SemaLookup.cpp revision 249423
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Lookup.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Sema/DeclSpec.h"
27#include "clang/Sema/ExternalSemaSource.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/ScopeInfo.h"
31#include "clang/Sema/Sema.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/TemplateDeduction.h"
34#include "clang/Sema/TypoCorrection.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/StringMap.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/ADT/edit_distance.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <algorithm>
43#include <iterator>
44#include <limits>
45#include <list>
46#include <map>
47#include <set>
48#include <utility>
49#include <vector>
50
51using namespace clang;
52using namespace sema;
53
54namespace {
55  class UnqualUsingEntry {
56    const DeclContext *Nominated;
57    const DeclContext *CommonAncestor;
58
59  public:
60    UnqualUsingEntry(const DeclContext *Nominated,
61                     const DeclContext *CommonAncestor)
62      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63    }
64
65    const DeclContext *getCommonAncestor() const {
66      return CommonAncestor;
67    }
68
69    const DeclContext *getNominatedNamespace() const {
70      return Nominated;
71    }
72
73    // Sort by the pointer value of the common ancestor.
74    struct Comparator {
75      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76        return L.getCommonAncestor() < R.getCommonAncestor();
77      }
78
79      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80        return E.getCommonAncestor() < DC;
81      }
82
83      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84        return DC < E.getCommonAncestor();
85      }
86    };
87  };
88
89  /// A collection of using directives, as used by C++ unqualified
90  /// lookup.
91  class UnqualUsingDirectiveSet {
92    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94    ListTy list;
95    llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97  public:
98    UnqualUsingDirectiveSet() {}
99
100    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101      // C++ [namespace.udir]p1:
102      //   During unqualified name lookup, the names appear as if they
103      //   were declared in the nearest enclosing namespace which contains
104      //   both the using-directive and the nominated namespace.
105      DeclContext *InnermostFileDC
106        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107      assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109      for (; S; S = S->getParent()) {
110        // C++ [namespace.udir]p1:
111        //   A using-directive shall not appear in class scope, but may
112        //   appear in namespace scope or in block scope.
113        DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114        if (Ctx && Ctx->isFileContext()) {
115          visit(Ctx, Ctx);
116        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117          Scope::udir_iterator I = S->using_directives_begin(),
118                             End = S->using_directives_end();
119          for (; I != End; ++I)
120            visit(*I, InnermostFileDC);
121        }
122      }
123    }
124
125    // Visits a context and collect all of its using directives
126    // recursively.  Treats all using directives as if they were
127    // declared in the context.
128    //
129    // A given context is only every visited once, so it is important
130    // that contexts be visited from the inside out in order to get
131    // the effective DCs right.
132    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133      if (!visited.insert(DC))
134        return;
135
136      addUsingDirectives(DC, EffectiveDC);
137    }
138
139    // Visits a using directive and collects all of its using
140    // directives recursively.  Treats all using directives as if they
141    // were declared in the effective DC.
142    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143      DeclContext *NS = UD->getNominatedNamespace();
144      if (!visited.insert(NS))
145        return;
146
147      addUsingDirective(UD, EffectiveDC);
148      addUsingDirectives(NS, EffectiveDC);
149    }
150
151    // Adds all the using directives in a context (and those nominated
152    // by its using directives, transitively) as if they appeared in
153    // the given effective context.
154    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155      SmallVector<DeclContext*,4> queue;
156      while (true) {
157        DeclContext::udir_iterator I, End;
158        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159          UsingDirectiveDecl *UD = *I;
160          DeclContext *NS = UD->getNominatedNamespace();
161          if (visited.insert(NS)) {
162            addUsingDirective(UD, EffectiveDC);
163            queue.push_back(NS);
164          }
165        }
166
167        if (queue.empty())
168          return;
169
170        DC = queue.back();
171        queue.pop_back();
172      }
173    }
174
175    // Add a using directive as if it had been declared in the given
176    // context.  This helps implement C++ [namespace.udir]p3:
177    //   The using-directive is transitive: if a scope contains a
178    //   using-directive that nominates a second namespace that itself
179    //   contains using-directives, the effect is as if the
180    //   using-directives from the second namespace also appeared in
181    //   the first.
182    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183      // Find the common ancestor between the effective context and
184      // the nominated namespace.
185      DeclContext *Common = UD->getNominatedNamespace();
186      while (!Common->Encloses(EffectiveDC))
187        Common = Common->getParent();
188      Common = Common->getPrimaryContext();
189
190      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191    }
192
193    void done() {
194      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195    }
196
197    typedef ListTy::const_iterator const_iterator;
198
199    const_iterator begin() const { return list.begin(); }
200    const_iterator end() const { return list.end(); }
201
202    std::pair<const_iterator,const_iterator>
203    getNamespacesFor(DeclContext *DC) const {
204      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205                              UnqualUsingEntry::Comparator());
206    }
207  };
208}
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                               bool CPlusPlus,
214                               bool Redeclaration) {
215  unsigned IDNS = 0;
216  switch (NameKind) {
217  case Sema::LookupObjCImplicitSelfParam:
218  case Sema::LookupOrdinaryName:
219  case Sema::LookupRedeclarationWithLinkage:
220    IDNS = Decl::IDNS_Ordinary;
221    if (CPlusPlus) {
222      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223      if (Redeclaration)
224        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225    }
226    break;
227
228  case Sema::LookupOperatorName:
229    // Operator lookup is its own crazy thing;  it is not the same
230    // as (e.g.) looking up an operator name for redeclaration.
231    assert(!Redeclaration && "cannot do redeclaration operator lookup");
232    IDNS = Decl::IDNS_NonMemberOperator;
233    break;
234
235  case Sema::LookupTagName:
236    if (CPlusPlus) {
237      IDNS = Decl::IDNS_Type;
238
239      // When looking for a redeclaration of a tag name, we add:
240      // 1) TagFriend to find undeclared friend decls
241      // 2) Namespace because they can't "overload" with tag decls.
242      // 3) Tag because it includes class templates, which can't
243      //    "overload" with tag decls.
244      if (Redeclaration)
245        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246    } else {
247      IDNS = Decl::IDNS_Tag;
248    }
249    break;
250  case Sema::LookupLabel:
251    IDNS = Decl::IDNS_Label;
252    break;
253
254  case Sema::LookupMemberName:
255    IDNS = Decl::IDNS_Member;
256    if (CPlusPlus)
257      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258    break;
259
260  case Sema::LookupNestedNameSpecifierName:
261    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262    break;
263
264  case Sema::LookupNamespaceName:
265    IDNS = Decl::IDNS_Namespace;
266    break;
267
268  case Sema::LookupUsingDeclName:
269    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270         | Decl::IDNS_Member | Decl::IDNS_Using;
271    break;
272
273  case Sema::LookupObjCProtocolName:
274    IDNS = Decl::IDNS_ObjCProtocol;
275    break;
276
277  case Sema::LookupAnyName:
278    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280      | Decl::IDNS_Type;
281    break;
282  }
283  return IDNS;
284}
285
286void LookupResult::configure() {
287  IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288                 isForRedeclaration());
289
290  if (!isForRedeclaration()) {
291    // If we're looking for one of the allocation or deallocation
292    // operators, make sure that the implicitly-declared new and delete
293    // operators can be found.
294    switch (NameInfo.getName().getCXXOverloadedOperator()) {
295    case OO_New:
296    case OO_Delete:
297    case OO_Array_New:
298    case OO_Array_Delete:
299      SemaRef.DeclareGlobalNewDelete();
300      break;
301
302    default:
303      break;
304    }
305
306    // Compiler builtins are always visible, regardless of where they end
307    // up being declared.
308    if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
309      if (unsigned BuiltinID = Id->getBuiltinID()) {
310        if (!SemaRef.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
311          AllowHidden = true;
312      }
313    }
314  }
315}
316
317void LookupResult::sanityImpl() const {
318  // Note that this function is never called by NDEBUG builds. See
319  // LookupResult::sanity().
320  assert(ResultKind != NotFound || Decls.size() == 0);
321  assert(ResultKind != Found || Decls.size() == 1);
322  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
323         (Decls.size() == 1 &&
324          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
325  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
326  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
327         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
328                                Ambiguity == AmbiguousBaseSubobjectTypes)));
329  assert((Paths != NULL) == (ResultKind == Ambiguous &&
330                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
331                              Ambiguity == AmbiguousBaseSubobjects)));
332}
333
334// Necessary because CXXBasePaths is not complete in Sema.h
335void LookupResult::deletePaths(CXXBasePaths *Paths) {
336  delete Paths;
337}
338
339static NamedDecl *getVisibleDecl(NamedDecl *D);
340
341NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
342  return getVisibleDecl(D);
343}
344
345/// Resolves the result kind of this lookup.
346void LookupResult::resolveKind() {
347  unsigned N = Decls.size();
348
349  // Fast case: no possible ambiguity.
350  if (N == 0) {
351    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
352    return;
353  }
354
355  // If there's a single decl, we need to examine it to decide what
356  // kind of lookup this is.
357  if (N == 1) {
358    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
359    if (isa<FunctionTemplateDecl>(D))
360      ResultKind = FoundOverloaded;
361    else if (isa<UnresolvedUsingValueDecl>(D))
362      ResultKind = FoundUnresolvedValue;
363    return;
364  }
365
366  // Don't do any extra resolution if we've already resolved as ambiguous.
367  if (ResultKind == Ambiguous) return;
368
369  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
370  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
371
372  bool Ambiguous = false;
373  bool HasTag = false, HasFunction = false, HasNonFunction = false;
374  bool HasFunctionTemplate = false, HasUnresolved = false;
375
376  unsigned UniqueTagIndex = 0;
377
378  unsigned I = 0;
379  while (I < N) {
380    NamedDecl *D = Decls[I]->getUnderlyingDecl();
381    D = cast<NamedDecl>(D->getCanonicalDecl());
382
383    // Ignore an invalid declaration unless it's the only one left.
384    if (D->isInvalidDecl() && I < N-1) {
385      Decls[I] = Decls[--N];
386      continue;
387    }
388
389    // Redeclarations of types via typedef can occur both within a scope
390    // and, through using declarations and directives, across scopes. There is
391    // no ambiguity if they all refer to the same type, so unique based on the
392    // canonical type.
393    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
394      if (!TD->getDeclContext()->isRecord()) {
395        QualType T = SemaRef.Context.getTypeDeclType(TD);
396        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
397          // The type is not unique; pull something off the back and continue
398          // at this index.
399          Decls[I] = Decls[--N];
400          continue;
401        }
402      }
403    }
404
405    if (!Unique.insert(D)) {
406      // If it's not unique, pull something off the back (and
407      // continue at this index).
408      Decls[I] = Decls[--N];
409      continue;
410    }
411
412    // Otherwise, do some decl type analysis and then continue.
413
414    if (isa<UnresolvedUsingValueDecl>(D)) {
415      HasUnresolved = true;
416    } else if (isa<TagDecl>(D)) {
417      if (HasTag)
418        Ambiguous = true;
419      UniqueTagIndex = I;
420      HasTag = true;
421    } else if (isa<FunctionTemplateDecl>(D)) {
422      HasFunction = true;
423      HasFunctionTemplate = true;
424    } else if (isa<FunctionDecl>(D)) {
425      HasFunction = true;
426    } else {
427      if (HasNonFunction)
428        Ambiguous = true;
429      HasNonFunction = true;
430    }
431    I++;
432  }
433
434  // C++ [basic.scope.hiding]p2:
435  //   A class name or enumeration name can be hidden by the name of
436  //   an object, function, or enumerator declared in the same
437  //   scope. If a class or enumeration name and an object, function,
438  //   or enumerator are declared in the same scope (in any order)
439  //   with the same name, the class or enumeration name is hidden
440  //   wherever the object, function, or enumerator name is visible.
441  // But it's still an error if there are distinct tag types found,
442  // even if they're not visible. (ref?)
443  if (HideTags && HasTag && !Ambiguous &&
444      (HasFunction || HasNonFunction || HasUnresolved)) {
445    if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
446         Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
447      Decls[UniqueTagIndex] = Decls[--N];
448    else
449      Ambiguous = true;
450  }
451
452  Decls.set_size(N);
453
454  if (HasNonFunction && (HasFunction || HasUnresolved))
455    Ambiguous = true;
456
457  if (Ambiguous)
458    setAmbiguous(LookupResult::AmbiguousReference);
459  else if (HasUnresolved)
460    ResultKind = LookupResult::FoundUnresolvedValue;
461  else if (N > 1 || HasFunctionTemplate)
462    ResultKind = LookupResult::FoundOverloaded;
463  else
464    ResultKind = LookupResult::Found;
465}
466
467void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
468  CXXBasePaths::const_paths_iterator I, E;
469  for (I = P.begin(), E = P.end(); I != E; ++I)
470    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
471         DE = I->Decls.end(); DI != DE; ++DI)
472      addDecl(*DI);
473}
474
475void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
476  Paths = new CXXBasePaths;
477  Paths->swap(P);
478  addDeclsFromBasePaths(*Paths);
479  resolveKind();
480  setAmbiguous(AmbiguousBaseSubobjects);
481}
482
483void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
484  Paths = new CXXBasePaths;
485  Paths->swap(P);
486  addDeclsFromBasePaths(*Paths);
487  resolveKind();
488  setAmbiguous(AmbiguousBaseSubobjectTypes);
489}
490
491void LookupResult::print(raw_ostream &Out) {
492  Out << Decls.size() << " result(s)";
493  if (isAmbiguous()) Out << ", ambiguous";
494  if (Paths) Out << ", base paths present";
495
496  for (iterator I = begin(), E = end(); I != E; ++I) {
497    Out << "\n";
498    (*I)->print(Out, 2);
499  }
500}
501
502/// \brief Lookup a builtin function, when name lookup would otherwise
503/// fail.
504static bool LookupBuiltin(Sema &S, LookupResult &R) {
505  Sema::LookupNameKind NameKind = R.getLookupKind();
506
507  // If we didn't find a use of this identifier, and if the identifier
508  // corresponds to a compiler builtin, create the decl object for the builtin
509  // now, injecting it into translation unit scope, and return it.
510  if (NameKind == Sema::LookupOrdinaryName ||
511      NameKind == Sema::LookupRedeclarationWithLinkage) {
512    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
513    if (II) {
514      // If this is a builtin on this (or all) targets, create the decl.
515      if (unsigned BuiltinID = II->getBuiltinID()) {
516        // In C++, we don't have any predefined library functions like
517        // 'malloc'. Instead, we'll just error.
518        if (S.getLangOpts().CPlusPlus &&
519            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
520          return false;
521
522        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
523                                                 BuiltinID, S.TUScope,
524                                                 R.isForRedeclaration(),
525                                                 R.getNameLoc())) {
526          R.addDecl(D);
527          return true;
528        }
529
530        if (R.isForRedeclaration()) {
531          // If we're redeclaring this function anyway, forget that
532          // this was a builtin at all.
533          S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
534        }
535
536        return false;
537      }
538    }
539  }
540
541  return false;
542}
543
544/// \brief Determine whether we can declare a special member function within
545/// the class at this point.
546static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
547  // We need to have a definition for the class.
548  if (!Class->getDefinition() || Class->isDependentContext())
549    return false;
550
551  // We can't be in the middle of defining the class.
552  return !Class->isBeingDefined();
553}
554
555void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
556  if (!CanDeclareSpecialMemberFunction(Class))
557    return;
558
559  // If the default constructor has not yet been declared, do so now.
560  if (Class->needsImplicitDefaultConstructor())
561    DeclareImplicitDefaultConstructor(Class);
562
563  // If the copy constructor has not yet been declared, do so now.
564  if (Class->needsImplicitCopyConstructor())
565    DeclareImplicitCopyConstructor(Class);
566
567  // If the copy assignment operator has not yet been declared, do so now.
568  if (Class->needsImplicitCopyAssignment())
569    DeclareImplicitCopyAssignment(Class);
570
571  if (getLangOpts().CPlusPlus11) {
572    // If the move constructor has not yet been declared, do so now.
573    if (Class->needsImplicitMoveConstructor())
574      DeclareImplicitMoveConstructor(Class); // might not actually do it
575
576    // If the move assignment operator has not yet been declared, do so now.
577    if (Class->needsImplicitMoveAssignment())
578      DeclareImplicitMoveAssignment(Class); // might not actually do it
579  }
580
581  // If the destructor has not yet been declared, do so now.
582  if (Class->needsImplicitDestructor())
583    DeclareImplicitDestructor(Class);
584}
585
586/// \brief Determine whether this is the name of an implicitly-declared
587/// special member function.
588static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
589  switch (Name.getNameKind()) {
590  case DeclarationName::CXXConstructorName:
591  case DeclarationName::CXXDestructorName:
592    return true;
593
594  case DeclarationName::CXXOperatorName:
595    return Name.getCXXOverloadedOperator() == OO_Equal;
596
597  default:
598    break;
599  }
600
601  return false;
602}
603
604/// \brief If there are any implicit member functions with the given name
605/// that need to be declared in the given declaration context, do so.
606static void DeclareImplicitMemberFunctionsWithName(Sema &S,
607                                                   DeclarationName Name,
608                                                   const DeclContext *DC) {
609  if (!DC)
610    return;
611
612  switch (Name.getNameKind()) {
613  case DeclarationName::CXXConstructorName:
614    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
615      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
616        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
617        if (Record->needsImplicitDefaultConstructor())
618          S.DeclareImplicitDefaultConstructor(Class);
619        if (Record->needsImplicitCopyConstructor())
620          S.DeclareImplicitCopyConstructor(Class);
621        if (S.getLangOpts().CPlusPlus11 &&
622            Record->needsImplicitMoveConstructor())
623          S.DeclareImplicitMoveConstructor(Class);
624      }
625    break;
626
627  case DeclarationName::CXXDestructorName:
628    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
629      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
630          CanDeclareSpecialMemberFunction(Record))
631        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
632    break;
633
634  case DeclarationName::CXXOperatorName:
635    if (Name.getCXXOverloadedOperator() != OO_Equal)
636      break;
637
638    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
639      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
640        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
641        if (Record->needsImplicitCopyAssignment())
642          S.DeclareImplicitCopyAssignment(Class);
643        if (S.getLangOpts().CPlusPlus11 &&
644            Record->needsImplicitMoveAssignment())
645          S.DeclareImplicitMoveAssignment(Class);
646      }
647    }
648    break;
649
650  default:
651    break;
652  }
653}
654
655// Adds all qualifying matches for a name within a decl context to the
656// given lookup result.  Returns true if any matches were found.
657static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
658  bool Found = false;
659
660  // Lazily declare C++ special member functions.
661  if (S.getLangOpts().CPlusPlus)
662    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
663
664  // Perform lookup into this declaration context.
665  DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
666  for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
667       ++I) {
668    NamedDecl *D = *I;
669    if ((D = R.getAcceptableDecl(D))) {
670      R.addDecl(D);
671      Found = true;
672    }
673  }
674
675  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
676    return true;
677
678  if (R.getLookupName().getNameKind()
679        != DeclarationName::CXXConversionFunctionName ||
680      R.getLookupName().getCXXNameType()->isDependentType() ||
681      !isa<CXXRecordDecl>(DC))
682    return Found;
683
684  // C++ [temp.mem]p6:
685  //   A specialization of a conversion function template is not found by
686  //   name lookup. Instead, any conversion function templates visible in the
687  //   context of the use are considered. [...]
688  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
689  if (!Record->isCompleteDefinition())
690    return Found;
691
692  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
693         UEnd = Record->conversion_end(); U != UEnd; ++U) {
694    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
695    if (!ConvTemplate)
696      continue;
697
698    // When we're performing lookup for the purposes of redeclaration, just
699    // add the conversion function template. When we deduce template
700    // arguments for specializations, we'll end up unifying the return
701    // type of the new declaration with the type of the function template.
702    if (R.isForRedeclaration()) {
703      R.addDecl(ConvTemplate);
704      Found = true;
705      continue;
706    }
707
708    // C++ [temp.mem]p6:
709    //   [...] For each such operator, if argument deduction succeeds
710    //   (14.9.2.3), the resulting specialization is used as if found by
711    //   name lookup.
712    //
713    // When referencing a conversion function for any purpose other than
714    // a redeclaration (such that we'll be building an expression with the
715    // result), perform template argument deduction and place the
716    // specialization into the result set. We do this to avoid forcing all
717    // callers to perform special deduction for conversion functions.
718    TemplateDeductionInfo Info(R.getNameLoc());
719    FunctionDecl *Specialization = 0;
720
721    const FunctionProtoType *ConvProto
722      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
723    assert(ConvProto && "Nonsensical conversion function template type");
724
725    // Compute the type of the function that we would expect the conversion
726    // function to have, if it were to match the name given.
727    // FIXME: Calling convention!
728    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
729    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
730    EPI.ExceptionSpecType = EST_None;
731    EPI.NumExceptions = 0;
732    QualType ExpectedType
733      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
734                                            ArrayRef<QualType>(), EPI);
735
736    // Perform template argument deduction against the type that we would
737    // expect the function to have.
738    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
739                                            Specialization, Info)
740          == Sema::TDK_Success) {
741      R.addDecl(Specialization);
742      Found = true;
743    }
744  }
745
746  return Found;
747}
748
749// Performs C++ unqualified lookup into the given file context.
750static bool
751CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
752                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
753
754  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
755
756  // Perform direct name lookup into the LookupCtx.
757  bool Found = LookupDirect(S, R, NS);
758
759  // Perform direct name lookup into the namespaces nominated by the
760  // using directives whose common ancestor is this namespace.
761  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
762  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
763
764  for (; UI != UEnd; ++UI)
765    if (LookupDirect(S, R, UI->getNominatedNamespace()))
766      Found = true;
767
768  R.resolveKind();
769
770  return Found;
771}
772
773static bool isNamespaceOrTranslationUnitScope(Scope *S) {
774  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
775    return Ctx->isFileContext();
776  return false;
777}
778
779// Find the next outer declaration context from this scope. This
780// routine actually returns the semantic outer context, which may
781// differ from the lexical context (encoded directly in the Scope
782// stack) when we are parsing a member of a class template. In this
783// case, the second element of the pair will be true, to indicate that
784// name lookup should continue searching in this semantic context when
785// it leaves the current template parameter scope.
786static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
787  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
788  DeclContext *Lexical = 0;
789  for (Scope *OuterS = S->getParent(); OuterS;
790       OuterS = OuterS->getParent()) {
791    if (OuterS->getEntity()) {
792      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
793      break;
794    }
795  }
796
797  // C++ [temp.local]p8:
798  //   In the definition of a member of a class template that appears
799  //   outside of the namespace containing the class template
800  //   definition, the name of a template-parameter hides the name of
801  //   a member of this namespace.
802  //
803  // Example:
804  //
805  //   namespace N {
806  //     class C { };
807  //
808  //     template<class T> class B {
809  //       void f(T);
810  //     };
811  //   }
812  //
813  //   template<class C> void N::B<C>::f(C) {
814  //     C b;  // C is the template parameter, not N::C
815  //   }
816  //
817  // In this example, the lexical context we return is the
818  // TranslationUnit, while the semantic context is the namespace N.
819  if (!Lexical || !DC || !S->getParent() ||
820      !S->getParent()->isTemplateParamScope())
821    return std::make_pair(Lexical, false);
822
823  // Find the outermost template parameter scope.
824  // For the example, this is the scope for the template parameters of
825  // template<class C>.
826  Scope *OutermostTemplateScope = S->getParent();
827  while (OutermostTemplateScope->getParent() &&
828         OutermostTemplateScope->getParent()->isTemplateParamScope())
829    OutermostTemplateScope = OutermostTemplateScope->getParent();
830
831  // Find the namespace context in which the original scope occurs. In
832  // the example, this is namespace N.
833  DeclContext *Semantic = DC;
834  while (!Semantic->isFileContext())
835    Semantic = Semantic->getParent();
836
837  // Find the declaration context just outside of the template
838  // parameter scope. This is the context in which the template is
839  // being lexically declaration (a namespace context). In the
840  // example, this is the global scope.
841  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
842      Lexical->Encloses(Semantic))
843    return std::make_pair(Semantic, true);
844
845  return std::make_pair(Lexical, false);
846}
847
848bool Sema::CppLookupName(LookupResult &R, Scope *S) {
849  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
850
851  DeclarationName Name = R.getLookupName();
852
853  // If this is the name of an implicitly-declared special member function,
854  // go through the scope stack to implicitly declare
855  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
856    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
857      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
858        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
859  }
860
861  // Implicitly declare member functions with the name we're looking for, if in
862  // fact we are in a scope where it matters.
863
864  Scope *Initial = S;
865  IdentifierResolver::iterator
866    I = IdResolver.begin(Name),
867    IEnd = IdResolver.end();
868
869  // First we lookup local scope.
870  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
871  // ...During unqualified name lookup (3.4.1), the names appear as if
872  // they were declared in the nearest enclosing namespace which contains
873  // both the using-directive and the nominated namespace.
874  // [Note: in this context, "contains" means "contains directly or
875  // indirectly".
876  //
877  // For example:
878  // namespace A { int i; }
879  // void foo() {
880  //   int i;
881  //   {
882  //     using namespace A;
883  //     ++i; // finds local 'i', A::i appears at global scope
884  //   }
885  // }
886  //
887  DeclContext *OutsideOfTemplateParamDC = 0;
888  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
889    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
890
891    // Check whether the IdResolver has anything in this scope.
892    bool Found = false;
893    for (; I != IEnd && S->isDeclScope(*I); ++I) {
894      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
895        Found = true;
896        R.addDecl(ND);
897      }
898    }
899    if (Found) {
900      R.resolveKind();
901      if (S->isClassScope())
902        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
903          R.setNamingClass(Record);
904      return true;
905    }
906
907    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
908        S->getParent() && !S->getParent()->isTemplateParamScope()) {
909      // We've just searched the last template parameter scope and
910      // found nothing, so look into the contexts between the
911      // lexical and semantic declaration contexts returned by
912      // findOuterContext(). This implements the name lookup behavior
913      // of C++ [temp.local]p8.
914      Ctx = OutsideOfTemplateParamDC;
915      OutsideOfTemplateParamDC = 0;
916    }
917
918    if (Ctx) {
919      DeclContext *OuterCtx;
920      bool SearchAfterTemplateScope;
921      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
922      if (SearchAfterTemplateScope)
923        OutsideOfTemplateParamDC = OuterCtx;
924
925      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
926        // We do not directly look into transparent contexts, since
927        // those entities will be found in the nearest enclosing
928        // non-transparent context.
929        if (Ctx->isTransparentContext())
930          continue;
931
932        // We do not look directly into function or method contexts,
933        // since all of the local variables and parameters of the
934        // function/method are present within the Scope.
935        if (Ctx->isFunctionOrMethod()) {
936          // If we have an Objective-C instance method, look for ivars
937          // in the corresponding interface.
938          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
939            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
940              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
941                ObjCInterfaceDecl *ClassDeclared;
942                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
943                                                 Name.getAsIdentifierInfo(),
944                                                             ClassDeclared)) {
945                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
946                    R.addDecl(ND);
947                    R.resolveKind();
948                    return true;
949                  }
950                }
951              }
952          }
953
954          continue;
955        }
956
957        // If this is a file context, we need to perform unqualified name
958        // lookup considering using directives.
959        if (Ctx->isFileContext()) {
960          UnqualUsingDirectiveSet UDirs;
961          UDirs.visit(Ctx, Ctx);
962          UDirs.done();
963
964          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
965            R.resolveKind();
966            return true;
967          }
968
969          continue;
970        }
971
972        // Perform qualified name lookup into this context.
973        // FIXME: In some cases, we know that every name that could be found by
974        // this qualified name lookup will also be on the identifier chain. For
975        // example, inside a class without any base classes, we never need to
976        // perform qualified lookup because all of the members are on top of the
977        // identifier chain.
978        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
979          return true;
980      }
981    }
982  }
983
984  // Stop if we ran out of scopes.
985  // FIXME:  This really, really shouldn't be happening.
986  if (!S) return false;
987
988  // If we are looking for members, no need to look into global/namespace scope.
989  if (R.getLookupKind() == LookupMemberName)
990    return false;
991
992  // Collect UsingDirectiveDecls in all scopes, and recursively all
993  // nominated namespaces by those using-directives.
994  //
995  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
996  // don't build it for each lookup!
997
998  UnqualUsingDirectiveSet UDirs;
999  UDirs.visitScopeChain(Initial, S);
1000  UDirs.done();
1001
1002  // Lookup namespace scope, and global scope.
1003  // Unqualified name lookup in C++ requires looking into scopes
1004  // that aren't strictly lexical, and therefore we walk through the
1005  // context as well as walking through the scopes.
1006  for (; S; S = S->getParent()) {
1007    // Check whether the IdResolver has anything in this scope.
1008    bool Found = false;
1009    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1010      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1011        // We found something.  Look for anything else in our scope
1012        // with this same name and in an acceptable identifier
1013        // namespace, so that we can construct an overload set if we
1014        // need to.
1015        Found = true;
1016        R.addDecl(ND);
1017      }
1018    }
1019
1020    if (Found && S->isTemplateParamScope()) {
1021      R.resolveKind();
1022      return true;
1023    }
1024
1025    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1026    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1027        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1028      // We've just searched the last template parameter scope and
1029      // found nothing, so look into the contexts between the
1030      // lexical and semantic declaration contexts returned by
1031      // findOuterContext(). This implements the name lookup behavior
1032      // of C++ [temp.local]p8.
1033      Ctx = OutsideOfTemplateParamDC;
1034      OutsideOfTemplateParamDC = 0;
1035    }
1036
1037    if (Ctx) {
1038      DeclContext *OuterCtx;
1039      bool SearchAfterTemplateScope;
1040      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1041      if (SearchAfterTemplateScope)
1042        OutsideOfTemplateParamDC = OuterCtx;
1043
1044      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1045        // We do not directly look into transparent contexts, since
1046        // those entities will be found in the nearest enclosing
1047        // non-transparent context.
1048        if (Ctx->isTransparentContext())
1049          continue;
1050
1051        // If we have a context, and it's not a context stashed in the
1052        // template parameter scope for an out-of-line definition, also
1053        // look into that context.
1054        if (!(Found && S && S->isTemplateParamScope())) {
1055          assert(Ctx->isFileContext() &&
1056              "We should have been looking only at file context here already.");
1057
1058          // Look into context considering using-directives.
1059          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1060            Found = true;
1061        }
1062
1063        if (Found) {
1064          R.resolveKind();
1065          return true;
1066        }
1067
1068        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1069          return false;
1070      }
1071    }
1072
1073    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1074      return false;
1075  }
1076
1077  return !R.empty();
1078}
1079
1080/// \brief Retrieve the visible declaration corresponding to D, if any.
1081///
1082/// This routine determines whether the declaration D is visible in the current
1083/// module, with the current imports. If not, it checks whether any
1084/// redeclaration of D is visible, and if so, returns that declaration.
1085///
1086/// \returns D, or a visible previous declaration of D, whichever is more recent
1087/// and visible. If no declaration of D is visible, returns null.
1088static NamedDecl *getVisibleDecl(NamedDecl *D) {
1089  if (LookupResult::isVisible(D))
1090    return D;
1091
1092  for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1093       RD != RDEnd; ++RD) {
1094    if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1095      if (LookupResult::isVisible(ND))
1096        return ND;
1097    }
1098  }
1099
1100  return 0;
1101}
1102
1103/// @brief Perform unqualified name lookup starting from a given
1104/// scope.
1105///
1106/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1107/// used to find names within the current scope. For example, 'x' in
1108/// @code
1109/// int x;
1110/// int f() {
1111///   return x; // unqualified name look finds 'x' in the global scope
1112/// }
1113/// @endcode
1114///
1115/// Different lookup criteria can find different names. For example, a
1116/// particular scope can have both a struct and a function of the same
1117/// name, and each can be found by certain lookup criteria. For more
1118/// information about lookup criteria, see the documentation for the
1119/// class LookupCriteria.
1120///
1121/// @param S        The scope from which unqualified name lookup will
1122/// begin. If the lookup criteria permits, name lookup may also search
1123/// in the parent scopes.
1124///
1125/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1126/// look up and the lookup kind), and is updated with the results of lookup
1127/// including zero or more declarations and possibly additional information
1128/// used to diagnose ambiguities.
1129///
1130/// @returns \c true if lookup succeeded and false otherwise.
1131bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1132  DeclarationName Name = R.getLookupName();
1133  if (!Name) return false;
1134
1135  LookupNameKind NameKind = R.getLookupKind();
1136
1137  if (!getLangOpts().CPlusPlus) {
1138    // Unqualified name lookup in C/Objective-C is purely lexical, so
1139    // search in the declarations attached to the name.
1140    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1141      // Find the nearest non-transparent declaration scope.
1142      while (!(S->getFlags() & Scope::DeclScope) ||
1143             (S->getEntity() &&
1144              static_cast<DeclContext *>(S->getEntity())
1145                ->isTransparentContext()))
1146        S = S->getParent();
1147    }
1148
1149    unsigned IDNS = R.getIdentifierNamespace();
1150
1151    // Scan up the scope chain looking for a decl that matches this
1152    // identifier that is in the appropriate namespace.  This search
1153    // should not take long, as shadowing of names is uncommon, and
1154    // deep shadowing is extremely uncommon.
1155    bool LeftStartingScope = false;
1156
1157    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1158                                   IEnd = IdResolver.end();
1159         I != IEnd; ++I)
1160      if ((*I)->isInIdentifierNamespace(IDNS)) {
1161        if (NameKind == LookupRedeclarationWithLinkage) {
1162          // Determine whether this (or a previous) declaration is
1163          // out-of-scope.
1164          if (!LeftStartingScope && !S->isDeclScope(*I))
1165            LeftStartingScope = true;
1166
1167          // If we found something outside of our starting scope that
1168          // does not have linkage, skip it.
1169          if (LeftStartingScope && !((*I)->hasLinkage()))
1170            continue;
1171        }
1172        else if (NameKind == LookupObjCImplicitSelfParam &&
1173                 !isa<ImplicitParamDecl>(*I))
1174          continue;
1175
1176        // If this declaration is module-private and it came from an AST
1177        // file, we can't see it.
1178        NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1179        if (!D)
1180          continue;
1181
1182        R.addDecl(D);
1183
1184        // Check whether there are any other declarations with the same name
1185        // and in the same scope.
1186        if (I != IEnd) {
1187          // Find the scope in which this declaration was declared (if it
1188          // actually exists in a Scope).
1189          while (S && !S->isDeclScope(D))
1190            S = S->getParent();
1191
1192          // If the scope containing the declaration is the translation unit,
1193          // then we'll need to perform our checks based on the matching
1194          // DeclContexts rather than matching scopes.
1195          if (S && isNamespaceOrTranslationUnitScope(S))
1196            S = 0;
1197
1198          // Compute the DeclContext, if we need it.
1199          DeclContext *DC = 0;
1200          if (!S)
1201            DC = (*I)->getDeclContext()->getRedeclContext();
1202
1203          IdentifierResolver::iterator LastI = I;
1204          for (++LastI; LastI != IEnd; ++LastI) {
1205            if (S) {
1206              // Match based on scope.
1207              if (!S->isDeclScope(*LastI))
1208                break;
1209            } else {
1210              // Match based on DeclContext.
1211              DeclContext *LastDC
1212                = (*LastI)->getDeclContext()->getRedeclContext();
1213              if (!LastDC->Equals(DC))
1214                break;
1215            }
1216
1217            // If the declaration isn't in the right namespace, skip it.
1218            if (!(*LastI)->isInIdentifierNamespace(IDNS))
1219              continue;
1220
1221            D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1222            if (D)
1223              R.addDecl(D);
1224          }
1225
1226          R.resolveKind();
1227        }
1228        return true;
1229      }
1230  } else {
1231    // Perform C++ unqualified name lookup.
1232    if (CppLookupName(R, S))
1233      return true;
1234  }
1235
1236  // If we didn't find a use of this identifier, and if the identifier
1237  // corresponds to a compiler builtin, create the decl object for the builtin
1238  // now, injecting it into translation unit scope, and return it.
1239  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1240    return true;
1241
1242  // If we didn't find a use of this identifier, the ExternalSource
1243  // may be able to handle the situation.
1244  // Note: some lookup failures are expected!
1245  // See e.g. R.isForRedeclaration().
1246  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1247}
1248
1249/// @brief Perform qualified name lookup in the namespaces nominated by
1250/// using directives by the given context.
1251///
1252/// C++98 [namespace.qual]p2:
1253///   Given X::m (where X is a user-declared namespace), or given \::m
1254///   (where X is the global namespace), let S be the set of all
1255///   declarations of m in X and in the transitive closure of all
1256///   namespaces nominated by using-directives in X and its used
1257///   namespaces, except that using-directives are ignored in any
1258///   namespace, including X, directly containing one or more
1259///   declarations of m. No namespace is searched more than once in
1260///   the lookup of a name. If S is the empty set, the program is
1261///   ill-formed. Otherwise, if S has exactly one member, or if the
1262///   context of the reference is a using-declaration
1263///   (namespace.udecl), S is the required set of declarations of
1264///   m. Otherwise if the use of m is not one that allows a unique
1265///   declaration to be chosen from S, the program is ill-formed.
1266///
1267/// C++98 [namespace.qual]p5:
1268///   During the lookup of a qualified namespace member name, if the
1269///   lookup finds more than one declaration of the member, and if one
1270///   declaration introduces a class name or enumeration name and the
1271///   other declarations either introduce the same object, the same
1272///   enumerator or a set of functions, the non-type name hides the
1273///   class or enumeration name if and only if the declarations are
1274///   from the same namespace; otherwise (the declarations are from
1275///   different namespaces), the program is ill-formed.
1276static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1277                                                 DeclContext *StartDC) {
1278  assert(StartDC->isFileContext() && "start context is not a file context");
1279
1280  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1281  DeclContext::udir_iterator E = StartDC->using_directives_end();
1282
1283  if (I == E) return false;
1284
1285  // We have at least added all these contexts to the queue.
1286  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1287  Visited.insert(StartDC);
1288
1289  // We have not yet looked into these namespaces, much less added
1290  // their "using-children" to the queue.
1291  SmallVector<NamespaceDecl*, 8> Queue;
1292
1293  // We have already looked into the initial namespace; seed the queue
1294  // with its using-children.
1295  for (; I != E; ++I) {
1296    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1297    if (Visited.insert(ND))
1298      Queue.push_back(ND);
1299  }
1300
1301  // The easiest way to implement the restriction in [namespace.qual]p5
1302  // is to check whether any of the individual results found a tag
1303  // and, if so, to declare an ambiguity if the final result is not
1304  // a tag.
1305  bool FoundTag = false;
1306  bool FoundNonTag = false;
1307
1308  LookupResult LocalR(LookupResult::Temporary, R);
1309
1310  bool Found = false;
1311  while (!Queue.empty()) {
1312    NamespaceDecl *ND = Queue.back();
1313    Queue.pop_back();
1314
1315    // We go through some convolutions here to avoid copying results
1316    // between LookupResults.
1317    bool UseLocal = !R.empty();
1318    LookupResult &DirectR = UseLocal ? LocalR : R;
1319    bool FoundDirect = LookupDirect(S, DirectR, ND);
1320
1321    if (FoundDirect) {
1322      // First do any local hiding.
1323      DirectR.resolveKind();
1324
1325      // If the local result is a tag, remember that.
1326      if (DirectR.isSingleTagDecl())
1327        FoundTag = true;
1328      else
1329        FoundNonTag = true;
1330
1331      // Append the local results to the total results if necessary.
1332      if (UseLocal) {
1333        R.addAllDecls(LocalR);
1334        LocalR.clear();
1335      }
1336    }
1337
1338    // If we find names in this namespace, ignore its using directives.
1339    if (FoundDirect) {
1340      Found = true;
1341      continue;
1342    }
1343
1344    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1345      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1346      if (Visited.insert(Nom))
1347        Queue.push_back(Nom);
1348    }
1349  }
1350
1351  if (Found) {
1352    if (FoundTag && FoundNonTag)
1353      R.setAmbiguousQualifiedTagHiding();
1354    else
1355      R.resolveKind();
1356  }
1357
1358  return Found;
1359}
1360
1361/// \brief Callback that looks for any member of a class with the given name.
1362static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1363                            CXXBasePath &Path,
1364                            void *Name) {
1365  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1366
1367  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1368  Path.Decls = BaseRecord->lookup(N);
1369  return !Path.Decls.empty();
1370}
1371
1372/// \brief Determine whether the given set of member declarations contains only
1373/// static members, nested types, and enumerators.
1374template<typename InputIterator>
1375static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1376  Decl *D = (*First)->getUnderlyingDecl();
1377  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1378    return true;
1379
1380  if (isa<CXXMethodDecl>(D)) {
1381    // Determine whether all of the methods are static.
1382    bool AllMethodsAreStatic = true;
1383    for(; First != Last; ++First) {
1384      D = (*First)->getUnderlyingDecl();
1385
1386      if (!isa<CXXMethodDecl>(D)) {
1387        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1388        break;
1389      }
1390
1391      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1392        AllMethodsAreStatic = false;
1393        break;
1394      }
1395    }
1396
1397    if (AllMethodsAreStatic)
1398      return true;
1399  }
1400
1401  return false;
1402}
1403
1404/// \brief Perform qualified name lookup into a given context.
1405///
1406/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1407/// names when the context of those names is explicit specified, e.g.,
1408/// "std::vector" or "x->member", or as part of unqualified name lookup.
1409///
1410/// Different lookup criteria can find different names. For example, a
1411/// particular scope can have both a struct and a function of the same
1412/// name, and each can be found by certain lookup criteria. For more
1413/// information about lookup criteria, see the documentation for the
1414/// class LookupCriteria.
1415///
1416/// \param R captures both the lookup criteria and any lookup results found.
1417///
1418/// \param LookupCtx The context in which qualified name lookup will
1419/// search. If the lookup criteria permits, name lookup may also search
1420/// in the parent contexts or (for C++ classes) base classes.
1421///
1422/// \param InUnqualifiedLookup true if this is qualified name lookup that
1423/// occurs as part of unqualified name lookup.
1424///
1425/// \returns true if lookup succeeded, false if it failed.
1426bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1427                               bool InUnqualifiedLookup) {
1428  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1429
1430  if (!R.getLookupName())
1431    return false;
1432
1433  // Make sure that the declaration context is complete.
1434  assert((!isa<TagDecl>(LookupCtx) ||
1435          LookupCtx->isDependentContext() ||
1436          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1437          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1438         "Declaration context must already be complete!");
1439
1440  // Perform qualified name lookup into the LookupCtx.
1441  if (LookupDirect(*this, R, LookupCtx)) {
1442    R.resolveKind();
1443    if (isa<CXXRecordDecl>(LookupCtx))
1444      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1445    return true;
1446  }
1447
1448  // Don't descend into implied contexts for redeclarations.
1449  // C++98 [namespace.qual]p6:
1450  //   In a declaration for a namespace member in which the
1451  //   declarator-id is a qualified-id, given that the qualified-id
1452  //   for the namespace member has the form
1453  //     nested-name-specifier unqualified-id
1454  //   the unqualified-id shall name a member of the namespace
1455  //   designated by the nested-name-specifier.
1456  // See also [class.mfct]p5 and [class.static.data]p2.
1457  if (R.isForRedeclaration())
1458    return false;
1459
1460  // If this is a namespace, look it up in the implied namespaces.
1461  if (LookupCtx->isFileContext())
1462    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1463
1464  // If this isn't a C++ class, we aren't allowed to look into base
1465  // classes, we're done.
1466  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1467  if (!LookupRec || !LookupRec->getDefinition())
1468    return false;
1469
1470  // If we're performing qualified name lookup into a dependent class,
1471  // then we are actually looking into a current instantiation. If we have any
1472  // dependent base classes, then we either have to delay lookup until
1473  // template instantiation time (at which point all bases will be available)
1474  // or we have to fail.
1475  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1476      LookupRec->hasAnyDependentBases()) {
1477    R.setNotFoundInCurrentInstantiation();
1478    return false;
1479  }
1480
1481  // Perform lookup into our base classes.
1482  CXXBasePaths Paths;
1483  Paths.setOrigin(LookupRec);
1484
1485  // Look for this member in our base classes
1486  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1487  switch (R.getLookupKind()) {
1488    case LookupObjCImplicitSelfParam:
1489    case LookupOrdinaryName:
1490    case LookupMemberName:
1491    case LookupRedeclarationWithLinkage:
1492      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1493      break;
1494
1495    case LookupTagName:
1496      BaseCallback = &CXXRecordDecl::FindTagMember;
1497      break;
1498
1499    case LookupAnyName:
1500      BaseCallback = &LookupAnyMember;
1501      break;
1502
1503    case LookupUsingDeclName:
1504      // This lookup is for redeclarations only.
1505
1506    case LookupOperatorName:
1507    case LookupNamespaceName:
1508    case LookupObjCProtocolName:
1509    case LookupLabel:
1510      // These lookups will never find a member in a C++ class (or base class).
1511      return false;
1512
1513    case LookupNestedNameSpecifierName:
1514      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1515      break;
1516  }
1517
1518  if (!LookupRec->lookupInBases(BaseCallback,
1519                                R.getLookupName().getAsOpaquePtr(), Paths))
1520    return false;
1521
1522  R.setNamingClass(LookupRec);
1523
1524  // C++ [class.member.lookup]p2:
1525  //   [...] If the resulting set of declarations are not all from
1526  //   sub-objects of the same type, or the set has a nonstatic member
1527  //   and includes members from distinct sub-objects, there is an
1528  //   ambiguity and the program is ill-formed. Otherwise that set is
1529  //   the result of the lookup.
1530  QualType SubobjectType;
1531  int SubobjectNumber = 0;
1532  AccessSpecifier SubobjectAccess = AS_none;
1533
1534  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1535       Path != PathEnd; ++Path) {
1536    const CXXBasePathElement &PathElement = Path->back();
1537
1538    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1539    // across all paths.
1540    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1541
1542    // Determine whether we're looking at a distinct sub-object or not.
1543    if (SubobjectType.isNull()) {
1544      // This is the first subobject we've looked at. Record its type.
1545      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1546      SubobjectNumber = PathElement.SubobjectNumber;
1547      continue;
1548    }
1549
1550    if (SubobjectType
1551                 != Context.getCanonicalType(PathElement.Base->getType())) {
1552      // We found members of the given name in two subobjects of
1553      // different types. If the declaration sets aren't the same, this
1554      // this lookup is ambiguous.
1555      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1556        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1557        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1558        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1559
1560        while (FirstD != FirstPath->Decls.end() &&
1561               CurrentD != Path->Decls.end()) {
1562         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1563             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1564           break;
1565
1566          ++FirstD;
1567          ++CurrentD;
1568        }
1569
1570        if (FirstD == FirstPath->Decls.end() &&
1571            CurrentD == Path->Decls.end())
1572          continue;
1573      }
1574
1575      R.setAmbiguousBaseSubobjectTypes(Paths);
1576      return true;
1577    }
1578
1579    if (SubobjectNumber != PathElement.SubobjectNumber) {
1580      // We have a different subobject of the same type.
1581
1582      // C++ [class.member.lookup]p5:
1583      //   A static member, a nested type or an enumerator defined in
1584      //   a base class T can unambiguously be found even if an object
1585      //   has more than one base class subobject of type T.
1586      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1587        continue;
1588
1589      // We have found a nonstatic member name in multiple, distinct
1590      // subobjects. Name lookup is ambiguous.
1591      R.setAmbiguousBaseSubobjects(Paths);
1592      return true;
1593    }
1594  }
1595
1596  // Lookup in a base class succeeded; return these results.
1597
1598  DeclContext::lookup_result DR = Paths.front().Decls;
1599  for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E; ++I) {
1600    NamedDecl *D = *I;
1601    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1602                                                    D->getAccess());
1603    R.addDecl(D, AS);
1604  }
1605  R.resolveKind();
1606  return true;
1607}
1608
1609/// @brief Performs name lookup for a name that was parsed in the
1610/// source code, and may contain a C++ scope specifier.
1611///
1612/// This routine is a convenience routine meant to be called from
1613/// contexts that receive a name and an optional C++ scope specifier
1614/// (e.g., "N::M::x"). It will then perform either qualified or
1615/// unqualified name lookup (with LookupQualifiedName or LookupName,
1616/// respectively) on the given name and return those results.
1617///
1618/// @param S        The scope from which unqualified name lookup will
1619/// begin.
1620///
1621/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1622///
1623/// @param EnteringContext Indicates whether we are going to enter the
1624/// context of the scope-specifier SS (if present).
1625///
1626/// @returns True if any decls were found (but possibly ambiguous)
1627bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1628                            bool AllowBuiltinCreation, bool EnteringContext) {
1629  if (SS && SS->isInvalid()) {
1630    // When the scope specifier is invalid, don't even look for
1631    // anything.
1632    return false;
1633  }
1634
1635  if (SS && SS->isSet()) {
1636    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1637      // We have resolved the scope specifier to a particular declaration
1638      // contex, and will perform name lookup in that context.
1639      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1640        return false;
1641
1642      R.setContextRange(SS->getRange());
1643      return LookupQualifiedName(R, DC);
1644    }
1645
1646    // We could not resolve the scope specified to a specific declaration
1647    // context, which means that SS refers to an unknown specialization.
1648    // Name lookup can't find anything in this case.
1649    R.setNotFoundInCurrentInstantiation();
1650    R.setContextRange(SS->getRange());
1651    return false;
1652  }
1653
1654  // Perform unqualified name lookup starting in the given scope.
1655  return LookupName(R, S, AllowBuiltinCreation);
1656}
1657
1658
1659/// \brief Produce a diagnostic describing the ambiguity that resulted
1660/// from name lookup.
1661///
1662/// \param Result The result of the ambiguous lookup to be diagnosed.
1663///
1664/// \returns true
1665bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1666  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1667
1668  DeclarationName Name = Result.getLookupName();
1669  SourceLocation NameLoc = Result.getNameLoc();
1670  SourceRange LookupRange = Result.getContextRange();
1671
1672  switch (Result.getAmbiguityKind()) {
1673  case LookupResult::AmbiguousBaseSubobjects: {
1674    CXXBasePaths *Paths = Result.getBasePaths();
1675    QualType SubobjectType = Paths->front().back().Base->getType();
1676    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1677      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1678      << LookupRange;
1679
1680    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1681    while (isa<CXXMethodDecl>(*Found) &&
1682           cast<CXXMethodDecl>(*Found)->isStatic())
1683      ++Found;
1684
1685    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1686
1687    return true;
1688  }
1689
1690  case LookupResult::AmbiguousBaseSubobjectTypes: {
1691    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1692      << Name << LookupRange;
1693
1694    CXXBasePaths *Paths = Result.getBasePaths();
1695    std::set<Decl *> DeclsPrinted;
1696    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1697                                      PathEnd = Paths->end();
1698         Path != PathEnd; ++Path) {
1699      Decl *D = Path->Decls.front();
1700      if (DeclsPrinted.insert(D).second)
1701        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1702    }
1703
1704    return true;
1705  }
1706
1707  case LookupResult::AmbiguousTagHiding: {
1708    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1709
1710    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1711
1712    LookupResult::iterator DI, DE = Result.end();
1713    for (DI = Result.begin(); DI != DE; ++DI)
1714      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1715        TagDecls.insert(TD);
1716        Diag(TD->getLocation(), diag::note_hidden_tag);
1717      }
1718
1719    for (DI = Result.begin(); DI != DE; ++DI)
1720      if (!isa<TagDecl>(*DI))
1721        Diag((*DI)->getLocation(), diag::note_hiding_object);
1722
1723    // For recovery purposes, go ahead and implement the hiding.
1724    LookupResult::Filter F = Result.makeFilter();
1725    while (F.hasNext()) {
1726      if (TagDecls.count(F.next()))
1727        F.erase();
1728    }
1729    F.done();
1730
1731    return true;
1732  }
1733
1734  case LookupResult::AmbiguousReference: {
1735    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1736
1737    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1738    for (; DI != DE; ++DI)
1739      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1740
1741    return true;
1742  }
1743  }
1744
1745  llvm_unreachable("unknown ambiguity kind");
1746}
1747
1748namespace {
1749  struct AssociatedLookup {
1750    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1751                     Sema::AssociatedNamespaceSet &Namespaces,
1752                     Sema::AssociatedClassSet &Classes)
1753      : S(S), Namespaces(Namespaces), Classes(Classes),
1754        InstantiationLoc(InstantiationLoc) {
1755    }
1756
1757    Sema &S;
1758    Sema::AssociatedNamespaceSet &Namespaces;
1759    Sema::AssociatedClassSet &Classes;
1760    SourceLocation InstantiationLoc;
1761  };
1762}
1763
1764static void
1765addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1766
1767static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1768                                      DeclContext *Ctx) {
1769  // Add the associated namespace for this class.
1770
1771  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1772  // be a locally scoped record.
1773
1774  // We skip out of inline namespaces. The innermost non-inline namespace
1775  // contains all names of all its nested inline namespaces anyway, so we can
1776  // replace the entire inline namespace tree with its root.
1777  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1778         Ctx->isInlineNamespace())
1779    Ctx = Ctx->getParent();
1780
1781  if (Ctx->isFileContext())
1782    Namespaces.insert(Ctx->getPrimaryContext());
1783}
1784
1785// \brief Add the associated classes and namespaces for argument-dependent
1786// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1787static void
1788addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1789                                  const TemplateArgument &Arg) {
1790  // C++ [basic.lookup.koenig]p2, last bullet:
1791  //   -- [...] ;
1792  switch (Arg.getKind()) {
1793    case TemplateArgument::Null:
1794      break;
1795
1796    case TemplateArgument::Type:
1797      // [...] the namespaces and classes associated with the types of the
1798      // template arguments provided for template type parameters (excluding
1799      // template template parameters)
1800      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1801      break;
1802
1803    case TemplateArgument::Template:
1804    case TemplateArgument::TemplateExpansion: {
1805      // [...] the namespaces in which any template template arguments are
1806      // defined; and the classes in which any member templates used as
1807      // template template arguments are defined.
1808      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1809      if (ClassTemplateDecl *ClassTemplate
1810                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1811        DeclContext *Ctx = ClassTemplate->getDeclContext();
1812        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1813          Result.Classes.insert(EnclosingClass);
1814        // Add the associated namespace for this class.
1815        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1816      }
1817      break;
1818    }
1819
1820    case TemplateArgument::Declaration:
1821    case TemplateArgument::Integral:
1822    case TemplateArgument::Expression:
1823    case TemplateArgument::NullPtr:
1824      // [Note: non-type template arguments do not contribute to the set of
1825      //  associated namespaces. ]
1826      break;
1827
1828    case TemplateArgument::Pack:
1829      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1830                                        PEnd = Arg.pack_end();
1831           P != PEnd; ++P)
1832        addAssociatedClassesAndNamespaces(Result, *P);
1833      break;
1834  }
1835}
1836
1837// \brief Add the associated classes and namespaces for
1838// argument-dependent lookup with an argument of class type
1839// (C++ [basic.lookup.koenig]p2).
1840static void
1841addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1842                                  CXXRecordDecl *Class) {
1843
1844  // Just silently ignore anything whose name is __va_list_tag.
1845  if (Class->getDeclName() == Result.S.VAListTagName)
1846    return;
1847
1848  // C++ [basic.lookup.koenig]p2:
1849  //   [...]
1850  //     -- If T is a class type (including unions), its associated
1851  //        classes are: the class itself; the class of which it is a
1852  //        member, if any; and its direct and indirect base
1853  //        classes. Its associated namespaces are the namespaces in
1854  //        which its associated classes are defined.
1855
1856  // Add the class of which it is a member, if any.
1857  DeclContext *Ctx = Class->getDeclContext();
1858  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1859    Result.Classes.insert(EnclosingClass);
1860  // Add the associated namespace for this class.
1861  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1862
1863  // Add the class itself. If we've already seen this class, we don't
1864  // need to visit base classes.
1865  if (!Result.Classes.insert(Class))
1866    return;
1867
1868  // -- If T is a template-id, its associated namespaces and classes are
1869  //    the namespace in which the template is defined; for member
1870  //    templates, the member template's class; the namespaces and classes
1871  //    associated with the types of the template arguments provided for
1872  //    template type parameters (excluding template template parameters); the
1873  //    namespaces in which any template template arguments are defined; and
1874  //    the classes in which any member templates used as template template
1875  //    arguments are defined. [Note: non-type template arguments do not
1876  //    contribute to the set of associated namespaces. ]
1877  if (ClassTemplateSpecializationDecl *Spec
1878        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1879    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1880    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1881      Result.Classes.insert(EnclosingClass);
1882    // Add the associated namespace for this class.
1883    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1884
1885    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1886    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1887      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1888  }
1889
1890  // Only recurse into base classes for complete types.
1891  if (!Class->hasDefinition()) {
1892    QualType type = Result.S.Context.getTypeDeclType(Class);
1893    if (Result.S.RequireCompleteType(Result.InstantiationLoc, type,
1894                                     /*no diagnostic*/ 0))
1895      return;
1896  }
1897
1898  // Add direct and indirect base classes along with their associated
1899  // namespaces.
1900  SmallVector<CXXRecordDecl *, 32> Bases;
1901  Bases.push_back(Class);
1902  while (!Bases.empty()) {
1903    // Pop this class off the stack.
1904    Class = Bases.back();
1905    Bases.pop_back();
1906
1907    // Visit the base classes.
1908    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1909                                         BaseEnd = Class->bases_end();
1910         Base != BaseEnd; ++Base) {
1911      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1912      // In dependent contexts, we do ADL twice, and the first time around,
1913      // the base type might be a dependent TemplateSpecializationType, or a
1914      // TemplateTypeParmType. If that happens, simply ignore it.
1915      // FIXME: If we want to support export, we probably need to add the
1916      // namespace of the template in a TemplateSpecializationType, or even
1917      // the classes and namespaces of known non-dependent arguments.
1918      if (!BaseType)
1919        continue;
1920      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1921      if (Result.Classes.insert(BaseDecl)) {
1922        // Find the associated namespace for this base class.
1923        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1924        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1925
1926        // Make sure we visit the bases of this base class.
1927        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1928          Bases.push_back(BaseDecl);
1929      }
1930    }
1931  }
1932}
1933
1934// \brief Add the associated classes and namespaces for
1935// argument-dependent lookup with an argument of type T
1936// (C++ [basic.lookup.koenig]p2).
1937static void
1938addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1939  // C++ [basic.lookup.koenig]p2:
1940  //
1941  //   For each argument type T in the function call, there is a set
1942  //   of zero or more associated namespaces and a set of zero or more
1943  //   associated classes to be considered. The sets of namespaces and
1944  //   classes is determined entirely by the types of the function
1945  //   arguments (and the namespace of any template template
1946  //   argument). Typedef names and using-declarations used to specify
1947  //   the types do not contribute to this set. The sets of namespaces
1948  //   and classes are determined in the following way:
1949
1950  SmallVector<const Type *, 16> Queue;
1951  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1952
1953  while (true) {
1954    switch (T->getTypeClass()) {
1955
1956#define TYPE(Class, Base)
1957#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1958#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1959#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1960#define ABSTRACT_TYPE(Class, Base)
1961#include "clang/AST/TypeNodes.def"
1962      // T is canonical.  We can also ignore dependent types because
1963      // we don't need to do ADL at the definition point, but if we
1964      // wanted to implement template export (or if we find some other
1965      // use for associated classes and namespaces...) this would be
1966      // wrong.
1967      break;
1968
1969    //    -- If T is a pointer to U or an array of U, its associated
1970    //       namespaces and classes are those associated with U.
1971    case Type::Pointer:
1972      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1973      continue;
1974    case Type::ConstantArray:
1975    case Type::IncompleteArray:
1976    case Type::VariableArray:
1977      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1978      continue;
1979
1980    //     -- If T is a fundamental type, its associated sets of
1981    //        namespaces and classes are both empty.
1982    case Type::Builtin:
1983      break;
1984
1985    //     -- If T is a class type (including unions), its associated
1986    //        classes are: the class itself; the class of which it is a
1987    //        member, if any; and its direct and indirect base
1988    //        classes. Its associated namespaces are the namespaces in
1989    //        which its associated classes are defined.
1990    case Type::Record: {
1991      CXXRecordDecl *Class
1992        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1993      addAssociatedClassesAndNamespaces(Result, Class);
1994      break;
1995    }
1996
1997    //     -- If T is an enumeration type, its associated namespace is
1998    //        the namespace in which it is defined. If it is class
1999    //        member, its associated class is the member's class; else
2000    //        it has no associated class.
2001    case Type::Enum: {
2002      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2003
2004      DeclContext *Ctx = Enum->getDeclContext();
2005      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2006        Result.Classes.insert(EnclosingClass);
2007
2008      // Add the associated namespace for this class.
2009      CollectEnclosingNamespace(Result.Namespaces, Ctx);
2010
2011      break;
2012    }
2013
2014    //     -- If T is a function type, its associated namespaces and
2015    //        classes are those associated with the function parameter
2016    //        types and those associated with the return type.
2017    case Type::FunctionProto: {
2018      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2019      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2020                                             ArgEnd = Proto->arg_type_end();
2021             Arg != ArgEnd; ++Arg)
2022        Queue.push_back(Arg->getTypePtr());
2023      // fallthrough
2024    }
2025    case Type::FunctionNoProto: {
2026      const FunctionType *FnType = cast<FunctionType>(T);
2027      T = FnType->getResultType().getTypePtr();
2028      continue;
2029    }
2030
2031    //     -- If T is a pointer to a member function of a class X, its
2032    //        associated namespaces and classes are those associated
2033    //        with the function parameter types and return type,
2034    //        together with those associated with X.
2035    //
2036    //     -- If T is a pointer to a data member of class X, its
2037    //        associated namespaces and classes are those associated
2038    //        with the member type together with those associated with
2039    //        X.
2040    case Type::MemberPointer: {
2041      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2042
2043      // Queue up the class type into which this points.
2044      Queue.push_back(MemberPtr->getClass());
2045
2046      // And directly continue with the pointee type.
2047      T = MemberPtr->getPointeeType().getTypePtr();
2048      continue;
2049    }
2050
2051    // As an extension, treat this like a normal pointer.
2052    case Type::BlockPointer:
2053      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2054      continue;
2055
2056    // References aren't covered by the standard, but that's such an
2057    // obvious defect that we cover them anyway.
2058    case Type::LValueReference:
2059    case Type::RValueReference:
2060      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2061      continue;
2062
2063    // These are fundamental types.
2064    case Type::Vector:
2065    case Type::ExtVector:
2066    case Type::Complex:
2067      break;
2068
2069    // If T is an Objective-C object or interface type, or a pointer to an
2070    // object or interface type, the associated namespace is the global
2071    // namespace.
2072    case Type::ObjCObject:
2073    case Type::ObjCInterface:
2074    case Type::ObjCObjectPointer:
2075      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2076      break;
2077
2078    // Atomic types are just wrappers; use the associations of the
2079    // contained type.
2080    case Type::Atomic:
2081      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2082      continue;
2083    }
2084
2085    if (Queue.empty()) break;
2086    T = Queue.back();
2087    Queue.pop_back();
2088  }
2089}
2090
2091/// \brief Find the associated classes and namespaces for
2092/// argument-dependent lookup for a call with the given set of
2093/// arguments.
2094///
2095/// This routine computes the sets of associated classes and associated
2096/// namespaces searched by argument-dependent lookup
2097/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2098void
2099Sema::FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
2100                                         llvm::ArrayRef<Expr *> Args,
2101                                 AssociatedNamespaceSet &AssociatedNamespaces,
2102                                 AssociatedClassSet &AssociatedClasses) {
2103  AssociatedNamespaces.clear();
2104  AssociatedClasses.clear();
2105
2106  AssociatedLookup Result(*this, InstantiationLoc,
2107                          AssociatedNamespaces, AssociatedClasses);
2108
2109  // C++ [basic.lookup.koenig]p2:
2110  //   For each argument type T in the function call, there is a set
2111  //   of zero or more associated namespaces and a set of zero or more
2112  //   associated classes to be considered. The sets of namespaces and
2113  //   classes is determined entirely by the types of the function
2114  //   arguments (and the namespace of any template template
2115  //   argument).
2116  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2117    Expr *Arg = Args[ArgIdx];
2118
2119    if (Arg->getType() != Context.OverloadTy) {
2120      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2121      continue;
2122    }
2123
2124    // [...] In addition, if the argument is the name or address of a
2125    // set of overloaded functions and/or function templates, its
2126    // associated classes and namespaces are the union of those
2127    // associated with each of the members of the set: the namespace
2128    // in which the function or function template is defined and the
2129    // classes and namespaces associated with its (non-dependent)
2130    // parameter types and return type.
2131    Arg = Arg->IgnoreParens();
2132    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2133      if (unaryOp->getOpcode() == UO_AddrOf)
2134        Arg = unaryOp->getSubExpr();
2135
2136    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2137    if (!ULE) continue;
2138
2139    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2140           I != E; ++I) {
2141      // Look through any using declarations to find the underlying function.
2142      NamedDecl *Fn = (*I)->getUnderlyingDecl();
2143
2144      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2145      if (!FDecl)
2146        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2147
2148      // Add the classes and namespaces associated with the parameter
2149      // types and return type of this function.
2150      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2151    }
2152  }
2153}
2154
2155/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2156/// an acceptable non-member overloaded operator for a call whose
2157/// arguments have types T1 (and, if non-empty, T2). This routine
2158/// implements the check in C++ [over.match.oper]p3b2 concerning
2159/// enumeration types.
2160static bool
2161IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2162                                       QualType T1, QualType T2,
2163                                       ASTContext &Context) {
2164  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2165    return true;
2166
2167  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2168    return true;
2169
2170  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2171  if (Proto->getNumArgs() < 1)
2172    return false;
2173
2174  if (T1->isEnumeralType()) {
2175    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2176    if (Context.hasSameUnqualifiedType(T1, ArgType))
2177      return true;
2178  }
2179
2180  if (Proto->getNumArgs() < 2)
2181    return false;
2182
2183  if (!T2.isNull() && T2->isEnumeralType()) {
2184    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2185    if (Context.hasSameUnqualifiedType(T2, ArgType))
2186      return true;
2187  }
2188
2189  return false;
2190}
2191
2192NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2193                                  SourceLocation Loc,
2194                                  LookupNameKind NameKind,
2195                                  RedeclarationKind Redecl) {
2196  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2197  LookupName(R, S);
2198  return R.getAsSingle<NamedDecl>();
2199}
2200
2201/// \brief Find the protocol with the given name, if any.
2202ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2203                                       SourceLocation IdLoc,
2204                                       RedeclarationKind Redecl) {
2205  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2206                             LookupObjCProtocolName, Redecl);
2207  return cast_or_null<ObjCProtocolDecl>(D);
2208}
2209
2210void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2211                                        QualType T1, QualType T2,
2212                                        UnresolvedSetImpl &Functions) {
2213  // C++ [over.match.oper]p3:
2214  //     -- The set of non-member candidates is the result of the
2215  //        unqualified lookup of operator@ in the context of the
2216  //        expression according to the usual rules for name lookup in
2217  //        unqualified function calls (3.4.2) except that all member
2218  //        functions are ignored. However, if no operand has a class
2219  //        type, only those non-member functions in the lookup set
2220  //        that have a first parameter of type T1 or "reference to
2221  //        (possibly cv-qualified) T1", when T1 is an enumeration
2222  //        type, or (if there is a right operand) a second parameter
2223  //        of type T2 or "reference to (possibly cv-qualified) T2",
2224  //        when T2 is an enumeration type, are candidate functions.
2225  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2226  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2227  LookupName(Operators, S);
2228
2229  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2230
2231  if (Operators.empty())
2232    return;
2233
2234  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2235       Op != OpEnd; ++Op) {
2236    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2237    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2238      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2239        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2240    } else if (FunctionTemplateDecl *FunTmpl
2241                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2242      // FIXME: friend operators?
2243      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2244      // later?
2245      if (!FunTmpl->getDeclContext()->isRecord())
2246        Functions.addDecl(*Op, Op.getAccess());
2247    }
2248  }
2249}
2250
2251Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2252                                                            CXXSpecialMember SM,
2253                                                            bool ConstArg,
2254                                                            bool VolatileArg,
2255                                                            bool RValueThis,
2256                                                            bool ConstThis,
2257                                                            bool VolatileThis) {
2258  assert(CanDeclareSpecialMemberFunction(RD) &&
2259         "doing special member lookup into record that isn't fully complete");
2260  RD = RD->getDefinition();
2261  if (RValueThis || ConstThis || VolatileThis)
2262    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2263           "constructors and destructors always have unqualified lvalue this");
2264  if (ConstArg || VolatileArg)
2265    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2266           "parameter-less special members can't have qualified arguments");
2267
2268  llvm::FoldingSetNodeID ID;
2269  ID.AddPointer(RD);
2270  ID.AddInteger(SM);
2271  ID.AddInteger(ConstArg);
2272  ID.AddInteger(VolatileArg);
2273  ID.AddInteger(RValueThis);
2274  ID.AddInteger(ConstThis);
2275  ID.AddInteger(VolatileThis);
2276
2277  void *InsertPoint;
2278  SpecialMemberOverloadResult *Result =
2279    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2280
2281  // This was already cached
2282  if (Result)
2283    return Result;
2284
2285  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2286  Result = new (Result) SpecialMemberOverloadResult(ID);
2287  SpecialMemberCache.InsertNode(Result, InsertPoint);
2288
2289  if (SM == CXXDestructor) {
2290    if (RD->needsImplicitDestructor())
2291      DeclareImplicitDestructor(RD);
2292    CXXDestructorDecl *DD = RD->getDestructor();
2293    assert(DD && "record without a destructor");
2294    Result->setMethod(DD);
2295    Result->setKind(DD->isDeleted() ?
2296                    SpecialMemberOverloadResult::NoMemberOrDeleted :
2297                    SpecialMemberOverloadResult::Success);
2298    return Result;
2299  }
2300
2301  // Prepare for overload resolution. Here we construct a synthetic argument
2302  // if necessary and make sure that implicit functions are declared.
2303  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2304  DeclarationName Name;
2305  Expr *Arg = 0;
2306  unsigned NumArgs;
2307
2308  QualType ArgType = CanTy;
2309  ExprValueKind VK = VK_LValue;
2310
2311  if (SM == CXXDefaultConstructor) {
2312    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2313    NumArgs = 0;
2314    if (RD->needsImplicitDefaultConstructor())
2315      DeclareImplicitDefaultConstructor(RD);
2316  } else {
2317    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2318      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2319      if (RD->needsImplicitCopyConstructor())
2320        DeclareImplicitCopyConstructor(RD);
2321      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2322        DeclareImplicitMoveConstructor(RD);
2323    } else {
2324      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2325      if (RD->needsImplicitCopyAssignment())
2326        DeclareImplicitCopyAssignment(RD);
2327      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2328        DeclareImplicitMoveAssignment(RD);
2329    }
2330
2331    if (ConstArg)
2332      ArgType.addConst();
2333    if (VolatileArg)
2334      ArgType.addVolatile();
2335
2336    // This isn't /really/ specified by the standard, but it's implied
2337    // we should be working from an RValue in the case of move to ensure
2338    // that we prefer to bind to rvalue references, and an LValue in the
2339    // case of copy to ensure we don't bind to rvalue references.
2340    // Possibly an XValue is actually correct in the case of move, but
2341    // there is no semantic difference for class types in this restricted
2342    // case.
2343    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2344      VK = VK_LValue;
2345    else
2346      VK = VK_RValue;
2347  }
2348
2349  OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2350
2351  if (SM != CXXDefaultConstructor) {
2352    NumArgs = 1;
2353    Arg = &FakeArg;
2354  }
2355
2356  // Create the object argument
2357  QualType ThisTy = CanTy;
2358  if (ConstThis)
2359    ThisTy.addConst();
2360  if (VolatileThis)
2361    ThisTy.addVolatile();
2362  Expr::Classification Classification =
2363    OpaqueValueExpr(SourceLocation(), ThisTy,
2364                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2365
2366  // Now we perform lookup on the name we computed earlier and do overload
2367  // resolution. Lookup is only performed directly into the class since there
2368  // will always be a (possibly implicit) declaration to shadow any others.
2369  OverloadCandidateSet OCS((SourceLocation()));
2370  DeclContext::lookup_result R = RD->lookup(Name);
2371
2372  assert(!R.empty() &&
2373         "lookup for a constructor or assignment operator was empty");
2374  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
2375    Decl *Cand = *I;
2376
2377    if (Cand->isInvalidDecl())
2378      continue;
2379
2380    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2381      // FIXME: [namespace.udecl]p15 says that we should only consider a
2382      // using declaration here if it does not match a declaration in the
2383      // derived class. We do not implement this correctly in other cases
2384      // either.
2385      Cand = U->getTargetDecl();
2386
2387      if (Cand->isInvalidDecl())
2388        continue;
2389    }
2390
2391    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2392      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2393        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2394                           Classification, llvm::makeArrayRef(&Arg, NumArgs),
2395                           OCS, true);
2396      else
2397        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2398                             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2399    } else if (FunctionTemplateDecl *Tmpl =
2400                 dyn_cast<FunctionTemplateDecl>(Cand)) {
2401      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2402        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2403                                   RD, 0, ThisTy, Classification,
2404                                   llvm::makeArrayRef(&Arg, NumArgs),
2405                                   OCS, true);
2406      else
2407        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2408                                     0, llvm::makeArrayRef(&Arg, NumArgs),
2409                                     OCS, true);
2410    } else {
2411      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2412    }
2413  }
2414
2415  OverloadCandidateSet::iterator Best;
2416  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2417    case OR_Success:
2418      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2419      Result->setKind(SpecialMemberOverloadResult::Success);
2420      break;
2421
2422    case OR_Deleted:
2423      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2424      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2425      break;
2426
2427    case OR_Ambiguous:
2428      Result->setMethod(0);
2429      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2430      break;
2431
2432    case OR_No_Viable_Function:
2433      Result->setMethod(0);
2434      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2435      break;
2436  }
2437
2438  return Result;
2439}
2440
2441/// \brief Look up the default constructor for the given class.
2442CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2443  SpecialMemberOverloadResult *Result =
2444    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2445                        false, false);
2446
2447  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2448}
2449
2450/// \brief Look up the copying constructor for the given class.
2451CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2452                                                   unsigned Quals) {
2453  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2454         "non-const, non-volatile qualifiers for copy ctor arg");
2455  SpecialMemberOverloadResult *Result =
2456    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2457                        Quals & Qualifiers::Volatile, false, false, false);
2458
2459  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2460}
2461
2462/// \brief Look up the moving constructor for the given class.
2463CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2464                                                  unsigned Quals) {
2465  SpecialMemberOverloadResult *Result =
2466    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2467                        Quals & Qualifiers::Volatile, false, false, false);
2468
2469  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2470}
2471
2472/// \brief Look up the constructors for the given class.
2473DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2474  // If the implicit constructors have not yet been declared, do so now.
2475  if (CanDeclareSpecialMemberFunction(Class)) {
2476    if (Class->needsImplicitDefaultConstructor())
2477      DeclareImplicitDefaultConstructor(Class);
2478    if (Class->needsImplicitCopyConstructor())
2479      DeclareImplicitCopyConstructor(Class);
2480    if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2481      DeclareImplicitMoveConstructor(Class);
2482  }
2483
2484  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2485  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2486  return Class->lookup(Name);
2487}
2488
2489/// \brief Look up the copying assignment operator for the given class.
2490CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2491                                             unsigned Quals, bool RValueThis,
2492                                             unsigned ThisQuals) {
2493  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2494         "non-const, non-volatile qualifiers for copy assignment arg");
2495  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2496         "non-const, non-volatile qualifiers for copy assignment this");
2497  SpecialMemberOverloadResult *Result =
2498    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2499                        Quals & Qualifiers::Volatile, RValueThis,
2500                        ThisQuals & Qualifiers::Const,
2501                        ThisQuals & Qualifiers::Volatile);
2502
2503  return Result->getMethod();
2504}
2505
2506/// \brief Look up the moving assignment operator for the given class.
2507CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2508                                            unsigned Quals,
2509                                            bool RValueThis,
2510                                            unsigned ThisQuals) {
2511  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2512         "non-const, non-volatile qualifiers for copy assignment this");
2513  SpecialMemberOverloadResult *Result =
2514    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2515                        Quals & Qualifiers::Volatile, RValueThis,
2516                        ThisQuals & Qualifiers::Const,
2517                        ThisQuals & Qualifiers::Volatile);
2518
2519  return Result->getMethod();
2520}
2521
2522/// \brief Look for the destructor of the given class.
2523///
2524/// During semantic analysis, this routine should be used in lieu of
2525/// CXXRecordDecl::getDestructor().
2526///
2527/// \returns The destructor for this class.
2528CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2529  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2530                                                     false, false, false,
2531                                                     false, false)->getMethod());
2532}
2533
2534/// LookupLiteralOperator - Determine which literal operator should be used for
2535/// a user-defined literal, per C++11 [lex.ext].
2536///
2537/// Normal overload resolution is not used to select which literal operator to
2538/// call for a user-defined literal. Look up the provided literal operator name,
2539/// and filter the results to the appropriate set for the given argument types.
2540Sema::LiteralOperatorLookupResult
2541Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2542                            ArrayRef<QualType> ArgTys,
2543                            bool AllowRawAndTemplate) {
2544  LookupName(R, S);
2545  assert(R.getResultKind() != LookupResult::Ambiguous &&
2546         "literal operator lookup can't be ambiguous");
2547
2548  // Filter the lookup results appropriately.
2549  LookupResult::Filter F = R.makeFilter();
2550
2551  bool FoundTemplate = false;
2552  bool FoundRaw = false;
2553  bool FoundExactMatch = false;
2554
2555  while (F.hasNext()) {
2556    Decl *D = F.next();
2557    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2558      D = USD->getTargetDecl();
2559
2560    bool IsTemplate = isa<FunctionTemplateDecl>(D);
2561    bool IsRaw = false;
2562    bool IsExactMatch = false;
2563
2564    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2565      if (FD->getNumParams() == 1 &&
2566          FD->getParamDecl(0)->getType()->getAs<PointerType>())
2567        IsRaw = true;
2568      else if (FD->getNumParams() == ArgTys.size()) {
2569        IsExactMatch = true;
2570        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2571          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2572          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2573            IsExactMatch = false;
2574            break;
2575          }
2576        }
2577      }
2578    }
2579
2580    if (IsExactMatch) {
2581      FoundExactMatch = true;
2582      AllowRawAndTemplate = false;
2583      if (FoundRaw || FoundTemplate) {
2584        // Go through again and remove the raw and template decls we've
2585        // already found.
2586        F.restart();
2587        FoundRaw = FoundTemplate = false;
2588      }
2589    } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2590      FoundTemplate |= IsTemplate;
2591      FoundRaw |= IsRaw;
2592    } else {
2593      F.erase();
2594    }
2595  }
2596
2597  F.done();
2598
2599  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2600  // parameter type, that is used in preference to a raw literal operator
2601  // or literal operator template.
2602  if (FoundExactMatch)
2603    return LOLR_Cooked;
2604
2605  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2606  // operator template, but not both.
2607  if (FoundRaw && FoundTemplate) {
2608    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2609    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2610      Decl *D = *I;
2611      if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2612        D = USD->getTargetDecl();
2613      if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2614        D = FunTmpl->getTemplatedDecl();
2615      NoteOverloadCandidate(cast<FunctionDecl>(D));
2616    }
2617    return LOLR_Error;
2618  }
2619
2620  if (FoundRaw)
2621    return LOLR_Raw;
2622
2623  if (FoundTemplate)
2624    return LOLR_Template;
2625
2626  // Didn't find anything we could use.
2627  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2628    << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2629    << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2630  return LOLR_Error;
2631}
2632
2633void ADLResult::insert(NamedDecl *New) {
2634  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2635
2636  // If we haven't yet seen a decl for this key, or the last decl
2637  // was exactly this one, we're done.
2638  if (Old == 0 || Old == New) {
2639    Old = New;
2640    return;
2641  }
2642
2643  // Otherwise, decide which is a more recent redeclaration.
2644  FunctionDecl *OldFD, *NewFD;
2645  if (isa<FunctionTemplateDecl>(New)) {
2646    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2647    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2648  } else {
2649    OldFD = cast<FunctionDecl>(Old);
2650    NewFD = cast<FunctionDecl>(New);
2651  }
2652
2653  FunctionDecl *Cursor = NewFD;
2654  while (true) {
2655    Cursor = Cursor->getPreviousDecl();
2656
2657    // If we got to the end without finding OldFD, OldFD is the newer
2658    // declaration;  leave things as they are.
2659    if (!Cursor) return;
2660
2661    // If we do find OldFD, then NewFD is newer.
2662    if (Cursor == OldFD) break;
2663
2664    // Otherwise, keep looking.
2665  }
2666
2667  Old = New;
2668}
2669
2670void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2671                                   SourceLocation Loc,
2672                                   llvm::ArrayRef<Expr *> Args,
2673                                   ADLResult &Result) {
2674  // Find all of the associated namespaces and classes based on the
2675  // arguments we have.
2676  AssociatedNamespaceSet AssociatedNamespaces;
2677  AssociatedClassSet AssociatedClasses;
2678  FindAssociatedClassesAndNamespaces(Loc, Args,
2679                                     AssociatedNamespaces,
2680                                     AssociatedClasses);
2681
2682  QualType T1, T2;
2683  if (Operator) {
2684    T1 = Args[0]->getType();
2685    if (Args.size() >= 2)
2686      T2 = Args[1]->getType();
2687  }
2688
2689  // C++ [basic.lookup.argdep]p3:
2690  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2691  //   and let Y be the lookup set produced by argument dependent
2692  //   lookup (defined as follows). If X contains [...] then Y is
2693  //   empty. Otherwise Y is the set of declarations found in the
2694  //   namespaces associated with the argument types as described
2695  //   below. The set of declarations found by the lookup of the name
2696  //   is the union of X and Y.
2697  //
2698  // Here, we compute Y and add its members to the overloaded
2699  // candidate set.
2700  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2701                                     NSEnd = AssociatedNamespaces.end();
2702       NS != NSEnd; ++NS) {
2703    //   When considering an associated namespace, the lookup is the
2704    //   same as the lookup performed when the associated namespace is
2705    //   used as a qualifier (3.4.3.2) except that:
2706    //
2707    //     -- Any using-directives in the associated namespace are
2708    //        ignored.
2709    //
2710    //     -- Any namespace-scope friend functions declared in
2711    //        associated classes are visible within their respective
2712    //        namespaces even if they are not visible during an ordinary
2713    //        lookup (11.4).
2714    DeclContext::lookup_result R = (*NS)->lookup(Name);
2715    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2716         ++I) {
2717      NamedDecl *D = *I;
2718      // If the only declaration here is an ordinary friend, consider
2719      // it only if it was declared in an associated classes.
2720      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2721        DeclContext *LexDC = D->getLexicalDeclContext();
2722        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2723          continue;
2724      }
2725
2726      if (isa<UsingShadowDecl>(D))
2727        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2728
2729      if (isa<FunctionDecl>(D)) {
2730        if (Operator &&
2731            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2732                                                    T1, T2, Context))
2733          continue;
2734      } else if (!isa<FunctionTemplateDecl>(D))
2735        continue;
2736
2737      Result.insert(D);
2738    }
2739  }
2740}
2741
2742//----------------------------------------------------------------------------
2743// Search for all visible declarations.
2744//----------------------------------------------------------------------------
2745VisibleDeclConsumer::~VisibleDeclConsumer() { }
2746
2747namespace {
2748
2749class ShadowContextRAII;
2750
2751class VisibleDeclsRecord {
2752public:
2753  /// \brief An entry in the shadow map, which is optimized to store a
2754  /// single declaration (the common case) but can also store a list
2755  /// of declarations.
2756  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2757
2758private:
2759  /// \brief A mapping from declaration names to the declarations that have
2760  /// this name within a particular scope.
2761  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2762
2763  /// \brief A list of shadow maps, which is used to model name hiding.
2764  std::list<ShadowMap> ShadowMaps;
2765
2766  /// \brief The declaration contexts we have already visited.
2767  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2768
2769  friend class ShadowContextRAII;
2770
2771public:
2772  /// \brief Determine whether we have already visited this context
2773  /// (and, if not, note that we are going to visit that context now).
2774  bool visitedContext(DeclContext *Ctx) {
2775    return !VisitedContexts.insert(Ctx);
2776  }
2777
2778  bool alreadyVisitedContext(DeclContext *Ctx) {
2779    return VisitedContexts.count(Ctx);
2780  }
2781
2782  /// \brief Determine whether the given declaration is hidden in the
2783  /// current scope.
2784  ///
2785  /// \returns the declaration that hides the given declaration, or
2786  /// NULL if no such declaration exists.
2787  NamedDecl *checkHidden(NamedDecl *ND);
2788
2789  /// \brief Add a declaration to the current shadow map.
2790  void add(NamedDecl *ND) {
2791    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2792  }
2793};
2794
2795/// \brief RAII object that records when we've entered a shadow context.
2796class ShadowContextRAII {
2797  VisibleDeclsRecord &Visible;
2798
2799  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2800
2801public:
2802  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2803    Visible.ShadowMaps.push_back(ShadowMap());
2804  }
2805
2806  ~ShadowContextRAII() {
2807    Visible.ShadowMaps.pop_back();
2808  }
2809};
2810
2811} // end anonymous namespace
2812
2813NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2814  // Look through using declarations.
2815  ND = ND->getUnderlyingDecl();
2816
2817  unsigned IDNS = ND->getIdentifierNamespace();
2818  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2819  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2820       SM != SMEnd; ++SM) {
2821    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2822    if (Pos == SM->end())
2823      continue;
2824
2825    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2826                               IEnd = Pos->second.end();
2827         I != IEnd; ++I) {
2828      // A tag declaration does not hide a non-tag declaration.
2829      if ((*I)->hasTagIdentifierNamespace() &&
2830          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2831                   Decl::IDNS_ObjCProtocol)))
2832        continue;
2833
2834      // Protocols are in distinct namespaces from everything else.
2835      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2836           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2837          (*I)->getIdentifierNamespace() != IDNS)
2838        continue;
2839
2840      // Functions and function templates in the same scope overload
2841      // rather than hide.  FIXME: Look for hiding based on function
2842      // signatures!
2843      if ((*I)->isFunctionOrFunctionTemplate() &&
2844          ND->isFunctionOrFunctionTemplate() &&
2845          SM == ShadowMaps.rbegin())
2846        continue;
2847
2848      // We've found a declaration that hides this one.
2849      return *I;
2850    }
2851  }
2852
2853  return 0;
2854}
2855
2856static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2857                               bool QualifiedNameLookup,
2858                               bool InBaseClass,
2859                               VisibleDeclConsumer &Consumer,
2860                               VisibleDeclsRecord &Visited) {
2861  if (!Ctx)
2862    return;
2863
2864  // Make sure we don't visit the same context twice.
2865  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2866    return;
2867
2868  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2869    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2870
2871  // Enumerate all of the results in this context.
2872  for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2873                                      LEnd = Ctx->lookups_end();
2874       L != LEnd; ++L) {
2875    DeclContext::lookup_result R = *L;
2876    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2877         ++I) {
2878      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I)) {
2879        if ((ND = Result.getAcceptableDecl(ND))) {
2880          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2881          Visited.add(ND);
2882        }
2883      }
2884    }
2885  }
2886
2887  // Traverse using directives for qualified name lookup.
2888  if (QualifiedNameLookup) {
2889    ShadowContextRAII Shadow(Visited);
2890    DeclContext::udir_iterator I, E;
2891    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2892      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2893                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2894    }
2895  }
2896
2897  // Traverse the contexts of inherited C++ classes.
2898  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2899    if (!Record->hasDefinition())
2900      return;
2901
2902    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2903                                         BEnd = Record->bases_end();
2904         B != BEnd; ++B) {
2905      QualType BaseType = B->getType();
2906
2907      // Don't look into dependent bases, because name lookup can't look
2908      // there anyway.
2909      if (BaseType->isDependentType())
2910        continue;
2911
2912      const RecordType *Record = BaseType->getAs<RecordType>();
2913      if (!Record)
2914        continue;
2915
2916      // FIXME: It would be nice to be able to determine whether referencing
2917      // a particular member would be ambiguous. For example, given
2918      //
2919      //   struct A { int member; };
2920      //   struct B { int member; };
2921      //   struct C : A, B { };
2922      //
2923      //   void f(C *c) { c->### }
2924      //
2925      // accessing 'member' would result in an ambiguity. However, we
2926      // could be smart enough to qualify the member with the base
2927      // class, e.g.,
2928      //
2929      //   c->B::member
2930      //
2931      // or
2932      //
2933      //   c->A::member
2934
2935      // Find results in this base class (and its bases).
2936      ShadowContextRAII Shadow(Visited);
2937      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2938                         true, Consumer, Visited);
2939    }
2940  }
2941
2942  // Traverse the contexts of Objective-C classes.
2943  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2944    // Traverse categories.
2945    for (ObjCInterfaceDecl::visible_categories_iterator
2946           Cat = IFace->visible_categories_begin(),
2947           CatEnd = IFace->visible_categories_end();
2948         Cat != CatEnd; ++Cat) {
2949      ShadowContextRAII Shadow(Visited);
2950      LookupVisibleDecls(*Cat, Result, QualifiedNameLookup, false,
2951                         Consumer, Visited);
2952    }
2953
2954    // Traverse protocols.
2955    for (ObjCInterfaceDecl::all_protocol_iterator
2956         I = IFace->all_referenced_protocol_begin(),
2957         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2958      ShadowContextRAII Shadow(Visited);
2959      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2960                         Visited);
2961    }
2962
2963    // Traverse the superclass.
2964    if (IFace->getSuperClass()) {
2965      ShadowContextRAII Shadow(Visited);
2966      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2967                         true, Consumer, Visited);
2968    }
2969
2970    // If there is an implementation, traverse it. We do this to find
2971    // synthesized ivars.
2972    if (IFace->getImplementation()) {
2973      ShadowContextRAII Shadow(Visited);
2974      LookupVisibleDecls(IFace->getImplementation(), Result,
2975                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2976    }
2977  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2978    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2979           E = Protocol->protocol_end(); I != E; ++I) {
2980      ShadowContextRAII Shadow(Visited);
2981      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2982                         Visited);
2983    }
2984  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2985    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2986           E = Category->protocol_end(); I != E; ++I) {
2987      ShadowContextRAII Shadow(Visited);
2988      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2989                         Visited);
2990    }
2991
2992    // If there is an implementation, traverse it.
2993    if (Category->getImplementation()) {
2994      ShadowContextRAII Shadow(Visited);
2995      LookupVisibleDecls(Category->getImplementation(), Result,
2996                         QualifiedNameLookup, true, Consumer, Visited);
2997    }
2998  }
2999}
3000
3001static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3002                               UnqualUsingDirectiveSet &UDirs,
3003                               VisibleDeclConsumer &Consumer,
3004                               VisibleDeclsRecord &Visited) {
3005  if (!S)
3006    return;
3007
3008  if (!S->getEntity() ||
3009      (!S->getParent() &&
3010       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
3011      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
3012    // Walk through the declarations in this Scope.
3013    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
3014         D != DEnd; ++D) {
3015      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
3016        if ((ND = Result.getAcceptableDecl(ND))) {
3017          Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
3018          Visited.add(ND);
3019        }
3020    }
3021  }
3022
3023  // FIXME: C++ [temp.local]p8
3024  DeclContext *Entity = 0;
3025  if (S->getEntity()) {
3026    // Look into this scope's declaration context, along with any of its
3027    // parent lookup contexts (e.g., enclosing classes), up to the point
3028    // where we hit the context stored in the next outer scope.
3029    Entity = (DeclContext *)S->getEntity();
3030    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3031
3032    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3033         Ctx = Ctx->getLookupParent()) {
3034      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3035        if (Method->isInstanceMethod()) {
3036          // For instance methods, look for ivars in the method's interface.
3037          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3038                                  Result.getNameLoc(), Sema::LookupMemberName);
3039          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3040            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3041                               /*InBaseClass=*/false, Consumer, Visited);
3042          }
3043        }
3044
3045        // We've already performed all of the name lookup that we need
3046        // to for Objective-C methods; the next context will be the
3047        // outer scope.
3048        break;
3049      }
3050
3051      if (Ctx->isFunctionOrMethod())
3052        continue;
3053
3054      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3055                         /*InBaseClass=*/false, Consumer, Visited);
3056    }
3057  } else if (!S->getParent()) {
3058    // Look into the translation unit scope. We walk through the translation
3059    // unit's declaration context, because the Scope itself won't have all of
3060    // the declarations if we loaded a precompiled header.
3061    // FIXME: We would like the translation unit's Scope object to point to the
3062    // translation unit, so we don't need this special "if" branch. However,
3063    // doing so would force the normal C++ name-lookup code to look into the
3064    // translation unit decl when the IdentifierInfo chains would suffice.
3065    // Once we fix that problem (which is part of a more general "don't look
3066    // in DeclContexts unless we have to" optimization), we can eliminate this.
3067    Entity = Result.getSema().Context.getTranslationUnitDecl();
3068    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3069                       /*InBaseClass=*/false, Consumer, Visited);
3070  }
3071
3072  if (Entity) {
3073    // Lookup visible declarations in any namespaces found by using
3074    // directives.
3075    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3076    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3077    for (; UI != UEnd; ++UI)
3078      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3079                         Result, /*QualifiedNameLookup=*/false,
3080                         /*InBaseClass=*/false, Consumer, Visited);
3081  }
3082
3083  // Lookup names in the parent scope.
3084  ShadowContextRAII Shadow(Visited);
3085  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3086}
3087
3088void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3089                              VisibleDeclConsumer &Consumer,
3090                              bool IncludeGlobalScope) {
3091  // Determine the set of using directives available during
3092  // unqualified name lookup.
3093  Scope *Initial = S;
3094  UnqualUsingDirectiveSet UDirs;
3095  if (getLangOpts().CPlusPlus) {
3096    // Find the first namespace or translation-unit scope.
3097    while (S && !isNamespaceOrTranslationUnitScope(S))
3098      S = S->getParent();
3099
3100    UDirs.visitScopeChain(Initial, S);
3101  }
3102  UDirs.done();
3103
3104  // Look for visible declarations.
3105  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3106  VisibleDeclsRecord Visited;
3107  if (!IncludeGlobalScope)
3108    Visited.visitedContext(Context.getTranslationUnitDecl());
3109  ShadowContextRAII Shadow(Visited);
3110  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3111}
3112
3113void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3114                              VisibleDeclConsumer &Consumer,
3115                              bool IncludeGlobalScope) {
3116  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3117  VisibleDeclsRecord Visited;
3118  if (!IncludeGlobalScope)
3119    Visited.visitedContext(Context.getTranslationUnitDecl());
3120  ShadowContextRAII Shadow(Visited);
3121  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3122                       /*InBaseClass=*/false, Consumer, Visited);
3123}
3124
3125/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3126/// If GnuLabelLoc is a valid source location, then this is a definition
3127/// of an __label__ label name, otherwise it is a normal label definition
3128/// or use.
3129LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3130                                     SourceLocation GnuLabelLoc) {
3131  // Do a lookup to see if we have a label with this name already.
3132  NamedDecl *Res = 0;
3133
3134  if (GnuLabelLoc.isValid()) {
3135    // Local label definitions always shadow existing labels.
3136    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3137    Scope *S = CurScope;
3138    PushOnScopeChains(Res, S, true);
3139    return cast<LabelDecl>(Res);
3140  }
3141
3142  // Not a GNU local label.
3143  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3144  // If we found a label, check to see if it is in the same context as us.
3145  // When in a Block, we don't want to reuse a label in an enclosing function.
3146  if (Res && Res->getDeclContext() != CurContext)
3147    Res = 0;
3148  if (Res == 0) {
3149    // If not forward referenced or defined already, create the backing decl.
3150    Res = LabelDecl::Create(Context, CurContext, Loc, II);
3151    Scope *S = CurScope->getFnParent();
3152    assert(S && "Not in a function?");
3153    PushOnScopeChains(Res, S, true);
3154  }
3155  return cast<LabelDecl>(Res);
3156}
3157
3158//===----------------------------------------------------------------------===//
3159// Typo correction
3160//===----------------------------------------------------------------------===//
3161
3162namespace {
3163
3164typedef SmallVector<TypoCorrection, 1> TypoResultList;
3165typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
3166typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3167
3168static const unsigned MaxTypoDistanceResultSets = 5;
3169
3170class TypoCorrectionConsumer : public VisibleDeclConsumer {
3171  /// \brief The name written that is a typo in the source.
3172  StringRef Typo;
3173
3174  /// \brief The results found that have the smallest edit distance
3175  /// found (so far) with the typo name.
3176  ///
3177  /// The pointer value being set to the current DeclContext indicates
3178  /// whether there is a keyword with this name.
3179  TypoEditDistanceMap CorrectionResults;
3180
3181  Sema &SemaRef;
3182
3183public:
3184  explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3185    : Typo(Typo->getName()),
3186      SemaRef(SemaRef) { }
3187
3188  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3189                         bool InBaseClass);
3190  void FoundName(StringRef Name);
3191  void addKeywordResult(StringRef Keyword);
3192  void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3193               NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3194  void addCorrection(TypoCorrection Correction);
3195
3196  typedef TypoResultsMap::iterator result_iterator;
3197  typedef TypoEditDistanceMap::iterator distance_iterator;
3198  distance_iterator begin() { return CorrectionResults.begin(); }
3199  distance_iterator end()  { return CorrectionResults.end(); }
3200  void erase(distance_iterator I) { CorrectionResults.erase(I); }
3201  unsigned size() const { return CorrectionResults.size(); }
3202  bool empty() const { return CorrectionResults.empty(); }
3203
3204  TypoResultList &operator[](StringRef Name) {
3205    return CorrectionResults.begin()->second[Name];
3206  }
3207
3208  unsigned getBestEditDistance(bool Normalized) {
3209    if (CorrectionResults.empty())
3210      return (std::numeric_limits<unsigned>::max)();
3211
3212    unsigned BestED = CorrectionResults.begin()->first;
3213    return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3214  }
3215
3216  TypoResultsMap &getBestResults() {
3217    return CorrectionResults.begin()->second;
3218  }
3219
3220};
3221
3222}
3223
3224void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3225                                       DeclContext *Ctx, bool InBaseClass) {
3226  // Don't consider hidden names for typo correction.
3227  if (Hiding)
3228    return;
3229
3230  // Only consider entities with identifiers for names, ignoring
3231  // special names (constructors, overloaded operators, selectors,
3232  // etc.).
3233  IdentifierInfo *Name = ND->getIdentifier();
3234  if (!Name)
3235    return;
3236
3237  FoundName(Name->getName());
3238}
3239
3240void TypoCorrectionConsumer::FoundName(StringRef Name) {
3241  // Use a simple length-based heuristic to determine the minimum possible
3242  // edit distance. If the minimum isn't good enough, bail out early.
3243  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3244  if (MinED && Typo.size() / MinED < 3)
3245    return;
3246
3247  // Compute an upper bound on the allowable edit distance, so that the
3248  // edit-distance algorithm can short-circuit.
3249  unsigned UpperBound = (Typo.size() + 2) / 3;
3250
3251  // Compute the edit distance between the typo and the name of this
3252  // entity, and add the identifier to the list of results.
3253  addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3254}
3255
3256void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3257  // Compute the edit distance between the typo and this keyword,
3258  // and add the keyword to the list of results.
3259  addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3260}
3261
3262void TypoCorrectionConsumer::addName(StringRef Name,
3263                                     NamedDecl *ND,
3264                                     unsigned Distance,
3265                                     NestedNameSpecifier *NNS,
3266                                     bool isKeyword) {
3267  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3268  if (isKeyword) TC.makeKeyword();
3269  addCorrection(TC);
3270}
3271
3272void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3273  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3274  TypoResultList &CList =
3275      CorrectionResults[Correction.getEditDistance(false)][Name];
3276
3277  if (!CList.empty() && !CList.back().isResolved())
3278    CList.pop_back();
3279  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3280    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3281    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3282         RI != RIEnd; ++RI) {
3283      // If the Correction refers to a decl already in the result list,
3284      // replace the existing result if the string representation of Correction
3285      // comes before the current result alphabetically, then stop as there is
3286      // nothing more to be done to add Correction to the candidate set.
3287      if (RI->getCorrectionDecl() == NewND) {
3288        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3289          *RI = Correction;
3290        return;
3291      }
3292    }
3293  }
3294  if (CList.empty() || Correction.isResolved())
3295    CList.push_back(Correction);
3296
3297  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3298    erase(llvm::prior(CorrectionResults.end()));
3299}
3300
3301// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3302// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3303// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3304static void getNestedNameSpecifierIdentifiers(
3305    NestedNameSpecifier *NNS,
3306    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3307  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3308    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3309  else
3310    Identifiers.clear();
3311
3312  const IdentifierInfo *II = NULL;
3313
3314  switch (NNS->getKind()) {
3315  case NestedNameSpecifier::Identifier:
3316    II = NNS->getAsIdentifier();
3317    break;
3318
3319  case NestedNameSpecifier::Namespace:
3320    if (NNS->getAsNamespace()->isAnonymousNamespace())
3321      return;
3322    II = NNS->getAsNamespace()->getIdentifier();
3323    break;
3324
3325  case NestedNameSpecifier::NamespaceAlias:
3326    II = NNS->getAsNamespaceAlias()->getIdentifier();
3327    break;
3328
3329  case NestedNameSpecifier::TypeSpecWithTemplate:
3330  case NestedNameSpecifier::TypeSpec:
3331    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3332    break;
3333
3334  case NestedNameSpecifier::Global:
3335    return;
3336  }
3337
3338  if (II)
3339    Identifiers.push_back(II);
3340}
3341
3342namespace {
3343
3344class SpecifierInfo {
3345 public:
3346  DeclContext* DeclCtx;
3347  NestedNameSpecifier* NameSpecifier;
3348  unsigned EditDistance;
3349
3350  SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3351      : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3352};
3353
3354typedef SmallVector<DeclContext*, 4> DeclContextList;
3355typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3356
3357class NamespaceSpecifierSet {
3358  ASTContext &Context;
3359  DeclContextList CurContextChain;
3360  SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3361  SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3362  bool isSorted;
3363
3364  SpecifierInfoList Specifiers;
3365  llvm::SmallSetVector<unsigned, 4> Distances;
3366  llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3367
3368  /// \brief Helper for building the list of DeclContexts between the current
3369  /// context and the top of the translation unit
3370  static DeclContextList BuildContextChain(DeclContext *Start);
3371
3372  void SortNamespaces();
3373
3374 public:
3375  NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3376                        CXXScopeSpec *CurScopeSpec)
3377      : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3378        isSorted(true) {
3379    if (CurScopeSpec && CurScopeSpec->getScopeRep())
3380      getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3381                                        CurNameSpecifierIdentifiers);
3382    // Build the list of identifiers that would be used for an absolute
3383    // (from the global context) NestedNameSpecifier referring to the current
3384    // context.
3385    for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3386                                        CEnd = CurContextChain.rend();
3387         C != CEnd; ++C) {
3388      if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3389        CurContextIdentifiers.push_back(ND->getIdentifier());
3390    }
3391  }
3392
3393  /// \brief Add the namespace to the set, computing the corresponding
3394  /// NestedNameSpecifier and its distance in the process.
3395  void AddNamespace(NamespaceDecl *ND);
3396
3397  typedef SpecifierInfoList::iterator iterator;
3398  iterator begin() {
3399    if (!isSorted) SortNamespaces();
3400    return Specifiers.begin();
3401  }
3402  iterator end() { return Specifiers.end(); }
3403};
3404
3405}
3406
3407DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3408  assert(Start && "Bulding a context chain from a null context");
3409  DeclContextList Chain;
3410  for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3411       DC = DC->getLookupParent()) {
3412    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3413    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3414        !(ND && ND->isAnonymousNamespace()))
3415      Chain.push_back(DC->getPrimaryContext());
3416  }
3417  return Chain;
3418}
3419
3420void NamespaceSpecifierSet::SortNamespaces() {
3421  SmallVector<unsigned, 4> sortedDistances;
3422  sortedDistances.append(Distances.begin(), Distances.end());
3423
3424  if (sortedDistances.size() > 1)
3425    std::sort(sortedDistances.begin(), sortedDistances.end());
3426
3427  Specifiers.clear();
3428  for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3429                                       DIEnd = sortedDistances.end();
3430       DI != DIEnd; ++DI) {
3431    SpecifierInfoList &SpecList = DistanceMap[*DI];
3432    Specifiers.append(SpecList.begin(), SpecList.end());
3433  }
3434
3435  isSorted = true;
3436}
3437
3438void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3439  DeclContext *Ctx = cast<DeclContext>(ND);
3440  NestedNameSpecifier *NNS = NULL;
3441  unsigned NumSpecifiers = 0;
3442  DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3443  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3444
3445  // Eliminate common elements from the two DeclContext chains.
3446  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3447                                      CEnd = CurContextChain.rend();
3448       C != CEnd && !NamespaceDeclChain.empty() &&
3449       NamespaceDeclChain.back() == *C; ++C) {
3450    NamespaceDeclChain.pop_back();
3451  }
3452
3453  // Add an explicit leading '::' specifier if needed.
3454  if (NamespaceDecl *ND =
3455        NamespaceDeclChain.empty() ? NULL :
3456          dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3457    IdentifierInfo *Name = ND->getIdentifier();
3458    if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3459                  Name) != CurContextIdentifiers.end() ||
3460        std::find(CurNameSpecifierIdentifiers.begin(),
3461                  CurNameSpecifierIdentifiers.end(),
3462                  Name) != CurNameSpecifierIdentifiers.end()) {
3463      NamespaceDeclChain = FullNamespaceDeclChain;
3464      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3465    }
3466  }
3467
3468  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3469  for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3470                                      CEnd = NamespaceDeclChain.rend();
3471       C != CEnd; ++C) {
3472    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3473    if (ND) {
3474      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3475      ++NumSpecifiers;
3476    }
3477  }
3478
3479  // If the built NestedNameSpecifier would be replacing an existing
3480  // NestedNameSpecifier, use the number of component identifiers that
3481  // would need to be changed as the edit distance instead of the number
3482  // of components in the built NestedNameSpecifier.
3483  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3484    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3485    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3486    NumSpecifiers = llvm::ComputeEditDistance(
3487      llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3488      llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3489  }
3490
3491  isSorted = false;
3492  Distances.insert(NumSpecifiers);
3493  DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3494}
3495
3496/// \brief Perform name lookup for a possible result for typo correction.
3497static void LookupPotentialTypoResult(Sema &SemaRef,
3498                                      LookupResult &Res,
3499                                      IdentifierInfo *Name,
3500                                      Scope *S, CXXScopeSpec *SS,
3501                                      DeclContext *MemberContext,
3502                                      bool EnteringContext,
3503                                      bool isObjCIvarLookup) {
3504  Res.suppressDiagnostics();
3505  Res.clear();
3506  Res.setLookupName(Name);
3507  if (MemberContext) {
3508    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3509      if (isObjCIvarLookup) {
3510        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3511          Res.addDecl(Ivar);
3512          Res.resolveKind();
3513          return;
3514        }
3515      }
3516
3517      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3518        Res.addDecl(Prop);
3519        Res.resolveKind();
3520        return;
3521      }
3522    }
3523
3524    SemaRef.LookupQualifiedName(Res, MemberContext);
3525    return;
3526  }
3527
3528  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3529                           EnteringContext);
3530
3531  // Fake ivar lookup; this should really be part of
3532  // LookupParsedName.
3533  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3534    if (Method->isInstanceMethod() && Method->getClassInterface() &&
3535        (Res.empty() ||
3536         (Res.isSingleResult() &&
3537          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3538       if (ObjCIvarDecl *IV
3539             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3540         Res.addDecl(IV);
3541         Res.resolveKind();
3542       }
3543     }
3544  }
3545}
3546
3547/// \brief Add keywords to the consumer as possible typo corrections.
3548static void AddKeywordsToConsumer(Sema &SemaRef,
3549                                  TypoCorrectionConsumer &Consumer,
3550                                  Scope *S, CorrectionCandidateCallback &CCC,
3551                                  bool AfterNestedNameSpecifier) {
3552  if (AfterNestedNameSpecifier) {
3553    // For 'X::', we know exactly which keywords can appear next.
3554    Consumer.addKeywordResult("template");
3555    if (CCC.WantExpressionKeywords)
3556      Consumer.addKeywordResult("operator");
3557    return;
3558  }
3559
3560  if (CCC.WantObjCSuper)
3561    Consumer.addKeywordResult("super");
3562
3563  if (CCC.WantTypeSpecifiers) {
3564    // Add type-specifier keywords to the set of results.
3565    const char *CTypeSpecs[] = {
3566      "char", "const", "double", "enum", "float", "int", "long", "short",
3567      "signed", "struct", "union", "unsigned", "void", "volatile",
3568      "_Complex", "_Imaginary",
3569      // storage-specifiers as well
3570      "extern", "inline", "static", "typedef"
3571    };
3572
3573    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3574    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3575      Consumer.addKeywordResult(CTypeSpecs[I]);
3576
3577    if (SemaRef.getLangOpts().C99)
3578      Consumer.addKeywordResult("restrict");
3579    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3580      Consumer.addKeywordResult("bool");
3581    else if (SemaRef.getLangOpts().C99)
3582      Consumer.addKeywordResult("_Bool");
3583
3584    if (SemaRef.getLangOpts().CPlusPlus) {
3585      Consumer.addKeywordResult("class");
3586      Consumer.addKeywordResult("typename");
3587      Consumer.addKeywordResult("wchar_t");
3588
3589      if (SemaRef.getLangOpts().CPlusPlus11) {
3590        Consumer.addKeywordResult("char16_t");
3591        Consumer.addKeywordResult("char32_t");
3592        Consumer.addKeywordResult("constexpr");
3593        Consumer.addKeywordResult("decltype");
3594        Consumer.addKeywordResult("thread_local");
3595      }
3596    }
3597
3598    if (SemaRef.getLangOpts().GNUMode)
3599      Consumer.addKeywordResult("typeof");
3600  }
3601
3602  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3603    Consumer.addKeywordResult("const_cast");
3604    Consumer.addKeywordResult("dynamic_cast");
3605    Consumer.addKeywordResult("reinterpret_cast");
3606    Consumer.addKeywordResult("static_cast");
3607  }
3608
3609  if (CCC.WantExpressionKeywords) {
3610    Consumer.addKeywordResult("sizeof");
3611    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3612      Consumer.addKeywordResult("false");
3613      Consumer.addKeywordResult("true");
3614    }
3615
3616    if (SemaRef.getLangOpts().CPlusPlus) {
3617      const char *CXXExprs[] = {
3618        "delete", "new", "operator", "throw", "typeid"
3619      };
3620      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3621      for (unsigned I = 0; I != NumCXXExprs; ++I)
3622        Consumer.addKeywordResult(CXXExprs[I]);
3623
3624      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3625          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3626        Consumer.addKeywordResult("this");
3627
3628      if (SemaRef.getLangOpts().CPlusPlus11) {
3629        Consumer.addKeywordResult("alignof");
3630        Consumer.addKeywordResult("nullptr");
3631      }
3632    }
3633
3634    if (SemaRef.getLangOpts().C11) {
3635      // FIXME: We should not suggest _Alignof if the alignof macro
3636      // is present.
3637      Consumer.addKeywordResult("_Alignof");
3638    }
3639  }
3640
3641  if (CCC.WantRemainingKeywords) {
3642    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3643      // Statements.
3644      const char *CStmts[] = {
3645        "do", "else", "for", "goto", "if", "return", "switch", "while" };
3646      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3647      for (unsigned I = 0; I != NumCStmts; ++I)
3648        Consumer.addKeywordResult(CStmts[I]);
3649
3650      if (SemaRef.getLangOpts().CPlusPlus) {
3651        Consumer.addKeywordResult("catch");
3652        Consumer.addKeywordResult("try");
3653      }
3654
3655      if (S && S->getBreakParent())
3656        Consumer.addKeywordResult("break");
3657
3658      if (S && S->getContinueParent())
3659        Consumer.addKeywordResult("continue");
3660
3661      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3662        Consumer.addKeywordResult("case");
3663        Consumer.addKeywordResult("default");
3664      }
3665    } else {
3666      if (SemaRef.getLangOpts().CPlusPlus) {
3667        Consumer.addKeywordResult("namespace");
3668        Consumer.addKeywordResult("template");
3669      }
3670
3671      if (S && S->isClassScope()) {
3672        Consumer.addKeywordResult("explicit");
3673        Consumer.addKeywordResult("friend");
3674        Consumer.addKeywordResult("mutable");
3675        Consumer.addKeywordResult("private");
3676        Consumer.addKeywordResult("protected");
3677        Consumer.addKeywordResult("public");
3678        Consumer.addKeywordResult("virtual");
3679      }
3680    }
3681
3682    if (SemaRef.getLangOpts().CPlusPlus) {
3683      Consumer.addKeywordResult("using");
3684
3685      if (SemaRef.getLangOpts().CPlusPlus11)
3686        Consumer.addKeywordResult("static_assert");
3687    }
3688  }
3689}
3690
3691static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3692                              TypoCorrection &Candidate) {
3693  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3694  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3695}
3696
3697/// \brief Try to "correct" a typo in the source code by finding
3698/// visible declarations whose names are similar to the name that was
3699/// present in the source code.
3700///
3701/// \param TypoName the \c DeclarationNameInfo structure that contains
3702/// the name that was present in the source code along with its location.
3703///
3704/// \param LookupKind the name-lookup criteria used to search for the name.
3705///
3706/// \param S the scope in which name lookup occurs.
3707///
3708/// \param SS the nested-name-specifier that precedes the name we're
3709/// looking for, if present.
3710///
3711/// \param CCC A CorrectionCandidateCallback object that provides further
3712/// validation of typo correction candidates. It also provides flags for
3713/// determining the set of keywords permitted.
3714///
3715/// \param MemberContext if non-NULL, the context in which to look for
3716/// a member access expression.
3717///
3718/// \param EnteringContext whether we're entering the context described by
3719/// the nested-name-specifier SS.
3720///
3721/// \param OPT when non-NULL, the search for visible declarations will
3722/// also walk the protocols in the qualified interfaces of \p OPT.
3723///
3724/// \returns a \c TypoCorrection containing the corrected name if the typo
3725/// along with information such as the \c NamedDecl where the corrected name
3726/// was declared, and any additional \c NestedNameSpecifier needed to access
3727/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
3728TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3729                                 Sema::LookupNameKind LookupKind,
3730                                 Scope *S, CXXScopeSpec *SS,
3731                                 CorrectionCandidateCallback &CCC,
3732                                 DeclContext *MemberContext,
3733                                 bool EnteringContext,
3734                                 const ObjCObjectPointerType *OPT) {
3735  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3736    return TypoCorrection();
3737
3738  // In Microsoft mode, don't perform typo correction in a template member
3739  // function dependent context because it interferes with the "lookup into
3740  // dependent bases of class templates" feature.
3741  if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3742      isa<CXXMethodDecl>(CurContext))
3743    return TypoCorrection();
3744
3745  // We only attempt to correct typos for identifiers.
3746  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3747  if (!Typo)
3748    return TypoCorrection();
3749
3750  // If the scope specifier itself was invalid, don't try to correct
3751  // typos.
3752  if (SS && SS->isInvalid())
3753    return TypoCorrection();
3754
3755  // Never try to correct typos during template deduction or
3756  // instantiation.
3757  if (!ActiveTemplateInstantiations.empty())
3758    return TypoCorrection();
3759
3760  // Don't try to correct 'super'.
3761  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
3762    return TypoCorrection();
3763
3764  // This is for testing.
3765  if (Diags.getWarnOnSpellCheck()) {
3766    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Warning,
3767                                            "spell-checking initiated for %0");
3768    Diag(TypoName.getLoc(), DiagID) << TypoName.getName();
3769  }
3770
3771  NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3772
3773  TypoCorrectionConsumer Consumer(*this, Typo);
3774
3775  // If a callback object considers an empty typo correction candidate to be
3776  // viable, assume it does not do any actual validation of the candidates.
3777  TypoCorrection EmptyCorrection;
3778  bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3779
3780  // Perform name lookup to find visible, similarly-named entities.
3781  bool IsUnqualifiedLookup = false;
3782  DeclContext *QualifiedDC = MemberContext;
3783  if (MemberContext) {
3784    LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3785
3786    // Look in qualified interfaces.
3787    if (OPT) {
3788      for (ObjCObjectPointerType::qual_iterator
3789             I = OPT->qual_begin(), E = OPT->qual_end();
3790           I != E; ++I)
3791        LookupVisibleDecls(*I, LookupKind, Consumer);
3792    }
3793  } else if (SS && SS->isSet()) {
3794    QualifiedDC = computeDeclContext(*SS, EnteringContext);
3795    if (!QualifiedDC)
3796      return TypoCorrection();
3797
3798    // Provide a stop gap for files that are just seriously broken.  Trying
3799    // to correct all typos can turn into a HUGE performance penalty, causing
3800    // some files to take minutes to get rejected by the parser.
3801    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3802      return TypoCorrection();
3803    ++TyposCorrected;
3804
3805    LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3806  } else {
3807    IsUnqualifiedLookup = true;
3808    UnqualifiedTyposCorrectedMap::iterator Cached
3809      = UnqualifiedTyposCorrected.find(Typo);
3810    if (Cached != UnqualifiedTyposCorrected.end()) {
3811      // Add the cached value, unless it's a keyword or fails validation. In the
3812      // keyword case, we'll end up adding the keyword below.
3813      if (Cached->second) {
3814        if (!Cached->second.isKeyword() &&
3815            isCandidateViable(CCC, Cached->second))
3816          Consumer.addCorrection(Cached->second);
3817      } else {
3818        // Only honor no-correction cache hits when a callback that will validate
3819        // correction candidates is not being used.
3820        if (!ValidatingCallback)
3821          return TypoCorrection();
3822      }
3823    }
3824    if (Cached == UnqualifiedTyposCorrected.end()) {
3825      // Provide a stop gap for files that are just seriously broken.  Trying
3826      // to correct all typos can turn into a HUGE performance penalty, causing
3827      // some files to take minutes to get rejected by the parser.
3828      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3829        return TypoCorrection();
3830    }
3831  }
3832
3833  // Determine whether we are going to search in the various namespaces for
3834  // corrections.
3835  bool SearchNamespaces
3836    = getLangOpts().CPlusPlus &&
3837      (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3838  // In a few cases we *only* want to search for corrections bases on just
3839  // adding or changing the nested name specifier.
3840  bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
3841
3842  if (IsUnqualifiedLookup || SearchNamespaces) {
3843    // For unqualified lookup, look through all of the names that we have
3844    // seen in this translation unit.
3845    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3846    for (IdentifierTable::iterator I = Context.Idents.begin(),
3847                                IEnd = Context.Idents.end();
3848         I != IEnd; ++I)
3849      Consumer.FoundName(I->getKey());
3850
3851    // Walk through identifiers in external identifier sources.
3852    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3853    if (IdentifierInfoLookup *External
3854                            = Context.Idents.getExternalIdentifierLookup()) {
3855      OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3856      do {
3857        StringRef Name = Iter->Next();
3858        if (Name.empty())
3859          break;
3860
3861        Consumer.FoundName(Name);
3862      } while (true);
3863    }
3864  }
3865
3866  AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
3867
3868  // If we haven't found anything, we're done.
3869  if (Consumer.empty()) {
3870    // If this was an unqualified lookup, note that no correction was found.
3871    if (IsUnqualifiedLookup)
3872      (void)UnqualifiedTyposCorrected[Typo];
3873
3874    return TypoCorrection();
3875  }
3876
3877  // Make sure the best edit distance (prior to adding any namespace qualifiers)
3878  // is not more that about a third of the length of the typo's identifier.
3879  unsigned ED = Consumer.getBestEditDistance(true);
3880  if (ED > 0 && Typo->getName().size() / ED < 3) {
3881    // If this was an unqualified lookup, note that no correction was found.
3882    if (IsUnqualifiedLookup)
3883      (void)UnqualifiedTyposCorrected[Typo];
3884
3885    return TypoCorrection();
3886  }
3887
3888  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3889  // to search those namespaces.
3890  if (SearchNamespaces) {
3891    // Load any externally-known namespaces.
3892    if (ExternalSource && !LoadedExternalKnownNamespaces) {
3893      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3894      LoadedExternalKnownNamespaces = true;
3895      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3896      for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3897        KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3898    }
3899
3900    for (llvm::MapVector<NamespaceDecl*, bool>::iterator
3901           KNI = KnownNamespaces.begin(),
3902           KNIEnd = KnownNamespaces.end();
3903         KNI != KNIEnd; ++KNI)
3904      Namespaces.AddNamespace(KNI->first);
3905  }
3906
3907  // Weed out any names that could not be found by name lookup or, if a
3908  // CorrectionCandidateCallback object was provided, failed validation.
3909  SmallVector<TypoCorrection, 16> QualifiedResults;
3910  LookupResult TmpRes(*this, TypoName, LookupKind);
3911  TmpRes.suppressDiagnostics();
3912  while (!Consumer.empty()) {
3913    TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3914    unsigned ED = DI->first;
3915    for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3916                                              IEnd = DI->second.end();
3917         I != IEnd; /* Increment in loop. */) {
3918      // If we only want nested name specifier corrections, ignore potential
3919      // corrections that have a different base identifier from the typo.
3920      if (AllowOnlyNNSChanges &&
3921          I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
3922        TypoCorrectionConsumer::result_iterator Prev = I;
3923        ++I;
3924        DI->second.erase(Prev);
3925        continue;
3926      }
3927
3928      // If the item already has been looked up or is a keyword, keep it.
3929      // If a validator callback object was given, drop the correction
3930      // unless it passes validation.
3931      bool Viable = false;
3932      for (TypoResultList::iterator RI = I->second.begin();
3933           RI != I->second.end(); /* Increment in loop. */) {
3934        TypoResultList::iterator Prev = RI;
3935        ++RI;
3936        if (Prev->isResolved()) {
3937          if (!isCandidateViable(CCC, *Prev))
3938            RI = I->second.erase(Prev);
3939          else
3940            Viable = true;
3941        }
3942      }
3943      if (Viable || I->second.empty()) {
3944        TypoCorrectionConsumer::result_iterator Prev = I;
3945        ++I;
3946        if (!Viable)
3947          DI->second.erase(Prev);
3948        continue;
3949      }
3950      assert(I->second.size() == 1 && "Expected a single unresolved candidate");
3951
3952      // Perform name lookup on this name.
3953      TypoCorrection &Candidate = I->second.front();
3954      IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3955      LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3956                                EnteringContext, CCC.IsObjCIvarLookup);
3957
3958      switch (TmpRes.getResultKind()) {
3959      case LookupResult::NotFound:
3960      case LookupResult::NotFoundInCurrentInstantiation:
3961      case LookupResult::FoundUnresolvedValue:
3962        QualifiedResults.push_back(Candidate);
3963        // We didn't find this name in our scope, or didn't like what we found;
3964        // ignore it.
3965        {
3966          TypoCorrectionConsumer::result_iterator Next = I;
3967          ++Next;
3968          DI->second.erase(I);
3969          I = Next;
3970        }
3971        break;
3972
3973      case LookupResult::Ambiguous:
3974        // We don't deal with ambiguities.
3975        return TypoCorrection();
3976
3977      case LookupResult::FoundOverloaded: {
3978        TypoCorrectionConsumer::result_iterator Prev = I;
3979        // Store all of the Decls for overloaded symbols
3980        for (LookupResult::iterator TRD = TmpRes.begin(),
3981                                 TRDEnd = TmpRes.end();
3982             TRD != TRDEnd; ++TRD)
3983          Candidate.addCorrectionDecl(*TRD);
3984        ++I;
3985        if (!isCandidateViable(CCC, Candidate))
3986          DI->second.erase(Prev);
3987        break;
3988      }
3989
3990      case LookupResult::Found: {
3991        TypoCorrectionConsumer::result_iterator Prev = I;
3992        Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3993        ++I;
3994        if (!isCandidateViable(CCC, Candidate))
3995          DI->second.erase(Prev);
3996        break;
3997      }
3998
3999      }
4000    }
4001
4002    if (DI->second.empty())
4003      Consumer.erase(DI);
4004    else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
4005      // If there are results in the closest possible bucket, stop
4006      break;
4007
4008    // Only perform the qualified lookups for C++
4009    if (SearchNamespaces) {
4010      TmpRes.suppressDiagnostics();
4011      for (SmallVector<TypoCorrection,
4012                       16>::iterator QRI = QualifiedResults.begin(),
4013                                  QRIEnd = QualifiedResults.end();
4014           QRI != QRIEnd; ++QRI) {
4015        for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
4016                                          NIEnd = Namespaces.end();
4017             NI != NIEnd; ++NI) {
4018          DeclContext *Ctx = NI->DeclCtx;
4019
4020          // FIXME: Stop searching once the namespaces are too far away to create
4021          // acceptable corrections for this identifier (since the namespaces
4022          // are sorted in ascending order by edit distance).
4023
4024          TmpRes.clear();
4025          TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
4026          if (!LookupQualifiedName(TmpRes, Ctx)) continue;
4027
4028          // Any corrections added below will be validated in subsequent
4029          // iterations of the main while() loop over the Consumer's contents.
4030          switch (TmpRes.getResultKind()) {
4031          case LookupResult::Found: {
4032            TypoCorrection TC(*QRI);
4033            TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
4034            TC.setCorrectionSpecifier(NI->NameSpecifier);
4035            TC.setQualifierDistance(NI->EditDistance);
4036            Consumer.addCorrection(TC);
4037            break;
4038          }
4039          case LookupResult::FoundOverloaded: {
4040            TypoCorrection TC(*QRI);
4041            TC.setCorrectionSpecifier(NI->NameSpecifier);
4042            TC.setQualifierDistance(NI->EditDistance);
4043            for (LookupResult::iterator TRD = TmpRes.begin(),
4044                                     TRDEnd = TmpRes.end();
4045                 TRD != TRDEnd; ++TRD)
4046              TC.addCorrectionDecl(*TRD);
4047            Consumer.addCorrection(TC);
4048            break;
4049          }
4050          case LookupResult::NotFound:
4051          case LookupResult::NotFoundInCurrentInstantiation:
4052          case LookupResult::Ambiguous:
4053          case LookupResult::FoundUnresolvedValue:
4054            break;
4055          }
4056        }
4057      }
4058    }
4059
4060    QualifiedResults.clear();
4061  }
4062
4063  // No corrections remain...
4064  if (Consumer.empty()) return TypoCorrection();
4065
4066  TypoResultsMap &BestResults = Consumer.getBestResults();
4067  ED = Consumer.getBestEditDistance(true);
4068
4069  if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
4070    // If this was an unqualified lookup and we believe the callback
4071    // object wouldn't have filtered out possible corrections, note
4072    // that no correction was found.
4073    if (IsUnqualifiedLookup && !ValidatingCallback)
4074      (void)UnqualifiedTyposCorrected[Typo];
4075
4076    return TypoCorrection();
4077  }
4078
4079  // If only a single name remains, return that result.
4080  if (BestResults.size() == 1) {
4081    const TypoResultList &CorrectionList = BestResults.begin()->second;
4082    const TypoCorrection &Result = CorrectionList.front();
4083    if (CorrectionList.size() != 1) return TypoCorrection();
4084
4085    // Don't correct to a keyword that's the same as the typo; the keyword
4086    // wasn't actually in scope.
4087    if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4088
4089    // Record the correction for unqualified lookup.
4090    if (IsUnqualifiedLookup)
4091      UnqualifiedTyposCorrected[Typo] = Result;
4092
4093    TypoCorrection TC = Result;
4094    TC.setCorrectionRange(SS, TypoName);
4095    return TC;
4096  }
4097  else if (BestResults.size() > 1
4098           // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4099           // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4100           // some instances of CTC_Unknown, while WantRemainingKeywords is true
4101           // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4102           && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4103           && BestResults["super"].front().isKeyword()) {
4104    // Prefer 'super' when we're completing in a message-receiver
4105    // context.
4106
4107    // Don't correct to a keyword that's the same as the typo; the keyword
4108    // wasn't actually in scope.
4109    if (ED == 0) return TypoCorrection();
4110
4111    // Record the correction for unqualified lookup.
4112    if (IsUnqualifiedLookup)
4113      UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
4114
4115    TypoCorrection TC = BestResults["super"].front();
4116    TC.setCorrectionRange(SS, TypoName);
4117    return TC;
4118  }
4119
4120  // If this was an unqualified lookup and we believe the callback object did
4121  // not filter out possible corrections, note that no correction was found.
4122  if (IsUnqualifiedLookup && !ValidatingCallback)
4123    (void)UnqualifiedTyposCorrected[Typo];
4124
4125  return TypoCorrection();
4126}
4127
4128void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4129  if (!CDecl) return;
4130
4131  if (isKeyword())
4132    CorrectionDecls.clear();
4133
4134  CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4135
4136  if (!CorrectionName)
4137    CorrectionName = CDecl->getDeclName();
4138}
4139
4140std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4141  if (CorrectionNameSpec) {
4142    std::string tmpBuffer;
4143    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4144    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4145    CorrectionName.printName(PrefixOStream);
4146    return PrefixOStream.str();
4147  }
4148
4149  return CorrectionName.getAsString();
4150}
4151
4152bool CorrectionCandidateCallback::ValidateCandidate(const TypoCorrection &candidate) {
4153  if (!candidate.isResolved())
4154    return true;
4155
4156  if (candidate.isKeyword())
4157    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4158           WantRemainingKeywords || WantObjCSuper;
4159
4160  for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4161                                           CDeclEnd = candidate.end();
4162       CDecl != CDeclEnd; ++CDecl) {
4163    if (!isa<TypeDecl>(*CDecl))
4164      return true;
4165  }
4166
4167  return WantTypeSpecifiers;
4168}
4169