SemaLookup.cpp revision 202379
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196static bool IsAcceptableIDNS(NamedDecl *D, unsigned IDNS) {
197  return D->isInIdentifierNamespace(IDNS);
198}
199
200static bool IsAcceptableOperatorName(NamedDecl *D, unsigned IDNS) {
201  return D->isInIdentifierNamespace(IDNS) &&
202    !D->getDeclContext()->isRecord();
203}
204
205static bool IsAcceptableNestedNameSpecifierName(NamedDecl *D, unsigned IDNS) {
206  // This lookup ignores everything that isn't a type.
207
208  // This is a fast check for the far most common case.
209  if (D->isInIdentifierNamespace(Decl::IDNS_Tag))
210    return true;
211
212  if (isa<UsingShadowDecl>(D))
213    D = cast<UsingShadowDecl>(D)->getTargetDecl();
214
215  return isa<TypeDecl>(D);
216}
217
218static bool IsAcceptableNamespaceName(NamedDecl *D, unsigned IDNS) {
219  // We don't need to look through using decls here because
220  // using decls aren't allowed to name namespaces.
221
222  return isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D);
223}
224
225/// Gets the default result filter for the given lookup.
226static inline
227LookupResult::ResultFilter getResultFilter(Sema::LookupNameKind NameKind) {
228  switch (NameKind) {
229  case Sema::LookupOrdinaryName:
230  case Sema::LookupTagName:
231  case Sema::LookupMemberName:
232  case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping
233  case Sema::LookupUsingDeclName:
234  case Sema::LookupObjCProtocolName:
235  case Sema::LookupObjCImplementationName:
236    return &IsAcceptableIDNS;
237
238  case Sema::LookupOperatorName:
239    return &IsAcceptableOperatorName;
240
241  case Sema::LookupNestedNameSpecifierName:
242    return &IsAcceptableNestedNameSpecifierName;
243
244  case Sema::LookupNamespaceName:
245    return &IsAcceptableNamespaceName;
246  }
247
248  llvm_unreachable("unkknown lookup kind");
249  return 0;
250}
251
252// Retrieve the set of identifier namespaces that correspond to a
253// specific kind of name lookup.
254static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
255                               bool CPlusPlus,
256                               bool Redeclaration) {
257  unsigned IDNS = 0;
258  switch (NameKind) {
259  case Sema::LookupOrdinaryName:
260  case Sema::LookupOperatorName:
261  case Sema::LookupRedeclarationWithLinkage:
262    IDNS = Decl::IDNS_Ordinary;
263    if (CPlusPlus) {
264      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
265      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
266    }
267    break;
268
269  case Sema::LookupTagName:
270    IDNS = Decl::IDNS_Tag;
271    if (CPlusPlus && Redeclaration)
272      IDNS |= Decl::IDNS_TagFriend;
273    break;
274
275  case Sema::LookupMemberName:
276    IDNS = Decl::IDNS_Member;
277    if (CPlusPlus)
278      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
279    break;
280
281  case Sema::LookupNestedNameSpecifierName:
282  case Sema::LookupNamespaceName:
283    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
284    break;
285
286  case Sema::LookupUsingDeclName:
287    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
288         | Decl::IDNS_Member | Decl::IDNS_Using;
289    break;
290
291  case Sema::LookupObjCProtocolName:
292    IDNS = Decl::IDNS_ObjCProtocol;
293    break;
294
295  case Sema::LookupObjCImplementationName:
296    IDNS = Decl::IDNS_ObjCImplementation;
297    break;
298  }
299  return IDNS;
300}
301
302void LookupResult::configure() {
303  IDNS = getIDNS(LookupKind,
304                 SemaRef.getLangOptions().CPlusPlus,
305                 isForRedeclaration());
306  IsAcceptableFn = getResultFilter(LookupKind);
307}
308
309// Necessary because CXXBasePaths is not complete in Sema.h
310void LookupResult::deletePaths(CXXBasePaths *Paths) {
311  delete Paths;
312}
313
314/// Resolves the result kind of this lookup.
315void LookupResult::resolveKind() {
316  unsigned N = Decls.size();
317
318  // Fast case: no possible ambiguity.
319  if (N == 0) {
320    assert(ResultKind == NotFound);
321    return;
322  }
323
324  // If there's a single decl, we need to examine it to decide what
325  // kind of lookup this is.
326  if (N == 1) {
327    if (isa<FunctionTemplateDecl>(Decls[0]))
328      ResultKind = FoundOverloaded;
329    else if (isa<UnresolvedUsingValueDecl>(Decls[0]))
330      ResultKind = FoundUnresolvedValue;
331    return;
332  }
333
334  // Don't do any extra resolution if we've already resolved as ambiguous.
335  if (ResultKind == Ambiguous) return;
336
337  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
338
339  bool Ambiguous = false;
340  bool HasTag = false, HasFunction = false, HasNonFunction = false;
341  bool HasFunctionTemplate = false, HasUnresolved = false;
342
343  unsigned UniqueTagIndex = 0;
344
345  unsigned I = 0;
346  while (I < N) {
347    NamedDecl *D = Decls[I]->getUnderlyingDecl();
348    D = cast<NamedDecl>(D->getCanonicalDecl());
349
350    if (!Unique.insert(D)) {
351      // If it's not unique, pull something off the back (and
352      // continue at this index).
353      Decls[I] = Decls[--N];
354    } else {
355      // Otherwise, do some decl type analysis and then continue.
356
357      if (isa<UnresolvedUsingValueDecl>(D)) {
358        HasUnresolved = true;
359      } else if (isa<TagDecl>(D)) {
360        if (HasTag)
361          Ambiguous = true;
362        UniqueTagIndex = I;
363        HasTag = true;
364      } else if (isa<FunctionTemplateDecl>(D)) {
365        HasFunction = true;
366        HasFunctionTemplate = true;
367      } else if (isa<FunctionDecl>(D)) {
368        HasFunction = true;
369      } else {
370        if (HasNonFunction)
371          Ambiguous = true;
372        HasNonFunction = true;
373      }
374      I++;
375    }
376  }
377
378  // C++ [basic.scope.hiding]p2:
379  //   A class name or enumeration name can be hidden by the name of
380  //   an object, function, or enumerator declared in the same
381  //   scope. If a class or enumeration name and an object, function,
382  //   or enumerator are declared in the same scope (in any order)
383  //   with the same name, the class or enumeration name is hidden
384  //   wherever the object, function, or enumerator name is visible.
385  // But it's still an error if there are distinct tag types found,
386  // even if they're not visible. (ref?)
387  if (HideTags && HasTag && !Ambiguous &&
388      (HasFunction || HasNonFunction || HasUnresolved))
389    Decls[UniqueTagIndex] = Decls[--N];
390
391  Decls.set_size(N);
392
393  if (HasNonFunction && (HasFunction || HasUnresolved))
394    Ambiguous = true;
395
396  if (Ambiguous)
397    setAmbiguous(LookupResult::AmbiguousReference);
398  else if (HasUnresolved)
399    ResultKind = LookupResult::FoundUnresolvedValue;
400  else if (N > 1 || HasFunctionTemplate)
401    ResultKind = LookupResult::FoundOverloaded;
402  else
403    ResultKind = LookupResult::Found;
404}
405
406void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
407  CXXBasePaths::paths_iterator I, E;
408  DeclContext::lookup_iterator DI, DE;
409  for (I = P.begin(), E = P.end(); I != E; ++I)
410    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
411      addDecl(*DI);
412}
413
414void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
415  Paths = new CXXBasePaths;
416  Paths->swap(P);
417  addDeclsFromBasePaths(*Paths);
418  resolveKind();
419  setAmbiguous(AmbiguousBaseSubobjects);
420}
421
422void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
423  Paths = new CXXBasePaths;
424  Paths->swap(P);
425  addDeclsFromBasePaths(*Paths);
426  resolveKind();
427  setAmbiguous(AmbiguousBaseSubobjectTypes);
428}
429
430void LookupResult::print(llvm::raw_ostream &Out) {
431  Out << Decls.size() << " result(s)";
432  if (isAmbiguous()) Out << ", ambiguous";
433  if (Paths) Out << ", base paths present";
434
435  for (iterator I = begin(), E = end(); I != E; ++I) {
436    Out << "\n";
437    (*I)->print(Out, 2);
438  }
439}
440
441// Adds all qualifying matches for a name within a decl context to the
442// given lookup result.  Returns true if any matches were found.
443static bool LookupDirect(LookupResult &R, const DeclContext *DC) {
444  bool Found = false;
445
446  DeclContext::lookup_const_iterator I, E;
447  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
448    if (R.isAcceptableDecl(*I)) {
449      R.addDecl(*I);
450      Found = true;
451    }
452  }
453
454  if (R.getLookupName().getNameKind()
455        == DeclarationName::CXXConversionFunctionName &&
456      !R.getLookupName().getCXXNameType()->isDependentType() &&
457      isa<CXXRecordDecl>(DC)) {
458    // C++ [temp.mem]p6:
459    //   A specialization of a conversion function template is not found by
460    //   name lookup. Instead, any conversion function templates visible in the
461    //   context of the use are considered. [...]
462    const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
463    if (!Record->isDefinition())
464      return Found;
465
466    const UnresolvedSet *Unresolved = Record->getConversionFunctions();
467    for (UnresolvedSet::iterator U = Unresolved->begin(),
468                              UEnd = Unresolved->end();
469         U != UEnd; ++U) {
470      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
471      if (!ConvTemplate)
472        continue;
473
474      // When we're performing lookup for the purposes of redeclaration, just
475      // add the conversion function template. When we deduce template
476      // arguments for specializations, we'll end up unifying the return
477      // type of the new declaration with the type of the function template.
478      if (R.isForRedeclaration()) {
479        R.addDecl(ConvTemplate);
480        Found = true;
481        continue;
482      }
483
484      // C++ [temp.mem]p6:
485      //   [...] For each such operator, if argument deduction succeeds
486      //   (14.9.2.3), the resulting specialization is used as if found by
487      //   name lookup.
488      //
489      // When referencing a conversion function for any purpose other than
490      // a redeclaration (such that we'll be building an expression with the
491      // result), perform template argument deduction and place the
492      // specialization into the result set. We do this to avoid forcing all
493      // callers to perform special deduction for conversion functions.
494      Sema::TemplateDeductionInfo Info(R.getSema().Context);
495      FunctionDecl *Specialization = 0;
496
497      const FunctionProtoType *ConvProto
498        = ConvTemplate->getTemplatedDecl()->getType()
499                                                  ->getAs<FunctionProtoType>();
500      assert(ConvProto && "Nonsensical conversion function template type");
501
502      // Compute the type of the function that we would expect the conversion
503      // function to have, if it were to match the name given.
504      // FIXME: Calling convention!
505      QualType ExpectedType
506        = R.getSema().Context.getFunctionType(
507                                            R.getLookupName().getCXXNameType(),
508                                              0, 0, ConvProto->isVariadic(),
509                                              ConvProto->getTypeQuals(),
510                                              false, false, 0, 0,
511                                              ConvProto->getNoReturnAttr());
512
513      // Perform template argument deduction against the type that we would
514      // expect the function to have.
515      if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
516                                              Specialization, Info)
517            == Sema::TDK_Success) {
518        R.addDecl(Specialization);
519        Found = true;
520      }
521    }
522  }
523
524  return Found;
525}
526
527// Performs C++ unqualified lookup into the given file context.
528static bool
529CppNamespaceLookup(LookupResult &R, ASTContext &Context, DeclContext *NS,
530                   UnqualUsingDirectiveSet &UDirs) {
531
532  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
533
534  // Perform direct name lookup into the LookupCtx.
535  bool Found = LookupDirect(R, NS);
536
537  // Perform direct name lookup into the namespaces nominated by the
538  // using directives whose common ancestor is this namespace.
539  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
540  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
541
542  for (; UI != UEnd; ++UI)
543    if (LookupDirect(R, UI->getNominatedNamespace()))
544      Found = true;
545
546  R.resolveKind();
547
548  return Found;
549}
550
551static bool isNamespaceOrTranslationUnitScope(Scope *S) {
552  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
553    return Ctx->isFileContext();
554  return false;
555}
556
557// Find the next outer declaration context corresponding to this scope.
558static DeclContext *findOuterContext(Scope *S) {
559  for (S = S->getParent(); S; S = S->getParent())
560    if (S->getEntity())
561      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
562
563  return 0;
564}
565
566bool Sema::CppLookupName(LookupResult &R, Scope *S) {
567  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
568
569  DeclarationName Name = R.getLookupName();
570
571  Scope *Initial = S;
572  IdentifierResolver::iterator
573    I = IdResolver.begin(Name),
574    IEnd = IdResolver.end();
575
576  // First we lookup local scope.
577  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
578  // ...During unqualified name lookup (3.4.1), the names appear as if
579  // they were declared in the nearest enclosing namespace which contains
580  // both the using-directive and the nominated namespace.
581  // [Note: in this context, "contains" means "contains directly or
582  // indirectly".
583  //
584  // For example:
585  // namespace A { int i; }
586  // void foo() {
587  //   int i;
588  //   {
589  //     using namespace A;
590  //     ++i; // finds local 'i', A::i appears at global scope
591  //   }
592  // }
593  //
594  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
595    // Check whether the IdResolver has anything in this scope.
596    bool Found = false;
597    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
598      if (R.isAcceptableDecl(*I)) {
599        Found = true;
600        R.addDecl(*I);
601      }
602    }
603    if (Found) {
604      R.resolveKind();
605      return true;
606    }
607
608    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
609      DeclContext *OuterCtx = findOuterContext(S);
610      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
611           Ctx = Ctx->getLookupParent()) {
612        // We do not directly look into function or method contexts
613        // (since all local variables are found via the identifier
614        // changes) or in transparent contexts (since those entities
615        // will be found in the nearest enclosing non-transparent
616        // context).
617        if (Ctx->isFunctionOrMethod() || Ctx->isTransparentContext())
618          continue;
619
620        // Perform qualified name lookup into this context.
621        // FIXME: In some cases, we know that every name that could be found by
622        // this qualified name lookup will also be on the identifier chain. For
623        // example, inside a class without any base classes, we never need to
624        // perform qualified lookup because all of the members are on top of the
625        // identifier chain.
626        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
627          return true;
628      }
629    }
630  }
631
632  // Stop if we ran out of scopes.
633  // FIXME:  This really, really shouldn't be happening.
634  if (!S) return false;
635
636  // Collect UsingDirectiveDecls in all scopes, and recursively all
637  // nominated namespaces by those using-directives.
638  //
639  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
640  // don't build it for each lookup!
641
642  UnqualUsingDirectiveSet UDirs;
643  UDirs.visitScopeChain(Initial, S);
644  UDirs.done();
645
646  // Lookup namespace scope, and global scope.
647  // Unqualified name lookup in C++ requires looking into scopes
648  // that aren't strictly lexical, and therefore we walk through the
649  // context as well as walking through the scopes.
650
651  for (; S; S = S->getParent()) {
652    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
653    if (!Ctx || Ctx->isTransparentContext())
654      continue;
655
656    assert(Ctx && Ctx->isFileContext() &&
657           "We should have been looking only at file context here already.");
658
659    // Check whether the IdResolver has anything in this scope.
660    bool Found = false;
661    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
662      if (R.isAcceptableDecl(*I)) {
663        // We found something.  Look for anything else in our scope
664        // with this same name and in an acceptable identifier
665        // namespace, so that we can construct an overload set if we
666        // need to.
667        Found = true;
668        R.addDecl(*I);
669      }
670    }
671
672    // Look into context considering using-directives.
673    if (CppNamespaceLookup(R, Context, Ctx, UDirs))
674      Found = true;
675
676    if (Found) {
677      R.resolveKind();
678      return true;
679    }
680
681    if (R.isForRedeclaration() && !Ctx->isTransparentContext())
682      return false;
683  }
684
685  return !R.empty();
686}
687
688/// @brief Perform unqualified name lookup starting from a given
689/// scope.
690///
691/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
692/// used to find names within the current scope. For example, 'x' in
693/// @code
694/// int x;
695/// int f() {
696///   return x; // unqualified name look finds 'x' in the global scope
697/// }
698/// @endcode
699///
700/// Different lookup criteria can find different names. For example, a
701/// particular scope can have both a struct and a function of the same
702/// name, and each can be found by certain lookup criteria. For more
703/// information about lookup criteria, see the documentation for the
704/// class LookupCriteria.
705///
706/// @param S        The scope from which unqualified name lookup will
707/// begin. If the lookup criteria permits, name lookup may also search
708/// in the parent scopes.
709///
710/// @param Name     The name of the entity that we are searching for.
711///
712/// @param Loc      If provided, the source location where we're performing
713/// name lookup. At present, this is only used to produce diagnostics when
714/// C library functions (like "malloc") are implicitly declared.
715///
716/// @returns The result of name lookup, which includes zero or more
717/// declarations and possibly additional information used to diagnose
718/// ambiguities.
719bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
720  DeclarationName Name = R.getLookupName();
721  if (!Name) return false;
722
723  LookupNameKind NameKind = R.getLookupKind();
724
725  if (!getLangOptions().CPlusPlus) {
726    // Unqualified name lookup in C/Objective-C is purely lexical, so
727    // search in the declarations attached to the name.
728
729    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
730      // Find the nearest non-transparent declaration scope.
731      while (!(S->getFlags() & Scope::DeclScope) ||
732             (S->getEntity() &&
733              static_cast<DeclContext *>(S->getEntity())
734                ->isTransparentContext()))
735        S = S->getParent();
736    }
737
738    unsigned IDNS = R.getIdentifierNamespace();
739
740    // Scan up the scope chain looking for a decl that matches this
741    // identifier that is in the appropriate namespace.  This search
742    // should not take long, as shadowing of names is uncommon, and
743    // deep shadowing is extremely uncommon.
744    bool LeftStartingScope = false;
745
746    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
747                                   IEnd = IdResolver.end();
748         I != IEnd; ++I)
749      if ((*I)->isInIdentifierNamespace(IDNS)) {
750        if (NameKind == LookupRedeclarationWithLinkage) {
751          // Determine whether this (or a previous) declaration is
752          // out-of-scope.
753          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
754            LeftStartingScope = true;
755
756          // If we found something outside of our starting scope that
757          // does not have linkage, skip it.
758          if (LeftStartingScope && !((*I)->hasLinkage()))
759            continue;
760        }
761
762        R.addDecl(*I);
763
764        if ((*I)->getAttr<OverloadableAttr>()) {
765          // If this declaration has the "overloadable" attribute, we
766          // might have a set of overloaded functions.
767
768          // Figure out what scope the identifier is in.
769          while (!(S->getFlags() & Scope::DeclScope) ||
770                 !S->isDeclScope(DeclPtrTy::make(*I)))
771            S = S->getParent();
772
773          // Find the last declaration in this scope (with the same
774          // name, naturally).
775          IdentifierResolver::iterator LastI = I;
776          for (++LastI; LastI != IEnd; ++LastI) {
777            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
778              break;
779            R.addDecl(*LastI);
780          }
781        }
782
783        R.resolveKind();
784
785        return true;
786      }
787  } else {
788    // Perform C++ unqualified name lookup.
789    if (CppLookupName(R, S))
790      return true;
791  }
792
793  // If we didn't find a use of this identifier, and if the identifier
794  // corresponds to a compiler builtin, create the decl object for the builtin
795  // now, injecting it into translation unit scope, and return it.
796  if (NameKind == LookupOrdinaryName ||
797      NameKind == LookupRedeclarationWithLinkage) {
798    IdentifierInfo *II = Name.getAsIdentifierInfo();
799    if (II && AllowBuiltinCreation) {
800      // If this is a builtin on this (or all) targets, create the decl.
801      if (unsigned BuiltinID = II->getBuiltinID()) {
802        // In C++, we don't have any predefined library functions like
803        // 'malloc'. Instead, we'll just error.
804        if (getLangOptions().CPlusPlus &&
805            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
806          return false;
807
808        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
809                                           S, R.isForRedeclaration(),
810                                           R.getNameLoc());
811        if (D) R.addDecl(D);
812        return (D != NULL);
813      }
814    }
815  }
816  return false;
817}
818
819/// @brief Perform qualified name lookup in the namespaces nominated by
820/// using directives by the given context.
821///
822/// C++98 [namespace.qual]p2:
823///   Given X::m (where X is a user-declared namespace), or given ::m
824///   (where X is the global namespace), let S be the set of all
825///   declarations of m in X and in the transitive closure of all
826///   namespaces nominated by using-directives in X and its used
827///   namespaces, except that using-directives are ignored in any
828///   namespace, including X, directly containing one or more
829///   declarations of m. No namespace is searched more than once in
830///   the lookup of a name. If S is the empty set, the program is
831///   ill-formed. Otherwise, if S has exactly one member, or if the
832///   context of the reference is a using-declaration
833///   (namespace.udecl), S is the required set of declarations of
834///   m. Otherwise if the use of m is not one that allows a unique
835///   declaration to be chosen from S, the program is ill-formed.
836/// C++98 [namespace.qual]p5:
837///   During the lookup of a qualified namespace member name, if the
838///   lookup finds more than one declaration of the member, and if one
839///   declaration introduces a class name or enumeration name and the
840///   other declarations either introduce the same object, the same
841///   enumerator or a set of functions, the non-type name hides the
842///   class or enumeration name if and only if the declarations are
843///   from the same namespace; otherwise (the declarations are from
844///   different namespaces), the program is ill-formed.
845static bool LookupQualifiedNameInUsingDirectives(LookupResult &R,
846                                                 DeclContext *StartDC) {
847  assert(StartDC->isFileContext() && "start context is not a file context");
848
849  DeclContext::udir_iterator I = StartDC->using_directives_begin();
850  DeclContext::udir_iterator E = StartDC->using_directives_end();
851
852  if (I == E) return false;
853
854  // We have at least added all these contexts to the queue.
855  llvm::DenseSet<DeclContext*> Visited;
856  Visited.insert(StartDC);
857
858  // We have not yet looked into these namespaces, much less added
859  // their "using-children" to the queue.
860  llvm::SmallVector<NamespaceDecl*, 8> Queue;
861
862  // We have already looked into the initial namespace; seed the queue
863  // with its using-children.
864  for (; I != E; ++I) {
865    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
866    if (Visited.insert(ND).second)
867      Queue.push_back(ND);
868  }
869
870  // The easiest way to implement the restriction in [namespace.qual]p5
871  // is to check whether any of the individual results found a tag
872  // and, if so, to declare an ambiguity if the final result is not
873  // a tag.
874  bool FoundTag = false;
875  bool FoundNonTag = false;
876
877  LookupResult LocalR(LookupResult::Temporary, R);
878
879  bool Found = false;
880  while (!Queue.empty()) {
881    NamespaceDecl *ND = Queue.back();
882    Queue.pop_back();
883
884    // We go through some convolutions here to avoid copying results
885    // between LookupResults.
886    bool UseLocal = !R.empty();
887    LookupResult &DirectR = UseLocal ? LocalR : R;
888    bool FoundDirect = LookupDirect(DirectR, ND);
889
890    if (FoundDirect) {
891      // First do any local hiding.
892      DirectR.resolveKind();
893
894      // If the local result is a tag, remember that.
895      if (DirectR.isSingleTagDecl())
896        FoundTag = true;
897      else
898        FoundNonTag = true;
899
900      // Append the local results to the total results if necessary.
901      if (UseLocal) {
902        R.addAllDecls(LocalR);
903        LocalR.clear();
904      }
905    }
906
907    // If we find names in this namespace, ignore its using directives.
908    if (FoundDirect) {
909      Found = true;
910      continue;
911    }
912
913    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
914      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
915      if (Visited.insert(Nom).second)
916        Queue.push_back(Nom);
917    }
918  }
919
920  if (Found) {
921    if (FoundTag && FoundNonTag)
922      R.setAmbiguousQualifiedTagHiding();
923    else
924      R.resolveKind();
925  }
926
927  return Found;
928}
929
930/// \brief Perform qualified name lookup into a given context.
931///
932/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
933/// names when the context of those names is explicit specified, e.g.,
934/// "std::vector" or "x->member", or as part of unqualified name lookup.
935///
936/// Different lookup criteria can find different names. For example, a
937/// particular scope can have both a struct and a function of the same
938/// name, and each can be found by certain lookup criteria. For more
939/// information about lookup criteria, see the documentation for the
940/// class LookupCriteria.
941///
942/// \param R captures both the lookup criteria and any lookup results found.
943///
944/// \param LookupCtx The context in which qualified name lookup will
945/// search. If the lookup criteria permits, name lookup may also search
946/// in the parent contexts or (for C++ classes) base classes.
947///
948/// \param InUnqualifiedLookup true if this is qualified name lookup that
949/// occurs as part of unqualified name lookup.
950///
951/// \returns true if lookup succeeded, false if it failed.
952bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
953                               bool InUnqualifiedLookup) {
954  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
955
956  if (!R.getLookupName())
957    return false;
958
959  // Make sure that the declaration context is complete.
960  assert((!isa<TagDecl>(LookupCtx) ||
961          LookupCtx->isDependentContext() ||
962          cast<TagDecl>(LookupCtx)->isDefinition() ||
963          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
964            ->isBeingDefined()) &&
965         "Declaration context must already be complete!");
966
967  // Perform qualified name lookup into the LookupCtx.
968  if (LookupDirect(R, LookupCtx)) {
969    R.resolveKind();
970    return true;
971  }
972
973  // Don't descend into implied contexts for redeclarations.
974  // C++98 [namespace.qual]p6:
975  //   In a declaration for a namespace member in which the
976  //   declarator-id is a qualified-id, given that the qualified-id
977  //   for the namespace member has the form
978  //     nested-name-specifier unqualified-id
979  //   the unqualified-id shall name a member of the namespace
980  //   designated by the nested-name-specifier.
981  // See also [class.mfct]p5 and [class.static.data]p2.
982  if (R.isForRedeclaration())
983    return false;
984
985  // If this is a namespace, look it up in the implied namespaces.
986  if (LookupCtx->isFileContext())
987    return LookupQualifiedNameInUsingDirectives(R, LookupCtx);
988
989  // If this isn't a C++ class, we aren't allowed to look into base
990  // classes, we're done.
991  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
992  if (!LookupRec)
993    return false;
994
995  // If we're performing qualified name lookup into a dependent class,
996  // then we are actually looking into a current instantiation. If we have any
997  // dependent base classes, then we either have to delay lookup until
998  // template instantiation time (at which point all bases will be available)
999  // or we have to fail.
1000  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1001      LookupRec->hasAnyDependentBases()) {
1002    R.setNotFoundInCurrentInstantiation();
1003    return false;
1004  }
1005
1006  // Perform lookup into our base classes.
1007  CXXBasePaths Paths;
1008  Paths.setOrigin(LookupRec);
1009
1010  // Look for this member in our base classes
1011  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1012  switch (R.getLookupKind()) {
1013    case LookupOrdinaryName:
1014    case LookupMemberName:
1015    case LookupRedeclarationWithLinkage:
1016      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1017      break;
1018
1019    case LookupTagName:
1020      BaseCallback = &CXXRecordDecl::FindTagMember;
1021      break;
1022
1023    case LookupUsingDeclName:
1024      // This lookup is for redeclarations only.
1025
1026    case LookupOperatorName:
1027    case LookupNamespaceName:
1028    case LookupObjCProtocolName:
1029    case LookupObjCImplementationName:
1030      // These lookups will never find a member in a C++ class (or base class).
1031      return false;
1032
1033    case LookupNestedNameSpecifierName:
1034      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1035      break;
1036  }
1037
1038  if (!LookupRec->lookupInBases(BaseCallback,
1039                                R.getLookupName().getAsOpaquePtr(), Paths))
1040    return false;
1041
1042  // C++ [class.member.lookup]p2:
1043  //   [...] If the resulting set of declarations are not all from
1044  //   sub-objects of the same type, or the set has a nonstatic member
1045  //   and includes members from distinct sub-objects, there is an
1046  //   ambiguity and the program is ill-formed. Otherwise that set is
1047  //   the result of the lookup.
1048  // FIXME: support using declarations!
1049  QualType SubobjectType;
1050  int SubobjectNumber = 0;
1051  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1052       Path != PathEnd; ++Path) {
1053    const CXXBasePathElement &PathElement = Path->back();
1054
1055    // Determine whether we're looking at a distinct sub-object or not.
1056    if (SubobjectType.isNull()) {
1057      // This is the first subobject we've looked at. Record its type.
1058      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1059      SubobjectNumber = PathElement.SubobjectNumber;
1060    } else if (SubobjectType
1061                 != Context.getCanonicalType(PathElement.Base->getType())) {
1062      // We found members of the given name in two subobjects of
1063      // different types. This lookup is ambiguous.
1064      R.setAmbiguousBaseSubobjectTypes(Paths);
1065      return true;
1066    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1067      // We have a different subobject of the same type.
1068
1069      // C++ [class.member.lookup]p5:
1070      //   A static member, a nested type or an enumerator defined in
1071      //   a base class T can unambiguously be found even if an object
1072      //   has more than one base class subobject of type T.
1073      Decl *FirstDecl = *Path->Decls.first;
1074      if (isa<VarDecl>(FirstDecl) ||
1075          isa<TypeDecl>(FirstDecl) ||
1076          isa<EnumConstantDecl>(FirstDecl))
1077        continue;
1078
1079      if (isa<CXXMethodDecl>(FirstDecl)) {
1080        // Determine whether all of the methods are static.
1081        bool AllMethodsAreStatic = true;
1082        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1083             Func != Path->Decls.second; ++Func) {
1084          if (!isa<CXXMethodDecl>(*Func)) {
1085            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1086            break;
1087          }
1088
1089          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1090            AllMethodsAreStatic = false;
1091            break;
1092          }
1093        }
1094
1095        if (AllMethodsAreStatic)
1096          continue;
1097      }
1098
1099      // We have found a nonstatic member name in multiple, distinct
1100      // subobjects. Name lookup is ambiguous.
1101      R.setAmbiguousBaseSubobjects(Paths);
1102      return true;
1103    }
1104  }
1105
1106  // Lookup in a base class succeeded; return these results.
1107
1108  DeclContext::lookup_iterator I, E;
1109  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
1110    R.addDecl(*I);
1111  R.resolveKind();
1112  return true;
1113}
1114
1115/// @brief Performs name lookup for a name that was parsed in the
1116/// source code, and may contain a C++ scope specifier.
1117///
1118/// This routine is a convenience routine meant to be called from
1119/// contexts that receive a name and an optional C++ scope specifier
1120/// (e.g., "N::M::x"). It will then perform either qualified or
1121/// unqualified name lookup (with LookupQualifiedName or LookupName,
1122/// respectively) on the given name and return those results.
1123///
1124/// @param S        The scope from which unqualified name lookup will
1125/// begin.
1126///
1127/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1128///
1129/// @param Name     The name of the entity that name lookup will
1130/// search for.
1131///
1132/// @param Loc      If provided, the source location where we're performing
1133/// name lookup. At present, this is only used to produce diagnostics when
1134/// C library functions (like "malloc") are implicitly declared.
1135///
1136/// @param EnteringContext Indicates whether we are going to enter the
1137/// context of the scope-specifier SS (if present).
1138///
1139/// @returns True if any decls were found (but possibly ambiguous)
1140bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1141                            bool AllowBuiltinCreation, bool EnteringContext) {
1142  if (SS && SS->isInvalid()) {
1143    // When the scope specifier is invalid, don't even look for
1144    // anything.
1145    return false;
1146  }
1147
1148  if (SS && SS->isSet()) {
1149    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1150      // We have resolved the scope specifier to a particular declaration
1151      // contex, and will perform name lookup in that context.
1152      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1153        return false;
1154
1155      R.setContextRange(SS->getRange());
1156
1157      return LookupQualifiedName(R, DC);
1158    }
1159
1160    // We could not resolve the scope specified to a specific declaration
1161    // context, which means that SS refers to an unknown specialization.
1162    // Name lookup can't find anything in this case.
1163    return false;
1164  }
1165
1166  // Perform unqualified name lookup starting in the given scope.
1167  return LookupName(R, S, AllowBuiltinCreation);
1168}
1169
1170
1171/// @brief Produce a diagnostic describing the ambiguity that resulted
1172/// from name lookup.
1173///
1174/// @param Result       The ambiguous name lookup result.
1175///
1176/// @param Name         The name of the entity that name lookup was
1177/// searching for.
1178///
1179/// @param NameLoc      The location of the name within the source code.
1180///
1181/// @param LookupRange  A source range that provides more
1182/// source-location information concerning the lookup itself. For
1183/// example, this range might highlight a nested-name-specifier that
1184/// precedes the name.
1185///
1186/// @returns true
1187bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1188  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1189
1190  DeclarationName Name = Result.getLookupName();
1191  SourceLocation NameLoc = Result.getNameLoc();
1192  SourceRange LookupRange = Result.getContextRange();
1193
1194  switch (Result.getAmbiguityKind()) {
1195  case LookupResult::AmbiguousBaseSubobjects: {
1196    CXXBasePaths *Paths = Result.getBasePaths();
1197    QualType SubobjectType = Paths->front().back().Base->getType();
1198    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1199      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1200      << LookupRange;
1201
1202    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1203    while (isa<CXXMethodDecl>(*Found) &&
1204           cast<CXXMethodDecl>(*Found)->isStatic())
1205      ++Found;
1206
1207    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1208
1209    return true;
1210  }
1211
1212  case LookupResult::AmbiguousBaseSubobjectTypes: {
1213    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1214      << Name << LookupRange;
1215
1216    CXXBasePaths *Paths = Result.getBasePaths();
1217    std::set<Decl *> DeclsPrinted;
1218    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1219                                      PathEnd = Paths->end();
1220         Path != PathEnd; ++Path) {
1221      Decl *D = *Path->Decls.first;
1222      if (DeclsPrinted.insert(D).second)
1223        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1224    }
1225
1226    return true;
1227  }
1228
1229  case LookupResult::AmbiguousTagHiding: {
1230    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1231
1232    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1233
1234    LookupResult::iterator DI, DE = Result.end();
1235    for (DI = Result.begin(); DI != DE; ++DI)
1236      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1237        TagDecls.insert(TD);
1238        Diag(TD->getLocation(), diag::note_hidden_tag);
1239      }
1240
1241    for (DI = Result.begin(); DI != DE; ++DI)
1242      if (!isa<TagDecl>(*DI))
1243        Diag((*DI)->getLocation(), diag::note_hiding_object);
1244
1245    // For recovery purposes, go ahead and implement the hiding.
1246    Result.hideDecls(TagDecls);
1247
1248    return true;
1249  }
1250
1251  case LookupResult::AmbiguousReference: {
1252    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1253
1254    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1255    for (; DI != DE; ++DI)
1256      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1257
1258    return true;
1259  }
1260  }
1261
1262  llvm_unreachable("unknown ambiguity kind");
1263  return true;
1264}
1265
1266static void
1267addAssociatedClassesAndNamespaces(QualType T,
1268                                  ASTContext &Context,
1269                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1270                                  Sema::AssociatedClassSet &AssociatedClasses);
1271
1272static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1273                             DeclContext *Ctx) {
1274  if (Ctx->isFileContext())
1275    Namespaces.insert(Ctx);
1276}
1277
1278// \brief Add the associated classes and namespaces for argument-dependent
1279// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1280static void
1281addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1282                                  ASTContext &Context,
1283                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1284                                  Sema::AssociatedClassSet &AssociatedClasses) {
1285  // C++ [basic.lookup.koenig]p2, last bullet:
1286  //   -- [...] ;
1287  switch (Arg.getKind()) {
1288    case TemplateArgument::Null:
1289      break;
1290
1291    case TemplateArgument::Type:
1292      // [...] the namespaces and classes associated with the types of the
1293      // template arguments provided for template type parameters (excluding
1294      // template template parameters)
1295      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1296                                        AssociatedNamespaces,
1297                                        AssociatedClasses);
1298      break;
1299
1300    case TemplateArgument::Template: {
1301      // [...] the namespaces in which any template template arguments are
1302      // defined; and the classes in which any member templates used as
1303      // template template arguments are defined.
1304      TemplateName Template = Arg.getAsTemplate();
1305      if (ClassTemplateDecl *ClassTemplate
1306                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1307        DeclContext *Ctx = ClassTemplate->getDeclContext();
1308        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1309          AssociatedClasses.insert(EnclosingClass);
1310        // Add the associated namespace for this class.
1311        while (Ctx->isRecord())
1312          Ctx = Ctx->getParent();
1313        CollectNamespace(AssociatedNamespaces, Ctx);
1314      }
1315      break;
1316    }
1317
1318    case TemplateArgument::Declaration:
1319    case TemplateArgument::Integral:
1320    case TemplateArgument::Expression:
1321      // [Note: non-type template arguments do not contribute to the set of
1322      //  associated namespaces. ]
1323      break;
1324
1325    case TemplateArgument::Pack:
1326      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1327                                        PEnd = Arg.pack_end();
1328           P != PEnd; ++P)
1329        addAssociatedClassesAndNamespaces(*P, Context,
1330                                          AssociatedNamespaces,
1331                                          AssociatedClasses);
1332      break;
1333  }
1334}
1335
1336// \brief Add the associated classes and namespaces for
1337// argument-dependent lookup with an argument of class type
1338// (C++ [basic.lookup.koenig]p2).
1339static void
1340addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1341                                  ASTContext &Context,
1342                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1343                            Sema::AssociatedClassSet &AssociatedClasses) {
1344  // C++ [basic.lookup.koenig]p2:
1345  //   [...]
1346  //     -- If T is a class type (including unions), its associated
1347  //        classes are: the class itself; the class of which it is a
1348  //        member, if any; and its direct and indirect base
1349  //        classes. Its associated namespaces are the namespaces in
1350  //        which its associated classes are defined.
1351
1352  // Add the class of which it is a member, if any.
1353  DeclContext *Ctx = Class->getDeclContext();
1354  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1355    AssociatedClasses.insert(EnclosingClass);
1356  // Add the associated namespace for this class.
1357  while (Ctx->isRecord())
1358    Ctx = Ctx->getParent();
1359  CollectNamespace(AssociatedNamespaces, Ctx);
1360
1361  // Add the class itself. If we've already seen this class, we don't
1362  // need to visit base classes.
1363  if (!AssociatedClasses.insert(Class))
1364    return;
1365
1366  // -- If T is a template-id, its associated namespaces and classes are
1367  //    the namespace in which the template is defined; for member
1368  //    templates, the member template���s class; the namespaces and classes
1369  //    associated with the types of the template arguments provided for
1370  //    template type parameters (excluding template template parameters); the
1371  //    namespaces in which any template template arguments are defined; and
1372  //    the classes in which any member templates used as template template
1373  //    arguments are defined. [Note: non-type template arguments do not
1374  //    contribute to the set of associated namespaces. ]
1375  if (ClassTemplateSpecializationDecl *Spec
1376        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1377    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1378    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1379      AssociatedClasses.insert(EnclosingClass);
1380    // Add the associated namespace for this class.
1381    while (Ctx->isRecord())
1382      Ctx = Ctx->getParent();
1383    CollectNamespace(AssociatedNamespaces, Ctx);
1384
1385    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1386    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1387      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1388                                        AssociatedNamespaces,
1389                                        AssociatedClasses);
1390  }
1391
1392  // Add direct and indirect base classes along with their associated
1393  // namespaces.
1394  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1395  Bases.push_back(Class);
1396  while (!Bases.empty()) {
1397    // Pop this class off the stack.
1398    Class = Bases.back();
1399    Bases.pop_back();
1400
1401    // Visit the base classes.
1402    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1403                                         BaseEnd = Class->bases_end();
1404         Base != BaseEnd; ++Base) {
1405      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1406      // In dependent contexts, we do ADL twice, and the first time around,
1407      // the base type might be a dependent TemplateSpecializationType, or a
1408      // TemplateTypeParmType. If that happens, simply ignore it.
1409      // FIXME: If we want to support export, we probably need to add the
1410      // namespace of the template in a TemplateSpecializationType, or even
1411      // the classes and namespaces of known non-dependent arguments.
1412      if (!BaseType)
1413        continue;
1414      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1415      if (AssociatedClasses.insert(BaseDecl)) {
1416        // Find the associated namespace for this base class.
1417        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1418        while (BaseCtx->isRecord())
1419          BaseCtx = BaseCtx->getParent();
1420        CollectNamespace(AssociatedNamespaces, BaseCtx);
1421
1422        // Make sure we visit the bases of this base class.
1423        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1424          Bases.push_back(BaseDecl);
1425      }
1426    }
1427  }
1428}
1429
1430// \brief Add the associated classes and namespaces for
1431// argument-dependent lookup with an argument of type T
1432// (C++ [basic.lookup.koenig]p2).
1433static void
1434addAssociatedClassesAndNamespaces(QualType T,
1435                                  ASTContext &Context,
1436                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1437                                  Sema::AssociatedClassSet &AssociatedClasses) {
1438  // C++ [basic.lookup.koenig]p2:
1439  //
1440  //   For each argument type T in the function call, there is a set
1441  //   of zero or more associated namespaces and a set of zero or more
1442  //   associated classes to be considered. The sets of namespaces and
1443  //   classes is determined entirely by the types of the function
1444  //   arguments (and the namespace of any template template
1445  //   argument). Typedef names and using-declarations used to specify
1446  //   the types do not contribute to this set. The sets of namespaces
1447  //   and classes are determined in the following way:
1448  T = Context.getCanonicalType(T).getUnqualifiedType();
1449
1450  //    -- If T is a pointer to U or an array of U, its associated
1451  //       namespaces and classes are those associated with U.
1452  //
1453  // We handle this by unwrapping pointer and array types immediately,
1454  // to avoid unnecessary recursion.
1455  while (true) {
1456    if (const PointerType *Ptr = T->getAs<PointerType>())
1457      T = Ptr->getPointeeType();
1458    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1459      T = Ptr->getElementType();
1460    else
1461      break;
1462  }
1463
1464  //     -- If T is a fundamental type, its associated sets of
1465  //        namespaces and classes are both empty.
1466  if (T->getAs<BuiltinType>())
1467    return;
1468
1469  //     -- If T is a class type (including unions), its associated
1470  //        classes are: the class itself; the class of which it is a
1471  //        member, if any; and its direct and indirect base
1472  //        classes. Its associated namespaces are the namespaces in
1473  //        which its associated classes are defined.
1474  if (const RecordType *ClassType = T->getAs<RecordType>())
1475    if (CXXRecordDecl *ClassDecl
1476        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1477      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1478                                        AssociatedNamespaces,
1479                                        AssociatedClasses);
1480      return;
1481    }
1482
1483  //     -- If T is an enumeration type, its associated namespace is
1484  //        the namespace in which it is defined. If it is class
1485  //        member, its associated class is the member���s class; else
1486  //        it has no associated class.
1487  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1488    EnumDecl *Enum = EnumT->getDecl();
1489
1490    DeclContext *Ctx = Enum->getDeclContext();
1491    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1492      AssociatedClasses.insert(EnclosingClass);
1493
1494    // Add the associated namespace for this class.
1495    while (Ctx->isRecord())
1496      Ctx = Ctx->getParent();
1497    CollectNamespace(AssociatedNamespaces, Ctx);
1498
1499    return;
1500  }
1501
1502  //     -- If T is a function type, its associated namespaces and
1503  //        classes are those associated with the function parameter
1504  //        types and those associated with the return type.
1505  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1506    // Return type
1507    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1508                                      Context,
1509                                      AssociatedNamespaces, AssociatedClasses);
1510
1511    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1512    if (!Proto)
1513      return;
1514
1515    // Argument types
1516    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1517                                           ArgEnd = Proto->arg_type_end();
1518         Arg != ArgEnd; ++Arg)
1519      addAssociatedClassesAndNamespaces(*Arg, Context,
1520                                        AssociatedNamespaces, AssociatedClasses);
1521
1522    return;
1523  }
1524
1525  //     -- If T is a pointer to a member function of a class X, its
1526  //        associated namespaces and classes are those associated
1527  //        with the function parameter types and return type,
1528  //        together with those associated with X.
1529  //
1530  //     -- If T is a pointer to a data member of class X, its
1531  //        associated namespaces and classes are those associated
1532  //        with the member type together with those associated with
1533  //        X.
1534  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1535    // Handle the type that the pointer to member points to.
1536    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1537                                      Context,
1538                                      AssociatedNamespaces,
1539                                      AssociatedClasses);
1540
1541    // Handle the class type into which this points.
1542    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1543      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1544                                        Context,
1545                                        AssociatedNamespaces,
1546                                        AssociatedClasses);
1547
1548    return;
1549  }
1550
1551  // FIXME: What about block pointers?
1552  // FIXME: What about Objective-C message sends?
1553}
1554
1555/// \brief Find the associated classes and namespaces for
1556/// argument-dependent lookup for a call with the given set of
1557/// arguments.
1558///
1559/// This routine computes the sets of associated classes and associated
1560/// namespaces searched by argument-dependent lookup
1561/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1562void
1563Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1564                                 AssociatedNamespaceSet &AssociatedNamespaces,
1565                                 AssociatedClassSet &AssociatedClasses) {
1566  AssociatedNamespaces.clear();
1567  AssociatedClasses.clear();
1568
1569  // C++ [basic.lookup.koenig]p2:
1570  //   For each argument type T in the function call, there is a set
1571  //   of zero or more associated namespaces and a set of zero or more
1572  //   associated classes to be considered. The sets of namespaces and
1573  //   classes is determined entirely by the types of the function
1574  //   arguments (and the namespace of any template template
1575  //   argument).
1576  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1577    Expr *Arg = Args[ArgIdx];
1578
1579    if (Arg->getType() != Context.OverloadTy) {
1580      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1581                                        AssociatedNamespaces,
1582                                        AssociatedClasses);
1583      continue;
1584    }
1585
1586    // [...] In addition, if the argument is the name or address of a
1587    // set of overloaded functions and/or function templates, its
1588    // associated classes and namespaces are the union of those
1589    // associated with each of the members of the set: the namespace
1590    // in which the function or function template is defined and the
1591    // classes and namespaces associated with its (non-dependent)
1592    // parameter types and return type.
1593    Arg = Arg->IgnoreParens();
1594    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1595      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1596        Arg = unaryOp->getSubExpr();
1597
1598    // TODO: avoid the copies.  This should be easy when the cases
1599    // share a storage implementation.
1600    llvm::SmallVector<NamedDecl*, 8> Functions;
1601
1602    if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
1603      Functions.append(ULE->decls_begin(), ULE->decls_end());
1604    else
1605      continue;
1606
1607    for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
1608           E = Functions.end(); I != E; ++I) {
1609      // Look through any using declarations to find the underlying function.
1610      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1611
1612      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1613      if (!FDecl)
1614        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1615
1616      // Add the classes and namespaces associated with the parameter
1617      // types and return type of this function.
1618      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1619                                        AssociatedNamespaces,
1620                                        AssociatedClasses);
1621    }
1622  }
1623}
1624
1625/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1626/// an acceptable non-member overloaded operator for a call whose
1627/// arguments have types T1 (and, if non-empty, T2). This routine
1628/// implements the check in C++ [over.match.oper]p3b2 concerning
1629/// enumeration types.
1630static bool
1631IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1632                                       QualType T1, QualType T2,
1633                                       ASTContext &Context) {
1634  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1635    return true;
1636
1637  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1638    return true;
1639
1640  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1641  if (Proto->getNumArgs() < 1)
1642    return false;
1643
1644  if (T1->isEnumeralType()) {
1645    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1646    if (Context.hasSameUnqualifiedType(T1, ArgType))
1647      return true;
1648  }
1649
1650  if (Proto->getNumArgs() < 2)
1651    return false;
1652
1653  if (!T2.isNull() && T2->isEnumeralType()) {
1654    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1655    if (Context.hasSameUnqualifiedType(T2, ArgType))
1656      return true;
1657  }
1658
1659  return false;
1660}
1661
1662NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1663                                  LookupNameKind NameKind,
1664                                  RedeclarationKind Redecl) {
1665  LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl);
1666  LookupName(R, S);
1667  return R.getAsSingle<NamedDecl>();
1668}
1669
1670/// \brief Find the protocol with the given name, if any.
1671ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1672  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1673  return cast_or_null<ObjCProtocolDecl>(D);
1674}
1675
1676void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1677                                        QualType T1, QualType T2,
1678                                        FunctionSet &Functions) {
1679  // C++ [over.match.oper]p3:
1680  //     -- The set of non-member candidates is the result of the
1681  //        unqualified lookup of operator@ in the context of the
1682  //        expression according to the usual rules for name lookup in
1683  //        unqualified function calls (3.4.2) except that all member
1684  //        functions are ignored. However, if no operand has a class
1685  //        type, only those non-member functions in the lookup set
1686  //        that have a first parameter of type T1 or "reference to
1687  //        (possibly cv-qualified) T1", when T1 is an enumeration
1688  //        type, or (if there is a right operand) a second parameter
1689  //        of type T2 or "reference to (possibly cv-qualified) T2",
1690  //        when T2 is an enumeration type, are candidate functions.
1691  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1692  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1693  LookupName(Operators, S);
1694
1695  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1696
1697  if (Operators.empty())
1698    return;
1699
1700  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1701       Op != OpEnd; ++Op) {
1702    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1703      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1704        Functions.insert(FD); // FIXME: canonical FD
1705    } else if (FunctionTemplateDecl *FunTmpl
1706                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1707      // FIXME: friend operators?
1708      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1709      // later?
1710      if (!FunTmpl->getDeclContext()->isRecord())
1711        Functions.insert(FunTmpl);
1712    }
1713  }
1714}
1715
1716static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1717                                Decl *D) {
1718  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1719    Functions.insert(Func);
1720  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1721    Functions.insert(FunTmpl);
1722}
1723
1724void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1725                                   Expr **Args, unsigned NumArgs,
1726                                   FunctionSet &Functions) {
1727  // Find all of the associated namespaces and classes based on the
1728  // arguments we have.
1729  AssociatedNamespaceSet AssociatedNamespaces;
1730  AssociatedClassSet AssociatedClasses;
1731  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1732                                     AssociatedNamespaces,
1733                                     AssociatedClasses);
1734
1735  QualType T1, T2;
1736  if (Operator) {
1737    T1 = Args[0]->getType();
1738    if (NumArgs >= 2)
1739      T2 = Args[1]->getType();
1740  }
1741
1742  // C++ [basic.lookup.argdep]p3:
1743  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1744  //   and let Y be the lookup set produced by argument dependent
1745  //   lookup (defined as follows). If X contains [...] then Y is
1746  //   empty. Otherwise Y is the set of declarations found in the
1747  //   namespaces associated with the argument types as described
1748  //   below. The set of declarations found by the lookup of the name
1749  //   is the union of X and Y.
1750  //
1751  // Here, we compute Y and add its members to the overloaded
1752  // candidate set.
1753  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1754                                     NSEnd = AssociatedNamespaces.end();
1755       NS != NSEnd; ++NS) {
1756    //   When considering an associated namespace, the lookup is the
1757    //   same as the lookup performed when the associated namespace is
1758    //   used as a qualifier (3.4.3.2) except that:
1759    //
1760    //     -- Any using-directives in the associated namespace are
1761    //        ignored.
1762    //
1763    //     -- Any namespace-scope friend functions declared in
1764    //        associated classes are visible within their respective
1765    //        namespaces even if they are not visible during an ordinary
1766    //        lookup (11.4).
1767    DeclContext::lookup_iterator I, E;
1768    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1769      Decl *D = *I;
1770      // If the only declaration here is an ordinary friend, consider
1771      // it only if it was declared in an associated classes.
1772      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1773        DeclContext *LexDC = D->getLexicalDeclContext();
1774        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1775          continue;
1776      }
1777
1778      FunctionDecl *Fn;
1779      if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
1780          IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
1781        CollectFunctionDecl(Functions, D);
1782    }
1783  }
1784}
1785
1786//----------------------------------------------------------------------------
1787// Search for all visible declarations.
1788//----------------------------------------------------------------------------
1789VisibleDeclConsumer::~VisibleDeclConsumer() { }
1790
1791namespace {
1792
1793class ShadowContextRAII;
1794
1795class VisibleDeclsRecord {
1796public:
1797  /// \brief An entry in the shadow map, which is optimized to store a
1798  /// single declaration (the common case) but can also store a list
1799  /// of declarations.
1800  class ShadowMapEntry {
1801    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
1802
1803    /// \brief Contains either the solitary NamedDecl * or a vector
1804    /// of declarations.
1805    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
1806
1807  public:
1808    ShadowMapEntry() : DeclOrVector() { }
1809
1810    void Add(NamedDecl *ND);
1811    void Destroy();
1812
1813    // Iteration.
1814    typedef NamedDecl **iterator;
1815    iterator begin();
1816    iterator end();
1817  };
1818
1819private:
1820  /// \brief A mapping from declaration names to the declarations that have
1821  /// this name within a particular scope.
1822  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
1823
1824  /// \brief A list of shadow maps, which is used to model name hiding.
1825  std::list<ShadowMap> ShadowMaps;
1826
1827  /// \brief The declaration contexts we have already visited.
1828  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
1829
1830  friend class ShadowContextRAII;
1831
1832public:
1833  /// \brief Determine whether we have already visited this context
1834  /// (and, if not, note that we are going to visit that context now).
1835  bool visitedContext(DeclContext *Ctx) {
1836    return !VisitedContexts.insert(Ctx);
1837  }
1838
1839  /// \brief Determine whether the given declaration is hidden in the
1840  /// current scope.
1841  ///
1842  /// \returns the declaration that hides the given declaration, or
1843  /// NULL if no such declaration exists.
1844  NamedDecl *checkHidden(NamedDecl *ND);
1845
1846  /// \brief Add a declaration to the current shadow map.
1847  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
1848};
1849
1850/// \brief RAII object that records when we've entered a shadow context.
1851class ShadowContextRAII {
1852  VisibleDeclsRecord &Visible;
1853
1854  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
1855
1856public:
1857  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
1858    Visible.ShadowMaps.push_back(ShadowMap());
1859  }
1860
1861  ~ShadowContextRAII() {
1862    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
1863                          EEnd = Visible.ShadowMaps.back().end();
1864         E != EEnd;
1865         ++E)
1866      E->second.Destroy();
1867
1868    Visible.ShadowMaps.pop_back();
1869  }
1870};
1871
1872} // end anonymous namespace
1873
1874void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
1875  if (DeclOrVector.isNull()) {
1876    // 0 - > 1 elements: just set the single element information.
1877    DeclOrVector = ND;
1878    return;
1879  }
1880
1881  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
1882    // 1 -> 2 elements: create the vector of results and push in the
1883    // existing declaration.
1884    DeclVector *Vec = new DeclVector;
1885    Vec->push_back(PrevND);
1886    DeclOrVector = Vec;
1887  }
1888
1889  // Add the new element to the end of the vector.
1890  DeclOrVector.get<DeclVector*>()->push_back(ND);
1891}
1892
1893void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
1894  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
1895    delete Vec;
1896    DeclOrVector = ((NamedDecl *)0);
1897  }
1898}
1899
1900VisibleDeclsRecord::ShadowMapEntry::iterator
1901VisibleDeclsRecord::ShadowMapEntry::begin() {
1902  if (DeclOrVector.isNull())
1903    return 0;
1904
1905  if (DeclOrVector.dyn_cast<NamedDecl *>())
1906    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
1907
1908  return DeclOrVector.get<DeclVector *>()->begin();
1909}
1910
1911VisibleDeclsRecord::ShadowMapEntry::iterator
1912VisibleDeclsRecord::ShadowMapEntry::end() {
1913  if (DeclOrVector.isNull())
1914    return 0;
1915
1916  if (DeclOrVector.dyn_cast<NamedDecl *>())
1917    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
1918
1919  return DeclOrVector.get<DeclVector *>()->end();
1920}
1921
1922NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
1923  // Look through using declarations.
1924  ND = ND->getUnderlyingDecl();
1925
1926  unsigned IDNS = ND->getIdentifierNamespace();
1927  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
1928  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
1929       SM != SMEnd; ++SM) {
1930    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
1931    if (Pos == SM->end())
1932      continue;
1933
1934    for (ShadowMapEntry::iterator I = Pos->second.begin(),
1935                               IEnd = Pos->second.end();
1936         I != IEnd; ++I) {
1937      // A tag declaration does not hide a non-tag declaration.
1938      if ((*I)->getIdentifierNamespace() == Decl::IDNS_Tag &&
1939          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
1940                   Decl::IDNS_ObjCProtocol)))
1941        continue;
1942
1943      // Protocols are in distinct namespaces from everything else.
1944      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
1945           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
1946          (*I)->getIdentifierNamespace() != IDNS)
1947        continue;
1948
1949      // Functions and function templates in the same scope overload
1950      // rather than hide.  FIXME: Look for hiding based on function
1951      // signatures!
1952      if ((*I)->isFunctionOrFunctionTemplate() &&
1953          ND->isFunctionOrFunctionTemplate() &&
1954          SM == ShadowMaps.rbegin())
1955        continue;
1956
1957      // We've found a declaration that hides this one.
1958      return *I;
1959    }
1960  }
1961
1962  return 0;
1963}
1964
1965static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
1966                               bool QualifiedNameLookup,
1967                               bool InBaseClass,
1968                               VisibleDeclConsumer &Consumer,
1969                               VisibleDeclsRecord &Visited) {
1970  // Make sure we don't visit the same context twice.
1971  if (Visited.visitedContext(Ctx->getPrimaryContext()))
1972    return;
1973
1974  // Enumerate all of the results in this context.
1975  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
1976       CurCtx = CurCtx->getNextContext()) {
1977    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
1978                                 DEnd = CurCtx->decls_end();
1979         D != DEnd; ++D) {
1980      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
1981        if (Result.isAcceptableDecl(ND)) {
1982          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
1983          Visited.add(ND);
1984        }
1985
1986      // Visit transparent contexts inside this context.
1987      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
1988        if (InnerCtx->isTransparentContext())
1989          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
1990                             Consumer, Visited);
1991      }
1992    }
1993  }
1994
1995  // Traverse using directives for qualified name lookup.
1996  if (QualifiedNameLookup) {
1997    ShadowContextRAII Shadow(Visited);
1998    DeclContext::udir_iterator I, E;
1999    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2000      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2001                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2002    }
2003  }
2004
2005  // Traverse the contexts of inherited C++ classes.
2006  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2007    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2008                                         BEnd = Record->bases_end();
2009         B != BEnd; ++B) {
2010      QualType BaseType = B->getType();
2011
2012      // Don't look into dependent bases, because name lookup can't look
2013      // there anyway.
2014      if (BaseType->isDependentType())
2015        continue;
2016
2017      const RecordType *Record = BaseType->getAs<RecordType>();
2018      if (!Record)
2019        continue;
2020
2021      // FIXME: It would be nice to be able to determine whether referencing
2022      // a particular member would be ambiguous. For example, given
2023      //
2024      //   struct A { int member; };
2025      //   struct B { int member; };
2026      //   struct C : A, B { };
2027      //
2028      //   void f(C *c) { c->### }
2029      //
2030      // accessing 'member' would result in an ambiguity. However, we
2031      // could be smart enough to qualify the member with the base
2032      // class, e.g.,
2033      //
2034      //   c->B::member
2035      //
2036      // or
2037      //
2038      //   c->A::member
2039
2040      // Find results in this base class (and its bases).
2041      ShadowContextRAII Shadow(Visited);
2042      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2043                         true, Consumer, Visited);
2044    }
2045  }
2046
2047  // Traverse the contexts of Objective-C classes.
2048  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2049    // Traverse categories.
2050    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2051         Category; Category = Category->getNextClassCategory()) {
2052      ShadowContextRAII Shadow(Visited);
2053      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2054                         Consumer, Visited);
2055    }
2056
2057    // Traverse protocols.
2058    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2059         E = IFace->protocol_end(); I != E; ++I) {
2060      ShadowContextRAII Shadow(Visited);
2061      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2062                         Visited);
2063    }
2064
2065    // Traverse the superclass.
2066    if (IFace->getSuperClass()) {
2067      ShadowContextRAII Shadow(Visited);
2068      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2069                         true, Consumer, Visited);
2070    }
2071  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2072    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2073           E = Protocol->protocol_end(); I != E; ++I) {
2074      ShadowContextRAII Shadow(Visited);
2075      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2076                         Visited);
2077    }
2078  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2079    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2080           E = Category->protocol_end(); I != E; ++I) {
2081      ShadowContextRAII Shadow(Visited);
2082      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2083                         Visited);
2084    }
2085  }
2086}
2087
2088static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2089                               UnqualUsingDirectiveSet &UDirs,
2090                               VisibleDeclConsumer &Consumer,
2091                               VisibleDeclsRecord &Visited) {
2092  if (!S)
2093    return;
2094
2095  if (!S->getEntity() || !S->getParent() ||
2096      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2097    // Walk through the declarations in this Scope.
2098    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2099         D != DEnd; ++D) {
2100      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
2101        if (Result.isAcceptableDecl(ND)) {
2102          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2103          Visited.add(ND);
2104        }
2105    }
2106  }
2107
2108  DeclContext *Entity = 0;
2109  if (S->getEntity()) {
2110    // Look into this scope's declaration context, along with any of its
2111    // parent lookup contexts (e.g., enclosing classes), up to the point
2112    // where we hit the context stored in the next outer scope.
2113    Entity = (DeclContext *)S->getEntity();
2114    DeclContext *OuterCtx = findOuterContext(S);
2115
2116    for (DeclContext *Ctx = Entity; Ctx && Ctx->getPrimaryContext() != OuterCtx;
2117         Ctx = Ctx->getLookupParent()) {
2118      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2119        if (Method->isInstanceMethod()) {
2120          // For instance methods, look for ivars in the method's interface.
2121          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2122                                  Result.getNameLoc(), Sema::LookupMemberName);
2123          ObjCInterfaceDecl *IFace = Method->getClassInterface();
2124          LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2125                             /*InBaseClass=*/false, Consumer, Visited);
2126        }
2127
2128        // We've already performed all of the name lookup that we need
2129        // to for Objective-C methods; the next context will be the
2130        // outer scope.
2131        break;
2132      }
2133
2134      if (Ctx->isFunctionOrMethod())
2135        continue;
2136
2137      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2138                         /*InBaseClass=*/false, Consumer, Visited);
2139    }
2140  } else if (!S->getParent()) {
2141    // Look into the translation unit scope. We walk through the translation
2142    // unit's declaration context, because the Scope itself won't have all of
2143    // the declarations if we loaded a precompiled header.
2144    // FIXME: We would like the translation unit's Scope object to point to the
2145    // translation unit, so we don't need this special "if" branch. However,
2146    // doing so would force the normal C++ name-lookup code to look into the
2147    // translation unit decl when the IdentifierInfo chains would suffice.
2148    // Once we fix that problem (which is part of a more general "don't look
2149    // in DeclContexts unless we have to" optimization), we can eliminate this.
2150    Entity = Result.getSema().Context.getTranslationUnitDecl();
2151    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2152                       /*InBaseClass=*/false, Consumer, Visited);
2153  }
2154
2155  if (Entity) {
2156    // Lookup visible declarations in any namespaces found by using
2157    // directives.
2158    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2159    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2160    for (; UI != UEnd; ++UI)
2161      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2162                         Result, /*QualifiedNameLookup=*/false,
2163                         /*InBaseClass=*/false, Consumer, Visited);
2164  }
2165
2166  // Lookup names in the parent scope.
2167  ShadowContextRAII Shadow(Visited);
2168  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2169}
2170
2171void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2172                              VisibleDeclConsumer &Consumer) {
2173  // Determine the set of using directives available during
2174  // unqualified name lookup.
2175  Scope *Initial = S;
2176  UnqualUsingDirectiveSet UDirs;
2177  if (getLangOptions().CPlusPlus) {
2178    // Find the first namespace or translation-unit scope.
2179    while (S && !isNamespaceOrTranslationUnitScope(S))
2180      S = S->getParent();
2181
2182    UDirs.visitScopeChain(Initial, S);
2183  }
2184  UDirs.done();
2185
2186  // Look for visible declarations.
2187  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2188  VisibleDeclsRecord Visited;
2189  ShadowContextRAII Shadow(Visited);
2190  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2191}
2192
2193void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2194                              VisibleDeclConsumer &Consumer) {
2195  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2196  VisibleDeclsRecord Visited;
2197  ShadowContextRAII Shadow(Visited);
2198  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2199                       /*InBaseClass=*/false, Consumer, Visited);
2200}
2201
2202//----------------------------------------------------------------------------
2203// Typo correction
2204//----------------------------------------------------------------------------
2205
2206namespace {
2207class TypoCorrectionConsumer : public VisibleDeclConsumer {
2208  /// \brief The name written that is a typo in the source.
2209  llvm::StringRef Typo;
2210
2211  /// \brief The results found that have the smallest edit distance
2212  /// found (so far) with the typo name.
2213  llvm::SmallVector<NamedDecl *, 4> BestResults;
2214
2215  /// \brief The best edit distance found so far.
2216  unsigned BestEditDistance;
2217
2218public:
2219  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2220    : Typo(Typo->getName()) { }
2221
2222  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2223
2224  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2225  iterator begin() const { return BestResults.begin(); }
2226  iterator end() const { return BestResults.end(); }
2227  bool empty() const { return BestResults.empty(); }
2228
2229  unsigned getBestEditDistance() const { return BestEditDistance; }
2230};
2231
2232}
2233
2234void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2235                                       bool InBaseClass) {
2236  // Don't consider hidden names for typo correction.
2237  if (Hiding)
2238    return;
2239
2240  // Only consider entities with identifiers for names, ignoring
2241  // special names (constructors, overloaded operators, selectors,
2242  // etc.).
2243  IdentifierInfo *Name = ND->getIdentifier();
2244  if (!Name)
2245    return;
2246
2247  // Compute the edit distance between the typo and the name of this
2248  // entity. If this edit distance is not worse than the best edit
2249  // distance we've seen so far, add it to the list of results.
2250  unsigned ED = Typo.edit_distance(Name->getName());
2251  if (!BestResults.empty()) {
2252    if (ED < BestEditDistance) {
2253      // This result is better than any we've seen before; clear out
2254      // the previous results.
2255      BestResults.clear();
2256      BestEditDistance = ED;
2257    } else if (ED > BestEditDistance) {
2258      // This result is worse than the best results we've seen so far;
2259      // ignore it.
2260      return;
2261    }
2262  } else
2263    BestEditDistance = ED;
2264
2265  BestResults.push_back(ND);
2266}
2267
2268/// \brief Try to "correct" a typo in the source code by finding
2269/// visible declarations whose names are similar to the name that was
2270/// present in the source code.
2271///
2272/// \param Res the \c LookupResult structure that contains the name
2273/// that was present in the source code along with the name-lookup
2274/// criteria used to search for the name. On success, this structure
2275/// will contain the results of name lookup.
2276///
2277/// \param S the scope in which name lookup occurs.
2278///
2279/// \param SS the nested-name-specifier that precedes the name we're
2280/// looking for, if present.
2281///
2282/// \param MemberContext if non-NULL, the context in which to look for
2283/// a member access expression.
2284///
2285/// \param EnteringContext whether we're entering the context described by
2286/// the nested-name-specifier SS.
2287///
2288/// \param OPT when non-NULL, the search for visible declarations will
2289/// also walk the protocols in the qualified interfaces of \p OPT.
2290///
2291/// \returns true if the typo was corrected, in which case the \p Res
2292/// structure will contain the results of name lookup for the
2293/// corrected name. Otherwise, returns false.
2294bool Sema::CorrectTypo(LookupResult &Res, Scope *S, const CXXScopeSpec *SS,
2295                       DeclContext *MemberContext, bool EnteringContext,
2296                       const ObjCObjectPointerType *OPT) {
2297
2298  if (Diags.hasFatalErrorOccurred())
2299    return false;
2300
2301  // We only attempt to correct typos for identifiers.
2302  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2303  if (!Typo)
2304    return false;
2305
2306  // If the scope specifier itself was invalid, don't try to correct
2307  // typos.
2308  if (SS && SS->isInvalid())
2309    return false;
2310
2311  // Never try to correct typos during template deduction or
2312  // instantiation.
2313  if (!ActiveTemplateInstantiations.empty())
2314    return false;
2315
2316  TypoCorrectionConsumer Consumer(Typo);
2317  if (MemberContext) {
2318    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2319
2320    // Look in qualified interfaces.
2321    if (OPT) {
2322      for (ObjCObjectPointerType::qual_iterator
2323             I = OPT->qual_begin(), E = OPT->qual_end();
2324           I != E; ++I)
2325        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2326    }
2327  } else if (SS && SS->isSet()) {
2328    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2329    if (!DC)
2330      return false;
2331
2332    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2333  } else {
2334    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2335  }
2336
2337  if (Consumer.empty())
2338    return false;
2339
2340  // Only allow a single, closest name in the result set (it's okay to
2341  // have overloads of that name, though).
2342  TypoCorrectionConsumer::iterator I = Consumer.begin();
2343  DeclarationName BestName = (*I)->getDeclName();
2344
2345  // If we've found an Objective-C ivar or property, don't perform
2346  // name lookup again; we'll just return the result directly.
2347  NamedDecl *FoundBest = 0;
2348  if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I))
2349    FoundBest = *I;
2350  ++I;
2351  for(TypoCorrectionConsumer::iterator IEnd = Consumer.end(); I != IEnd; ++I) {
2352    if (BestName != (*I)->getDeclName())
2353      return false;
2354
2355    // FIXME: If there are both ivars and properties of the same name,
2356    // don't return both because the callee can't handle two
2357    // results. We really need to separate ivar lookup from property
2358    // lookup to avoid this problem.
2359    FoundBest = 0;
2360  }
2361
2362  // BestName is the closest viable name to what the user
2363  // typed. However, to make sure that we don't pick something that's
2364  // way off, make sure that the user typed at least 3 characters for
2365  // each correction.
2366  unsigned ED = Consumer.getBestEditDistance();
2367  if (ED == 0 || (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
2368    return false;
2369
2370  // Perform name lookup again with the name we chose, and declare
2371  // success if we found something that was not ambiguous.
2372  Res.clear();
2373  Res.setLookupName(BestName);
2374
2375  // If we found an ivar or property, add that result; no further
2376  // lookup is required.
2377  if (FoundBest)
2378    Res.addDecl(FoundBest);
2379  // If we're looking into the context of a member, perform qualified
2380  // name lookup on the best name.
2381  else if (MemberContext)
2382    LookupQualifiedName(Res, MemberContext);
2383  // Perform lookup as if we had just parsed the best name.
2384  else
2385    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2386                     EnteringContext);
2387
2388  if (Res.isAmbiguous()) {
2389    Res.suppressDiagnostics();
2390    return false;
2391  }
2392
2393  return Res.getResultKind() != LookupResult::NotFound;
2394}
2395