa = NULL;
844	pk->rsa = NULL;
845
846	switch (k->type) {
847	case KEY_RSA1:
848	case KEY_RSA:
849		if ((pk->rsa = RSA_new()) == NULL)
850			fatal("key_demote: RSA_new failed");
851		if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL)
852			fatal("key_demote: BN_dup failed");
853		if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL)
854			fatal("key_demote: BN_dup failed");
855		break;
856	case KEY_DSA:
857		if ((pk->dsa = DSA_new()) == NULL)
858			fatal("key_demote: DSA_new failed");
859		if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL)
860			fatal("key_demote: BN_dup failed");
861		if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL)
862			fatal("key_demote: BN_dup failed");
863		if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL)
864			fatal("key_demote: BN_dup failed");
865		if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL)
866			fatal("key_demote: BN_dup failed");
867		break;
868	default:
869		fatal("key_free: bad key type %d", k->type);
870		break;
871	}
872
873	return (pk);
874}
875