SemaDecl.cpp revision 251790
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177// We need this to handle
1178//
1179// typedef struct {
1180//   void *foo() { return 0; }
1181// } A;
1182//
1183// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1184// for example. If 'A', foo will have external linkage. If we have '*A',
1185// foo will have no linkage. Since we can't know untill we get to the end
1186// of the typedef, this function finds out if D might have non external linkage.
1187// Callers should verify at the end of the TU if it D has external linkage or
1188// not.
1189bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1190  const DeclContext *DC = D->getDeclContext();
1191  while (!DC->isTranslationUnit()) {
1192    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1193      if (!RD->hasNameForLinkage())
1194        return true;
1195    }
1196    DC = DC->getParent();
1197  }
1198
1199  return !D->hasExternalLinkage();
1200}
1201
1202bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1203  assert(D);
1204
1205  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1206    return false;
1207
1208  // Ignore class templates.
1209  if (D->getDeclContext()->isDependentContext() ||
1210      D->getLexicalDeclContext()->isDependentContext())
1211    return false;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1215      return false;
1216
1217    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1218      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1219        return false;
1220    } else {
1221      // 'static inline' functions are used in headers; don't warn.
1222      // Make sure we get the storage class from the canonical declaration,
1223      // since otherwise we will get spurious warnings on specialized
1224      // static template functions.
1225      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1226          FD->isInlineSpecified())
1227        return false;
1228    }
1229
1230    if (FD->doesThisDeclarationHaveABody() &&
1231        Context.DeclMustBeEmitted(FD))
1232      return false;
1233  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1234    // Don't warn on variables of const-qualified or reference type, since their
1235    // values can be used even if though they're not odr-used, and because const
1236    // qualified variables can appear in headers in contexts where they're not
1237    // intended to be used.
1238    // FIXME: Use more principled rules for these exemptions.
1239    if (!VD->isFileVarDecl() ||
1240        VD->getType().isConstQualified() ||
1241        VD->getType()->isReferenceType() ||
1242        Context.DeclMustBeEmitted(VD))
1243      return false;
1244
1245    if (VD->isStaticDataMember() &&
1246        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1247      return false;
1248
1249  } else {
1250    return false;
1251  }
1252
1253  // Only warn for unused decls internal to the translation unit.
1254  return mightHaveNonExternalLinkage(D);
1255}
1256
1257void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1258  if (!D)
1259    return;
1260
1261  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1262    const FunctionDecl *First = FD->getFirstDeclaration();
1263    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1264      return; // First should already be in the vector.
1265  }
1266
1267  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1268    const VarDecl *First = VD->getFirstDeclaration();
1269    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1270      return; // First should already be in the vector.
1271  }
1272
1273  if (ShouldWarnIfUnusedFileScopedDecl(D))
1274    UnusedFileScopedDecls.push_back(D);
1275}
1276
1277static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1278  if (D->isInvalidDecl())
1279    return false;
1280
1281  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1282    return false;
1283
1284  if (isa<LabelDecl>(D))
1285    return true;
1286
1287  // White-list anything that isn't a local variable.
1288  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1289      !D->getDeclContext()->isFunctionOrMethod())
1290    return false;
1291
1292  // Types of valid local variables should be complete, so this should succeed.
1293  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1294
1295    // White-list anything with an __attribute__((unused)) type.
1296    QualType Ty = VD->getType();
1297
1298    // Only look at the outermost level of typedef.
1299    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1300      if (TT->getDecl()->hasAttr<UnusedAttr>())
1301        return false;
1302    }
1303
1304    // If we failed to complete the type for some reason, or if the type is
1305    // dependent, don't diagnose the variable.
1306    if (Ty->isIncompleteType() || Ty->isDependentType())
1307      return false;
1308
1309    if (const TagType *TT = Ty->getAs<TagType>()) {
1310      const TagDecl *Tag = TT->getDecl();
1311      if (Tag->hasAttr<UnusedAttr>())
1312        return false;
1313
1314      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1315        if (!RD->hasTrivialDestructor())
1316          return false;
1317
1318        if (const Expr *Init = VD->getInit()) {
1319          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1320            Init = Cleanups->getSubExpr();
1321          const CXXConstructExpr *Construct =
1322            dyn_cast<CXXConstructExpr>(Init);
1323          if (Construct && !Construct->isElidable()) {
1324            CXXConstructorDecl *CD = Construct->getConstructor();
1325            if (!CD->isTrivial())
1326              return false;
1327          }
1328        }
1329      }
1330    }
1331
1332    // TODO: __attribute__((unused)) templates?
1333  }
1334
1335  return true;
1336}
1337
1338static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1339                                     FixItHint &Hint) {
1340  if (isa<LabelDecl>(D)) {
1341    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1342                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1343    if (AfterColon.isInvalid())
1344      return;
1345    Hint = FixItHint::CreateRemoval(CharSourceRange::
1346                                    getCharRange(D->getLocStart(), AfterColon));
1347  }
1348  return;
1349}
1350
1351/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1352/// unless they are marked attr(unused).
1353void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1354  FixItHint Hint;
1355  if (!ShouldDiagnoseUnusedDecl(D))
1356    return;
1357
1358  GenerateFixForUnusedDecl(D, Context, Hint);
1359
1360  unsigned DiagID;
1361  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1362    DiagID = diag::warn_unused_exception_param;
1363  else if (isa<LabelDecl>(D))
1364    DiagID = diag::warn_unused_label;
1365  else
1366    DiagID = diag::warn_unused_variable;
1367
1368  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1369}
1370
1371static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1372  // Verify that we have no forward references left.  If so, there was a goto
1373  // or address of a label taken, but no definition of it.  Label fwd
1374  // definitions are indicated with a null substmt.
1375  if (L->getStmt() == 0)
1376    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1377}
1378
1379void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1380  if (S->decl_empty()) return;
1381  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1382         "Scope shouldn't contain decls!");
1383
1384  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1385       I != E; ++I) {
1386    Decl *TmpD = (*I);
1387    assert(TmpD && "This decl didn't get pushed??");
1388
1389    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1390    NamedDecl *D = cast<NamedDecl>(TmpD);
1391
1392    if (!D->getDeclName()) continue;
1393
1394    // Diagnose unused variables in this scope.
1395    if (!S->hasUnrecoverableErrorOccurred())
1396      DiagnoseUnusedDecl(D);
1397
1398    // If this was a forward reference to a label, verify it was defined.
1399    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1400      CheckPoppedLabel(LD, *this);
1401
1402    // Remove this name from our lexical scope.
1403    IdResolver.RemoveDecl(D);
1404  }
1405}
1406
1407void Sema::ActOnStartFunctionDeclarator() {
1408  ++InFunctionDeclarator;
1409}
1410
1411void Sema::ActOnEndFunctionDeclarator() {
1412  assert(InFunctionDeclarator);
1413  --InFunctionDeclarator;
1414}
1415
1416/// \brief Look for an Objective-C class in the translation unit.
1417///
1418/// \param Id The name of the Objective-C class we're looking for. If
1419/// typo-correction fixes this name, the Id will be updated
1420/// to the fixed name.
1421///
1422/// \param IdLoc The location of the name in the translation unit.
1423///
1424/// \param DoTypoCorrection If true, this routine will attempt typo correction
1425/// if there is no class with the given name.
1426///
1427/// \returns The declaration of the named Objective-C class, or NULL if the
1428/// class could not be found.
1429ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1430                                              SourceLocation IdLoc,
1431                                              bool DoTypoCorrection) {
1432  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1433  // creation from this context.
1434  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1435
1436  if (!IDecl && DoTypoCorrection) {
1437    // Perform typo correction at the given location, but only if we
1438    // find an Objective-C class name.
1439    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1440    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1441                                       LookupOrdinaryName, TUScope, NULL,
1442                                       Validator)) {
1443      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1444      Diag(IdLoc, diag::err_undef_interface_suggest)
1445        << Id << IDecl->getDeclName()
1446        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1447      Diag(IDecl->getLocation(), diag::note_previous_decl)
1448        << IDecl->getDeclName();
1449
1450      Id = IDecl->getIdentifier();
1451    }
1452  }
1453  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1454  // This routine must always return a class definition, if any.
1455  if (Def && Def->getDefinition())
1456      Def = Def->getDefinition();
1457  return Def;
1458}
1459
1460/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1461/// from S, where a non-field would be declared. This routine copes
1462/// with the difference between C and C++ scoping rules in structs and
1463/// unions. For example, the following code is well-formed in C but
1464/// ill-formed in C++:
1465/// @code
1466/// struct S6 {
1467///   enum { BAR } e;
1468/// };
1469///
1470/// void test_S6() {
1471///   struct S6 a;
1472///   a.e = BAR;
1473/// }
1474/// @endcode
1475/// For the declaration of BAR, this routine will return a different
1476/// scope. The scope S will be the scope of the unnamed enumeration
1477/// within S6. In C++, this routine will return the scope associated
1478/// with S6, because the enumeration's scope is a transparent
1479/// context but structures can contain non-field names. In C, this
1480/// routine will return the translation unit scope, since the
1481/// enumeration's scope is a transparent context and structures cannot
1482/// contain non-field names.
1483Scope *Sema::getNonFieldDeclScope(Scope *S) {
1484  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1485         (S->getEntity() &&
1486          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1487         (S->isClassScope() && !getLangOpts().CPlusPlus))
1488    S = S->getParent();
1489  return S;
1490}
1491
1492/// \brief Looks up the declaration of "struct objc_super" and
1493/// saves it for later use in building builtin declaration of
1494/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1495/// pre-existing declaration exists no action takes place.
1496static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1497                                        IdentifierInfo *II) {
1498  if (!II->isStr("objc_msgSendSuper"))
1499    return;
1500  ASTContext &Context = ThisSema.Context;
1501
1502  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1503                      SourceLocation(), Sema::LookupTagName);
1504  ThisSema.LookupName(Result, S);
1505  if (Result.getResultKind() == LookupResult::Found)
1506    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1507      Context.setObjCSuperType(Context.getTagDeclType(TD));
1508}
1509
1510/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1511/// file scope.  lazily create a decl for it. ForRedeclaration is true
1512/// if we're creating this built-in in anticipation of redeclaring the
1513/// built-in.
1514NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1515                                     Scope *S, bool ForRedeclaration,
1516                                     SourceLocation Loc) {
1517  LookupPredefedObjCSuperType(*this, S, II);
1518
1519  Builtin::ID BID = (Builtin::ID)bid;
1520
1521  ASTContext::GetBuiltinTypeError Error;
1522  QualType R = Context.GetBuiltinType(BID, Error);
1523  switch (Error) {
1524  case ASTContext::GE_None:
1525    // Okay
1526    break;
1527
1528  case ASTContext::GE_Missing_stdio:
1529    if (ForRedeclaration)
1530      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1531        << Context.BuiltinInfo.GetName(BID);
1532    return 0;
1533
1534  case ASTContext::GE_Missing_setjmp:
1535    if (ForRedeclaration)
1536      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1537        << Context.BuiltinInfo.GetName(BID);
1538    return 0;
1539
1540  case ASTContext::GE_Missing_ucontext:
1541    if (ForRedeclaration)
1542      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1543        << Context.BuiltinInfo.GetName(BID);
1544    return 0;
1545  }
1546
1547  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1548    Diag(Loc, diag::ext_implicit_lib_function_decl)
1549      << Context.BuiltinInfo.GetName(BID)
1550      << R;
1551    if (Context.BuiltinInfo.getHeaderName(BID) &&
1552        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1553          != DiagnosticsEngine::Ignored)
1554      Diag(Loc, diag::note_please_include_header)
1555        << Context.BuiltinInfo.getHeaderName(BID)
1556        << Context.BuiltinInfo.GetName(BID);
1557  }
1558
1559  FunctionDecl *New = FunctionDecl::Create(Context,
1560                                           Context.getTranslationUnitDecl(),
1561                                           Loc, Loc, II, R, /*TInfo=*/0,
1562                                           SC_Extern,
1563                                           false,
1564                                           /*hasPrototype=*/true);
1565  New->setImplicit();
1566
1567  // Create Decl objects for each parameter, adding them to the
1568  // FunctionDecl.
1569  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1570    SmallVector<ParmVarDecl*, 16> Params;
1571    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1572      ParmVarDecl *parm =
1573        ParmVarDecl::Create(Context, New, SourceLocation(),
1574                            SourceLocation(), 0,
1575                            FT->getArgType(i), /*TInfo=*/0,
1576                            SC_None, 0);
1577      parm->setScopeInfo(0, i);
1578      Params.push_back(parm);
1579    }
1580    New->setParams(Params);
1581  }
1582
1583  AddKnownFunctionAttributes(New);
1584
1585  // TUScope is the translation-unit scope to insert this function into.
1586  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1587  // relate Scopes to DeclContexts, and probably eliminate CurContext
1588  // entirely, but we're not there yet.
1589  DeclContext *SavedContext = CurContext;
1590  CurContext = Context.getTranslationUnitDecl();
1591  PushOnScopeChains(New, TUScope);
1592  CurContext = SavedContext;
1593  return New;
1594}
1595
1596/// \brief Filter out any previous declarations that the given declaration
1597/// should not consider because they are not permitted to conflict, e.g.,
1598/// because they come from hidden sub-modules and do not refer to the same
1599/// entity.
1600static void filterNonConflictingPreviousDecls(ASTContext &context,
1601                                              NamedDecl *decl,
1602                                              LookupResult &previous){
1603  // This is only interesting when modules are enabled.
1604  if (!context.getLangOpts().Modules)
1605    return;
1606
1607  // Empty sets are uninteresting.
1608  if (previous.empty())
1609    return;
1610
1611  LookupResult::Filter filter = previous.makeFilter();
1612  while (filter.hasNext()) {
1613    NamedDecl *old = filter.next();
1614
1615    // Non-hidden declarations are never ignored.
1616    if (!old->isHidden())
1617      continue;
1618
1619    if (old->getLinkage() != ExternalLinkage)
1620      filter.erase();
1621  }
1622
1623  filter.done();
1624}
1625
1626bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1627  QualType OldType;
1628  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1629    OldType = OldTypedef->getUnderlyingType();
1630  else
1631    OldType = Context.getTypeDeclType(Old);
1632  QualType NewType = New->getUnderlyingType();
1633
1634  if (NewType->isVariablyModifiedType()) {
1635    // Must not redefine a typedef with a variably-modified type.
1636    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1637    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1638      << Kind << NewType;
1639    if (Old->getLocation().isValid())
1640      Diag(Old->getLocation(), diag::note_previous_definition);
1641    New->setInvalidDecl();
1642    return true;
1643  }
1644
1645  if (OldType != NewType &&
1646      !OldType->isDependentType() &&
1647      !NewType->isDependentType() &&
1648      !Context.hasSameType(OldType, NewType)) {
1649    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1650    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1651      << Kind << NewType << OldType;
1652    if (Old->getLocation().isValid())
1653      Diag(Old->getLocation(), diag::note_previous_definition);
1654    New->setInvalidDecl();
1655    return true;
1656  }
1657  return false;
1658}
1659
1660/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1661/// same name and scope as a previous declaration 'Old'.  Figure out
1662/// how to resolve this situation, merging decls or emitting
1663/// diagnostics as appropriate. If there was an error, set New to be invalid.
1664///
1665void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1666  // If the new decl is known invalid already, don't bother doing any
1667  // merging checks.
1668  if (New->isInvalidDecl()) return;
1669
1670  // Allow multiple definitions for ObjC built-in typedefs.
1671  // FIXME: Verify the underlying types are equivalent!
1672  if (getLangOpts().ObjC1) {
1673    const IdentifierInfo *TypeID = New->getIdentifier();
1674    switch (TypeID->getLength()) {
1675    default: break;
1676    case 2:
1677      {
1678        if (!TypeID->isStr("id"))
1679          break;
1680        QualType T = New->getUnderlyingType();
1681        if (!T->isPointerType())
1682          break;
1683        if (!T->isVoidPointerType()) {
1684          QualType PT = T->getAs<PointerType>()->getPointeeType();
1685          if (!PT->isStructureType())
1686            break;
1687        }
1688        Context.setObjCIdRedefinitionType(T);
1689        // Install the built-in type for 'id', ignoring the current definition.
1690        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1691        return;
1692      }
1693    case 5:
1694      if (!TypeID->isStr("Class"))
1695        break;
1696      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1697      // Install the built-in type for 'Class', ignoring the current definition.
1698      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1699      return;
1700    case 3:
1701      if (!TypeID->isStr("SEL"))
1702        break;
1703      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1704      // Install the built-in type for 'SEL', ignoring the current definition.
1705      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1706      return;
1707    }
1708    // Fall through - the typedef name was not a builtin type.
1709  }
1710
1711  // Verify the old decl was also a type.
1712  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1713  if (!Old) {
1714    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1715      << New->getDeclName();
1716
1717    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1718    if (OldD->getLocation().isValid())
1719      Diag(OldD->getLocation(), diag::note_previous_definition);
1720
1721    return New->setInvalidDecl();
1722  }
1723
1724  // If the old declaration is invalid, just give up here.
1725  if (Old->isInvalidDecl())
1726    return New->setInvalidDecl();
1727
1728  // If the typedef types are not identical, reject them in all languages and
1729  // with any extensions enabled.
1730  if (isIncompatibleTypedef(Old, New))
1731    return;
1732
1733  // The types match.  Link up the redeclaration chain if the old
1734  // declaration was a typedef.
1735  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1736    New->setPreviousDeclaration(Typedef);
1737
1738  if (getLangOpts().MicrosoftExt)
1739    return;
1740
1741  if (getLangOpts().CPlusPlus) {
1742    // C++ [dcl.typedef]p2:
1743    //   In a given non-class scope, a typedef specifier can be used to
1744    //   redefine the name of any type declared in that scope to refer
1745    //   to the type to which it already refers.
1746    if (!isa<CXXRecordDecl>(CurContext))
1747      return;
1748
1749    // C++0x [dcl.typedef]p4:
1750    //   In a given class scope, a typedef specifier can be used to redefine
1751    //   any class-name declared in that scope that is not also a typedef-name
1752    //   to refer to the type to which it already refers.
1753    //
1754    // This wording came in via DR424, which was a correction to the
1755    // wording in DR56, which accidentally banned code like:
1756    //
1757    //   struct S {
1758    //     typedef struct A { } A;
1759    //   };
1760    //
1761    // in the C++03 standard. We implement the C++0x semantics, which
1762    // allow the above but disallow
1763    //
1764    //   struct S {
1765    //     typedef int I;
1766    //     typedef int I;
1767    //   };
1768    //
1769    // since that was the intent of DR56.
1770    if (!isa<TypedefNameDecl>(Old))
1771      return;
1772
1773    Diag(New->getLocation(), diag::err_redefinition)
1774      << New->getDeclName();
1775    Diag(Old->getLocation(), diag::note_previous_definition);
1776    return New->setInvalidDecl();
1777  }
1778
1779  // Modules always permit redefinition of typedefs, as does C11.
1780  if (getLangOpts().Modules || getLangOpts().C11)
1781    return;
1782
1783  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1784  // is normally mapped to an error, but can be controlled with
1785  // -Wtypedef-redefinition.  If either the original or the redefinition is
1786  // in a system header, don't emit this for compatibility with GCC.
1787  if (getDiagnostics().getSuppressSystemWarnings() &&
1788      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1789       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1790    return;
1791
1792  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1793    << New->getDeclName();
1794  Diag(Old->getLocation(), diag::note_previous_definition);
1795  return;
1796}
1797
1798/// DeclhasAttr - returns true if decl Declaration already has the target
1799/// attribute.
1800static bool
1801DeclHasAttr(const Decl *D, const Attr *A) {
1802  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1803  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1804  // responsible for making sure they are consistent.
1805  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1806  if (AA)
1807    return false;
1808
1809  // The following thread safety attributes can also be duplicated.
1810  switch (A->getKind()) {
1811    case attr::ExclusiveLocksRequired:
1812    case attr::SharedLocksRequired:
1813    case attr::LocksExcluded:
1814    case attr::ExclusiveLockFunction:
1815    case attr::SharedLockFunction:
1816    case attr::UnlockFunction:
1817    case attr::ExclusiveTrylockFunction:
1818    case attr::SharedTrylockFunction:
1819    case attr::GuardedBy:
1820    case attr::PtGuardedBy:
1821    case attr::AcquiredBefore:
1822    case attr::AcquiredAfter:
1823      return false;
1824    default:
1825      ;
1826  }
1827
1828  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1829  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1830  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1831    if ((*i)->getKind() == A->getKind()) {
1832      if (Ann) {
1833        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1834          return true;
1835        continue;
1836      }
1837      // FIXME: Don't hardcode this check
1838      if (OA && isa<OwnershipAttr>(*i))
1839        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1840      return true;
1841    }
1842
1843  return false;
1844}
1845
1846static bool isAttributeTargetADefinition(Decl *D) {
1847  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1848    return VD->isThisDeclarationADefinition();
1849  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1850    return TD->isCompleteDefinition() || TD->isBeingDefined();
1851  return true;
1852}
1853
1854/// Merge alignment attributes from \p Old to \p New, taking into account the
1855/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1856///
1857/// \return \c true if any attributes were added to \p New.
1858static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1859  // Look for alignas attributes on Old, and pick out whichever attribute
1860  // specifies the strictest alignment requirement.
1861  AlignedAttr *OldAlignasAttr = 0;
1862  AlignedAttr *OldStrictestAlignAttr = 0;
1863  unsigned OldAlign = 0;
1864  for (specific_attr_iterator<AlignedAttr>
1865         I = Old->specific_attr_begin<AlignedAttr>(),
1866         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1867    // FIXME: We have no way of representing inherited dependent alignments
1868    // in a case like:
1869    //   template<int A, int B> struct alignas(A) X;
1870    //   template<int A, int B> struct alignas(B) X {};
1871    // For now, we just ignore any alignas attributes which are not on the
1872    // definition in such a case.
1873    if (I->isAlignmentDependent())
1874      return false;
1875
1876    if (I->isAlignas())
1877      OldAlignasAttr = *I;
1878
1879    unsigned Align = I->getAlignment(S.Context);
1880    if (Align > OldAlign) {
1881      OldAlign = Align;
1882      OldStrictestAlignAttr = *I;
1883    }
1884  }
1885
1886  // Look for alignas attributes on New.
1887  AlignedAttr *NewAlignasAttr = 0;
1888  unsigned NewAlign = 0;
1889  for (specific_attr_iterator<AlignedAttr>
1890         I = New->specific_attr_begin<AlignedAttr>(),
1891         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1892    if (I->isAlignmentDependent())
1893      return false;
1894
1895    if (I->isAlignas())
1896      NewAlignasAttr = *I;
1897
1898    unsigned Align = I->getAlignment(S.Context);
1899    if (Align > NewAlign)
1900      NewAlign = Align;
1901  }
1902
1903  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1904    // Both declarations have 'alignas' attributes. We require them to match.
1905    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1906    // fall short. (If two declarations both have alignas, they must both match
1907    // every definition, and so must match each other if there is a definition.)
1908
1909    // If either declaration only contains 'alignas(0)' specifiers, then it
1910    // specifies the natural alignment for the type.
1911    if (OldAlign == 0 || NewAlign == 0) {
1912      QualType Ty;
1913      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1914        Ty = VD->getType();
1915      else
1916        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1917
1918      if (OldAlign == 0)
1919        OldAlign = S.Context.getTypeAlign(Ty);
1920      if (NewAlign == 0)
1921        NewAlign = S.Context.getTypeAlign(Ty);
1922    }
1923
1924    if (OldAlign != NewAlign) {
1925      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1926        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1927        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1928      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1929    }
1930  }
1931
1932  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1933    // C++11 [dcl.align]p6:
1934    //   if any declaration of an entity has an alignment-specifier,
1935    //   every defining declaration of that entity shall specify an
1936    //   equivalent alignment.
1937    // C11 6.7.5/7:
1938    //   If the definition of an object does not have an alignment
1939    //   specifier, any other declaration of that object shall also
1940    //   have no alignment specifier.
1941    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1942      << OldAlignasAttr->isC11();
1943    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1944      << OldAlignasAttr->isC11();
1945  }
1946
1947  bool AnyAdded = false;
1948
1949  // Ensure we have an attribute representing the strictest alignment.
1950  if (OldAlign > NewAlign) {
1951    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1952    Clone->setInherited(true);
1953    New->addAttr(Clone);
1954    AnyAdded = true;
1955  }
1956
1957  // Ensure we have an alignas attribute if the old declaration had one.
1958  if (OldAlignasAttr && !NewAlignasAttr &&
1959      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1960    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1961    Clone->setInherited(true);
1962    New->addAttr(Clone);
1963    AnyAdded = true;
1964  }
1965
1966  return AnyAdded;
1967}
1968
1969static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1970                               bool Override) {
1971  InheritableAttr *NewAttr = NULL;
1972  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1973  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1974    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1975                                      AA->getIntroduced(), AA->getDeprecated(),
1976                                      AA->getObsoleted(), AA->getUnavailable(),
1977                                      AA->getMessage(), Override,
1978                                      AttrSpellingListIndex);
1979  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1980    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1981                                    AttrSpellingListIndex);
1982  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1983    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1984                                        AttrSpellingListIndex);
1985  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1986    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1987                                   AttrSpellingListIndex);
1988  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1989    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1990                                   AttrSpellingListIndex);
1991  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1992    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1993                                FA->getFormatIdx(), FA->getFirstArg(),
1994                                AttrSpellingListIndex);
1995  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1996    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1997                                 AttrSpellingListIndex);
1998  else if (isa<AlignedAttr>(Attr))
1999    // AlignedAttrs are handled separately, because we need to handle all
2000    // such attributes on a declaration at the same time.
2001    NewAttr = 0;
2002  else if (!DeclHasAttr(D, Attr))
2003    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2004
2005  if (NewAttr) {
2006    NewAttr->setInherited(true);
2007    D->addAttr(NewAttr);
2008    return true;
2009  }
2010
2011  return false;
2012}
2013
2014static const Decl *getDefinition(const Decl *D) {
2015  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2016    return TD->getDefinition();
2017  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2018    return VD->getDefinition();
2019  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2020    const FunctionDecl* Def;
2021    if (FD->hasBody(Def))
2022      return Def;
2023  }
2024  return NULL;
2025}
2026
2027static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2028  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2029       I != E; ++I) {
2030    Attr *Attribute = *I;
2031    if (Attribute->getKind() == Kind)
2032      return true;
2033  }
2034  return false;
2035}
2036
2037/// checkNewAttributesAfterDef - If we already have a definition, check that
2038/// there are no new attributes in this declaration.
2039static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2040  if (!New->hasAttrs())
2041    return;
2042
2043  const Decl *Def = getDefinition(Old);
2044  if (!Def || Def == New)
2045    return;
2046
2047  AttrVec &NewAttributes = New->getAttrs();
2048  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2049    const Attr *NewAttribute = NewAttributes[I];
2050    if (hasAttribute(Def, NewAttribute->getKind())) {
2051      ++I;
2052      continue; // regular attr merging will take care of validating this.
2053    }
2054
2055    if (isa<C11NoReturnAttr>(NewAttribute)) {
2056      // C's _Noreturn is allowed to be added to a function after it is defined.
2057      ++I;
2058      continue;
2059    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2060      if (AA->isAlignas()) {
2061        // C++11 [dcl.align]p6:
2062        //   if any declaration of an entity has an alignment-specifier,
2063        //   every defining declaration of that entity shall specify an
2064        //   equivalent alignment.
2065        // C11 6.7.5/7:
2066        //   If the definition of an object does not have an alignment
2067        //   specifier, any other declaration of that object shall also
2068        //   have no alignment specifier.
2069        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2070          << AA->isC11();
2071        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2072          << AA->isC11();
2073        NewAttributes.erase(NewAttributes.begin() + I);
2074        --E;
2075        continue;
2076      }
2077    }
2078
2079    S.Diag(NewAttribute->getLocation(),
2080           diag::warn_attribute_precede_definition);
2081    S.Diag(Def->getLocation(), diag::note_previous_definition);
2082    NewAttributes.erase(NewAttributes.begin() + I);
2083    --E;
2084  }
2085}
2086
2087/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2088void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2089                               AvailabilityMergeKind AMK) {
2090  if (!Old->hasAttrs() && !New->hasAttrs())
2091    return;
2092
2093  // attributes declared post-definition are currently ignored
2094  checkNewAttributesAfterDef(*this, New, Old);
2095
2096  if (!Old->hasAttrs())
2097    return;
2098
2099  bool foundAny = New->hasAttrs();
2100
2101  // Ensure that any moving of objects within the allocated map is done before
2102  // we process them.
2103  if (!foundAny) New->setAttrs(AttrVec());
2104
2105  for (specific_attr_iterator<InheritableAttr>
2106         i = Old->specific_attr_begin<InheritableAttr>(),
2107         e = Old->specific_attr_end<InheritableAttr>();
2108       i != e; ++i) {
2109    bool Override = false;
2110    // Ignore deprecated/unavailable/availability attributes if requested.
2111    if (isa<DeprecatedAttr>(*i) ||
2112        isa<UnavailableAttr>(*i) ||
2113        isa<AvailabilityAttr>(*i)) {
2114      switch (AMK) {
2115      case AMK_None:
2116        continue;
2117
2118      case AMK_Redeclaration:
2119        break;
2120
2121      case AMK_Override:
2122        Override = true;
2123        break;
2124      }
2125    }
2126
2127    if (mergeDeclAttribute(*this, New, *i, Override))
2128      foundAny = true;
2129  }
2130
2131  if (mergeAlignedAttrs(*this, New, Old))
2132    foundAny = true;
2133
2134  if (!foundAny) New->dropAttrs();
2135}
2136
2137/// mergeParamDeclAttributes - Copy attributes from the old parameter
2138/// to the new one.
2139static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2140                                     const ParmVarDecl *oldDecl,
2141                                     Sema &S) {
2142  // C++11 [dcl.attr.depend]p2:
2143  //   The first declaration of a function shall specify the
2144  //   carries_dependency attribute for its declarator-id if any declaration
2145  //   of the function specifies the carries_dependency attribute.
2146  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2147      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2148    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2149           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2150    // Find the first declaration of the parameter.
2151    // FIXME: Should we build redeclaration chains for function parameters?
2152    const FunctionDecl *FirstFD =
2153      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2154    const ParmVarDecl *FirstVD =
2155      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2156    S.Diag(FirstVD->getLocation(),
2157           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2158  }
2159
2160  if (!oldDecl->hasAttrs())
2161    return;
2162
2163  bool foundAny = newDecl->hasAttrs();
2164
2165  // Ensure that any moving of objects within the allocated map is
2166  // done before we process them.
2167  if (!foundAny) newDecl->setAttrs(AttrVec());
2168
2169  for (specific_attr_iterator<InheritableParamAttr>
2170       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2171       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2172    if (!DeclHasAttr(newDecl, *i)) {
2173      InheritableAttr *newAttr =
2174        cast<InheritableParamAttr>((*i)->clone(S.Context));
2175      newAttr->setInherited(true);
2176      newDecl->addAttr(newAttr);
2177      foundAny = true;
2178    }
2179  }
2180
2181  if (!foundAny) newDecl->dropAttrs();
2182}
2183
2184namespace {
2185
2186/// Used in MergeFunctionDecl to keep track of function parameters in
2187/// C.
2188struct GNUCompatibleParamWarning {
2189  ParmVarDecl *OldParm;
2190  ParmVarDecl *NewParm;
2191  QualType PromotedType;
2192};
2193
2194}
2195
2196/// getSpecialMember - get the special member enum for a method.
2197Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2198  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2199    if (Ctor->isDefaultConstructor())
2200      return Sema::CXXDefaultConstructor;
2201
2202    if (Ctor->isCopyConstructor())
2203      return Sema::CXXCopyConstructor;
2204
2205    if (Ctor->isMoveConstructor())
2206      return Sema::CXXMoveConstructor;
2207  } else if (isa<CXXDestructorDecl>(MD)) {
2208    return Sema::CXXDestructor;
2209  } else if (MD->isCopyAssignmentOperator()) {
2210    return Sema::CXXCopyAssignment;
2211  } else if (MD->isMoveAssignmentOperator()) {
2212    return Sema::CXXMoveAssignment;
2213  }
2214
2215  return Sema::CXXInvalid;
2216}
2217
2218/// canRedefineFunction - checks if a function can be redefined. Currently,
2219/// only extern inline functions can be redefined, and even then only in
2220/// GNU89 mode.
2221static bool canRedefineFunction(const FunctionDecl *FD,
2222                                const LangOptions& LangOpts) {
2223  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2224          !LangOpts.CPlusPlus &&
2225          FD->isInlineSpecified() &&
2226          FD->getStorageClass() == SC_Extern);
2227}
2228
2229/// Is the given calling convention the ABI default for the given
2230/// declaration?
2231static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2232  CallingConv ABIDefaultCC;
2233  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2234    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2235  } else {
2236    // Free C function or a static method.
2237    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2238  }
2239  return ABIDefaultCC == CC;
2240}
2241
2242template <typename T>
2243static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2244  const DeclContext *DC = Old->getDeclContext();
2245  if (DC->isRecord())
2246    return false;
2247
2248  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2249  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2250    return true;
2251  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2252    return true;
2253  return false;
2254}
2255
2256/// MergeFunctionDecl - We just parsed a function 'New' from
2257/// declarator D which has the same name and scope as a previous
2258/// declaration 'Old'.  Figure out how to resolve this situation,
2259/// merging decls or emitting diagnostics as appropriate.
2260///
2261/// In C++, New and Old must be declarations that are not
2262/// overloaded. Use IsOverload to determine whether New and Old are
2263/// overloaded, and to select the Old declaration that New should be
2264/// merged with.
2265///
2266/// Returns true if there was an error, false otherwise.
2267bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2268  // Verify the old decl was also a function.
2269  FunctionDecl *Old = 0;
2270  if (FunctionTemplateDecl *OldFunctionTemplate
2271        = dyn_cast<FunctionTemplateDecl>(OldD))
2272    Old = OldFunctionTemplate->getTemplatedDecl();
2273  else
2274    Old = dyn_cast<FunctionDecl>(OldD);
2275  if (!Old) {
2276    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2277      if (New->getFriendObjectKind()) {
2278        Diag(New->getLocation(), diag::err_using_decl_friend);
2279        Diag(Shadow->getTargetDecl()->getLocation(),
2280             diag::note_using_decl_target);
2281        Diag(Shadow->getUsingDecl()->getLocation(),
2282             diag::note_using_decl) << 0;
2283        return true;
2284      }
2285
2286      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2287      Diag(Shadow->getTargetDecl()->getLocation(),
2288           diag::note_using_decl_target);
2289      Diag(Shadow->getUsingDecl()->getLocation(),
2290           diag::note_using_decl) << 0;
2291      return true;
2292    }
2293
2294    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2295      << New->getDeclName();
2296    Diag(OldD->getLocation(), diag::note_previous_definition);
2297    return true;
2298  }
2299
2300  // Determine whether the previous declaration was a definition,
2301  // implicit declaration, or a declaration.
2302  diag::kind PrevDiag;
2303  if (Old->isThisDeclarationADefinition())
2304    PrevDiag = diag::note_previous_definition;
2305  else if (Old->isImplicit())
2306    PrevDiag = diag::note_previous_implicit_declaration;
2307  else
2308    PrevDiag = diag::note_previous_declaration;
2309
2310  QualType OldQType = Context.getCanonicalType(Old->getType());
2311  QualType NewQType = Context.getCanonicalType(New->getType());
2312
2313  // Don't complain about this if we're in GNU89 mode and the old function
2314  // is an extern inline function.
2315  // Don't complain about specializations. They are not supposed to have
2316  // storage classes.
2317  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2318      New->getStorageClass() == SC_Static &&
2319      isExternalLinkage(Old->getLinkage()) &&
2320      !New->getTemplateSpecializationInfo() &&
2321      !canRedefineFunction(Old, getLangOpts())) {
2322    if (getLangOpts().MicrosoftExt) {
2323      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2324      Diag(Old->getLocation(), PrevDiag);
2325    } else {
2326      Diag(New->getLocation(), diag::err_static_non_static) << New;
2327      Diag(Old->getLocation(), PrevDiag);
2328      return true;
2329    }
2330  }
2331
2332  // If a function is first declared with a calling convention, but is
2333  // later declared or defined without one, the second decl assumes the
2334  // calling convention of the first.
2335  //
2336  // It's OK if a function is first declared without a calling convention,
2337  // but is later declared or defined with the default calling convention.
2338  //
2339  // For the new decl, we have to look at the NON-canonical type to tell the
2340  // difference between a function that really doesn't have a calling
2341  // convention and one that is declared cdecl. That's because in
2342  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2343  // because it is the default calling convention.
2344  //
2345  // Note also that we DO NOT return at this point, because we still have
2346  // other tests to run.
2347  const FunctionType *OldType = cast<FunctionType>(OldQType);
2348  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2349  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2350  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2351  bool RequiresAdjustment = false;
2352  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2353    // Fast path: nothing to do.
2354
2355  // Inherit the CC from the previous declaration if it was specified
2356  // there but not here.
2357  } else if (NewTypeInfo.getCC() == CC_Default) {
2358    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2359    RequiresAdjustment = true;
2360
2361  // Don't complain about mismatches when the default CC is
2362  // effectively the same as the explict one. Only Old decl contains correct
2363  // information about storage class of CXXMethod.
2364  } else if (OldTypeInfo.getCC() == CC_Default &&
2365             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2366    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2367    RequiresAdjustment = true;
2368
2369  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2370                                     NewTypeInfo.getCC())) {
2371    // Calling conventions really aren't compatible, so complain.
2372    Diag(New->getLocation(), diag::err_cconv_change)
2373      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2374      << (OldTypeInfo.getCC() == CC_Default)
2375      << (OldTypeInfo.getCC() == CC_Default ? "" :
2376          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2377    Diag(Old->getLocation(), diag::note_previous_declaration);
2378    return true;
2379  }
2380
2381  // FIXME: diagnose the other way around?
2382  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2383    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2384    RequiresAdjustment = true;
2385  }
2386
2387  // Merge regparm attribute.
2388  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2389      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2390    if (NewTypeInfo.getHasRegParm()) {
2391      Diag(New->getLocation(), diag::err_regparm_mismatch)
2392        << NewType->getRegParmType()
2393        << OldType->getRegParmType();
2394      Diag(Old->getLocation(), diag::note_previous_declaration);
2395      return true;
2396    }
2397
2398    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2399    RequiresAdjustment = true;
2400  }
2401
2402  // Merge ns_returns_retained attribute.
2403  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2404    if (NewTypeInfo.getProducesResult()) {
2405      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2406      Diag(Old->getLocation(), diag::note_previous_declaration);
2407      return true;
2408    }
2409
2410    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2411    RequiresAdjustment = true;
2412  }
2413
2414  if (RequiresAdjustment) {
2415    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2416    New->setType(QualType(NewType, 0));
2417    NewQType = Context.getCanonicalType(New->getType());
2418  }
2419
2420  // If this redeclaration makes the function inline, we may need to add it to
2421  // UndefinedButUsed.
2422  if (!Old->isInlined() && New->isInlined() &&
2423      !New->hasAttr<GNUInlineAttr>() &&
2424      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2425      Old->isUsed(false) &&
2426      !Old->isDefined() && !New->isThisDeclarationADefinition())
2427    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2428                                           SourceLocation()));
2429
2430  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2431  // about it.
2432  if (New->hasAttr<GNUInlineAttr>() &&
2433      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2434    UndefinedButUsed.erase(Old->getCanonicalDecl());
2435  }
2436
2437  if (getLangOpts().CPlusPlus) {
2438    // (C++98 13.1p2):
2439    //   Certain function declarations cannot be overloaded:
2440    //     -- Function declarations that differ only in the return type
2441    //        cannot be overloaded.
2442
2443    // Go back to the type source info to compare the declared return types,
2444    // per C++1y [dcl.type.auto]p??:
2445    //   Redeclarations or specializations of a function or function template
2446    //   with a declared return type that uses a placeholder type shall also
2447    //   use that placeholder, not a deduced type.
2448    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2449      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2450      : OldType)->getResultType();
2451    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2452      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2453      : NewType)->getResultType();
2454    QualType ResQT;
2455    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2456      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2457          OldDeclaredReturnType->isObjCObjectPointerType())
2458        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2459      if (ResQT.isNull()) {
2460        if (New->isCXXClassMember() && New->isOutOfLine())
2461          Diag(New->getLocation(),
2462               diag::err_member_def_does_not_match_ret_type) << New;
2463        else
2464          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2465        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2466        return true;
2467      }
2468      else
2469        NewQType = ResQT;
2470    }
2471
2472    QualType OldReturnType = OldType->getResultType();
2473    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2474    if (OldReturnType != NewReturnType) {
2475      // If this function has a deduced return type and has already been
2476      // defined, copy the deduced value from the old declaration.
2477      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2478      if (OldAT && OldAT->isDeduced()) {
2479        New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2480        NewQType = Context.getCanonicalType(
2481            SubstAutoType(NewQType, OldAT->getDeducedType()));
2482      }
2483    }
2484
2485    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2486    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2487    if (OldMethod && NewMethod) {
2488      // Preserve triviality.
2489      NewMethod->setTrivial(OldMethod->isTrivial());
2490
2491      // MSVC allows explicit template specialization at class scope:
2492      // 2 CXMethodDecls referring to the same function will be injected.
2493      // We don't want a redeclartion error.
2494      bool IsClassScopeExplicitSpecialization =
2495                              OldMethod->isFunctionTemplateSpecialization() &&
2496                              NewMethod->isFunctionTemplateSpecialization();
2497      bool isFriend = NewMethod->getFriendObjectKind();
2498
2499      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2500          !IsClassScopeExplicitSpecialization) {
2501        //    -- Member function declarations with the same name and the
2502        //       same parameter types cannot be overloaded if any of them
2503        //       is a static member function declaration.
2504        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2505          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2506          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2507          return true;
2508        }
2509
2510        // C++ [class.mem]p1:
2511        //   [...] A member shall not be declared twice in the
2512        //   member-specification, except that a nested class or member
2513        //   class template can be declared and then later defined.
2514        if (ActiveTemplateInstantiations.empty()) {
2515          unsigned NewDiag;
2516          if (isa<CXXConstructorDecl>(OldMethod))
2517            NewDiag = diag::err_constructor_redeclared;
2518          else if (isa<CXXDestructorDecl>(NewMethod))
2519            NewDiag = diag::err_destructor_redeclared;
2520          else if (isa<CXXConversionDecl>(NewMethod))
2521            NewDiag = diag::err_conv_function_redeclared;
2522          else
2523            NewDiag = diag::err_member_redeclared;
2524
2525          Diag(New->getLocation(), NewDiag);
2526        } else {
2527          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2528            << New << New->getType();
2529        }
2530        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2531
2532      // Complain if this is an explicit declaration of a special
2533      // member that was initially declared implicitly.
2534      //
2535      // As an exception, it's okay to befriend such methods in order
2536      // to permit the implicit constructor/destructor/operator calls.
2537      } else if (OldMethod->isImplicit()) {
2538        if (isFriend) {
2539          NewMethod->setImplicit();
2540        } else {
2541          Diag(NewMethod->getLocation(),
2542               diag::err_definition_of_implicitly_declared_member)
2543            << New << getSpecialMember(OldMethod);
2544          return true;
2545        }
2546      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2547        Diag(NewMethod->getLocation(),
2548             diag::err_definition_of_explicitly_defaulted_member)
2549          << getSpecialMember(OldMethod);
2550        return true;
2551      }
2552    }
2553
2554    // C++11 [dcl.attr.noreturn]p1:
2555    //   The first declaration of a function shall specify the noreturn
2556    //   attribute if any declaration of that function specifies the noreturn
2557    //   attribute.
2558    if (New->hasAttr<CXX11NoReturnAttr>() &&
2559        !Old->hasAttr<CXX11NoReturnAttr>()) {
2560      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2561           diag::err_noreturn_missing_on_first_decl);
2562      Diag(Old->getFirstDeclaration()->getLocation(),
2563           diag::note_noreturn_missing_first_decl);
2564    }
2565
2566    // C++11 [dcl.attr.depend]p2:
2567    //   The first declaration of a function shall specify the
2568    //   carries_dependency attribute for its declarator-id if any declaration
2569    //   of the function specifies the carries_dependency attribute.
2570    if (New->hasAttr<CarriesDependencyAttr>() &&
2571        !Old->hasAttr<CarriesDependencyAttr>()) {
2572      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2573           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2574      Diag(Old->getFirstDeclaration()->getLocation(),
2575           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2576    }
2577
2578    // (C++98 8.3.5p3):
2579    //   All declarations for a function shall agree exactly in both the
2580    //   return type and the parameter-type-list.
2581    // We also want to respect all the extended bits except noreturn.
2582
2583    // noreturn should now match unless the old type info didn't have it.
2584    QualType OldQTypeForComparison = OldQType;
2585    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2586      assert(OldQType == QualType(OldType, 0));
2587      const FunctionType *OldTypeForComparison
2588        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2589      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2590      assert(OldQTypeForComparison.isCanonical());
2591    }
2592
2593    if (haveIncompatibleLanguageLinkages(Old, New)) {
2594      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2595      Diag(Old->getLocation(), PrevDiag);
2596      return true;
2597    }
2598
2599    if (OldQTypeForComparison == NewQType)
2600      return MergeCompatibleFunctionDecls(New, Old, S);
2601
2602    // Fall through for conflicting redeclarations and redefinitions.
2603  }
2604
2605  // C: Function types need to be compatible, not identical. This handles
2606  // duplicate function decls like "void f(int); void f(enum X);" properly.
2607  if (!getLangOpts().CPlusPlus &&
2608      Context.typesAreCompatible(OldQType, NewQType)) {
2609    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2610    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2611    const FunctionProtoType *OldProto = 0;
2612    if (isa<FunctionNoProtoType>(NewFuncType) &&
2613        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2614      // The old declaration provided a function prototype, but the
2615      // new declaration does not. Merge in the prototype.
2616      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2617      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2618                                                 OldProto->arg_type_end());
2619      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2620                                         ParamTypes,
2621                                         OldProto->getExtProtoInfo());
2622      New->setType(NewQType);
2623      New->setHasInheritedPrototype();
2624
2625      // Synthesize a parameter for each argument type.
2626      SmallVector<ParmVarDecl*, 16> Params;
2627      for (FunctionProtoType::arg_type_iterator
2628             ParamType = OldProto->arg_type_begin(),
2629             ParamEnd = OldProto->arg_type_end();
2630           ParamType != ParamEnd; ++ParamType) {
2631        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2632                                                 SourceLocation(),
2633                                                 SourceLocation(), 0,
2634                                                 *ParamType, /*TInfo=*/0,
2635                                                 SC_None,
2636                                                 0);
2637        Param->setScopeInfo(0, Params.size());
2638        Param->setImplicit();
2639        Params.push_back(Param);
2640      }
2641
2642      New->setParams(Params);
2643    }
2644
2645    return MergeCompatibleFunctionDecls(New, Old, S);
2646  }
2647
2648  // GNU C permits a K&R definition to follow a prototype declaration
2649  // if the declared types of the parameters in the K&R definition
2650  // match the types in the prototype declaration, even when the
2651  // promoted types of the parameters from the K&R definition differ
2652  // from the types in the prototype. GCC then keeps the types from
2653  // the prototype.
2654  //
2655  // If a variadic prototype is followed by a non-variadic K&R definition,
2656  // the K&R definition becomes variadic.  This is sort of an edge case, but
2657  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2658  // C99 6.9.1p8.
2659  if (!getLangOpts().CPlusPlus &&
2660      Old->hasPrototype() && !New->hasPrototype() &&
2661      New->getType()->getAs<FunctionProtoType>() &&
2662      Old->getNumParams() == New->getNumParams()) {
2663    SmallVector<QualType, 16> ArgTypes;
2664    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2665    const FunctionProtoType *OldProto
2666      = Old->getType()->getAs<FunctionProtoType>();
2667    const FunctionProtoType *NewProto
2668      = New->getType()->getAs<FunctionProtoType>();
2669
2670    // Determine whether this is the GNU C extension.
2671    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2672                                               NewProto->getResultType());
2673    bool LooseCompatible = !MergedReturn.isNull();
2674    for (unsigned Idx = 0, End = Old->getNumParams();
2675         LooseCompatible && Idx != End; ++Idx) {
2676      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2677      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2678      if (Context.typesAreCompatible(OldParm->getType(),
2679                                     NewProto->getArgType(Idx))) {
2680        ArgTypes.push_back(NewParm->getType());
2681      } else if (Context.typesAreCompatible(OldParm->getType(),
2682                                            NewParm->getType(),
2683                                            /*CompareUnqualified=*/true)) {
2684        GNUCompatibleParamWarning Warn
2685          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2686        Warnings.push_back(Warn);
2687        ArgTypes.push_back(NewParm->getType());
2688      } else
2689        LooseCompatible = false;
2690    }
2691
2692    if (LooseCompatible) {
2693      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2694        Diag(Warnings[Warn].NewParm->getLocation(),
2695             diag::ext_param_promoted_not_compatible_with_prototype)
2696          << Warnings[Warn].PromotedType
2697          << Warnings[Warn].OldParm->getType();
2698        if (Warnings[Warn].OldParm->getLocation().isValid())
2699          Diag(Warnings[Warn].OldParm->getLocation(),
2700               diag::note_previous_declaration);
2701      }
2702
2703      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2704                                           OldProto->getExtProtoInfo()));
2705      return MergeCompatibleFunctionDecls(New, Old, S);
2706    }
2707
2708    // Fall through to diagnose conflicting types.
2709  }
2710
2711  // A function that has already been declared has been redeclared or
2712  // defined with a different type; show an appropriate diagnostic.
2713
2714  // If the previous declaration was an implicitly-generated builtin
2715  // declaration, then at the very least we should use a specialized note.
2716  unsigned BuiltinID;
2717  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2718    // If it's actually a library-defined builtin function like 'malloc'
2719    // or 'printf', just warn about the incompatible redeclaration.
2720    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2721      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2722      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2723        << Old << Old->getType();
2724
2725      // If this is a global redeclaration, just forget hereafter
2726      // about the "builtin-ness" of the function.
2727      //
2728      // Doing this for local extern declarations is problematic.  If
2729      // the builtin declaration remains visible, a second invalid
2730      // local declaration will produce a hard error; if it doesn't
2731      // remain visible, a single bogus local redeclaration (which is
2732      // actually only a warning) could break all the downstream code.
2733      if (!New->getDeclContext()->isFunctionOrMethod())
2734        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2735
2736      return false;
2737    }
2738
2739    PrevDiag = diag::note_previous_builtin_declaration;
2740  }
2741
2742  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2743  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2744  return true;
2745}
2746
2747/// \brief Completes the merge of two function declarations that are
2748/// known to be compatible.
2749///
2750/// This routine handles the merging of attributes and other
2751/// properties of function declarations form the old declaration to
2752/// the new declaration, once we know that New is in fact a
2753/// redeclaration of Old.
2754///
2755/// \returns false
2756bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2757                                        Scope *S) {
2758  // Merge the attributes
2759  mergeDeclAttributes(New, Old);
2760
2761  // Merge "pure" flag.
2762  if (Old->isPure())
2763    New->setPure();
2764
2765  // Merge "used" flag.
2766  if (Old->isUsed(false))
2767    New->setUsed();
2768
2769  // Merge attributes from the parameters.  These can mismatch with K&R
2770  // declarations.
2771  if (New->getNumParams() == Old->getNumParams())
2772    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2773      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2774                               *this);
2775
2776  if (getLangOpts().CPlusPlus)
2777    return MergeCXXFunctionDecl(New, Old, S);
2778
2779  // Merge the function types so the we get the composite types for the return
2780  // and argument types.
2781  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2782  if (!Merged.isNull())
2783    New->setType(Merged);
2784
2785  return false;
2786}
2787
2788
2789void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2790                                ObjCMethodDecl *oldMethod) {
2791
2792  // Merge the attributes, including deprecated/unavailable
2793  AvailabilityMergeKind MergeKind =
2794    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2795                                                   : AMK_Override;
2796  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2797
2798  // Merge attributes from the parameters.
2799  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2800                                       oe = oldMethod->param_end();
2801  for (ObjCMethodDecl::param_iterator
2802         ni = newMethod->param_begin(), ne = newMethod->param_end();
2803       ni != ne && oi != oe; ++ni, ++oi)
2804    mergeParamDeclAttributes(*ni, *oi, *this);
2805
2806  CheckObjCMethodOverride(newMethod, oldMethod);
2807}
2808
2809/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2810/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2811/// emitting diagnostics as appropriate.
2812///
2813/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2814/// to here in AddInitializerToDecl. We can't check them before the initializer
2815/// is attached.
2816void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2817  if (New->isInvalidDecl() || Old->isInvalidDecl())
2818    return;
2819
2820  QualType MergedT;
2821  if (getLangOpts().CPlusPlus) {
2822    if (New->getType()->isUndeducedType()) {
2823      // We don't know what the new type is until the initializer is attached.
2824      return;
2825    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2826      // These could still be something that needs exception specs checked.
2827      return MergeVarDeclExceptionSpecs(New, Old);
2828    }
2829    // C++ [basic.link]p10:
2830    //   [...] the types specified by all declarations referring to a given
2831    //   object or function shall be identical, except that declarations for an
2832    //   array object can specify array types that differ by the presence or
2833    //   absence of a major array bound (8.3.4).
2834    else if (Old->getType()->isIncompleteArrayType() &&
2835             New->getType()->isArrayType()) {
2836      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2837      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2838      if (Context.hasSameType(OldArray->getElementType(),
2839                              NewArray->getElementType()))
2840        MergedT = New->getType();
2841    } else if (Old->getType()->isArrayType() &&
2842             New->getType()->isIncompleteArrayType()) {
2843      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2844      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2845      if (Context.hasSameType(OldArray->getElementType(),
2846                              NewArray->getElementType()))
2847        MergedT = Old->getType();
2848    } else if (New->getType()->isObjCObjectPointerType()
2849               && Old->getType()->isObjCObjectPointerType()) {
2850        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2851                                                        Old->getType());
2852    }
2853  } else {
2854    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2855  }
2856  if (MergedT.isNull()) {
2857    Diag(New->getLocation(), diag::err_redefinition_different_type)
2858      << New->getDeclName() << New->getType() << Old->getType();
2859    Diag(Old->getLocation(), diag::note_previous_definition);
2860    return New->setInvalidDecl();
2861  }
2862
2863  // Don't actually update the type on the new declaration if the old
2864  // declaration was a extern declaration in a different scope.
2865  if (!OldWasHidden)
2866    New->setType(MergedT);
2867}
2868
2869/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2870/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2871/// situation, merging decls or emitting diagnostics as appropriate.
2872///
2873/// Tentative definition rules (C99 6.9.2p2) are checked by
2874/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2875/// definitions here, since the initializer hasn't been attached.
2876///
2877void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2878                        bool PreviousWasHidden) {
2879  // If the new decl is already invalid, don't do any other checking.
2880  if (New->isInvalidDecl())
2881    return;
2882
2883  // Verify the old decl was also a variable.
2884  VarDecl *Old = 0;
2885  if (!Previous.isSingleResult() ||
2886      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2887    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2888      << New->getDeclName();
2889    Diag(Previous.getRepresentativeDecl()->getLocation(),
2890         diag::note_previous_definition);
2891    return New->setInvalidDecl();
2892  }
2893
2894  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2895    return;
2896
2897  // C++ [class.mem]p1:
2898  //   A member shall not be declared twice in the member-specification [...]
2899  //
2900  // Here, we need only consider static data members.
2901  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2902    Diag(New->getLocation(), diag::err_duplicate_member)
2903      << New->getIdentifier();
2904    Diag(Old->getLocation(), diag::note_previous_declaration);
2905    New->setInvalidDecl();
2906  }
2907
2908  mergeDeclAttributes(New, Old);
2909  // Warn if an already-declared variable is made a weak_import in a subsequent
2910  // declaration
2911  if (New->getAttr<WeakImportAttr>() &&
2912      Old->getStorageClass() == SC_None &&
2913      !Old->getAttr<WeakImportAttr>()) {
2914    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2915    Diag(Old->getLocation(), diag::note_previous_definition);
2916    // Remove weak_import attribute on new declaration.
2917    New->dropAttr<WeakImportAttr>();
2918  }
2919
2920  // Merge the types.
2921  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2922  if (New->isInvalidDecl())
2923    return;
2924
2925  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2926  if (New->getStorageClass() == SC_Static &&
2927      !New->isStaticDataMember() &&
2928      isExternalLinkage(Old->getLinkage())) {
2929    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2930    Diag(Old->getLocation(), diag::note_previous_definition);
2931    return New->setInvalidDecl();
2932  }
2933  // C99 6.2.2p4:
2934  //   For an identifier declared with the storage-class specifier
2935  //   extern in a scope in which a prior declaration of that
2936  //   identifier is visible,23) if the prior declaration specifies
2937  //   internal or external linkage, the linkage of the identifier at
2938  //   the later declaration is the same as the linkage specified at
2939  //   the prior declaration. If no prior declaration is visible, or
2940  //   if the prior declaration specifies no linkage, then the
2941  //   identifier has external linkage.
2942  if (New->hasExternalStorage() && Old->hasLinkage())
2943    /* Okay */;
2944  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2945           !New->isStaticDataMember() &&
2946           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2947    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2948    Diag(Old->getLocation(), diag::note_previous_definition);
2949    return New->setInvalidDecl();
2950  }
2951
2952  // Check if extern is followed by non-extern and vice-versa.
2953  if (New->hasExternalStorage() &&
2954      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2955    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2956    Diag(Old->getLocation(), diag::note_previous_definition);
2957    return New->setInvalidDecl();
2958  }
2959  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2960      !New->hasExternalStorage()) {
2961    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2962    Diag(Old->getLocation(), diag::note_previous_definition);
2963    return New->setInvalidDecl();
2964  }
2965
2966  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2967
2968  // FIXME: The test for external storage here seems wrong? We still
2969  // need to check for mismatches.
2970  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2971      // Don't complain about out-of-line definitions of static members.
2972      !(Old->getLexicalDeclContext()->isRecord() &&
2973        !New->getLexicalDeclContext()->isRecord())) {
2974    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2975    Diag(Old->getLocation(), diag::note_previous_definition);
2976    return New->setInvalidDecl();
2977  }
2978
2979  if (New->getTLSKind() != Old->getTLSKind()) {
2980    if (!Old->getTLSKind()) {
2981      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2982      Diag(Old->getLocation(), diag::note_previous_declaration);
2983    } else if (!New->getTLSKind()) {
2984      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2985      Diag(Old->getLocation(), diag::note_previous_declaration);
2986    } else {
2987      // Do not allow redeclaration to change the variable between requiring
2988      // static and dynamic initialization.
2989      // FIXME: GCC allows this, but uses the TLS keyword on the first
2990      // declaration to determine the kind. Do we need to be compatible here?
2991      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
2992        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
2993      Diag(Old->getLocation(), diag::note_previous_declaration);
2994    }
2995  }
2996
2997  // C++ doesn't have tentative definitions, so go right ahead and check here.
2998  const VarDecl *Def;
2999  if (getLangOpts().CPlusPlus &&
3000      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3001      (Def = Old->getDefinition())) {
3002    Diag(New->getLocation(), diag::err_redefinition)
3003      << New->getDeclName();
3004    Diag(Def->getLocation(), diag::note_previous_definition);
3005    New->setInvalidDecl();
3006    return;
3007  }
3008
3009  if (haveIncompatibleLanguageLinkages(Old, New)) {
3010    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3011    Diag(Old->getLocation(), diag::note_previous_definition);
3012    New->setInvalidDecl();
3013    return;
3014  }
3015
3016  // Merge "used" flag.
3017  if (Old->isUsed(false))
3018    New->setUsed();
3019
3020  // Keep a chain of previous declarations.
3021  New->setPreviousDeclaration(Old);
3022
3023  // Inherit access appropriately.
3024  New->setAccess(Old->getAccess());
3025}
3026
3027/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3028/// no declarator (e.g. "struct foo;") is parsed.
3029Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3030                                       DeclSpec &DS) {
3031  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3032}
3033
3034/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3035/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3036/// parameters to cope with template friend declarations.
3037Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3038                                       DeclSpec &DS,
3039                                       MultiTemplateParamsArg TemplateParams,
3040                                       bool IsExplicitInstantiation) {
3041  Decl *TagD = 0;
3042  TagDecl *Tag = 0;
3043  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3044      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3045      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3046      DS.getTypeSpecType() == DeclSpec::TST_union ||
3047      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3048    TagD = DS.getRepAsDecl();
3049
3050    if (!TagD) // We probably had an error
3051      return 0;
3052
3053    // Note that the above type specs guarantee that the
3054    // type rep is a Decl, whereas in many of the others
3055    // it's a Type.
3056    if (isa<TagDecl>(TagD))
3057      Tag = cast<TagDecl>(TagD);
3058    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3059      Tag = CTD->getTemplatedDecl();
3060  }
3061
3062  if (Tag) {
3063    getASTContext().addUnnamedTag(Tag);
3064    Tag->setFreeStanding();
3065    if (Tag->isInvalidDecl())
3066      return Tag;
3067  }
3068
3069  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3070    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3071    // or incomplete types shall not be restrict-qualified."
3072    if (TypeQuals & DeclSpec::TQ_restrict)
3073      Diag(DS.getRestrictSpecLoc(),
3074           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3075           << DS.getSourceRange();
3076  }
3077
3078  if (DS.isConstexprSpecified()) {
3079    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3080    // and definitions of functions and variables.
3081    if (Tag)
3082      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3083        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3084            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3085            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3086            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3087    else
3088      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3089    // Don't emit warnings after this error.
3090    return TagD;
3091  }
3092
3093  DiagnoseFunctionSpecifiers(DS);
3094
3095  if (DS.isFriendSpecified()) {
3096    // If we're dealing with a decl but not a TagDecl, assume that
3097    // whatever routines created it handled the friendship aspect.
3098    if (TagD && !Tag)
3099      return 0;
3100    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3101  }
3102
3103  CXXScopeSpec &SS = DS.getTypeSpecScope();
3104  bool IsExplicitSpecialization =
3105    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3106  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3107      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3108    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3109    // nested-name-specifier unless it is an explicit instantiation
3110    // or an explicit specialization.
3111    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3112    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3113      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3114          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3115          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3116          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3117      << SS.getRange();
3118    return 0;
3119  }
3120
3121  // Track whether this decl-specifier declares anything.
3122  bool DeclaresAnything = true;
3123
3124  // Handle anonymous struct definitions.
3125  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3126    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3127        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3128      if (getLangOpts().CPlusPlus ||
3129          Record->getDeclContext()->isRecord())
3130        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3131
3132      DeclaresAnything = false;
3133    }
3134  }
3135
3136  // Check for Microsoft C extension: anonymous struct member.
3137  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3138      CurContext->isRecord() &&
3139      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3140    // Handle 2 kinds of anonymous struct:
3141    //   struct STRUCT;
3142    // and
3143    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3144    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3145    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3146        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3147         DS.getRepAsType().get()->isStructureType())) {
3148      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3149        << DS.getSourceRange();
3150      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3151    }
3152  }
3153
3154  // Skip all the checks below if we have a type error.
3155  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3156      (TagD && TagD->isInvalidDecl()))
3157    return TagD;
3158
3159  if (getLangOpts().CPlusPlus &&
3160      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3161    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3162      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3163          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3164        DeclaresAnything = false;
3165
3166  if (!DS.isMissingDeclaratorOk()) {
3167    // Customize diagnostic for a typedef missing a name.
3168    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3169      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3170        << DS.getSourceRange();
3171    else
3172      DeclaresAnything = false;
3173  }
3174
3175  if (DS.isModulePrivateSpecified() &&
3176      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3177    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3178      << Tag->getTagKind()
3179      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3180
3181  ActOnDocumentableDecl(TagD);
3182
3183  // C 6.7/2:
3184  //   A declaration [...] shall declare at least a declarator [...], a tag,
3185  //   or the members of an enumeration.
3186  // C++ [dcl.dcl]p3:
3187  //   [If there are no declarators], and except for the declaration of an
3188  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3189  //   names into the program, or shall redeclare a name introduced by a
3190  //   previous declaration.
3191  if (!DeclaresAnything) {
3192    // In C, we allow this as a (popular) extension / bug. Don't bother
3193    // producing further diagnostics for redundant qualifiers after this.
3194    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3195    return TagD;
3196  }
3197
3198  // C++ [dcl.stc]p1:
3199  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3200  //   init-declarator-list of the declaration shall not be empty.
3201  // C++ [dcl.fct.spec]p1:
3202  //   If a cv-qualifier appears in a decl-specifier-seq, the
3203  //   init-declarator-list of the declaration shall not be empty.
3204  //
3205  // Spurious qualifiers here appear to be valid in C.
3206  unsigned DiagID = diag::warn_standalone_specifier;
3207  if (getLangOpts().CPlusPlus)
3208    DiagID = diag::ext_standalone_specifier;
3209
3210  // Note that a linkage-specification sets a storage class, but
3211  // 'extern "C" struct foo;' is actually valid and not theoretically
3212  // useless.
3213  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3214    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3215      Diag(DS.getStorageClassSpecLoc(), DiagID)
3216        << DeclSpec::getSpecifierName(SCS);
3217
3218  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3219    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3220      << DeclSpec::getSpecifierName(TSCS);
3221  if (DS.getTypeQualifiers()) {
3222    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3223      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3224    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3225      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3226    // Restrict is covered above.
3227    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3228      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3229  }
3230
3231  // Warn about ignored type attributes, for example:
3232  // __attribute__((aligned)) struct A;
3233  // Attributes should be placed after tag to apply to type declaration.
3234  if (!DS.getAttributes().empty()) {
3235    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3236    if (TypeSpecType == DeclSpec::TST_class ||
3237        TypeSpecType == DeclSpec::TST_struct ||
3238        TypeSpecType == DeclSpec::TST_interface ||
3239        TypeSpecType == DeclSpec::TST_union ||
3240        TypeSpecType == DeclSpec::TST_enum) {
3241      AttributeList* attrs = DS.getAttributes().getList();
3242      while (attrs) {
3243        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3244        << attrs->getName()
3245        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3246            TypeSpecType == DeclSpec::TST_struct ? 1 :
3247            TypeSpecType == DeclSpec::TST_union ? 2 :
3248            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3249        attrs = attrs->getNext();
3250      }
3251    }
3252  }
3253
3254  return TagD;
3255}
3256
3257/// We are trying to inject an anonymous member into the given scope;
3258/// check if there's an existing declaration that can't be overloaded.
3259///
3260/// \return true if this is a forbidden redeclaration
3261static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3262                                         Scope *S,
3263                                         DeclContext *Owner,
3264                                         DeclarationName Name,
3265                                         SourceLocation NameLoc,
3266                                         unsigned diagnostic) {
3267  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3268                 Sema::ForRedeclaration);
3269  if (!SemaRef.LookupName(R, S)) return false;
3270
3271  if (R.getAsSingle<TagDecl>())
3272    return false;
3273
3274  // Pick a representative declaration.
3275  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3276  assert(PrevDecl && "Expected a non-null Decl");
3277
3278  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3279    return false;
3280
3281  SemaRef.Diag(NameLoc, diagnostic) << Name;
3282  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3283
3284  return true;
3285}
3286
3287/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3288/// anonymous struct or union AnonRecord into the owning context Owner
3289/// and scope S. This routine will be invoked just after we realize
3290/// that an unnamed union or struct is actually an anonymous union or
3291/// struct, e.g.,
3292///
3293/// @code
3294/// union {
3295///   int i;
3296///   float f;
3297/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3298///    // f into the surrounding scope.x
3299/// @endcode
3300///
3301/// This routine is recursive, injecting the names of nested anonymous
3302/// structs/unions into the owning context and scope as well.
3303static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3304                                                DeclContext *Owner,
3305                                                RecordDecl *AnonRecord,
3306                                                AccessSpecifier AS,
3307                              SmallVector<NamedDecl*, 2> &Chaining,
3308                                                      bool MSAnonStruct) {
3309  unsigned diagKind
3310    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3311                            : diag::err_anonymous_struct_member_redecl;
3312
3313  bool Invalid = false;
3314
3315  // Look every FieldDecl and IndirectFieldDecl with a name.
3316  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3317                               DEnd = AnonRecord->decls_end();
3318       D != DEnd; ++D) {
3319    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3320        cast<NamedDecl>(*D)->getDeclName()) {
3321      ValueDecl *VD = cast<ValueDecl>(*D);
3322      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3323                                       VD->getLocation(), diagKind)) {
3324        // C++ [class.union]p2:
3325        //   The names of the members of an anonymous union shall be
3326        //   distinct from the names of any other entity in the
3327        //   scope in which the anonymous union is declared.
3328        Invalid = true;
3329      } else {
3330        // C++ [class.union]p2:
3331        //   For the purpose of name lookup, after the anonymous union
3332        //   definition, the members of the anonymous union are
3333        //   considered to have been defined in the scope in which the
3334        //   anonymous union is declared.
3335        unsigned OldChainingSize = Chaining.size();
3336        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3337          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3338               PE = IF->chain_end(); PI != PE; ++PI)
3339            Chaining.push_back(*PI);
3340        else
3341          Chaining.push_back(VD);
3342
3343        assert(Chaining.size() >= 2);
3344        NamedDecl **NamedChain =
3345          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3346        for (unsigned i = 0; i < Chaining.size(); i++)
3347          NamedChain[i] = Chaining[i];
3348
3349        IndirectFieldDecl* IndirectField =
3350          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3351                                    VD->getIdentifier(), VD->getType(),
3352                                    NamedChain, Chaining.size());
3353
3354        IndirectField->setAccess(AS);
3355        IndirectField->setImplicit();
3356        SemaRef.PushOnScopeChains(IndirectField, S);
3357
3358        // That includes picking up the appropriate access specifier.
3359        if (AS != AS_none) IndirectField->setAccess(AS);
3360
3361        Chaining.resize(OldChainingSize);
3362      }
3363    }
3364  }
3365
3366  return Invalid;
3367}
3368
3369/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3370/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3371/// illegal input values are mapped to SC_None.
3372static StorageClass
3373StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3374  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3375  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3376         "Parser allowed 'typedef' as storage class VarDecl.");
3377  switch (StorageClassSpec) {
3378  case DeclSpec::SCS_unspecified:    return SC_None;
3379  case DeclSpec::SCS_extern:
3380    if (DS.isExternInLinkageSpec())
3381      return SC_None;
3382    return SC_Extern;
3383  case DeclSpec::SCS_static:         return SC_Static;
3384  case DeclSpec::SCS_auto:           return SC_Auto;
3385  case DeclSpec::SCS_register:       return SC_Register;
3386  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3387    // Illegal SCSs map to None: error reporting is up to the caller.
3388  case DeclSpec::SCS_mutable:        // Fall through.
3389  case DeclSpec::SCS_typedef:        return SC_None;
3390  }
3391  llvm_unreachable("unknown storage class specifier");
3392}
3393
3394/// BuildAnonymousStructOrUnion - Handle the declaration of an
3395/// anonymous structure or union. Anonymous unions are a C++ feature
3396/// (C++ [class.union]) and a C11 feature; anonymous structures
3397/// are a C11 feature and GNU C++ extension.
3398Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3399                                             AccessSpecifier AS,
3400                                             RecordDecl *Record) {
3401  DeclContext *Owner = Record->getDeclContext();
3402
3403  // Diagnose whether this anonymous struct/union is an extension.
3404  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3405    Diag(Record->getLocation(), diag::ext_anonymous_union);
3406  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3407    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3408  else if (!Record->isUnion() && !getLangOpts().C11)
3409    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3410
3411  // C and C++ require different kinds of checks for anonymous
3412  // structs/unions.
3413  bool Invalid = false;
3414  if (getLangOpts().CPlusPlus) {
3415    const char* PrevSpec = 0;
3416    unsigned DiagID;
3417    if (Record->isUnion()) {
3418      // C++ [class.union]p6:
3419      //   Anonymous unions declared in a named namespace or in the
3420      //   global namespace shall be declared static.
3421      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3422          (isa<TranslationUnitDecl>(Owner) ||
3423           (isa<NamespaceDecl>(Owner) &&
3424            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3425        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3426          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3427
3428        // Recover by adding 'static'.
3429        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3430                               PrevSpec, DiagID);
3431      }
3432      // C++ [class.union]p6:
3433      //   A storage class is not allowed in a declaration of an
3434      //   anonymous union in a class scope.
3435      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3436               isa<RecordDecl>(Owner)) {
3437        Diag(DS.getStorageClassSpecLoc(),
3438             diag::err_anonymous_union_with_storage_spec)
3439          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3440
3441        // Recover by removing the storage specifier.
3442        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3443                               SourceLocation(),
3444                               PrevSpec, DiagID);
3445      }
3446    }
3447
3448    // Ignore const/volatile/restrict qualifiers.
3449    if (DS.getTypeQualifiers()) {
3450      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3451        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3452          << Record->isUnion() << "const"
3453          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3454      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3455        Diag(DS.getVolatileSpecLoc(),
3456             diag::ext_anonymous_struct_union_qualified)
3457          << Record->isUnion() << "volatile"
3458          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3459      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3460        Diag(DS.getRestrictSpecLoc(),
3461             diag::ext_anonymous_struct_union_qualified)
3462          << Record->isUnion() << "restrict"
3463          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3464      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3465        Diag(DS.getAtomicSpecLoc(),
3466             diag::ext_anonymous_struct_union_qualified)
3467          << Record->isUnion() << "_Atomic"
3468          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3469
3470      DS.ClearTypeQualifiers();
3471    }
3472
3473    // C++ [class.union]p2:
3474    //   The member-specification of an anonymous union shall only
3475    //   define non-static data members. [Note: nested types and
3476    //   functions cannot be declared within an anonymous union. ]
3477    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3478                                 MemEnd = Record->decls_end();
3479         Mem != MemEnd; ++Mem) {
3480      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3481        // C++ [class.union]p3:
3482        //   An anonymous union shall not have private or protected
3483        //   members (clause 11).
3484        assert(FD->getAccess() != AS_none);
3485        if (FD->getAccess() != AS_public) {
3486          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3487            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3488          Invalid = true;
3489        }
3490
3491        // C++ [class.union]p1
3492        //   An object of a class with a non-trivial constructor, a non-trivial
3493        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3494        //   assignment operator cannot be a member of a union, nor can an
3495        //   array of such objects.
3496        if (CheckNontrivialField(FD))
3497          Invalid = true;
3498      } else if ((*Mem)->isImplicit()) {
3499        // Any implicit members are fine.
3500      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3501        // This is a type that showed up in an
3502        // elaborated-type-specifier inside the anonymous struct or
3503        // union, but which actually declares a type outside of the
3504        // anonymous struct or union. It's okay.
3505      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3506        if (!MemRecord->isAnonymousStructOrUnion() &&
3507            MemRecord->getDeclName()) {
3508          // Visual C++ allows type definition in anonymous struct or union.
3509          if (getLangOpts().MicrosoftExt)
3510            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3511              << (int)Record->isUnion();
3512          else {
3513            // This is a nested type declaration.
3514            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3515              << (int)Record->isUnion();
3516            Invalid = true;
3517          }
3518        } else {
3519          // This is an anonymous type definition within another anonymous type.
3520          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3521          // not part of standard C++.
3522          Diag(MemRecord->getLocation(),
3523               diag::ext_anonymous_record_with_anonymous_type)
3524            << (int)Record->isUnion();
3525        }
3526      } else if (isa<AccessSpecDecl>(*Mem)) {
3527        // Any access specifier is fine.
3528      } else {
3529        // We have something that isn't a non-static data
3530        // member. Complain about it.
3531        unsigned DK = diag::err_anonymous_record_bad_member;
3532        if (isa<TypeDecl>(*Mem))
3533          DK = diag::err_anonymous_record_with_type;
3534        else if (isa<FunctionDecl>(*Mem))
3535          DK = diag::err_anonymous_record_with_function;
3536        else if (isa<VarDecl>(*Mem))
3537          DK = diag::err_anonymous_record_with_static;
3538
3539        // Visual C++ allows type definition in anonymous struct or union.
3540        if (getLangOpts().MicrosoftExt &&
3541            DK == diag::err_anonymous_record_with_type)
3542          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3543            << (int)Record->isUnion();
3544        else {
3545          Diag((*Mem)->getLocation(), DK)
3546              << (int)Record->isUnion();
3547          Invalid = true;
3548        }
3549      }
3550    }
3551  }
3552
3553  if (!Record->isUnion() && !Owner->isRecord()) {
3554    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3555      << (int)getLangOpts().CPlusPlus;
3556    Invalid = true;
3557  }
3558
3559  // Mock up a declarator.
3560  Declarator Dc(DS, Declarator::MemberContext);
3561  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3562  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3563
3564  // Create a declaration for this anonymous struct/union.
3565  NamedDecl *Anon = 0;
3566  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3567    Anon = FieldDecl::Create(Context, OwningClass,
3568                             DS.getLocStart(),
3569                             Record->getLocation(),
3570                             /*IdentifierInfo=*/0,
3571                             Context.getTypeDeclType(Record),
3572                             TInfo,
3573                             /*BitWidth=*/0, /*Mutable=*/false,
3574                             /*InitStyle=*/ICIS_NoInit);
3575    Anon->setAccess(AS);
3576    if (getLangOpts().CPlusPlus)
3577      FieldCollector->Add(cast<FieldDecl>(Anon));
3578  } else {
3579    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3580    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3581    if (SCSpec == DeclSpec::SCS_mutable) {
3582      // mutable can only appear on non-static class members, so it's always
3583      // an error here
3584      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3585      Invalid = true;
3586      SC = SC_None;
3587    }
3588
3589    Anon = VarDecl::Create(Context, Owner,
3590                           DS.getLocStart(),
3591                           Record->getLocation(), /*IdentifierInfo=*/0,
3592                           Context.getTypeDeclType(Record),
3593                           TInfo, SC);
3594
3595    // Default-initialize the implicit variable. This initialization will be
3596    // trivial in almost all cases, except if a union member has an in-class
3597    // initializer:
3598    //   union { int n = 0; };
3599    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3600  }
3601  Anon->setImplicit();
3602
3603  // Add the anonymous struct/union object to the current
3604  // context. We'll be referencing this object when we refer to one of
3605  // its members.
3606  Owner->addDecl(Anon);
3607
3608  // Inject the members of the anonymous struct/union into the owning
3609  // context and into the identifier resolver chain for name lookup
3610  // purposes.
3611  SmallVector<NamedDecl*, 2> Chain;
3612  Chain.push_back(Anon);
3613
3614  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3615                                          Chain, false))
3616    Invalid = true;
3617
3618  // Mark this as an anonymous struct/union type. Note that we do not
3619  // do this until after we have already checked and injected the
3620  // members of this anonymous struct/union type, because otherwise
3621  // the members could be injected twice: once by DeclContext when it
3622  // builds its lookup table, and once by
3623  // InjectAnonymousStructOrUnionMembers.
3624  Record->setAnonymousStructOrUnion(true);
3625
3626  if (Invalid)
3627    Anon->setInvalidDecl();
3628
3629  return Anon;
3630}
3631
3632/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3633/// Microsoft C anonymous structure.
3634/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3635/// Example:
3636///
3637/// struct A { int a; };
3638/// struct B { struct A; int b; };
3639///
3640/// void foo() {
3641///   B var;
3642///   var.a = 3;
3643/// }
3644///
3645Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3646                                           RecordDecl *Record) {
3647
3648  // If there is no Record, get the record via the typedef.
3649  if (!Record)
3650    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3651
3652  // Mock up a declarator.
3653  Declarator Dc(DS, Declarator::TypeNameContext);
3654  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3655  assert(TInfo && "couldn't build declarator info for anonymous struct");
3656
3657  // Create a declaration for this anonymous struct.
3658  NamedDecl* Anon = FieldDecl::Create(Context,
3659                             cast<RecordDecl>(CurContext),
3660                             DS.getLocStart(),
3661                             DS.getLocStart(),
3662                             /*IdentifierInfo=*/0,
3663                             Context.getTypeDeclType(Record),
3664                             TInfo,
3665                             /*BitWidth=*/0, /*Mutable=*/false,
3666                             /*InitStyle=*/ICIS_NoInit);
3667  Anon->setImplicit();
3668
3669  // Add the anonymous struct object to the current context.
3670  CurContext->addDecl(Anon);
3671
3672  // Inject the members of the anonymous struct into the current
3673  // context and into the identifier resolver chain for name lookup
3674  // purposes.
3675  SmallVector<NamedDecl*, 2> Chain;
3676  Chain.push_back(Anon);
3677
3678  RecordDecl *RecordDef = Record->getDefinition();
3679  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3680                                                        RecordDef, AS_none,
3681                                                        Chain, true))
3682    Anon->setInvalidDecl();
3683
3684  return Anon;
3685}
3686
3687/// GetNameForDeclarator - Determine the full declaration name for the
3688/// given Declarator.
3689DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3690  return GetNameFromUnqualifiedId(D.getName());
3691}
3692
3693/// \brief Retrieves the declaration name from a parsed unqualified-id.
3694DeclarationNameInfo
3695Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3696  DeclarationNameInfo NameInfo;
3697  NameInfo.setLoc(Name.StartLocation);
3698
3699  switch (Name.getKind()) {
3700
3701  case UnqualifiedId::IK_ImplicitSelfParam:
3702  case UnqualifiedId::IK_Identifier:
3703    NameInfo.setName(Name.Identifier);
3704    NameInfo.setLoc(Name.StartLocation);
3705    return NameInfo;
3706
3707  case UnqualifiedId::IK_OperatorFunctionId:
3708    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3709                                           Name.OperatorFunctionId.Operator));
3710    NameInfo.setLoc(Name.StartLocation);
3711    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3712      = Name.OperatorFunctionId.SymbolLocations[0];
3713    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3714      = Name.EndLocation.getRawEncoding();
3715    return NameInfo;
3716
3717  case UnqualifiedId::IK_LiteralOperatorId:
3718    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3719                                                           Name.Identifier));
3720    NameInfo.setLoc(Name.StartLocation);
3721    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3722    return NameInfo;
3723
3724  case UnqualifiedId::IK_ConversionFunctionId: {
3725    TypeSourceInfo *TInfo;
3726    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3727    if (Ty.isNull())
3728      return DeclarationNameInfo();
3729    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3730                                               Context.getCanonicalType(Ty)));
3731    NameInfo.setLoc(Name.StartLocation);
3732    NameInfo.setNamedTypeInfo(TInfo);
3733    return NameInfo;
3734  }
3735
3736  case UnqualifiedId::IK_ConstructorName: {
3737    TypeSourceInfo *TInfo;
3738    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3739    if (Ty.isNull())
3740      return DeclarationNameInfo();
3741    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3742                                              Context.getCanonicalType(Ty)));
3743    NameInfo.setLoc(Name.StartLocation);
3744    NameInfo.setNamedTypeInfo(TInfo);
3745    return NameInfo;
3746  }
3747
3748  case UnqualifiedId::IK_ConstructorTemplateId: {
3749    // In well-formed code, we can only have a constructor
3750    // template-id that refers to the current context, so go there
3751    // to find the actual type being constructed.
3752    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3753    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3754      return DeclarationNameInfo();
3755
3756    // Determine the type of the class being constructed.
3757    QualType CurClassType = Context.getTypeDeclType(CurClass);
3758
3759    // FIXME: Check two things: that the template-id names the same type as
3760    // CurClassType, and that the template-id does not occur when the name
3761    // was qualified.
3762
3763    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3764                                    Context.getCanonicalType(CurClassType)));
3765    NameInfo.setLoc(Name.StartLocation);
3766    // FIXME: should we retrieve TypeSourceInfo?
3767    NameInfo.setNamedTypeInfo(0);
3768    return NameInfo;
3769  }
3770
3771  case UnqualifiedId::IK_DestructorName: {
3772    TypeSourceInfo *TInfo;
3773    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3774    if (Ty.isNull())
3775      return DeclarationNameInfo();
3776    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3777                                              Context.getCanonicalType(Ty)));
3778    NameInfo.setLoc(Name.StartLocation);
3779    NameInfo.setNamedTypeInfo(TInfo);
3780    return NameInfo;
3781  }
3782
3783  case UnqualifiedId::IK_TemplateId: {
3784    TemplateName TName = Name.TemplateId->Template.get();
3785    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3786    return Context.getNameForTemplate(TName, TNameLoc);
3787  }
3788
3789  } // switch (Name.getKind())
3790
3791  llvm_unreachable("Unknown name kind");
3792}
3793
3794static QualType getCoreType(QualType Ty) {
3795  do {
3796    if (Ty->isPointerType() || Ty->isReferenceType())
3797      Ty = Ty->getPointeeType();
3798    else if (Ty->isArrayType())
3799      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3800    else
3801      return Ty.withoutLocalFastQualifiers();
3802  } while (true);
3803}
3804
3805/// hasSimilarParameters - Determine whether the C++ functions Declaration
3806/// and Definition have "nearly" matching parameters. This heuristic is
3807/// used to improve diagnostics in the case where an out-of-line function
3808/// definition doesn't match any declaration within the class or namespace.
3809/// Also sets Params to the list of indices to the parameters that differ
3810/// between the declaration and the definition. If hasSimilarParameters
3811/// returns true and Params is empty, then all of the parameters match.
3812static bool hasSimilarParameters(ASTContext &Context,
3813                                     FunctionDecl *Declaration,
3814                                     FunctionDecl *Definition,
3815                                     SmallVectorImpl<unsigned> &Params) {
3816  Params.clear();
3817  if (Declaration->param_size() != Definition->param_size())
3818    return false;
3819  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3820    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3821    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3822
3823    // The parameter types are identical
3824    if (Context.hasSameType(DefParamTy, DeclParamTy))
3825      continue;
3826
3827    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3828    QualType DefParamBaseTy = getCoreType(DefParamTy);
3829    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3830    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3831
3832    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3833        (DeclTyName && DeclTyName == DefTyName))
3834      Params.push_back(Idx);
3835    else  // The two parameters aren't even close
3836      return false;
3837  }
3838
3839  return true;
3840}
3841
3842/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3843/// declarator needs to be rebuilt in the current instantiation.
3844/// Any bits of declarator which appear before the name are valid for
3845/// consideration here.  That's specifically the type in the decl spec
3846/// and the base type in any member-pointer chunks.
3847static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3848                                                    DeclarationName Name) {
3849  // The types we specifically need to rebuild are:
3850  //   - typenames, typeofs, and decltypes
3851  //   - types which will become injected class names
3852  // Of course, we also need to rebuild any type referencing such a
3853  // type.  It's safest to just say "dependent", but we call out a
3854  // few cases here.
3855
3856  DeclSpec &DS = D.getMutableDeclSpec();
3857  switch (DS.getTypeSpecType()) {
3858  case DeclSpec::TST_typename:
3859  case DeclSpec::TST_typeofType:
3860  case DeclSpec::TST_underlyingType:
3861  case DeclSpec::TST_atomic: {
3862    // Grab the type from the parser.
3863    TypeSourceInfo *TSI = 0;
3864    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3865    if (T.isNull() || !T->isDependentType()) break;
3866
3867    // Make sure there's a type source info.  This isn't really much
3868    // of a waste; most dependent types should have type source info
3869    // attached already.
3870    if (!TSI)
3871      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3872
3873    // Rebuild the type in the current instantiation.
3874    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3875    if (!TSI) return true;
3876
3877    // Store the new type back in the decl spec.
3878    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3879    DS.UpdateTypeRep(LocType);
3880    break;
3881  }
3882
3883  case DeclSpec::TST_decltype:
3884  case DeclSpec::TST_typeofExpr: {
3885    Expr *E = DS.getRepAsExpr();
3886    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3887    if (Result.isInvalid()) return true;
3888    DS.UpdateExprRep(Result.get());
3889    break;
3890  }
3891
3892  default:
3893    // Nothing to do for these decl specs.
3894    break;
3895  }
3896
3897  // It doesn't matter what order we do this in.
3898  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3899    DeclaratorChunk &Chunk = D.getTypeObject(I);
3900
3901    // The only type information in the declarator which can come
3902    // before the declaration name is the base type of a member
3903    // pointer.
3904    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3905      continue;
3906
3907    // Rebuild the scope specifier in-place.
3908    CXXScopeSpec &SS = Chunk.Mem.Scope();
3909    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3910      return true;
3911  }
3912
3913  return false;
3914}
3915
3916Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3917  D.setFunctionDefinitionKind(FDK_Declaration);
3918  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3919
3920  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3921      Dcl && Dcl->getDeclContext()->isFileContext())
3922    Dcl->setTopLevelDeclInObjCContainer();
3923
3924  return Dcl;
3925}
3926
3927/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3928///   If T is the name of a class, then each of the following shall have a
3929///   name different from T:
3930///     - every static data member of class T;
3931///     - every member function of class T
3932///     - every member of class T that is itself a type;
3933/// \returns true if the declaration name violates these rules.
3934bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3935                                   DeclarationNameInfo NameInfo) {
3936  DeclarationName Name = NameInfo.getName();
3937
3938  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3939    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3940      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3941      return true;
3942    }
3943
3944  return false;
3945}
3946
3947/// \brief Diagnose a declaration whose declarator-id has the given
3948/// nested-name-specifier.
3949///
3950/// \param SS The nested-name-specifier of the declarator-id.
3951///
3952/// \param DC The declaration context to which the nested-name-specifier
3953/// resolves.
3954///
3955/// \param Name The name of the entity being declared.
3956///
3957/// \param Loc The location of the name of the entity being declared.
3958///
3959/// \returns true if we cannot safely recover from this error, false otherwise.
3960bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3961                                        DeclarationName Name,
3962                                      SourceLocation Loc) {
3963  DeclContext *Cur = CurContext;
3964  while (isa<LinkageSpecDecl>(Cur))
3965    Cur = Cur->getParent();
3966
3967  // C++ [dcl.meaning]p1:
3968  //   A declarator-id shall not be qualified except for the definition
3969  //   of a member function (9.3) or static data member (9.4) outside of
3970  //   its class, the definition or explicit instantiation of a function
3971  //   or variable member of a namespace outside of its namespace, or the
3972  //   definition of an explicit specialization outside of its namespace,
3973  //   or the declaration of a friend function that is a member of
3974  //   another class or namespace (11.3). [...]
3975
3976  // The user provided a superfluous scope specifier that refers back to the
3977  // class or namespaces in which the entity is already declared.
3978  //
3979  // class X {
3980  //   void X::f();
3981  // };
3982  if (Cur->Equals(DC)) {
3983    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3984                                   : diag::err_member_extra_qualification)
3985      << Name << FixItHint::CreateRemoval(SS.getRange());
3986    SS.clear();
3987    return false;
3988  }
3989
3990  // Check whether the qualifying scope encloses the scope of the original
3991  // declaration.
3992  if (!Cur->Encloses(DC)) {
3993    if (Cur->isRecord())
3994      Diag(Loc, diag::err_member_qualification)
3995        << Name << SS.getRange();
3996    else if (isa<TranslationUnitDecl>(DC))
3997      Diag(Loc, diag::err_invalid_declarator_global_scope)
3998        << Name << SS.getRange();
3999    else if (isa<FunctionDecl>(Cur))
4000      Diag(Loc, diag::err_invalid_declarator_in_function)
4001        << Name << SS.getRange();
4002    else
4003      Diag(Loc, diag::err_invalid_declarator_scope)
4004      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4005
4006    return true;
4007  }
4008
4009  if (Cur->isRecord()) {
4010    // Cannot qualify members within a class.
4011    Diag(Loc, diag::err_member_qualification)
4012      << Name << SS.getRange();
4013    SS.clear();
4014
4015    // C++ constructors and destructors with incorrect scopes can break
4016    // our AST invariants by having the wrong underlying types. If
4017    // that's the case, then drop this declaration entirely.
4018    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4019         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4020        !Context.hasSameType(Name.getCXXNameType(),
4021                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4022      return true;
4023
4024    return false;
4025  }
4026
4027  // C++11 [dcl.meaning]p1:
4028  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4029  //   not begin with a decltype-specifer"
4030  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4031  while (SpecLoc.getPrefix())
4032    SpecLoc = SpecLoc.getPrefix();
4033  if (dyn_cast_or_null<DecltypeType>(
4034        SpecLoc.getNestedNameSpecifier()->getAsType()))
4035    Diag(Loc, diag::err_decltype_in_declarator)
4036      << SpecLoc.getTypeLoc().getSourceRange();
4037
4038  return false;
4039}
4040
4041NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4042                                  MultiTemplateParamsArg TemplateParamLists) {
4043  // TODO: consider using NameInfo for diagnostic.
4044  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4045  DeclarationName Name = NameInfo.getName();
4046
4047  // All of these full declarators require an identifier.  If it doesn't have
4048  // one, the ParsedFreeStandingDeclSpec action should be used.
4049  if (!Name) {
4050    if (!D.isInvalidType())  // Reject this if we think it is valid.
4051      Diag(D.getDeclSpec().getLocStart(),
4052           diag::err_declarator_need_ident)
4053        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4054    return 0;
4055  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4056    return 0;
4057
4058  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4059  // we find one that is.
4060  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4061         (S->getFlags() & Scope::TemplateParamScope) != 0)
4062    S = S->getParent();
4063
4064  DeclContext *DC = CurContext;
4065  if (D.getCXXScopeSpec().isInvalid())
4066    D.setInvalidType();
4067  else if (D.getCXXScopeSpec().isSet()) {
4068    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4069                                        UPPC_DeclarationQualifier))
4070      return 0;
4071
4072    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4073    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4074    if (!DC) {
4075      // If we could not compute the declaration context, it's because the
4076      // declaration context is dependent but does not refer to a class,
4077      // class template, or class template partial specialization. Complain
4078      // and return early, to avoid the coming semantic disaster.
4079      Diag(D.getIdentifierLoc(),
4080           diag::err_template_qualified_declarator_no_match)
4081        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4082        << D.getCXXScopeSpec().getRange();
4083      return 0;
4084    }
4085    bool IsDependentContext = DC->isDependentContext();
4086
4087    if (!IsDependentContext &&
4088        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4089      return 0;
4090
4091    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4092      Diag(D.getIdentifierLoc(),
4093           diag::err_member_def_undefined_record)
4094        << Name << DC << D.getCXXScopeSpec().getRange();
4095      D.setInvalidType();
4096    } else if (!D.getDeclSpec().isFriendSpecified()) {
4097      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4098                                      Name, D.getIdentifierLoc())) {
4099        if (DC->isRecord())
4100          return 0;
4101
4102        D.setInvalidType();
4103      }
4104    }
4105
4106    // Check whether we need to rebuild the type of the given
4107    // declaration in the current instantiation.
4108    if (EnteringContext && IsDependentContext &&
4109        TemplateParamLists.size() != 0) {
4110      ContextRAII SavedContext(*this, DC);
4111      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4112        D.setInvalidType();
4113    }
4114  }
4115
4116  if (DiagnoseClassNameShadow(DC, NameInfo))
4117    // If this is a typedef, we'll end up spewing multiple diagnostics.
4118    // Just return early; it's safer.
4119    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4120      return 0;
4121
4122  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4123  QualType R = TInfo->getType();
4124
4125  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4126                                      UPPC_DeclarationType))
4127    D.setInvalidType();
4128
4129  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4130                        ForRedeclaration);
4131
4132  // See if this is a redefinition of a variable in the same scope.
4133  if (!D.getCXXScopeSpec().isSet()) {
4134    bool IsLinkageLookup = false;
4135
4136    // If the declaration we're planning to build will be a function
4137    // or object with linkage, then look for another declaration with
4138    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4139    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4140      /* Do nothing*/;
4141    else if (R->isFunctionType()) {
4142      if (CurContext->isFunctionOrMethod() ||
4143          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4144        IsLinkageLookup = true;
4145    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4146      IsLinkageLookup = true;
4147    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4148             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4149      IsLinkageLookup = true;
4150
4151    if (IsLinkageLookup)
4152      Previous.clear(LookupRedeclarationWithLinkage);
4153
4154    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4155  } else { // Something like "int foo::x;"
4156    LookupQualifiedName(Previous, DC);
4157
4158    // C++ [dcl.meaning]p1:
4159    //   When the declarator-id is qualified, the declaration shall refer to a
4160    //  previously declared member of the class or namespace to which the
4161    //  qualifier refers (or, in the case of a namespace, of an element of the
4162    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4163    //  thereof; [...]
4164    //
4165    // Note that we already checked the context above, and that we do not have
4166    // enough information to make sure that Previous contains the declaration
4167    // we want to match. For example, given:
4168    //
4169    //   class X {
4170    //     void f();
4171    //     void f(float);
4172    //   };
4173    //
4174    //   void X::f(int) { } // ill-formed
4175    //
4176    // In this case, Previous will point to the overload set
4177    // containing the two f's declared in X, but neither of them
4178    // matches.
4179
4180    // C++ [dcl.meaning]p1:
4181    //   [...] the member shall not merely have been introduced by a
4182    //   using-declaration in the scope of the class or namespace nominated by
4183    //   the nested-name-specifier of the declarator-id.
4184    RemoveUsingDecls(Previous);
4185  }
4186
4187  if (Previous.isSingleResult() &&
4188      Previous.getFoundDecl()->isTemplateParameter()) {
4189    // Maybe we will complain about the shadowed template parameter.
4190    if (!D.isInvalidType())
4191      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4192                                      Previous.getFoundDecl());
4193
4194    // Just pretend that we didn't see the previous declaration.
4195    Previous.clear();
4196  }
4197
4198  // In C++, the previous declaration we find might be a tag type
4199  // (class or enum). In this case, the new declaration will hide the
4200  // tag type. Note that this does does not apply if we're declaring a
4201  // typedef (C++ [dcl.typedef]p4).
4202  if (Previous.isSingleTagDecl() &&
4203      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4204    Previous.clear();
4205
4206  // Check that there are no default arguments other than in the parameters
4207  // of a function declaration (C++ only).
4208  if (getLangOpts().CPlusPlus)
4209    CheckExtraCXXDefaultArguments(D);
4210
4211  NamedDecl *New;
4212
4213  bool AddToScope = true;
4214  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4215    if (TemplateParamLists.size()) {
4216      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4217      return 0;
4218    }
4219
4220    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4221  } else if (R->isFunctionType()) {
4222    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4223                                  TemplateParamLists,
4224                                  AddToScope);
4225  } else {
4226    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4227                                  TemplateParamLists);
4228  }
4229
4230  if (New == 0)
4231    return 0;
4232
4233  // If this has an identifier and is not an invalid redeclaration or
4234  // function template specialization, add it to the scope stack.
4235  if (New->getDeclName() && AddToScope &&
4236       !(D.isRedeclaration() && New->isInvalidDecl()))
4237    PushOnScopeChains(New, S);
4238
4239  return New;
4240}
4241
4242/// Helper method to turn variable array types into constant array
4243/// types in certain situations which would otherwise be errors (for
4244/// GCC compatibility).
4245static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4246                                                    ASTContext &Context,
4247                                                    bool &SizeIsNegative,
4248                                                    llvm::APSInt &Oversized) {
4249  // This method tries to turn a variable array into a constant
4250  // array even when the size isn't an ICE.  This is necessary
4251  // for compatibility with code that depends on gcc's buggy
4252  // constant expression folding, like struct {char x[(int)(char*)2];}
4253  SizeIsNegative = false;
4254  Oversized = 0;
4255
4256  if (T->isDependentType())
4257    return QualType();
4258
4259  QualifierCollector Qs;
4260  const Type *Ty = Qs.strip(T);
4261
4262  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4263    QualType Pointee = PTy->getPointeeType();
4264    QualType FixedType =
4265        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4266                                            Oversized);
4267    if (FixedType.isNull()) return FixedType;
4268    FixedType = Context.getPointerType(FixedType);
4269    return Qs.apply(Context, FixedType);
4270  }
4271  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4272    QualType Inner = PTy->getInnerType();
4273    QualType FixedType =
4274        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4275                                            Oversized);
4276    if (FixedType.isNull()) return FixedType;
4277    FixedType = Context.getParenType(FixedType);
4278    return Qs.apply(Context, FixedType);
4279  }
4280
4281  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4282  if (!VLATy)
4283    return QualType();
4284  // FIXME: We should probably handle this case
4285  if (VLATy->getElementType()->isVariablyModifiedType())
4286    return QualType();
4287
4288  llvm::APSInt Res;
4289  if (!VLATy->getSizeExpr() ||
4290      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4291    return QualType();
4292
4293  // Check whether the array size is negative.
4294  if (Res.isSigned() && Res.isNegative()) {
4295    SizeIsNegative = true;
4296    return QualType();
4297  }
4298
4299  // Check whether the array is too large to be addressed.
4300  unsigned ActiveSizeBits
4301    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4302                                              Res);
4303  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4304    Oversized = Res;
4305    return QualType();
4306  }
4307
4308  return Context.getConstantArrayType(VLATy->getElementType(),
4309                                      Res, ArrayType::Normal, 0);
4310}
4311
4312static void
4313FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4314  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4315    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4316    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4317                                      DstPTL.getPointeeLoc());
4318    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4319    return;
4320  }
4321  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4322    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4323    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4324                                      DstPTL.getInnerLoc());
4325    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4326    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4327    return;
4328  }
4329  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4330  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4331  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4332  TypeLoc DstElemTL = DstATL.getElementLoc();
4333  DstElemTL.initializeFullCopy(SrcElemTL);
4334  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4335  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4336  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4337}
4338
4339/// Helper method to turn variable array types into constant array
4340/// types in certain situations which would otherwise be errors (for
4341/// GCC compatibility).
4342static TypeSourceInfo*
4343TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4344                                              ASTContext &Context,
4345                                              bool &SizeIsNegative,
4346                                              llvm::APSInt &Oversized) {
4347  QualType FixedTy
4348    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4349                                          SizeIsNegative, Oversized);
4350  if (FixedTy.isNull())
4351    return 0;
4352  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4353  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4354                                    FixedTInfo->getTypeLoc());
4355  return FixedTInfo;
4356}
4357
4358/// \brief Register the given locally-scoped extern "C" declaration so
4359/// that it can be found later for redeclarations
4360void
4361Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4362                                       const LookupResult &Previous,
4363                                       Scope *S) {
4364  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4365         "Decl is not a locally-scoped decl!");
4366  // Note that we have a locally-scoped external with this name.
4367  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4368}
4369
4370llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4371Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4372  if (ExternalSource) {
4373    // Load locally-scoped external decls from the external source.
4374    SmallVector<NamedDecl *, 4> Decls;
4375    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4376    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4377      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4378        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4379      if (Pos == LocallyScopedExternCDecls.end())
4380        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4381    }
4382  }
4383
4384  return LocallyScopedExternCDecls.find(Name);
4385}
4386
4387/// \brief Diagnose function specifiers on a declaration of an identifier that
4388/// does not identify a function.
4389void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4390  // FIXME: We should probably indicate the identifier in question to avoid
4391  // confusion for constructs like "inline int a(), b;"
4392  if (DS.isInlineSpecified())
4393    Diag(DS.getInlineSpecLoc(),
4394         diag::err_inline_non_function);
4395
4396  if (DS.isVirtualSpecified())
4397    Diag(DS.getVirtualSpecLoc(),
4398         diag::err_virtual_non_function);
4399
4400  if (DS.isExplicitSpecified())
4401    Diag(DS.getExplicitSpecLoc(),
4402         diag::err_explicit_non_function);
4403
4404  if (DS.isNoreturnSpecified())
4405    Diag(DS.getNoreturnSpecLoc(),
4406         diag::err_noreturn_non_function);
4407}
4408
4409NamedDecl*
4410Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4411                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4412  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4413  if (D.getCXXScopeSpec().isSet()) {
4414    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4415      << D.getCXXScopeSpec().getRange();
4416    D.setInvalidType();
4417    // Pretend we didn't see the scope specifier.
4418    DC = CurContext;
4419    Previous.clear();
4420  }
4421
4422  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4423
4424  if (D.getDeclSpec().isConstexprSpecified())
4425    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4426      << 1;
4427
4428  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4429    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4430      << D.getName().getSourceRange();
4431    return 0;
4432  }
4433
4434  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4435  if (!NewTD) return 0;
4436
4437  // Handle attributes prior to checking for duplicates in MergeVarDecl
4438  ProcessDeclAttributes(S, NewTD, D);
4439
4440  CheckTypedefForVariablyModifiedType(S, NewTD);
4441
4442  bool Redeclaration = D.isRedeclaration();
4443  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4444  D.setRedeclaration(Redeclaration);
4445  return ND;
4446}
4447
4448void
4449Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4450  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4451  // then it shall have block scope.
4452  // Note that variably modified types must be fixed before merging the decl so
4453  // that redeclarations will match.
4454  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4455  QualType T = TInfo->getType();
4456  if (T->isVariablyModifiedType()) {
4457    getCurFunction()->setHasBranchProtectedScope();
4458
4459    if (S->getFnParent() == 0) {
4460      bool SizeIsNegative;
4461      llvm::APSInt Oversized;
4462      TypeSourceInfo *FixedTInfo =
4463        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4464                                                      SizeIsNegative,
4465                                                      Oversized);
4466      if (FixedTInfo) {
4467        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4468        NewTD->setTypeSourceInfo(FixedTInfo);
4469      } else {
4470        if (SizeIsNegative)
4471          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4472        else if (T->isVariableArrayType())
4473          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4474        else if (Oversized.getBoolValue())
4475          Diag(NewTD->getLocation(), diag::err_array_too_large)
4476            << Oversized.toString(10);
4477        else
4478          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4479        NewTD->setInvalidDecl();
4480      }
4481    }
4482  }
4483}
4484
4485
4486/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4487/// declares a typedef-name, either using the 'typedef' type specifier or via
4488/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4489NamedDecl*
4490Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4491                           LookupResult &Previous, bool &Redeclaration) {
4492  // Merge the decl with the existing one if appropriate. If the decl is
4493  // in an outer scope, it isn't the same thing.
4494  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4495                       /*ExplicitInstantiationOrSpecialization=*/false);
4496  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4497  if (!Previous.empty()) {
4498    Redeclaration = true;
4499    MergeTypedefNameDecl(NewTD, Previous);
4500  }
4501
4502  // If this is the C FILE type, notify the AST context.
4503  if (IdentifierInfo *II = NewTD->getIdentifier())
4504    if (!NewTD->isInvalidDecl() &&
4505        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4506      if (II->isStr("FILE"))
4507        Context.setFILEDecl(NewTD);
4508      else if (II->isStr("jmp_buf"))
4509        Context.setjmp_bufDecl(NewTD);
4510      else if (II->isStr("sigjmp_buf"))
4511        Context.setsigjmp_bufDecl(NewTD);
4512      else if (II->isStr("ucontext_t"))
4513        Context.setucontext_tDecl(NewTD);
4514    }
4515
4516  return NewTD;
4517}
4518
4519/// \brief Determines whether the given declaration is an out-of-scope
4520/// previous declaration.
4521///
4522/// This routine should be invoked when name lookup has found a
4523/// previous declaration (PrevDecl) that is not in the scope where a
4524/// new declaration by the same name is being introduced. If the new
4525/// declaration occurs in a local scope, previous declarations with
4526/// linkage may still be considered previous declarations (C99
4527/// 6.2.2p4-5, C++ [basic.link]p6).
4528///
4529/// \param PrevDecl the previous declaration found by name
4530/// lookup
4531///
4532/// \param DC the context in which the new declaration is being
4533/// declared.
4534///
4535/// \returns true if PrevDecl is an out-of-scope previous declaration
4536/// for a new delcaration with the same name.
4537static bool
4538isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4539                                ASTContext &Context) {
4540  if (!PrevDecl)
4541    return false;
4542
4543  if (!PrevDecl->hasLinkage())
4544    return false;
4545
4546  if (Context.getLangOpts().CPlusPlus) {
4547    // C++ [basic.link]p6:
4548    //   If there is a visible declaration of an entity with linkage
4549    //   having the same name and type, ignoring entities declared
4550    //   outside the innermost enclosing namespace scope, the block
4551    //   scope declaration declares that same entity and receives the
4552    //   linkage of the previous declaration.
4553    DeclContext *OuterContext = DC->getRedeclContext();
4554    if (!OuterContext->isFunctionOrMethod())
4555      // This rule only applies to block-scope declarations.
4556      return false;
4557
4558    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4559    if (PrevOuterContext->isRecord())
4560      // We found a member function: ignore it.
4561      return false;
4562
4563    // Find the innermost enclosing namespace for the new and
4564    // previous declarations.
4565    OuterContext = OuterContext->getEnclosingNamespaceContext();
4566    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4567
4568    // The previous declaration is in a different namespace, so it
4569    // isn't the same function.
4570    if (!OuterContext->Equals(PrevOuterContext))
4571      return false;
4572  }
4573
4574  return true;
4575}
4576
4577static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4578  CXXScopeSpec &SS = D.getCXXScopeSpec();
4579  if (!SS.isSet()) return;
4580  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4581}
4582
4583bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4584  QualType type = decl->getType();
4585  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4586  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4587    // Various kinds of declaration aren't allowed to be __autoreleasing.
4588    unsigned kind = -1U;
4589    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4590      if (var->hasAttr<BlocksAttr>())
4591        kind = 0; // __block
4592      else if (!var->hasLocalStorage())
4593        kind = 1; // global
4594    } else if (isa<ObjCIvarDecl>(decl)) {
4595      kind = 3; // ivar
4596    } else if (isa<FieldDecl>(decl)) {
4597      kind = 2; // field
4598    }
4599
4600    if (kind != -1U) {
4601      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4602        << kind;
4603    }
4604  } else if (lifetime == Qualifiers::OCL_None) {
4605    // Try to infer lifetime.
4606    if (!type->isObjCLifetimeType())
4607      return false;
4608
4609    lifetime = type->getObjCARCImplicitLifetime();
4610    type = Context.getLifetimeQualifiedType(type, lifetime);
4611    decl->setType(type);
4612  }
4613
4614  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4615    // Thread-local variables cannot have lifetime.
4616    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4617        var->getTLSKind()) {
4618      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4619        << var->getType();
4620      return true;
4621    }
4622  }
4623
4624  return false;
4625}
4626
4627static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4628  // 'weak' only applies to declarations with external linkage.
4629  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4630    if (ND.getLinkage() != ExternalLinkage) {
4631      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4632      ND.dropAttr<WeakAttr>();
4633    }
4634  }
4635  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4636    if (ND.hasExternalLinkage()) {
4637      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4638      ND.dropAttr<WeakRefAttr>();
4639    }
4640  }
4641}
4642
4643/// Given that we are within the definition of the given function,
4644/// will that definition behave like C99's 'inline', where the
4645/// definition is discarded except for optimization purposes?
4646static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4647  // Try to avoid calling GetGVALinkageForFunction.
4648
4649  // All cases of this require the 'inline' keyword.
4650  if (!FD->isInlined()) return false;
4651
4652  // This is only possible in C++ with the gnu_inline attribute.
4653  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4654    return false;
4655
4656  // Okay, go ahead and call the relatively-more-expensive function.
4657
4658#ifndef NDEBUG
4659  // AST quite reasonably asserts that it's working on a function
4660  // definition.  We don't really have a way to tell it that we're
4661  // currently defining the function, so just lie to it in +Asserts
4662  // builds.  This is an awful hack.
4663  FD->setLazyBody(1);
4664#endif
4665
4666  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4667
4668#ifndef NDEBUG
4669  FD->setLazyBody(0);
4670#endif
4671
4672  return isC99Inline;
4673}
4674
4675static bool shouldConsiderLinkage(const VarDecl *VD) {
4676  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4677  if (DC->isFunctionOrMethod())
4678    return VD->hasExternalStorage();
4679  if (DC->isFileContext())
4680    return true;
4681  if (DC->isRecord())
4682    return false;
4683  llvm_unreachable("Unexpected context");
4684}
4685
4686static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4687  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4688  if (DC->isFileContext() || DC->isFunctionOrMethod())
4689    return true;
4690  if (DC->isRecord())
4691    return false;
4692  llvm_unreachable("Unexpected context");
4693}
4694
4695NamedDecl*
4696Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4697                              TypeSourceInfo *TInfo, LookupResult &Previous,
4698                              MultiTemplateParamsArg TemplateParamLists) {
4699  QualType R = TInfo->getType();
4700  DeclarationName Name = GetNameForDeclarator(D).getName();
4701
4702  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4703  VarDecl::StorageClass SC =
4704    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4705
4706  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4707    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4708    // half array type (unless the cl_khr_fp16 extension is enabled).
4709    if (Context.getBaseElementType(R)->isHalfType()) {
4710      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4711      D.setInvalidType();
4712    }
4713  }
4714
4715  if (SCSpec == DeclSpec::SCS_mutable) {
4716    // mutable can only appear on non-static class members, so it's always
4717    // an error here
4718    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4719    D.setInvalidType();
4720    SC = SC_None;
4721  }
4722
4723  // C++11 [dcl.stc]p4:
4724  //   When thread_local is applied to a variable of block scope the
4725  //   storage-class-specifier static is implied if it does not appear
4726  //   explicitly.
4727  // Core issue: 'static' is not implied if the variable is declared 'extern'.
4728  if (SCSpec == DeclSpec::SCS_unspecified &&
4729      D.getDeclSpec().getThreadStorageClassSpec() ==
4730          DeclSpec::TSCS_thread_local && DC->isFunctionOrMethod())
4731    SC = SC_Static;
4732
4733  IdentifierInfo *II = Name.getAsIdentifierInfo();
4734  if (!II) {
4735    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4736      << Name;
4737    return 0;
4738  }
4739
4740  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4741
4742  if (!DC->isRecord() && S->getFnParent() == 0) {
4743    // C99 6.9p2: The storage-class specifiers auto and register shall not
4744    // appear in the declaration specifiers in an external declaration.
4745    if (SC == SC_Auto || SC == SC_Register) {
4746
4747      // If this is a register variable with an asm label specified, then this
4748      // is a GNU extension.
4749      if (SC == SC_Register && D.getAsmLabel())
4750        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4751      else
4752        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4753      D.setInvalidType();
4754    }
4755  }
4756
4757  if (getLangOpts().OpenCL) {
4758    // Set up the special work-group-local storage class for variables in the
4759    // OpenCL __local address space.
4760    if (R.getAddressSpace() == LangAS::opencl_local) {
4761      SC = SC_OpenCLWorkGroupLocal;
4762    }
4763
4764    // OpenCL v1.2 s6.9.b p4:
4765    // The sampler type cannot be used with the __local and __global address
4766    // space qualifiers.
4767    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4768      R.getAddressSpace() == LangAS::opencl_global)) {
4769      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4770    }
4771
4772    // OpenCL 1.2 spec, p6.9 r:
4773    // The event type cannot be used to declare a program scope variable.
4774    // The event type cannot be used with the __local, __constant and __global
4775    // address space qualifiers.
4776    if (R->isEventT()) {
4777      if (S->getParent() == 0) {
4778        Diag(D.getLocStart(), diag::err_event_t_global_var);
4779        D.setInvalidType();
4780      }
4781
4782      if (R.getAddressSpace()) {
4783        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4784        D.setInvalidType();
4785      }
4786    }
4787  }
4788
4789  bool isExplicitSpecialization = false;
4790  VarDecl *NewVD;
4791  if (!getLangOpts().CPlusPlus) {
4792    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4793                            D.getIdentifierLoc(), II,
4794                            R, TInfo, SC);
4795
4796    if (D.isInvalidType())
4797      NewVD->setInvalidDecl();
4798  } else {
4799    if (DC->isRecord() && !CurContext->isRecord()) {
4800      // This is an out-of-line definition of a static data member.
4801      if (SC == SC_Static) {
4802        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4803             diag::err_static_out_of_line)
4804          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4805      }
4806    }
4807    if (SC == SC_Static && CurContext->isRecord()) {
4808      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4809        if (RD->isLocalClass())
4810          Diag(D.getIdentifierLoc(),
4811               diag::err_static_data_member_not_allowed_in_local_class)
4812            << Name << RD->getDeclName();
4813
4814        // C++98 [class.union]p1: If a union contains a static data member,
4815        // the program is ill-formed. C++11 drops this restriction.
4816        if (RD->isUnion())
4817          Diag(D.getIdentifierLoc(),
4818               getLangOpts().CPlusPlus11
4819                 ? diag::warn_cxx98_compat_static_data_member_in_union
4820                 : diag::ext_static_data_member_in_union) << Name;
4821        // We conservatively disallow static data members in anonymous structs.
4822        else if (!RD->getDeclName())
4823          Diag(D.getIdentifierLoc(),
4824               diag::err_static_data_member_not_allowed_in_anon_struct)
4825            << Name << RD->isUnion();
4826      }
4827    }
4828
4829    // Match up the template parameter lists with the scope specifier, then
4830    // determine whether we have a template or a template specialization.
4831    isExplicitSpecialization = false;
4832    bool Invalid = false;
4833    if (TemplateParameterList *TemplateParams
4834        = MatchTemplateParametersToScopeSpecifier(
4835                                  D.getDeclSpec().getLocStart(),
4836                                                  D.getIdentifierLoc(),
4837                                                  D.getCXXScopeSpec(),
4838                                                  TemplateParamLists.data(),
4839                                                  TemplateParamLists.size(),
4840                                                  /*never a friend*/ false,
4841                                                  isExplicitSpecialization,
4842                                                  Invalid)) {
4843      if (TemplateParams->size() > 0) {
4844        // There is no such thing as a variable template.
4845        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4846          << II
4847          << SourceRange(TemplateParams->getTemplateLoc(),
4848                         TemplateParams->getRAngleLoc());
4849        return 0;
4850      } else {
4851        // There is an extraneous 'template<>' for this variable. Complain
4852        // about it, but allow the declaration of the variable.
4853        Diag(TemplateParams->getTemplateLoc(),
4854             diag::err_template_variable_noparams)
4855          << II
4856          << SourceRange(TemplateParams->getTemplateLoc(),
4857                         TemplateParams->getRAngleLoc());
4858      }
4859    }
4860
4861    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4862                            D.getIdentifierLoc(), II,
4863                            R, TInfo, SC);
4864
4865    // If this decl has an auto type in need of deduction, make a note of the
4866    // Decl so we can diagnose uses of it in its own initializer.
4867    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
4868      ParsingInitForAutoVars.insert(NewVD);
4869
4870    if (D.isInvalidType() || Invalid)
4871      NewVD->setInvalidDecl();
4872
4873    SetNestedNameSpecifier(NewVD, D);
4874
4875    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4876      NewVD->setTemplateParameterListsInfo(Context,
4877                                           TemplateParamLists.size(),
4878                                           TemplateParamLists.data());
4879    }
4880
4881    if (D.getDeclSpec().isConstexprSpecified())
4882      NewVD->setConstexpr(true);
4883  }
4884
4885  // Set the lexical context. If the declarator has a C++ scope specifier, the
4886  // lexical context will be different from the semantic context.
4887  NewVD->setLexicalDeclContext(CurContext);
4888
4889  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
4890    if (NewVD->hasLocalStorage())
4891      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4892           diag::err_thread_non_global)
4893        << DeclSpec::getSpecifierName(TSCS);
4894    else if (!Context.getTargetInfo().isTLSSupported())
4895      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4896           diag::err_thread_unsupported);
4897    else
4898      NewVD->setTSCSpec(TSCS);
4899  }
4900
4901  // C99 6.7.4p3
4902  //   An inline definition of a function with external linkage shall
4903  //   not contain a definition of a modifiable object with static or
4904  //   thread storage duration...
4905  // We only apply this when the function is required to be defined
4906  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4907  // that a local variable with thread storage duration still has to
4908  // be marked 'static'.  Also note that it's possible to get these
4909  // semantics in C++ using __attribute__((gnu_inline)).
4910  if (SC == SC_Static && S->getFnParent() != 0 &&
4911      !NewVD->getType().isConstQualified()) {
4912    FunctionDecl *CurFD = getCurFunctionDecl();
4913    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4914      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4915           diag::warn_static_local_in_extern_inline);
4916      MaybeSuggestAddingStaticToDecl(CurFD);
4917    }
4918  }
4919
4920  if (D.getDeclSpec().isModulePrivateSpecified()) {
4921    if (isExplicitSpecialization)
4922      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4923        << 2
4924        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4925    else if (NewVD->hasLocalStorage())
4926      Diag(NewVD->getLocation(), diag::err_module_private_local)
4927        << 0 << NewVD->getDeclName()
4928        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4929        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4930    else
4931      NewVD->setModulePrivate();
4932  }
4933
4934  // Handle attributes prior to checking for duplicates in MergeVarDecl
4935  ProcessDeclAttributes(S, NewVD, D);
4936
4937  if (NewVD->hasAttrs())
4938    CheckAlignasUnderalignment(NewVD);
4939
4940  if (getLangOpts().CUDA) {
4941    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4942    // storage [duration]."
4943    if (SC == SC_None && S->getFnParent() != 0 &&
4944        (NewVD->hasAttr<CUDASharedAttr>() ||
4945         NewVD->hasAttr<CUDAConstantAttr>())) {
4946      NewVD->setStorageClass(SC_Static);
4947    }
4948  }
4949
4950  // In auto-retain/release, infer strong retension for variables of
4951  // retainable type.
4952  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4953    NewVD->setInvalidDecl();
4954
4955  // Handle GNU asm-label extension (encoded as an attribute).
4956  if (Expr *E = (Expr*)D.getAsmLabel()) {
4957    // The parser guarantees this is a string.
4958    StringLiteral *SE = cast<StringLiteral>(E);
4959    StringRef Label = SE->getString();
4960    if (S->getFnParent() != 0) {
4961      switch (SC) {
4962      case SC_None:
4963      case SC_Auto:
4964        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4965        break;
4966      case SC_Register:
4967        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4968          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4969        break;
4970      case SC_Static:
4971      case SC_Extern:
4972      case SC_PrivateExtern:
4973      case SC_OpenCLWorkGroupLocal:
4974        break;
4975      }
4976    }
4977
4978    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4979                                                Context, Label));
4980  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4981    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4982      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4983    if (I != ExtnameUndeclaredIdentifiers.end()) {
4984      NewVD->addAttr(I->second);
4985      ExtnameUndeclaredIdentifiers.erase(I);
4986    }
4987  }
4988
4989  // Diagnose shadowed variables before filtering for scope.
4990  if (!D.getCXXScopeSpec().isSet())
4991    CheckShadow(S, NewVD, Previous);
4992
4993  // Don't consider existing declarations that are in a different
4994  // scope and are out-of-semantic-context declarations (if the new
4995  // declaration has linkage).
4996  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4997                       isExplicitSpecialization);
4998
4999  if (!getLangOpts().CPlusPlus) {
5000    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5001  } else {
5002    // Merge the decl with the existing one if appropriate.
5003    if (!Previous.empty()) {
5004      if (Previous.isSingleResult() &&
5005          isa<FieldDecl>(Previous.getFoundDecl()) &&
5006          D.getCXXScopeSpec().isSet()) {
5007        // The user tried to define a non-static data member
5008        // out-of-line (C++ [dcl.meaning]p1).
5009        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5010          << D.getCXXScopeSpec().getRange();
5011        Previous.clear();
5012        NewVD->setInvalidDecl();
5013      }
5014    } else if (D.getCXXScopeSpec().isSet()) {
5015      // No previous declaration in the qualifying scope.
5016      Diag(D.getIdentifierLoc(), diag::err_no_member)
5017        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5018        << D.getCXXScopeSpec().getRange();
5019      NewVD->setInvalidDecl();
5020    }
5021
5022    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5023
5024    // This is an explicit specialization of a static data member. Check it.
5025    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5026        CheckMemberSpecialization(NewVD, Previous))
5027      NewVD->setInvalidDecl();
5028  }
5029
5030  ProcessPragmaWeak(S, NewVD);
5031  checkAttributesAfterMerging(*this, *NewVD);
5032
5033  // If this is a locally-scoped extern C variable, update the map of
5034  // such variables.
5035  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
5036      !NewVD->isInvalidDecl())
5037    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
5038
5039  return NewVD;
5040}
5041
5042/// \brief Diagnose variable or built-in function shadowing.  Implements
5043/// -Wshadow.
5044///
5045/// This method is called whenever a VarDecl is added to a "useful"
5046/// scope.
5047///
5048/// \param S the scope in which the shadowing name is being declared
5049/// \param R the lookup of the name
5050///
5051void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5052  // Return if warning is ignored.
5053  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5054        DiagnosticsEngine::Ignored)
5055    return;
5056
5057  // Don't diagnose declarations at file scope.
5058  if (D->hasGlobalStorage())
5059    return;
5060
5061  DeclContext *NewDC = D->getDeclContext();
5062
5063  // Only diagnose if we're shadowing an unambiguous field or variable.
5064  if (R.getResultKind() != LookupResult::Found)
5065    return;
5066
5067  NamedDecl* ShadowedDecl = R.getFoundDecl();
5068  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5069    return;
5070
5071  // Fields are not shadowed by variables in C++ static methods.
5072  if (isa<FieldDecl>(ShadowedDecl))
5073    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5074      if (MD->isStatic())
5075        return;
5076
5077  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5078    if (shadowedVar->isExternC()) {
5079      // For shadowing external vars, make sure that we point to the global
5080      // declaration, not a locally scoped extern declaration.
5081      for (VarDecl::redecl_iterator
5082             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5083           I != E; ++I)
5084        if (I->isFileVarDecl()) {
5085          ShadowedDecl = *I;
5086          break;
5087        }
5088    }
5089
5090  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5091
5092  // Only warn about certain kinds of shadowing for class members.
5093  if (NewDC && NewDC->isRecord()) {
5094    // In particular, don't warn about shadowing non-class members.
5095    if (!OldDC->isRecord())
5096      return;
5097
5098    // TODO: should we warn about static data members shadowing
5099    // static data members from base classes?
5100
5101    // TODO: don't diagnose for inaccessible shadowed members.
5102    // This is hard to do perfectly because we might friend the
5103    // shadowing context, but that's just a false negative.
5104  }
5105
5106  // Determine what kind of declaration we're shadowing.
5107  unsigned Kind;
5108  if (isa<RecordDecl>(OldDC)) {
5109    if (isa<FieldDecl>(ShadowedDecl))
5110      Kind = 3; // field
5111    else
5112      Kind = 2; // static data member
5113  } else if (OldDC->isFileContext())
5114    Kind = 1; // global
5115  else
5116    Kind = 0; // local
5117
5118  DeclarationName Name = R.getLookupName();
5119
5120  // Emit warning and note.
5121  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5122  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5123}
5124
5125/// \brief Check -Wshadow without the advantage of a previous lookup.
5126void Sema::CheckShadow(Scope *S, VarDecl *D) {
5127  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5128        DiagnosticsEngine::Ignored)
5129    return;
5130
5131  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5132                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5133  LookupName(R, S);
5134  CheckShadow(S, D, R);
5135}
5136
5137template<typename T>
5138static bool mayConflictWithNonVisibleExternC(const T *ND) {
5139  const DeclContext *DC = ND->getDeclContext();
5140  if (DC->getRedeclContext()->isTranslationUnit())
5141    return true;
5142
5143  // We know that is the first decl we see, other than function local
5144  // extern C ones. If this is C++ and the decl is not in a extern C context
5145  // it cannot have C language linkage. Avoid calling isExternC in that case.
5146  // We need to this because of code like
5147  //
5148  // namespace { struct bar {}; }
5149  // auto foo = bar();
5150  //
5151  // This code runs before the init of foo is set, and therefore before
5152  // the type of foo is known. Not knowing the type we cannot know its linkage
5153  // unless it is in an extern C block.
5154  if (!ND->isInExternCContext()) {
5155    const ASTContext &Context = ND->getASTContext();
5156    if (Context.getLangOpts().CPlusPlus)
5157      return false;
5158  }
5159
5160  return ND->isExternC();
5161}
5162
5163void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5164  // If the decl is already known invalid, don't check it.
5165  if (NewVD->isInvalidDecl())
5166    return;
5167
5168  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5169  QualType T = TInfo->getType();
5170
5171  // Defer checking an 'auto' type until its initializer is attached.
5172  if (T->isUndeducedType())
5173    return;
5174
5175  if (T->isObjCObjectType()) {
5176    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5177      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5178    T = Context.getObjCObjectPointerType(T);
5179    NewVD->setType(T);
5180  }
5181
5182  // Emit an error if an address space was applied to decl with local storage.
5183  // This includes arrays of objects with address space qualifiers, but not
5184  // automatic variables that point to other address spaces.
5185  // ISO/IEC TR 18037 S5.1.2
5186  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5187    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5188    NewVD->setInvalidDecl();
5189    return;
5190  }
5191
5192  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5193  // __constant address space.
5194  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5195      && T.getAddressSpace() != LangAS::opencl_constant
5196      && !T->isSamplerT()){
5197    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5198    NewVD->setInvalidDecl();
5199    return;
5200  }
5201
5202  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5203  // scope.
5204  if ((getLangOpts().OpenCLVersion >= 120)
5205      && NewVD->isStaticLocal()) {
5206    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5207    NewVD->setInvalidDecl();
5208    return;
5209  }
5210
5211  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5212      && !NewVD->hasAttr<BlocksAttr>()) {
5213    if (getLangOpts().getGC() != LangOptions::NonGC)
5214      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5215    else {
5216      assert(!getLangOpts().ObjCAutoRefCount);
5217      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5218    }
5219  }
5220
5221  bool isVM = T->isVariablyModifiedType();
5222  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5223      NewVD->hasAttr<BlocksAttr>())
5224    getCurFunction()->setHasBranchProtectedScope();
5225
5226  if ((isVM && NewVD->hasLinkage()) ||
5227      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5228    bool SizeIsNegative;
5229    llvm::APSInt Oversized;
5230    TypeSourceInfo *FixedTInfo =
5231      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5232                                                    SizeIsNegative, Oversized);
5233    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5234      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5235      // FIXME: This won't give the correct result for
5236      // int a[10][n];
5237      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5238
5239      if (NewVD->isFileVarDecl())
5240        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5241        << SizeRange;
5242      else if (NewVD->getStorageClass() == SC_Static)
5243        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5244        << SizeRange;
5245      else
5246        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5247        << SizeRange;
5248      NewVD->setInvalidDecl();
5249      return;
5250    }
5251
5252    if (FixedTInfo == 0) {
5253      if (NewVD->isFileVarDecl())
5254        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5255      else
5256        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5257      NewVD->setInvalidDecl();
5258      return;
5259    }
5260
5261    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5262    NewVD->setType(FixedTInfo->getType());
5263    NewVD->setTypeSourceInfo(FixedTInfo);
5264  }
5265
5266  if (T->isVoidType() && NewVD->isThisDeclarationADefinition()) {
5267    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5268      << T;
5269    NewVD->setInvalidDecl();
5270    return;
5271  }
5272
5273  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5274    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5275    NewVD->setInvalidDecl();
5276    return;
5277  }
5278
5279  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5280    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5281    NewVD->setInvalidDecl();
5282    return;
5283  }
5284
5285  if (NewVD->isConstexpr() && !T->isDependentType() &&
5286      RequireLiteralType(NewVD->getLocation(), T,
5287                         diag::err_constexpr_var_non_literal)) {
5288    // Can't perform this check until the type is deduced.
5289    NewVD->setInvalidDecl();
5290    return;
5291  }
5292}
5293
5294/// \brief Perform semantic checking on a newly-created variable
5295/// declaration.
5296///
5297/// This routine performs all of the type-checking required for a
5298/// variable declaration once it has been built. It is used both to
5299/// check variables after they have been parsed and their declarators
5300/// have been translated into a declaration, and to check variables
5301/// that have been instantiated from a template.
5302///
5303/// Sets NewVD->isInvalidDecl() if an error was encountered.
5304///
5305/// Returns true if the variable declaration is a redeclaration.
5306bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5307                                    LookupResult &Previous) {
5308  CheckVariableDeclarationType(NewVD);
5309
5310  // If the decl is already known invalid, don't check it.
5311  if (NewVD->isInvalidDecl())
5312    return false;
5313
5314  // If we did not find anything by this name, look for a non-visible
5315  // extern "C" declaration with the same name.
5316  //
5317  // Clang has a lot of problems with extern local declarations.
5318  // The actual standards text here is:
5319  //
5320  // C++11 [basic.link]p6:
5321  //   The name of a function declared in block scope and the name
5322  //   of a variable declared by a block scope extern declaration
5323  //   have linkage. If there is a visible declaration of an entity
5324  //   with linkage having the same name and type, ignoring entities
5325  //   declared outside the innermost enclosing namespace scope, the
5326  //   block scope declaration declares that same entity and
5327  //   receives the linkage of the previous declaration.
5328  //
5329  // C11 6.2.7p4:
5330  //   For an identifier with internal or external linkage declared
5331  //   in a scope in which a prior declaration of that identifier is
5332  //   visible, if the prior declaration specifies internal or
5333  //   external linkage, the type of the identifier at the later
5334  //   declaration becomes the composite type.
5335  //
5336  // The most important point here is that we're not allowed to
5337  // update our understanding of the type according to declarations
5338  // not in scope.
5339  bool PreviousWasHidden = false;
5340  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5341    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5342      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5343    if (Pos != LocallyScopedExternCDecls.end()) {
5344      Previous.addDecl(Pos->second);
5345      PreviousWasHidden = true;
5346    }
5347  }
5348
5349  // Filter out any non-conflicting previous declarations.
5350  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5351
5352  if (!Previous.empty()) {
5353    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5354    return true;
5355  }
5356  return false;
5357}
5358
5359/// \brief Data used with FindOverriddenMethod
5360struct FindOverriddenMethodData {
5361  Sema *S;
5362  CXXMethodDecl *Method;
5363};
5364
5365/// \brief Member lookup function that determines whether a given C++
5366/// method overrides a method in a base class, to be used with
5367/// CXXRecordDecl::lookupInBases().
5368static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5369                                 CXXBasePath &Path,
5370                                 void *UserData) {
5371  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5372
5373  FindOverriddenMethodData *Data
5374    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5375
5376  DeclarationName Name = Data->Method->getDeclName();
5377
5378  // FIXME: Do we care about other names here too?
5379  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5380    // We really want to find the base class destructor here.
5381    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5382    CanQualType CT = Data->S->Context.getCanonicalType(T);
5383
5384    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5385  }
5386
5387  for (Path.Decls = BaseRecord->lookup(Name);
5388       !Path.Decls.empty();
5389       Path.Decls = Path.Decls.slice(1)) {
5390    NamedDecl *D = Path.Decls.front();
5391    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5392      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5393        return true;
5394    }
5395  }
5396
5397  return false;
5398}
5399
5400namespace {
5401  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5402}
5403/// \brief Report an error regarding overriding, along with any relevant
5404/// overriden methods.
5405///
5406/// \param DiagID the primary error to report.
5407/// \param MD the overriding method.
5408/// \param OEK which overrides to include as notes.
5409static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5410                            OverrideErrorKind OEK = OEK_All) {
5411  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5412  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5413                                      E = MD->end_overridden_methods();
5414       I != E; ++I) {
5415    // This check (& the OEK parameter) could be replaced by a predicate, but
5416    // without lambdas that would be overkill. This is still nicer than writing
5417    // out the diag loop 3 times.
5418    if ((OEK == OEK_All) ||
5419        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5420        (OEK == OEK_Deleted && (*I)->isDeleted()))
5421      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5422  }
5423}
5424
5425/// AddOverriddenMethods - See if a method overrides any in the base classes,
5426/// and if so, check that it's a valid override and remember it.
5427bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5428  // Look for virtual methods in base classes that this method might override.
5429  CXXBasePaths Paths;
5430  FindOverriddenMethodData Data;
5431  Data.Method = MD;
5432  Data.S = this;
5433  bool hasDeletedOverridenMethods = false;
5434  bool hasNonDeletedOverridenMethods = false;
5435  bool AddedAny = false;
5436  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5437    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5438         E = Paths.found_decls_end(); I != E; ++I) {
5439      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5440        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5441        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5442            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5443            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5444            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5445          hasDeletedOverridenMethods |= OldMD->isDeleted();
5446          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5447          AddedAny = true;
5448        }
5449      }
5450    }
5451  }
5452
5453  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5454    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5455  }
5456  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5457    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5458  }
5459
5460  return AddedAny;
5461}
5462
5463namespace {
5464  // Struct for holding all of the extra arguments needed by
5465  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5466  struct ActOnFDArgs {
5467    Scope *S;
5468    Declarator &D;
5469    MultiTemplateParamsArg TemplateParamLists;
5470    bool AddToScope;
5471  };
5472}
5473
5474namespace {
5475
5476// Callback to only accept typo corrections that have a non-zero edit distance.
5477// Also only accept corrections that have the same parent decl.
5478class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5479 public:
5480  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5481                            CXXRecordDecl *Parent)
5482      : Context(Context), OriginalFD(TypoFD),
5483        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5484
5485  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5486    if (candidate.getEditDistance() == 0)
5487      return false;
5488
5489    SmallVector<unsigned, 1> MismatchedParams;
5490    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5491                                          CDeclEnd = candidate.end();
5492         CDecl != CDeclEnd; ++CDecl) {
5493      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5494
5495      if (FD && !FD->hasBody() &&
5496          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5497        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5498          CXXRecordDecl *Parent = MD->getParent();
5499          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5500            return true;
5501        } else if (!ExpectedParent) {
5502          return true;
5503        }
5504      }
5505    }
5506
5507    return false;
5508  }
5509
5510 private:
5511  ASTContext &Context;
5512  FunctionDecl *OriginalFD;
5513  CXXRecordDecl *ExpectedParent;
5514};
5515
5516}
5517
5518/// \brief Generate diagnostics for an invalid function redeclaration.
5519///
5520/// This routine handles generating the diagnostic messages for an invalid
5521/// function redeclaration, including finding possible similar declarations
5522/// or performing typo correction if there are no previous declarations with
5523/// the same name.
5524///
5525/// Returns a NamedDecl iff typo correction was performed and substituting in
5526/// the new declaration name does not cause new errors.
5527static NamedDecl* DiagnoseInvalidRedeclaration(
5528    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5529    ActOnFDArgs &ExtraArgs) {
5530  NamedDecl *Result = NULL;
5531  DeclarationName Name = NewFD->getDeclName();
5532  DeclContext *NewDC = NewFD->getDeclContext();
5533  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5534                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5535  SmallVector<unsigned, 1> MismatchedParams;
5536  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5537  TypoCorrection Correction;
5538  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5539                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5540  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5541                                  : diag::err_member_def_does_not_match;
5542
5543  NewFD->setInvalidDecl();
5544  SemaRef.LookupQualifiedName(Prev, NewDC);
5545  assert(!Prev.isAmbiguous() &&
5546         "Cannot have an ambiguity in previous-declaration lookup");
5547  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5548  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5549                                      MD ? MD->getParent() : 0);
5550  if (!Prev.empty()) {
5551    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5552         Func != FuncEnd; ++Func) {
5553      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5554      if (FD &&
5555          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5556        // Add 1 to the index so that 0 can mean the mismatch didn't
5557        // involve a parameter
5558        unsigned ParamNum =
5559            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5560        NearMatches.push_back(std::make_pair(FD, ParamNum));
5561      }
5562    }
5563  // If the qualified name lookup yielded nothing, try typo correction
5564  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5565                                         Prev.getLookupKind(), 0, 0,
5566                                         Validator, NewDC))) {
5567    // Trap errors.
5568    Sema::SFINAETrap Trap(SemaRef);
5569
5570    // Set up everything for the call to ActOnFunctionDeclarator
5571    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5572                              ExtraArgs.D.getIdentifierLoc());
5573    Previous.clear();
5574    Previous.setLookupName(Correction.getCorrection());
5575    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5576                                    CDeclEnd = Correction.end();
5577         CDecl != CDeclEnd; ++CDecl) {
5578      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5579      if (FD && !FD->hasBody() &&
5580          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5581        Previous.addDecl(FD);
5582      }
5583    }
5584    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5585    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5586    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5587    // eliminate the need for the parameter pack ExtraArgs.
5588    Result = SemaRef.ActOnFunctionDeclarator(
5589        ExtraArgs.S, ExtraArgs.D,
5590        Correction.getCorrectionDecl()->getDeclContext(),
5591        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5592        ExtraArgs.AddToScope);
5593    if (Trap.hasErrorOccurred()) {
5594      // Pretend the typo correction never occurred
5595      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5596                                ExtraArgs.D.getIdentifierLoc());
5597      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5598      Previous.clear();
5599      Previous.setLookupName(Name);
5600      Result = NULL;
5601    } else {
5602      for (LookupResult::iterator Func = Previous.begin(),
5603                               FuncEnd = Previous.end();
5604           Func != FuncEnd; ++Func) {
5605        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5606          NearMatches.push_back(std::make_pair(FD, 0));
5607      }
5608    }
5609    if (NearMatches.empty()) {
5610      // Ignore the correction if it didn't yield any close FunctionDecl matches
5611      Correction = TypoCorrection();
5612    } else {
5613      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5614                             : diag::err_member_def_does_not_match_suggest;
5615    }
5616  }
5617
5618  if (Correction) {
5619    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5620    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5621    // turn causes the correction to fully qualify the name. If we fix
5622    // CorrectTypo to minimally qualify then this change should be good.
5623    SourceRange FixItLoc(NewFD->getLocation());
5624    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5625    if (Correction.getCorrectionSpecifier() && SS.isValid())
5626      FixItLoc.setBegin(SS.getBeginLoc());
5627    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5628        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5629        << FixItHint::CreateReplacement(
5630            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5631  } else {
5632    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5633        << Name << NewDC << NewFD->getLocation();
5634  }
5635
5636  bool NewFDisConst = false;
5637  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5638    NewFDisConst = NewMD->isConst();
5639
5640  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5641       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5642       NearMatch != NearMatchEnd; ++NearMatch) {
5643    FunctionDecl *FD = NearMatch->first;
5644    bool FDisConst = false;
5645    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5646      FDisConst = MD->isConst();
5647
5648    if (unsigned Idx = NearMatch->second) {
5649      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5650      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5651      if (Loc.isInvalid()) Loc = FD->getLocation();
5652      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5653          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5654    } else if (Correction) {
5655      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5656          << Correction.getQuoted(SemaRef.getLangOpts());
5657    } else if (FDisConst != NewFDisConst) {
5658      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5659          << NewFDisConst << FD->getSourceRange().getEnd();
5660    } else
5661      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5662  }
5663  return Result;
5664}
5665
5666static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5667                                                          Declarator &D) {
5668  switch (D.getDeclSpec().getStorageClassSpec()) {
5669  default: llvm_unreachable("Unknown storage class!");
5670  case DeclSpec::SCS_auto:
5671  case DeclSpec::SCS_register:
5672  case DeclSpec::SCS_mutable:
5673    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5674                 diag::err_typecheck_sclass_func);
5675    D.setInvalidType();
5676    break;
5677  case DeclSpec::SCS_unspecified: break;
5678  case DeclSpec::SCS_extern:
5679    if (D.getDeclSpec().isExternInLinkageSpec())
5680      return SC_None;
5681    return SC_Extern;
5682  case DeclSpec::SCS_static: {
5683    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5684      // C99 6.7.1p5:
5685      //   The declaration of an identifier for a function that has
5686      //   block scope shall have no explicit storage-class specifier
5687      //   other than extern
5688      // See also (C++ [dcl.stc]p4).
5689      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5690                   diag::err_static_block_func);
5691      break;
5692    } else
5693      return SC_Static;
5694  }
5695  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5696  }
5697
5698  // No explicit storage class has already been returned
5699  return SC_None;
5700}
5701
5702static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5703                                           DeclContext *DC, QualType &R,
5704                                           TypeSourceInfo *TInfo,
5705                                           FunctionDecl::StorageClass SC,
5706                                           bool &IsVirtualOkay) {
5707  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5708  DeclarationName Name = NameInfo.getName();
5709
5710  FunctionDecl *NewFD = 0;
5711  bool isInline = D.getDeclSpec().isInlineSpecified();
5712
5713  if (!SemaRef.getLangOpts().CPlusPlus) {
5714    // Determine whether the function was written with a
5715    // prototype. This true when:
5716    //   - there is a prototype in the declarator, or
5717    //   - the type R of the function is some kind of typedef or other reference
5718    //     to a type name (which eventually refers to a function type).
5719    bool HasPrototype =
5720      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5721      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5722
5723    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5724                                 D.getLocStart(), NameInfo, R,
5725                                 TInfo, SC, isInline,
5726                                 HasPrototype, false);
5727    if (D.isInvalidType())
5728      NewFD->setInvalidDecl();
5729
5730    // Set the lexical context.
5731    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5732
5733    return NewFD;
5734  }
5735
5736  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5737  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5738
5739  // Check that the return type is not an abstract class type.
5740  // For record types, this is done by the AbstractClassUsageDiagnoser once
5741  // the class has been completely parsed.
5742  if (!DC->isRecord() &&
5743      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5744                                     R->getAs<FunctionType>()->getResultType(),
5745                                     diag::err_abstract_type_in_decl,
5746                                     SemaRef.AbstractReturnType))
5747    D.setInvalidType();
5748
5749  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5750    // This is a C++ constructor declaration.
5751    assert(DC->isRecord() &&
5752           "Constructors can only be declared in a member context");
5753
5754    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5755    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5756                                      D.getLocStart(), NameInfo,
5757                                      R, TInfo, isExplicit, isInline,
5758                                      /*isImplicitlyDeclared=*/false,
5759                                      isConstexpr);
5760
5761  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5762    // This is a C++ destructor declaration.
5763    if (DC->isRecord()) {
5764      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5765      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5766      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5767                                        SemaRef.Context, Record,
5768                                        D.getLocStart(),
5769                                        NameInfo, R, TInfo, isInline,
5770                                        /*isImplicitlyDeclared=*/false);
5771
5772      // If the class is complete, then we now create the implicit exception
5773      // specification. If the class is incomplete or dependent, we can't do
5774      // it yet.
5775      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5776          Record->getDefinition() && !Record->isBeingDefined() &&
5777          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5778        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5779      }
5780
5781      IsVirtualOkay = true;
5782      return NewDD;
5783
5784    } else {
5785      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5786      D.setInvalidType();
5787
5788      // Create a FunctionDecl to satisfy the function definition parsing
5789      // code path.
5790      return FunctionDecl::Create(SemaRef.Context, DC,
5791                                  D.getLocStart(),
5792                                  D.getIdentifierLoc(), Name, R, TInfo,
5793                                  SC, isInline,
5794                                  /*hasPrototype=*/true, isConstexpr);
5795    }
5796
5797  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5798    if (!DC->isRecord()) {
5799      SemaRef.Diag(D.getIdentifierLoc(),
5800           diag::err_conv_function_not_member);
5801      return 0;
5802    }
5803
5804    SemaRef.CheckConversionDeclarator(D, R, SC);
5805    IsVirtualOkay = true;
5806    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5807                                     D.getLocStart(), NameInfo,
5808                                     R, TInfo, isInline, isExplicit,
5809                                     isConstexpr, SourceLocation());
5810
5811  } else if (DC->isRecord()) {
5812    // If the name of the function is the same as the name of the record,
5813    // then this must be an invalid constructor that has a return type.
5814    // (The parser checks for a return type and makes the declarator a
5815    // constructor if it has no return type).
5816    if (Name.getAsIdentifierInfo() &&
5817        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5818      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5819        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5820        << SourceRange(D.getIdentifierLoc());
5821      return 0;
5822    }
5823
5824    // This is a C++ method declaration.
5825    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
5826                                               cast<CXXRecordDecl>(DC),
5827                                               D.getLocStart(), NameInfo, R,
5828                                               TInfo, SC, isInline,
5829                                               isConstexpr, SourceLocation());
5830    IsVirtualOkay = !Ret->isStatic();
5831    return Ret;
5832  } else {
5833    // Determine whether the function was written with a
5834    // prototype. This true when:
5835    //   - we're in C++ (where every function has a prototype),
5836    return FunctionDecl::Create(SemaRef.Context, DC,
5837                                D.getLocStart(),
5838                                NameInfo, R, TInfo, SC, isInline,
5839                                true/*HasPrototype*/, isConstexpr);
5840  }
5841}
5842
5843void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5844  // In C++, the empty parameter-type-list must be spelled "void"; a
5845  // typedef of void is not permitted.
5846  if (getLangOpts().CPlusPlus &&
5847      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5848    bool IsTypeAlias = false;
5849    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5850      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5851    else if (const TemplateSpecializationType *TST =
5852               Param->getType()->getAs<TemplateSpecializationType>())
5853      IsTypeAlias = TST->isTypeAlias();
5854    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5855      << IsTypeAlias;
5856  }
5857}
5858
5859NamedDecl*
5860Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5861                              TypeSourceInfo *TInfo, LookupResult &Previous,
5862                              MultiTemplateParamsArg TemplateParamLists,
5863                              bool &AddToScope) {
5864  QualType R = TInfo->getType();
5865
5866  assert(R.getTypePtr()->isFunctionType());
5867
5868  // TODO: consider using NameInfo for diagnostic.
5869  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5870  DeclarationName Name = NameInfo.getName();
5871  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5872
5873  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5874    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5875         diag::err_invalid_thread)
5876      << DeclSpec::getSpecifierName(TSCS);
5877
5878  // Do not allow returning a objc interface by-value.
5879  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5880    Diag(D.getIdentifierLoc(),
5881         diag::err_object_cannot_be_passed_returned_by_value) << 0
5882    << R->getAs<FunctionType>()->getResultType()
5883    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5884
5885    QualType T = R->getAs<FunctionType>()->getResultType();
5886    T = Context.getObjCObjectPointerType(T);
5887    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5888      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5889      R = Context.getFunctionType(T,
5890                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5891                                                     FPT->getNumArgs()),
5892                                  EPI);
5893    }
5894    else if (isa<FunctionNoProtoType>(R))
5895      R = Context.getFunctionNoProtoType(T);
5896  }
5897
5898  bool isFriend = false;
5899  FunctionTemplateDecl *FunctionTemplate = 0;
5900  bool isExplicitSpecialization = false;
5901  bool isFunctionTemplateSpecialization = false;
5902
5903  bool isDependentClassScopeExplicitSpecialization = false;
5904  bool HasExplicitTemplateArgs = false;
5905  TemplateArgumentListInfo TemplateArgs;
5906
5907  bool isVirtualOkay = false;
5908
5909  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5910                                              isVirtualOkay);
5911  if (!NewFD) return 0;
5912
5913  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5914    NewFD->setTopLevelDeclInObjCContainer();
5915
5916  if (getLangOpts().CPlusPlus) {
5917    bool isInline = D.getDeclSpec().isInlineSpecified();
5918    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5919    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5920    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5921    isFriend = D.getDeclSpec().isFriendSpecified();
5922    if (isFriend && !isInline && D.isFunctionDefinition()) {
5923      // C++ [class.friend]p5
5924      //   A function can be defined in a friend declaration of a
5925      //   class . . . . Such a function is implicitly inline.
5926      NewFD->setImplicitlyInline();
5927    }
5928
5929    // If this is a method defined in an __interface, and is not a constructor
5930    // or an overloaded operator, then set the pure flag (isVirtual will already
5931    // return true).
5932    if (const CXXRecordDecl *Parent =
5933          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5934      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5935        NewFD->setPure(true);
5936    }
5937
5938    SetNestedNameSpecifier(NewFD, D);
5939    isExplicitSpecialization = false;
5940    isFunctionTemplateSpecialization = false;
5941    if (D.isInvalidType())
5942      NewFD->setInvalidDecl();
5943
5944    // Set the lexical context. If the declarator has a C++
5945    // scope specifier, or is the object of a friend declaration, the
5946    // lexical context will be different from the semantic context.
5947    NewFD->setLexicalDeclContext(CurContext);
5948
5949    // Match up the template parameter lists with the scope specifier, then
5950    // determine whether we have a template or a template specialization.
5951    bool Invalid = false;
5952    if (TemplateParameterList *TemplateParams
5953          = MatchTemplateParametersToScopeSpecifier(
5954                                  D.getDeclSpec().getLocStart(),
5955                                  D.getIdentifierLoc(),
5956                                  D.getCXXScopeSpec(),
5957                                  TemplateParamLists.data(),
5958                                  TemplateParamLists.size(),
5959                                  isFriend,
5960                                  isExplicitSpecialization,
5961                                  Invalid)) {
5962      if (TemplateParams->size() > 0) {
5963        // This is a function template
5964
5965        // Check that we can declare a template here.
5966        if (CheckTemplateDeclScope(S, TemplateParams))
5967          return 0;
5968
5969        // A destructor cannot be a template.
5970        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5971          Diag(NewFD->getLocation(), diag::err_destructor_template);
5972          return 0;
5973        }
5974
5975        // If we're adding a template to a dependent context, we may need to
5976        // rebuilding some of the types used within the template parameter list,
5977        // now that we know what the current instantiation is.
5978        if (DC->isDependentContext()) {
5979          ContextRAII SavedContext(*this, DC);
5980          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5981            Invalid = true;
5982        }
5983
5984
5985        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5986                                                        NewFD->getLocation(),
5987                                                        Name, TemplateParams,
5988                                                        NewFD);
5989        FunctionTemplate->setLexicalDeclContext(CurContext);
5990        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5991
5992        // For source fidelity, store the other template param lists.
5993        if (TemplateParamLists.size() > 1) {
5994          NewFD->setTemplateParameterListsInfo(Context,
5995                                               TemplateParamLists.size() - 1,
5996                                               TemplateParamLists.data());
5997        }
5998      } else {
5999        // This is a function template specialization.
6000        isFunctionTemplateSpecialization = true;
6001        // For source fidelity, store all the template param lists.
6002        NewFD->setTemplateParameterListsInfo(Context,
6003                                             TemplateParamLists.size(),
6004                                             TemplateParamLists.data());
6005
6006        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6007        if (isFriend) {
6008          // We want to remove the "template<>", found here.
6009          SourceRange RemoveRange = TemplateParams->getSourceRange();
6010
6011          // If we remove the template<> and the name is not a
6012          // template-id, we're actually silently creating a problem:
6013          // the friend declaration will refer to an untemplated decl,
6014          // and clearly the user wants a template specialization.  So
6015          // we need to insert '<>' after the name.
6016          SourceLocation InsertLoc;
6017          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6018            InsertLoc = D.getName().getSourceRange().getEnd();
6019            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6020          }
6021
6022          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6023            << Name << RemoveRange
6024            << FixItHint::CreateRemoval(RemoveRange)
6025            << FixItHint::CreateInsertion(InsertLoc, "<>");
6026        }
6027      }
6028    }
6029    else {
6030      // All template param lists were matched against the scope specifier:
6031      // this is NOT (an explicit specialization of) a template.
6032      if (TemplateParamLists.size() > 0)
6033        // For source fidelity, store all the template param lists.
6034        NewFD->setTemplateParameterListsInfo(Context,
6035                                             TemplateParamLists.size(),
6036                                             TemplateParamLists.data());
6037    }
6038
6039    if (Invalid) {
6040      NewFD->setInvalidDecl();
6041      if (FunctionTemplate)
6042        FunctionTemplate->setInvalidDecl();
6043    }
6044
6045    // C++ [dcl.fct.spec]p5:
6046    //   The virtual specifier shall only be used in declarations of
6047    //   nonstatic class member functions that appear within a
6048    //   member-specification of a class declaration; see 10.3.
6049    //
6050    if (isVirtual && !NewFD->isInvalidDecl()) {
6051      if (!isVirtualOkay) {
6052        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6053             diag::err_virtual_non_function);
6054      } else if (!CurContext->isRecord()) {
6055        // 'virtual' was specified outside of the class.
6056        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6057             diag::err_virtual_out_of_class)
6058          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6059      } else if (NewFD->getDescribedFunctionTemplate()) {
6060        // C++ [temp.mem]p3:
6061        //  A member function template shall not be virtual.
6062        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6063             diag::err_virtual_member_function_template)
6064          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6065      } else {
6066        // Okay: Add virtual to the method.
6067        NewFD->setVirtualAsWritten(true);
6068      }
6069
6070      if (getLangOpts().CPlusPlus1y &&
6071          NewFD->getResultType()->isUndeducedType())
6072        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6073    }
6074
6075    // C++ [dcl.fct.spec]p3:
6076    //  The inline specifier shall not appear on a block scope function
6077    //  declaration.
6078    if (isInline && !NewFD->isInvalidDecl()) {
6079      if (CurContext->isFunctionOrMethod()) {
6080        // 'inline' is not allowed on block scope function declaration.
6081        Diag(D.getDeclSpec().getInlineSpecLoc(),
6082             diag::err_inline_declaration_block_scope) << Name
6083          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6084      }
6085    }
6086
6087    // C++ [dcl.fct.spec]p6:
6088    //  The explicit specifier shall be used only in the declaration of a
6089    //  constructor or conversion function within its class definition;
6090    //  see 12.3.1 and 12.3.2.
6091    if (isExplicit && !NewFD->isInvalidDecl()) {
6092      if (!CurContext->isRecord()) {
6093        // 'explicit' was specified outside of the class.
6094        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6095             diag::err_explicit_out_of_class)
6096          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6097      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6098                 !isa<CXXConversionDecl>(NewFD)) {
6099        // 'explicit' was specified on a function that wasn't a constructor
6100        // or conversion function.
6101        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6102             diag::err_explicit_non_ctor_or_conv_function)
6103          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6104      }
6105    }
6106
6107    if (isConstexpr) {
6108      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6109      // are implicitly inline.
6110      NewFD->setImplicitlyInline();
6111
6112      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6113      // be either constructors or to return a literal type. Therefore,
6114      // destructors cannot be declared constexpr.
6115      if (isa<CXXDestructorDecl>(NewFD))
6116        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6117    }
6118
6119    // If __module_private__ was specified, mark the function accordingly.
6120    if (D.getDeclSpec().isModulePrivateSpecified()) {
6121      if (isFunctionTemplateSpecialization) {
6122        SourceLocation ModulePrivateLoc
6123          = D.getDeclSpec().getModulePrivateSpecLoc();
6124        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6125          << 0
6126          << FixItHint::CreateRemoval(ModulePrivateLoc);
6127      } else {
6128        NewFD->setModulePrivate();
6129        if (FunctionTemplate)
6130          FunctionTemplate->setModulePrivate();
6131      }
6132    }
6133
6134    if (isFriend) {
6135      // For now, claim that the objects have no previous declaration.
6136      if (FunctionTemplate) {
6137        FunctionTemplate->setObjectOfFriendDecl(false);
6138        FunctionTemplate->setAccess(AS_public);
6139      }
6140      NewFD->setObjectOfFriendDecl(false);
6141      NewFD->setAccess(AS_public);
6142    }
6143
6144    // If a function is defined as defaulted or deleted, mark it as such now.
6145    switch (D.getFunctionDefinitionKind()) {
6146      case FDK_Declaration:
6147      case FDK_Definition:
6148        break;
6149
6150      case FDK_Defaulted:
6151        NewFD->setDefaulted();
6152        break;
6153
6154      case FDK_Deleted:
6155        NewFD->setDeletedAsWritten();
6156        break;
6157    }
6158
6159    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6160        D.isFunctionDefinition()) {
6161      // C++ [class.mfct]p2:
6162      //   A member function may be defined (8.4) in its class definition, in
6163      //   which case it is an inline member function (7.1.2)
6164      NewFD->setImplicitlyInline();
6165    }
6166
6167    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6168        !CurContext->isRecord()) {
6169      // C++ [class.static]p1:
6170      //   A data or function member of a class may be declared static
6171      //   in a class definition, in which case it is a static member of
6172      //   the class.
6173
6174      // Complain about the 'static' specifier if it's on an out-of-line
6175      // member function definition.
6176      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6177           diag::err_static_out_of_line)
6178        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6179    }
6180
6181    // C++11 [except.spec]p15:
6182    //   A deallocation function with no exception-specification is treated
6183    //   as if it were specified with noexcept(true).
6184    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6185    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6186         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6187        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6188      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6189      EPI.ExceptionSpecType = EST_BasicNoexcept;
6190      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6191                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6192                                                         FPT->getNumArgs()),
6193                                             EPI));
6194    }
6195  }
6196
6197  // Filter out previous declarations that don't match the scope.
6198  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6199                       isExplicitSpecialization ||
6200                       isFunctionTemplateSpecialization);
6201
6202  // Handle GNU asm-label extension (encoded as an attribute).
6203  if (Expr *E = (Expr*) D.getAsmLabel()) {
6204    // The parser guarantees this is a string.
6205    StringLiteral *SE = cast<StringLiteral>(E);
6206    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6207                                                SE->getString()));
6208  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6209    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6210      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6211    if (I != ExtnameUndeclaredIdentifiers.end()) {
6212      NewFD->addAttr(I->second);
6213      ExtnameUndeclaredIdentifiers.erase(I);
6214    }
6215  }
6216
6217  // Copy the parameter declarations from the declarator D to the function
6218  // declaration NewFD, if they are available.  First scavenge them into Params.
6219  SmallVector<ParmVarDecl*, 16> Params;
6220  if (D.isFunctionDeclarator()) {
6221    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6222
6223    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6224    // function that takes no arguments, not a function that takes a
6225    // single void argument.
6226    // We let through "const void" here because Sema::GetTypeForDeclarator
6227    // already checks for that case.
6228    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6229        FTI.ArgInfo[0].Param &&
6230        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6231      // Empty arg list, don't push any params.
6232      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6233    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6234      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6235        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6236        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6237        Param->setDeclContext(NewFD);
6238        Params.push_back(Param);
6239
6240        if (Param->isInvalidDecl())
6241          NewFD->setInvalidDecl();
6242      }
6243    }
6244
6245  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6246    // When we're declaring a function with a typedef, typeof, etc as in the
6247    // following example, we'll need to synthesize (unnamed)
6248    // parameters for use in the declaration.
6249    //
6250    // @code
6251    // typedef void fn(int);
6252    // fn f;
6253    // @endcode
6254
6255    // Synthesize a parameter for each argument type.
6256    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6257         AE = FT->arg_type_end(); AI != AE; ++AI) {
6258      ParmVarDecl *Param =
6259        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6260      Param->setScopeInfo(0, Params.size());
6261      Params.push_back(Param);
6262    }
6263  } else {
6264    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6265           "Should not need args for typedef of non-prototype fn");
6266  }
6267
6268  // Finally, we know we have the right number of parameters, install them.
6269  NewFD->setParams(Params);
6270
6271  // Find all anonymous symbols defined during the declaration of this function
6272  // and add to NewFD. This lets us track decls such 'enum Y' in:
6273  //
6274  //   void f(enum Y {AA} x) {}
6275  //
6276  // which would otherwise incorrectly end up in the translation unit scope.
6277  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6278  DeclsInPrototypeScope.clear();
6279
6280  if (D.getDeclSpec().isNoreturnSpecified())
6281    NewFD->addAttr(
6282        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6283                                       Context));
6284
6285  // Process the non-inheritable attributes on this declaration.
6286  ProcessDeclAttributes(S, NewFD, D,
6287                        /*NonInheritable=*/true, /*Inheritable=*/false);
6288
6289  // Functions returning a variably modified type violate C99 6.7.5.2p2
6290  // because all functions have linkage.
6291  if (!NewFD->isInvalidDecl() &&
6292      NewFD->getResultType()->isVariablyModifiedType()) {
6293    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6294    NewFD->setInvalidDecl();
6295  }
6296
6297  // Handle attributes.
6298  ProcessDeclAttributes(S, NewFD, D,
6299                        /*NonInheritable=*/false, /*Inheritable=*/true);
6300
6301  QualType RetType = NewFD->getResultType();
6302  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6303      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6304  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6305      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6306    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6307    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6308      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6309                                                        Context));
6310    }
6311  }
6312
6313  if (!getLangOpts().CPlusPlus) {
6314    // Perform semantic checking on the function declaration.
6315    bool isExplicitSpecialization=false;
6316    if (!NewFD->isInvalidDecl()) {
6317      if (NewFD->isMain())
6318        CheckMain(NewFD, D.getDeclSpec());
6319      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6320                                                  isExplicitSpecialization));
6321    }
6322    // Make graceful recovery from an invalid redeclaration.
6323    else if (!Previous.empty())
6324           D.setRedeclaration(true);
6325    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6326            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6327           "previous declaration set still overloaded");
6328  } else {
6329    // If the declarator is a template-id, translate the parser's template
6330    // argument list into our AST format.
6331    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6332      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6333      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6334      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6335      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6336                                         TemplateId->NumArgs);
6337      translateTemplateArguments(TemplateArgsPtr,
6338                                 TemplateArgs);
6339
6340      HasExplicitTemplateArgs = true;
6341
6342      if (NewFD->isInvalidDecl()) {
6343        HasExplicitTemplateArgs = false;
6344      } else if (FunctionTemplate) {
6345        // Function template with explicit template arguments.
6346        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6347          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6348
6349        HasExplicitTemplateArgs = false;
6350      } else if (!isFunctionTemplateSpecialization &&
6351                 !D.getDeclSpec().isFriendSpecified()) {
6352        // We have encountered something that the user meant to be a
6353        // specialization (because it has explicitly-specified template
6354        // arguments) but that was not introduced with a "template<>" (or had
6355        // too few of them).
6356        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6357          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6358          << FixItHint::CreateInsertion(
6359                                    D.getDeclSpec().getLocStart(),
6360                                        "template<> ");
6361        isFunctionTemplateSpecialization = true;
6362      } else {
6363        // "friend void foo<>(int);" is an implicit specialization decl.
6364        isFunctionTemplateSpecialization = true;
6365      }
6366    } else if (isFriend && isFunctionTemplateSpecialization) {
6367      // This combination is only possible in a recovery case;  the user
6368      // wrote something like:
6369      //   template <> friend void foo(int);
6370      // which we're recovering from as if the user had written:
6371      //   friend void foo<>(int);
6372      // Go ahead and fake up a template id.
6373      HasExplicitTemplateArgs = true;
6374        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6375      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6376    }
6377
6378    // If it's a friend (and only if it's a friend), it's possible
6379    // that either the specialized function type or the specialized
6380    // template is dependent, and therefore matching will fail.  In
6381    // this case, don't check the specialization yet.
6382    bool InstantiationDependent = false;
6383    if (isFunctionTemplateSpecialization && isFriend &&
6384        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6385         TemplateSpecializationType::anyDependentTemplateArguments(
6386            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6387            InstantiationDependent))) {
6388      assert(HasExplicitTemplateArgs &&
6389             "friend function specialization without template args");
6390      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6391                                                       Previous))
6392        NewFD->setInvalidDecl();
6393    } else if (isFunctionTemplateSpecialization) {
6394      if (CurContext->isDependentContext() && CurContext->isRecord()
6395          && !isFriend) {
6396        isDependentClassScopeExplicitSpecialization = true;
6397        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6398          diag::ext_function_specialization_in_class :
6399          diag::err_function_specialization_in_class)
6400          << NewFD->getDeclName();
6401      } else if (CheckFunctionTemplateSpecialization(NewFD,
6402                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6403                                                     Previous))
6404        NewFD->setInvalidDecl();
6405
6406      // C++ [dcl.stc]p1:
6407      //   A storage-class-specifier shall not be specified in an explicit
6408      //   specialization (14.7.3)
6409      if (SC != SC_None) {
6410        if (SC != NewFD->getTemplateSpecializationInfo()->getTemplate()->getTemplatedDecl()->getStorageClass())
6411          Diag(NewFD->getLocation(),
6412               diag::err_explicit_specialization_inconsistent_storage_class)
6413            << SC
6414            << FixItHint::CreateRemoval(
6415                                      D.getDeclSpec().getStorageClassSpecLoc());
6416
6417        else
6418          Diag(NewFD->getLocation(),
6419               diag::ext_explicit_specialization_storage_class)
6420            << FixItHint::CreateRemoval(
6421                                      D.getDeclSpec().getStorageClassSpecLoc());
6422      }
6423
6424    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6425      if (CheckMemberSpecialization(NewFD, Previous))
6426          NewFD->setInvalidDecl();
6427    }
6428
6429    // Perform semantic checking on the function declaration.
6430    if (!isDependentClassScopeExplicitSpecialization) {
6431      if (NewFD->isInvalidDecl()) {
6432        // If this is a class member, mark the class invalid immediately.
6433        // This avoids some consistency errors later.
6434        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6435          methodDecl->getParent()->setInvalidDecl();
6436      } else {
6437        if (NewFD->isMain())
6438          CheckMain(NewFD, D.getDeclSpec());
6439        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6440                                                    isExplicitSpecialization));
6441      }
6442    }
6443
6444    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6445            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6446           "previous declaration set still overloaded");
6447
6448    NamedDecl *PrincipalDecl = (FunctionTemplate
6449                                ? cast<NamedDecl>(FunctionTemplate)
6450                                : NewFD);
6451
6452    if (isFriend && D.isRedeclaration()) {
6453      AccessSpecifier Access = AS_public;
6454      if (!NewFD->isInvalidDecl())
6455        Access = NewFD->getPreviousDecl()->getAccess();
6456
6457      NewFD->setAccess(Access);
6458      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6459
6460      PrincipalDecl->setObjectOfFriendDecl(true);
6461    }
6462
6463    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6464        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6465      PrincipalDecl->setNonMemberOperator();
6466
6467    // If we have a function template, check the template parameter
6468    // list. This will check and merge default template arguments.
6469    if (FunctionTemplate) {
6470      FunctionTemplateDecl *PrevTemplate =
6471                                     FunctionTemplate->getPreviousDecl();
6472      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6473                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6474                            D.getDeclSpec().isFriendSpecified()
6475                              ? (D.isFunctionDefinition()
6476                                   ? TPC_FriendFunctionTemplateDefinition
6477                                   : TPC_FriendFunctionTemplate)
6478                              : (D.getCXXScopeSpec().isSet() &&
6479                                 DC && DC->isRecord() &&
6480                                 DC->isDependentContext())
6481                                  ? TPC_ClassTemplateMember
6482                                  : TPC_FunctionTemplate);
6483    }
6484
6485    if (NewFD->isInvalidDecl()) {
6486      // Ignore all the rest of this.
6487    } else if (!D.isRedeclaration()) {
6488      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6489                                       AddToScope };
6490      // Fake up an access specifier if it's supposed to be a class member.
6491      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6492        NewFD->setAccess(AS_public);
6493
6494      // Qualified decls generally require a previous declaration.
6495      if (D.getCXXScopeSpec().isSet()) {
6496        // ...with the major exception of templated-scope or
6497        // dependent-scope friend declarations.
6498
6499        // TODO: we currently also suppress this check in dependent
6500        // contexts because (1) the parameter depth will be off when
6501        // matching friend templates and (2) we might actually be
6502        // selecting a friend based on a dependent factor.  But there
6503        // are situations where these conditions don't apply and we
6504        // can actually do this check immediately.
6505        if (isFriend &&
6506            (TemplateParamLists.size() ||
6507             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6508             CurContext->isDependentContext())) {
6509          // ignore these
6510        } else {
6511          // The user tried to provide an out-of-line definition for a
6512          // function that is a member of a class or namespace, but there
6513          // was no such member function declared (C++ [class.mfct]p2,
6514          // C++ [namespace.memdef]p2). For example:
6515          //
6516          // class X {
6517          //   void f() const;
6518          // };
6519          //
6520          // void X::f() { } // ill-formed
6521          //
6522          // Complain about this problem, and attempt to suggest close
6523          // matches (e.g., those that differ only in cv-qualifiers and
6524          // whether the parameter types are references).
6525
6526          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6527                                                               NewFD,
6528                                                               ExtraArgs)) {
6529            AddToScope = ExtraArgs.AddToScope;
6530            return Result;
6531          }
6532        }
6533
6534        // Unqualified local friend declarations are required to resolve
6535        // to something.
6536      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6537        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6538                                                             NewFD,
6539                                                             ExtraArgs)) {
6540          AddToScope = ExtraArgs.AddToScope;
6541          return Result;
6542        }
6543      }
6544
6545    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6546               !isFriend && !isFunctionTemplateSpecialization &&
6547               !isExplicitSpecialization) {
6548      // An out-of-line member function declaration must also be a
6549      // definition (C++ [dcl.meaning]p1).
6550      // Note that this is not the case for explicit specializations of
6551      // function templates or member functions of class templates, per
6552      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6553      // extension for compatibility with old SWIG code which likes to
6554      // generate them.
6555      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6556        << D.getCXXScopeSpec().getRange();
6557    }
6558  }
6559
6560  ProcessPragmaWeak(S, NewFD);
6561  checkAttributesAfterMerging(*this, *NewFD);
6562
6563  AddKnownFunctionAttributes(NewFD);
6564
6565  if (NewFD->hasAttr<OverloadableAttr>() &&
6566      !NewFD->getType()->getAs<FunctionProtoType>()) {
6567    Diag(NewFD->getLocation(),
6568         diag::err_attribute_overloadable_no_prototype)
6569      << NewFD;
6570
6571    // Turn this into a variadic function with no parameters.
6572    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6573    FunctionProtoType::ExtProtoInfo EPI;
6574    EPI.Variadic = true;
6575    EPI.ExtInfo = FT->getExtInfo();
6576
6577    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
6578    NewFD->setType(R);
6579  }
6580
6581  // If there's a #pragma GCC visibility in scope, and this isn't a class
6582  // member, set the visibility of this function.
6583  if (!DC->isRecord() && NewFD->hasExternalLinkage())
6584    AddPushedVisibilityAttribute(NewFD);
6585
6586  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6587  // marking the function.
6588  AddCFAuditedAttribute(NewFD);
6589
6590  // If this is a locally-scoped extern C function, update the
6591  // map of such names.
6592  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6593      && !NewFD->isInvalidDecl())
6594    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6595
6596  // Set this FunctionDecl's range up to the right paren.
6597  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6598
6599  if (getLangOpts().CPlusPlus) {
6600    if (FunctionTemplate) {
6601      if (NewFD->isInvalidDecl())
6602        FunctionTemplate->setInvalidDecl();
6603      return FunctionTemplate;
6604    }
6605  }
6606
6607  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6608    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6609    if ((getLangOpts().OpenCLVersion >= 120)
6610        && (SC == SC_Static)) {
6611      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6612      D.setInvalidType();
6613    }
6614
6615    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6616    if (!NewFD->getResultType()->isVoidType()) {
6617      Diag(D.getIdentifierLoc(),
6618           diag::err_expected_kernel_void_return_type);
6619      D.setInvalidType();
6620    }
6621
6622    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6623         PE = NewFD->param_end(); PI != PE; ++PI) {
6624      ParmVarDecl *Param = *PI;
6625      QualType PT = Param->getType();
6626
6627      // OpenCL v1.2 s6.9.a:
6628      // A kernel function argument cannot be declared as a
6629      // pointer to a pointer type.
6630      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6631        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6632        D.setInvalidType();
6633      }
6634
6635      // OpenCL v1.2 s6.8 n:
6636      // A kernel function argument cannot be declared
6637      // of event_t type.
6638      if (PT->isEventT()) {
6639        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6640        D.setInvalidType();
6641      }
6642    }
6643  }
6644
6645  MarkUnusedFileScopedDecl(NewFD);
6646
6647  if (getLangOpts().CUDA)
6648    if (IdentifierInfo *II = NewFD->getIdentifier())
6649      if (!NewFD->isInvalidDecl() &&
6650          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6651        if (II->isStr("cudaConfigureCall")) {
6652          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6653            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6654
6655          Context.setcudaConfigureCallDecl(NewFD);
6656        }
6657      }
6658
6659  // Here we have an function template explicit specialization at class scope.
6660  // The actually specialization will be postponed to template instatiation
6661  // time via the ClassScopeFunctionSpecializationDecl node.
6662  if (isDependentClassScopeExplicitSpecialization) {
6663    ClassScopeFunctionSpecializationDecl *NewSpec =
6664                         ClassScopeFunctionSpecializationDecl::Create(
6665                                Context, CurContext, SourceLocation(),
6666                                cast<CXXMethodDecl>(NewFD),
6667                                HasExplicitTemplateArgs, TemplateArgs);
6668    CurContext->addDecl(NewSpec);
6669    AddToScope = false;
6670  }
6671
6672  return NewFD;
6673}
6674
6675/// \brief Perform semantic checking of a new function declaration.
6676///
6677/// Performs semantic analysis of the new function declaration
6678/// NewFD. This routine performs all semantic checking that does not
6679/// require the actual declarator involved in the declaration, and is
6680/// used both for the declaration of functions as they are parsed
6681/// (called via ActOnDeclarator) and for the declaration of functions
6682/// that have been instantiated via C++ template instantiation (called
6683/// via InstantiateDecl).
6684///
6685/// \param IsExplicitSpecialization whether this new function declaration is
6686/// an explicit specialization of the previous declaration.
6687///
6688/// This sets NewFD->isInvalidDecl() to true if there was an error.
6689///
6690/// \returns true if the function declaration is a redeclaration.
6691bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6692                                    LookupResult &Previous,
6693                                    bool IsExplicitSpecialization) {
6694  assert(!NewFD->getResultType()->isVariablyModifiedType()
6695         && "Variably modified return types are not handled here");
6696
6697  // Check for a previous declaration of this name.
6698  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6699    // Since we did not find anything by this name, look for a non-visible
6700    // extern "C" declaration with the same name.
6701    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6702      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6703    if (Pos != LocallyScopedExternCDecls.end())
6704      Previous.addDecl(Pos->second);
6705  }
6706
6707  // Filter out any non-conflicting previous declarations.
6708  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6709
6710  bool Redeclaration = false;
6711  NamedDecl *OldDecl = 0;
6712
6713  // Merge or overload the declaration with an existing declaration of
6714  // the same name, if appropriate.
6715  if (!Previous.empty()) {
6716    // Determine whether NewFD is an overload of PrevDecl or
6717    // a declaration that requires merging. If it's an overload,
6718    // there's no more work to do here; we'll just add the new
6719    // function to the scope.
6720    if (!AllowOverloadingOfFunction(Previous, Context)) {
6721      NamedDecl *Candidate = Previous.getFoundDecl();
6722      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
6723        Redeclaration = true;
6724        OldDecl = Candidate;
6725      }
6726    } else {
6727      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6728                            /*NewIsUsingDecl*/ false)) {
6729      case Ovl_Match:
6730        Redeclaration = true;
6731        break;
6732
6733      case Ovl_NonFunction:
6734        Redeclaration = true;
6735        break;
6736
6737      case Ovl_Overload:
6738        Redeclaration = false;
6739        break;
6740      }
6741
6742      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6743        // If a function name is overloadable in C, then every function
6744        // with that name must be marked "overloadable".
6745        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6746          << Redeclaration << NewFD;
6747        NamedDecl *OverloadedDecl = 0;
6748        if (Redeclaration)
6749          OverloadedDecl = OldDecl;
6750        else if (!Previous.empty())
6751          OverloadedDecl = Previous.getRepresentativeDecl();
6752        if (OverloadedDecl)
6753          Diag(OverloadedDecl->getLocation(),
6754               diag::note_attribute_overloadable_prev_overload);
6755        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6756                                                        Context));
6757      }
6758    }
6759  }
6760
6761  // C++11 [dcl.constexpr]p8:
6762  //   A constexpr specifier for a non-static member function that is not
6763  //   a constructor declares that member function to be const.
6764  //
6765  // This needs to be delayed until we know whether this is an out-of-line
6766  // definition of a static member function.
6767  //
6768  // This rule is not present in C++1y, so we produce a backwards
6769  // compatibility warning whenever it happens in C++11.
6770  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6771  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
6772      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
6773      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6774    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6775    if (FunctionTemplateDecl *OldTD =
6776          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6777      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6778    if (!OldMD || !OldMD->isStatic()) {
6779      const FunctionProtoType *FPT =
6780        MD->getType()->castAs<FunctionProtoType>();
6781      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6782      EPI.TypeQuals |= Qualifiers::Const;
6783      MD->setType(Context.getFunctionType(FPT->getResultType(),
6784                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6785                                                         FPT->getNumArgs()),
6786                                          EPI));
6787
6788      // Warn that we did this, if we're not performing template instantiation.
6789      // In that case, we'll have warned already when the template was defined.
6790      if (ActiveTemplateInstantiations.empty()) {
6791        SourceLocation AddConstLoc;
6792        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
6793                .IgnoreParens().getAs<FunctionTypeLoc>())
6794          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
6795
6796        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
6797          << FixItHint::CreateInsertion(AddConstLoc, " const");
6798      }
6799    }
6800  }
6801
6802  if (Redeclaration) {
6803    // NewFD and OldDecl represent declarations that need to be
6804    // merged.
6805    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6806      NewFD->setInvalidDecl();
6807      return Redeclaration;
6808    }
6809
6810    Previous.clear();
6811    Previous.addDecl(OldDecl);
6812
6813    if (FunctionTemplateDecl *OldTemplateDecl
6814                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6815      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6816      FunctionTemplateDecl *NewTemplateDecl
6817        = NewFD->getDescribedFunctionTemplate();
6818      assert(NewTemplateDecl && "Template/non-template mismatch");
6819      if (CXXMethodDecl *Method
6820            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6821        Method->setAccess(OldTemplateDecl->getAccess());
6822        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6823      }
6824
6825      // If this is an explicit specialization of a member that is a function
6826      // template, mark it as a member specialization.
6827      if (IsExplicitSpecialization &&
6828          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6829        NewTemplateDecl->setMemberSpecialization();
6830        assert(OldTemplateDecl->isMemberSpecialization());
6831      }
6832
6833    } else {
6834      // This needs to happen first so that 'inline' propagates.
6835      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6836
6837      if (isa<CXXMethodDecl>(NewFD)) {
6838        // A valid redeclaration of a C++ method must be out-of-line,
6839        // but (unfortunately) it's not necessarily a definition
6840        // because of templates, which means that the previous
6841        // declaration is not necessarily from the class definition.
6842
6843        // For just setting the access, that doesn't matter.
6844        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6845        NewFD->setAccess(oldMethod->getAccess());
6846
6847        // Update the key-function state if necessary for this ABI.
6848        if (NewFD->isInlined() &&
6849            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6850          // setNonKeyFunction needs to work with the original
6851          // declaration from the class definition, and isVirtual() is
6852          // just faster in that case, so map back to that now.
6853          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6854          if (oldMethod->isVirtual()) {
6855            Context.setNonKeyFunction(oldMethod);
6856          }
6857        }
6858      }
6859    }
6860  }
6861
6862  // Semantic checking for this function declaration (in isolation).
6863  if (getLangOpts().CPlusPlus) {
6864    // C++-specific checks.
6865    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6866      CheckConstructor(Constructor);
6867    } else if (CXXDestructorDecl *Destructor =
6868                dyn_cast<CXXDestructorDecl>(NewFD)) {
6869      CXXRecordDecl *Record = Destructor->getParent();
6870      QualType ClassType = Context.getTypeDeclType(Record);
6871
6872      // FIXME: Shouldn't we be able to perform this check even when the class
6873      // type is dependent? Both gcc and edg can handle that.
6874      if (!ClassType->isDependentType()) {
6875        DeclarationName Name
6876          = Context.DeclarationNames.getCXXDestructorName(
6877                                        Context.getCanonicalType(ClassType));
6878        if (NewFD->getDeclName() != Name) {
6879          Diag(NewFD->getLocation(), diag::err_destructor_name);
6880          NewFD->setInvalidDecl();
6881          return Redeclaration;
6882        }
6883      }
6884    } else if (CXXConversionDecl *Conversion
6885               = dyn_cast<CXXConversionDecl>(NewFD)) {
6886      ActOnConversionDeclarator(Conversion);
6887    }
6888
6889    // Find any virtual functions that this function overrides.
6890    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6891      if (!Method->isFunctionTemplateSpecialization() &&
6892          !Method->getDescribedFunctionTemplate() &&
6893          Method->isCanonicalDecl()) {
6894        if (AddOverriddenMethods(Method->getParent(), Method)) {
6895          // If the function was marked as "static", we have a problem.
6896          if (NewFD->getStorageClass() == SC_Static) {
6897            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6898          }
6899        }
6900      }
6901
6902      if (Method->isStatic())
6903        checkThisInStaticMemberFunctionType(Method);
6904    }
6905
6906    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6907    if (NewFD->isOverloadedOperator() &&
6908        CheckOverloadedOperatorDeclaration(NewFD)) {
6909      NewFD->setInvalidDecl();
6910      return Redeclaration;
6911    }
6912
6913    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6914    if (NewFD->getLiteralIdentifier() &&
6915        CheckLiteralOperatorDeclaration(NewFD)) {
6916      NewFD->setInvalidDecl();
6917      return Redeclaration;
6918    }
6919
6920    // In C++, check default arguments now that we have merged decls. Unless
6921    // the lexical context is the class, because in this case this is done
6922    // during delayed parsing anyway.
6923    if (!CurContext->isRecord())
6924      CheckCXXDefaultArguments(NewFD);
6925
6926    // If this function declares a builtin function, check the type of this
6927    // declaration against the expected type for the builtin.
6928    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6929      ASTContext::GetBuiltinTypeError Error;
6930      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6931      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6932      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6933        // The type of this function differs from the type of the builtin,
6934        // so forget about the builtin entirely.
6935        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6936      }
6937    }
6938
6939    // If this function is declared as being extern "C", then check to see if
6940    // the function returns a UDT (class, struct, or union type) that is not C
6941    // compatible, and if it does, warn the user.
6942    // But, issue any diagnostic on the first declaration only.
6943    if (NewFD->isExternC() && Previous.empty()) {
6944      QualType R = NewFD->getResultType();
6945      if (R->isIncompleteType() && !R->isVoidType())
6946        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6947            << NewFD << R;
6948      else if (!R.isPODType(Context) && !R->isVoidType() &&
6949               !R->isObjCObjectPointerType())
6950        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6951    }
6952  }
6953  return Redeclaration;
6954}
6955
6956static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6957  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6958  if (!TSI)
6959    return SourceRange();
6960
6961  TypeLoc TL = TSI->getTypeLoc();
6962  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6963  if (!FunctionTL)
6964    return SourceRange();
6965
6966  TypeLoc ResultTL = FunctionTL.getResultLoc();
6967  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6968    return ResultTL.getSourceRange();
6969
6970  return SourceRange();
6971}
6972
6973void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6974  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6975  //   static or constexpr is ill-formed.
6976  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6977  //   appear in a declaration of main.
6978  // static main is not an error under C99, but we should warn about it.
6979  // We accept _Noreturn main as an extension.
6980  if (FD->getStorageClass() == SC_Static)
6981    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6982         ? diag::err_static_main : diag::warn_static_main)
6983      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6984  if (FD->isInlineSpecified())
6985    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6986      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6987  if (DS.isNoreturnSpecified()) {
6988    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6989    SourceRange NoreturnRange(NoreturnLoc,
6990                              PP.getLocForEndOfToken(NoreturnLoc));
6991    Diag(NoreturnLoc, diag::ext_noreturn_main);
6992    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6993      << FixItHint::CreateRemoval(NoreturnRange);
6994  }
6995  if (FD->isConstexpr()) {
6996    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6997      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6998    FD->setConstexpr(false);
6999  }
7000
7001  QualType T = FD->getType();
7002  assert(T->isFunctionType() && "function decl is not of function type");
7003  const FunctionType* FT = T->castAs<FunctionType>();
7004
7005  // All the standards say that main() should should return 'int'.
7006  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7007    // In C and C++, main magically returns 0 if you fall off the end;
7008    // set the flag which tells us that.
7009    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7010    FD->setHasImplicitReturnZero(true);
7011
7012  // In C with GNU extensions we allow main() to have non-integer return
7013  // type, but we should warn about the extension, and we disable the
7014  // implicit-return-zero rule.
7015  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7016    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7017
7018    SourceRange ResultRange = getResultSourceRange(FD);
7019    if (ResultRange.isValid())
7020      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7021          << FixItHint::CreateReplacement(ResultRange, "int");
7022
7023  // Otherwise, this is just a flat-out error.
7024  } else {
7025    SourceRange ResultRange = getResultSourceRange(FD);
7026    if (ResultRange.isValid())
7027      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7028          << FixItHint::CreateReplacement(ResultRange, "int");
7029    else
7030      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7031
7032    FD->setInvalidDecl(true);
7033  }
7034
7035  // Treat protoless main() as nullary.
7036  if (isa<FunctionNoProtoType>(FT)) return;
7037
7038  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7039  unsigned nparams = FTP->getNumArgs();
7040  assert(FD->getNumParams() == nparams);
7041
7042  bool HasExtraParameters = (nparams > 3);
7043
7044  // Darwin passes an undocumented fourth argument of type char**.  If
7045  // other platforms start sprouting these, the logic below will start
7046  // getting shifty.
7047  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7048    HasExtraParameters = false;
7049
7050  if (HasExtraParameters) {
7051    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7052    FD->setInvalidDecl(true);
7053    nparams = 3;
7054  }
7055
7056  // FIXME: a lot of the following diagnostics would be improved
7057  // if we had some location information about types.
7058
7059  QualType CharPP =
7060    Context.getPointerType(Context.getPointerType(Context.CharTy));
7061  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7062
7063  for (unsigned i = 0; i < nparams; ++i) {
7064    QualType AT = FTP->getArgType(i);
7065
7066    bool mismatch = true;
7067
7068    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7069      mismatch = false;
7070    else if (Expected[i] == CharPP) {
7071      // As an extension, the following forms are okay:
7072      //   char const **
7073      //   char const * const *
7074      //   char * const *
7075
7076      QualifierCollector qs;
7077      const PointerType* PT;
7078      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7079          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7080          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7081                              Context.CharTy)) {
7082        qs.removeConst();
7083        mismatch = !qs.empty();
7084      }
7085    }
7086
7087    if (mismatch) {
7088      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7089      // TODO: suggest replacing given type with expected type
7090      FD->setInvalidDecl(true);
7091    }
7092  }
7093
7094  if (nparams == 1 && !FD->isInvalidDecl()) {
7095    Diag(FD->getLocation(), diag::warn_main_one_arg);
7096  }
7097
7098  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7099    Diag(FD->getLocation(), diag::err_main_template_decl);
7100    FD->setInvalidDecl();
7101  }
7102}
7103
7104bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7105  // FIXME: Need strict checking.  In C89, we need to check for
7106  // any assignment, increment, decrement, function-calls, or
7107  // commas outside of a sizeof.  In C99, it's the same list,
7108  // except that the aforementioned are allowed in unevaluated
7109  // expressions.  Everything else falls under the
7110  // "may accept other forms of constant expressions" exception.
7111  // (We never end up here for C++, so the constant expression
7112  // rules there don't matter.)
7113  if (Init->isConstantInitializer(Context, false))
7114    return false;
7115  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7116    << Init->getSourceRange();
7117  return true;
7118}
7119
7120namespace {
7121  // Visits an initialization expression to see if OrigDecl is evaluated in
7122  // its own initialization and throws a warning if it does.
7123  class SelfReferenceChecker
7124      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7125    Sema &S;
7126    Decl *OrigDecl;
7127    bool isRecordType;
7128    bool isPODType;
7129    bool isReferenceType;
7130
7131  public:
7132    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7133
7134    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7135                                                    S(S), OrigDecl(OrigDecl) {
7136      isPODType = false;
7137      isRecordType = false;
7138      isReferenceType = false;
7139      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7140        isPODType = VD->getType().isPODType(S.Context);
7141        isRecordType = VD->getType()->isRecordType();
7142        isReferenceType = VD->getType()->isReferenceType();
7143      }
7144    }
7145
7146    // For most expressions, the cast is directly above the DeclRefExpr.
7147    // For conditional operators, the cast can be outside the conditional
7148    // operator if both expressions are DeclRefExpr's.
7149    void HandleValue(Expr *E) {
7150      if (isReferenceType)
7151        return;
7152      E = E->IgnoreParenImpCasts();
7153      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7154        HandleDeclRefExpr(DRE);
7155        return;
7156      }
7157
7158      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7159        HandleValue(CO->getTrueExpr());
7160        HandleValue(CO->getFalseExpr());
7161        return;
7162      }
7163
7164      if (isa<MemberExpr>(E)) {
7165        Expr *Base = E->IgnoreParenImpCasts();
7166        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7167          // Check for static member variables and don't warn on them.
7168          if (!isa<FieldDecl>(ME->getMemberDecl()))
7169            return;
7170          Base = ME->getBase()->IgnoreParenImpCasts();
7171        }
7172        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7173          HandleDeclRefExpr(DRE);
7174        return;
7175      }
7176    }
7177
7178    // Reference types are handled here since all uses of references are
7179    // bad, not just r-value uses.
7180    void VisitDeclRefExpr(DeclRefExpr *E) {
7181      if (isReferenceType)
7182        HandleDeclRefExpr(E);
7183    }
7184
7185    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7186      if (E->getCastKind() == CK_LValueToRValue ||
7187          (isRecordType && E->getCastKind() == CK_NoOp))
7188        HandleValue(E->getSubExpr());
7189
7190      Inherited::VisitImplicitCastExpr(E);
7191    }
7192
7193    void VisitMemberExpr(MemberExpr *E) {
7194      // Don't warn on arrays since they can be treated as pointers.
7195      if (E->getType()->canDecayToPointerType()) return;
7196
7197      // Warn when a non-static method call is followed by non-static member
7198      // field accesses, which is followed by a DeclRefExpr.
7199      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7200      bool Warn = (MD && !MD->isStatic());
7201      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7202      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7203        if (!isa<FieldDecl>(ME->getMemberDecl()))
7204          Warn = false;
7205        Base = ME->getBase()->IgnoreParenImpCasts();
7206      }
7207
7208      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7209        if (Warn)
7210          HandleDeclRefExpr(DRE);
7211        return;
7212      }
7213
7214      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7215      // Visit that expression.
7216      Visit(Base);
7217    }
7218
7219    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7220      if (E->getNumArgs() > 0)
7221        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7222          HandleDeclRefExpr(DRE);
7223
7224      Inherited::VisitCXXOperatorCallExpr(E);
7225    }
7226
7227    void VisitUnaryOperator(UnaryOperator *E) {
7228      // For POD record types, addresses of its own members are well-defined.
7229      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7230          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7231        if (!isPODType)
7232          HandleValue(E->getSubExpr());
7233        return;
7234      }
7235      Inherited::VisitUnaryOperator(E);
7236    }
7237
7238    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7239
7240    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7241      Decl* ReferenceDecl = DRE->getDecl();
7242      if (OrigDecl != ReferenceDecl) return;
7243      unsigned diag;
7244      if (isReferenceType) {
7245        diag = diag::warn_uninit_self_reference_in_reference_init;
7246      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7247        diag = diag::warn_static_self_reference_in_init;
7248      } else {
7249        diag = diag::warn_uninit_self_reference_in_init;
7250      }
7251
7252      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7253                            S.PDiag(diag)
7254                              << DRE->getNameInfo().getName()
7255                              << OrigDecl->getLocation()
7256                              << DRE->getSourceRange());
7257    }
7258  };
7259
7260  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7261  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7262                                 bool DirectInit) {
7263    // Parameters arguments are occassionially constructed with itself,
7264    // for instance, in recursive functions.  Skip them.
7265    if (isa<ParmVarDecl>(OrigDecl))
7266      return;
7267
7268    E = E->IgnoreParens();
7269
7270    // Skip checking T a = a where T is not a record or reference type.
7271    // Doing so is a way to silence uninitialized warnings.
7272    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7273      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7274        if (ICE->getCastKind() == CK_LValueToRValue)
7275          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7276            if (DRE->getDecl() == OrigDecl)
7277              return;
7278
7279    SelfReferenceChecker(S, OrigDecl).Visit(E);
7280  }
7281}
7282
7283/// AddInitializerToDecl - Adds the initializer Init to the
7284/// declaration dcl. If DirectInit is true, this is C++ direct
7285/// initialization rather than copy initialization.
7286void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7287                                bool DirectInit, bool TypeMayContainAuto) {
7288  // If there is no declaration, there was an error parsing it.  Just ignore
7289  // the initializer.
7290  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7291    return;
7292
7293  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7294    // With declarators parsed the way they are, the parser cannot
7295    // distinguish between a normal initializer and a pure-specifier.
7296    // Thus this grotesque test.
7297    IntegerLiteral *IL;
7298    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7299        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7300      CheckPureMethod(Method, Init->getSourceRange());
7301    else {
7302      Diag(Method->getLocation(), diag::err_member_function_initialization)
7303        << Method->getDeclName() << Init->getSourceRange();
7304      Method->setInvalidDecl();
7305    }
7306    return;
7307  }
7308
7309  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7310  if (!VDecl) {
7311    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7312    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7313    RealDecl->setInvalidDecl();
7314    return;
7315  }
7316
7317  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7318
7319  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7320  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7321    Expr *DeduceInit = Init;
7322    // Initializer could be a C++ direct-initializer. Deduction only works if it
7323    // contains exactly one expression.
7324    if (CXXDirectInit) {
7325      if (CXXDirectInit->getNumExprs() == 0) {
7326        // It isn't possible to write this directly, but it is possible to
7327        // end up in this situation with "auto x(some_pack...);"
7328        Diag(CXXDirectInit->getLocStart(),
7329             diag::err_auto_var_init_no_expression)
7330          << VDecl->getDeclName() << VDecl->getType()
7331          << VDecl->getSourceRange();
7332        RealDecl->setInvalidDecl();
7333        return;
7334      } else if (CXXDirectInit->getNumExprs() > 1) {
7335        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7336             diag::err_auto_var_init_multiple_expressions)
7337          << VDecl->getDeclName() << VDecl->getType()
7338          << VDecl->getSourceRange();
7339        RealDecl->setInvalidDecl();
7340        return;
7341      } else {
7342        DeduceInit = CXXDirectInit->getExpr(0);
7343      }
7344    }
7345
7346    // Expressions default to 'id' when we're in a debugger.
7347    bool DefaultedToAuto = false;
7348    if (getLangOpts().DebuggerCastResultToId &&
7349        Init->getType() == Context.UnknownAnyTy) {
7350      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7351      if (Result.isInvalid()) {
7352        VDecl->setInvalidDecl();
7353        return;
7354      }
7355      Init = Result.take();
7356      DefaultedToAuto = true;
7357    }
7358
7359    QualType DeducedType;
7360    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7361            DAR_Failed)
7362      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7363    if (DeducedType.isNull()) {
7364      RealDecl->setInvalidDecl();
7365      return;
7366    }
7367    VDecl->setType(DeducedType);
7368    assert(VDecl->isLinkageValid());
7369
7370    // In ARC, infer lifetime.
7371    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7372      VDecl->setInvalidDecl();
7373
7374    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7375    // 'id' instead of a specific object type prevents most of our usual checks.
7376    // We only want to warn outside of template instantiations, though:
7377    // inside a template, the 'id' could have come from a parameter.
7378    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7379        DeducedType->isObjCIdType()) {
7380      SourceLocation Loc =
7381          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7382      Diag(Loc, diag::warn_auto_var_is_id)
7383        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7384    }
7385
7386    // If this is a redeclaration, check that the type we just deduced matches
7387    // the previously declared type.
7388    if (VarDecl *Old = VDecl->getPreviousDecl())
7389      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7390
7391    // Check the deduced type is valid for a variable declaration.
7392    CheckVariableDeclarationType(VDecl);
7393    if (VDecl->isInvalidDecl())
7394      return;
7395  }
7396
7397  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7398    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7399    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7400    VDecl->setInvalidDecl();
7401    return;
7402  }
7403
7404  if (!VDecl->getType()->isDependentType()) {
7405    // A definition must end up with a complete type, which means it must be
7406    // complete with the restriction that an array type might be completed by
7407    // the initializer; note that later code assumes this restriction.
7408    QualType BaseDeclType = VDecl->getType();
7409    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7410      BaseDeclType = Array->getElementType();
7411    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7412                            diag::err_typecheck_decl_incomplete_type)) {
7413      RealDecl->setInvalidDecl();
7414      return;
7415    }
7416
7417    // The variable can not have an abstract class type.
7418    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7419                               diag::err_abstract_type_in_decl,
7420                               AbstractVariableType))
7421      VDecl->setInvalidDecl();
7422  }
7423
7424  const VarDecl *Def;
7425  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7426    Diag(VDecl->getLocation(), diag::err_redefinition)
7427      << VDecl->getDeclName();
7428    Diag(Def->getLocation(), diag::note_previous_definition);
7429    VDecl->setInvalidDecl();
7430    return;
7431  }
7432
7433  const VarDecl* PrevInit = 0;
7434  if (getLangOpts().CPlusPlus) {
7435    // C++ [class.static.data]p4
7436    //   If a static data member is of const integral or const
7437    //   enumeration type, its declaration in the class definition can
7438    //   specify a constant-initializer which shall be an integral
7439    //   constant expression (5.19). In that case, the member can appear
7440    //   in integral constant expressions. The member shall still be
7441    //   defined in a namespace scope if it is used in the program and the
7442    //   namespace scope definition shall not contain an initializer.
7443    //
7444    // We already performed a redefinition check above, but for static
7445    // data members we also need to check whether there was an in-class
7446    // declaration with an initializer.
7447    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7448      Diag(VDecl->getLocation(), diag::err_redefinition)
7449        << VDecl->getDeclName();
7450      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7451      return;
7452    }
7453
7454    if (VDecl->hasLocalStorage())
7455      getCurFunction()->setHasBranchProtectedScope();
7456
7457    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7458      VDecl->setInvalidDecl();
7459      return;
7460    }
7461  }
7462
7463  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7464  // a kernel function cannot be initialized."
7465  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7466    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7467    VDecl->setInvalidDecl();
7468    return;
7469  }
7470
7471  // Get the decls type and save a reference for later, since
7472  // CheckInitializerTypes may change it.
7473  QualType DclT = VDecl->getType(), SavT = DclT;
7474
7475  // Expressions default to 'id' when we're in a debugger
7476  // and we are assigning it to a variable of Objective-C pointer type.
7477  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7478      Init->getType() == Context.UnknownAnyTy) {
7479    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7480    if (Result.isInvalid()) {
7481      VDecl->setInvalidDecl();
7482      return;
7483    }
7484    Init = Result.take();
7485  }
7486
7487  // Perform the initialization.
7488  if (!VDecl->isInvalidDecl()) {
7489    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7490    InitializationKind Kind
7491      = DirectInit ?
7492          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7493                                                           Init->getLocStart(),
7494                                                           Init->getLocEnd())
7495                        : InitializationKind::CreateDirectList(
7496                                                          VDecl->getLocation())
7497                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7498                                                    Init->getLocStart());
7499
7500    MultiExprArg Args = Init;
7501    if (CXXDirectInit)
7502      Args = MultiExprArg(CXXDirectInit->getExprs(),
7503                          CXXDirectInit->getNumExprs());
7504
7505    InitializationSequence InitSeq(*this, Entity, Kind, Args);
7506    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
7507    if (Result.isInvalid()) {
7508      VDecl->setInvalidDecl();
7509      return;
7510    }
7511
7512    Init = Result.takeAs<Expr>();
7513  }
7514
7515  // Check for self-references within variable initializers.
7516  // Variables declared within a function/method body (except for references)
7517  // are handled by a dataflow analysis.
7518  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7519      VDecl->getType()->isReferenceType()) {
7520    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7521  }
7522
7523  // If the type changed, it means we had an incomplete type that was
7524  // completed by the initializer. For example:
7525  //   int ary[] = { 1, 3, 5 };
7526  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7527  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7528    VDecl->setType(DclT);
7529
7530  if (!VDecl->isInvalidDecl()) {
7531    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7532
7533    if (VDecl->hasAttr<BlocksAttr>())
7534      checkRetainCycles(VDecl, Init);
7535
7536    // It is safe to assign a weak reference into a strong variable.
7537    // Although this code can still have problems:
7538    //   id x = self.weakProp;
7539    //   id y = self.weakProp;
7540    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7541    // paths through the function. This should be revisited if
7542    // -Wrepeated-use-of-weak is made flow-sensitive.
7543    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7544      DiagnosticsEngine::Level Level =
7545        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7546                                 Init->getLocStart());
7547      if (Level != DiagnosticsEngine::Ignored)
7548        getCurFunction()->markSafeWeakUse(Init);
7549    }
7550  }
7551
7552  // The initialization is usually a full-expression.
7553  //
7554  // FIXME: If this is a braced initialization of an aggregate, it is not
7555  // an expression, and each individual field initializer is a separate
7556  // full-expression. For instance, in:
7557  //
7558  //   struct Temp { ~Temp(); };
7559  //   struct S { S(Temp); };
7560  //   struct T { S a, b; } t = { Temp(), Temp() }
7561  //
7562  // we should destroy the first Temp before constructing the second.
7563  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7564                                          false,
7565                                          VDecl->isConstexpr());
7566  if (Result.isInvalid()) {
7567    VDecl->setInvalidDecl();
7568    return;
7569  }
7570  Init = Result.take();
7571
7572  // Attach the initializer to the decl.
7573  VDecl->setInit(Init);
7574
7575  if (VDecl->isLocalVarDecl()) {
7576    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7577    // static storage duration shall be constant expressions or string literals.
7578    // C++ does not have this restriction.
7579    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7580        VDecl->getStorageClass() == SC_Static)
7581      CheckForConstantInitializer(Init, DclT);
7582  } else if (VDecl->isStaticDataMember() &&
7583             VDecl->getLexicalDeclContext()->isRecord()) {
7584    // This is an in-class initialization for a static data member, e.g.,
7585    //
7586    // struct S {
7587    //   static const int value = 17;
7588    // };
7589
7590    // C++ [class.mem]p4:
7591    //   A member-declarator can contain a constant-initializer only
7592    //   if it declares a static member (9.4) of const integral or
7593    //   const enumeration type, see 9.4.2.
7594    //
7595    // C++11 [class.static.data]p3:
7596    //   If a non-volatile const static data member is of integral or
7597    //   enumeration type, its declaration in the class definition can
7598    //   specify a brace-or-equal-initializer in which every initalizer-clause
7599    //   that is an assignment-expression is a constant expression. A static
7600    //   data member of literal type can be declared in the class definition
7601    //   with the constexpr specifier; if so, its declaration shall specify a
7602    //   brace-or-equal-initializer in which every initializer-clause that is
7603    //   an assignment-expression is a constant expression.
7604
7605    // Do nothing on dependent types.
7606    if (DclT->isDependentType()) {
7607
7608    // Allow any 'static constexpr' members, whether or not they are of literal
7609    // type. We separately check that every constexpr variable is of literal
7610    // type.
7611    } else if (VDecl->isConstexpr()) {
7612
7613    // Require constness.
7614    } else if (!DclT.isConstQualified()) {
7615      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7616        << Init->getSourceRange();
7617      VDecl->setInvalidDecl();
7618
7619    // We allow integer constant expressions in all cases.
7620    } else if (DclT->isIntegralOrEnumerationType()) {
7621      // Check whether the expression is a constant expression.
7622      SourceLocation Loc;
7623      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7624        // In C++11, a non-constexpr const static data member with an
7625        // in-class initializer cannot be volatile.
7626        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7627      else if (Init->isValueDependent())
7628        ; // Nothing to check.
7629      else if (Init->isIntegerConstantExpr(Context, &Loc))
7630        ; // Ok, it's an ICE!
7631      else if (Init->isEvaluatable(Context)) {
7632        // If we can constant fold the initializer through heroics, accept it,
7633        // but report this as a use of an extension for -pedantic.
7634        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7635          << Init->getSourceRange();
7636      } else {
7637        // Otherwise, this is some crazy unknown case.  Report the issue at the
7638        // location provided by the isIntegerConstantExpr failed check.
7639        Diag(Loc, diag::err_in_class_initializer_non_constant)
7640          << Init->getSourceRange();
7641        VDecl->setInvalidDecl();
7642      }
7643
7644    // We allow foldable floating-point constants as an extension.
7645    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7646      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7647      // it anyway and provide a fixit to add the 'constexpr'.
7648      if (getLangOpts().CPlusPlus11) {
7649        Diag(VDecl->getLocation(),
7650             diag::ext_in_class_initializer_float_type_cxx11)
7651            << DclT << Init->getSourceRange();
7652        Diag(VDecl->getLocStart(),
7653             diag::note_in_class_initializer_float_type_cxx11)
7654            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7655      } else {
7656        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7657          << DclT << Init->getSourceRange();
7658
7659        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7660          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7661            << Init->getSourceRange();
7662          VDecl->setInvalidDecl();
7663        }
7664      }
7665
7666    // Suggest adding 'constexpr' in C++11 for literal types.
7667    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
7668      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7669        << DclT << Init->getSourceRange()
7670        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7671      VDecl->setConstexpr(true);
7672
7673    } else {
7674      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7675        << DclT << Init->getSourceRange();
7676      VDecl->setInvalidDecl();
7677    }
7678  } else if (VDecl->isFileVarDecl()) {
7679    if (VDecl->getStorageClass() == SC_Extern &&
7680        (!getLangOpts().CPlusPlus ||
7681         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7682           VDecl->isExternC())))
7683      Diag(VDecl->getLocation(), diag::warn_extern_init);
7684
7685    // C99 6.7.8p4. All file scoped initializers need to be constant.
7686    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7687      CheckForConstantInitializer(Init, DclT);
7688    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
7689             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
7690             !Init->isValueDependent() && !VDecl->isConstexpr() &&
7691             !Init->isConstantInitializer(
7692                 Context, VDecl->getType()->isReferenceType())) {
7693      // GNU C++98 edits for __thread, [basic.start.init]p4:
7694      //   An object of thread storage duration shall not require dynamic
7695      //   initialization.
7696      // FIXME: Need strict checking here.
7697      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
7698      if (getLangOpts().CPlusPlus11)
7699        Diag(VDecl->getLocation(), diag::note_use_thread_local);
7700    }
7701  }
7702
7703  // We will represent direct-initialization similarly to copy-initialization:
7704  //    int x(1);  -as-> int x = 1;
7705  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7706  //
7707  // Clients that want to distinguish between the two forms, can check for
7708  // direct initializer using VarDecl::getInitStyle().
7709  // A major benefit is that clients that don't particularly care about which
7710  // exactly form was it (like the CodeGen) can handle both cases without
7711  // special case code.
7712
7713  // C++ 8.5p11:
7714  // The form of initialization (using parentheses or '=') is generally
7715  // insignificant, but does matter when the entity being initialized has a
7716  // class type.
7717  if (CXXDirectInit) {
7718    assert(DirectInit && "Call-style initializer must be direct init.");
7719    VDecl->setInitStyle(VarDecl::CallInit);
7720  } else if (DirectInit) {
7721    // This must be list-initialization. No other way is direct-initialization.
7722    VDecl->setInitStyle(VarDecl::ListInit);
7723  }
7724
7725  CheckCompleteVariableDeclaration(VDecl);
7726}
7727
7728/// ActOnInitializerError - Given that there was an error parsing an
7729/// initializer for the given declaration, try to return to some form
7730/// of sanity.
7731void Sema::ActOnInitializerError(Decl *D) {
7732  // Our main concern here is re-establishing invariants like "a
7733  // variable's type is either dependent or complete".
7734  if (!D || D->isInvalidDecl()) return;
7735
7736  VarDecl *VD = dyn_cast<VarDecl>(D);
7737  if (!VD) return;
7738
7739  // Auto types are meaningless if we can't make sense of the initializer.
7740  if (ParsingInitForAutoVars.count(D)) {
7741    D->setInvalidDecl();
7742    return;
7743  }
7744
7745  QualType Ty = VD->getType();
7746  if (Ty->isDependentType()) return;
7747
7748  // Require a complete type.
7749  if (RequireCompleteType(VD->getLocation(),
7750                          Context.getBaseElementType(Ty),
7751                          diag::err_typecheck_decl_incomplete_type)) {
7752    VD->setInvalidDecl();
7753    return;
7754  }
7755
7756  // Require an abstract type.
7757  if (RequireNonAbstractType(VD->getLocation(), Ty,
7758                             diag::err_abstract_type_in_decl,
7759                             AbstractVariableType)) {
7760    VD->setInvalidDecl();
7761    return;
7762  }
7763
7764  // Don't bother complaining about constructors or destructors,
7765  // though.
7766}
7767
7768void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7769                                  bool TypeMayContainAuto) {
7770  // If there is no declaration, there was an error parsing it. Just ignore it.
7771  if (RealDecl == 0)
7772    return;
7773
7774  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7775    QualType Type = Var->getType();
7776
7777    // C++11 [dcl.spec.auto]p3
7778    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7779      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7780        << Var->getDeclName() << Type;
7781      Var->setInvalidDecl();
7782      return;
7783    }
7784
7785    // C++11 [class.static.data]p3: A static data member can be declared with
7786    // the constexpr specifier; if so, its declaration shall specify
7787    // a brace-or-equal-initializer.
7788    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7789    // the definition of a variable [...] or the declaration of a static data
7790    // member.
7791    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7792      if (Var->isStaticDataMember())
7793        Diag(Var->getLocation(),
7794             diag::err_constexpr_static_mem_var_requires_init)
7795          << Var->getDeclName();
7796      else
7797        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7798      Var->setInvalidDecl();
7799      return;
7800    }
7801
7802    switch (Var->isThisDeclarationADefinition()) {
7803    case VarDecl::Definition:
7804      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7805        break;
7806
7807      // We have an out-of-line definition of a static data member
7808      // that has an in-class initializer, so we type-check this like
7809      // a declaration.
7810      //
7811      // Fall through
7812
7813    case VarDecl::DeclarationOnly:
7814      // It's only a declaration.
7815
7816      // Block scope. C99 6.7p7: If an identifier for an object is
7817      // declared with no linkage (C99 6.2.2p6), the type for the
7818      // object shall be complete.
7819      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7820          !Var->getLinkage() && !Var->isInvalidDecl() &&
7821          RequireCompleteType(Var->getLocation(), Type,
7822                              diag::err_typecheck_decl_incomplete_type))
7823        Var->setInvalidDecl();
7824
7825      // Make sure that the type is not abstract.
7826      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7827          RequireNonAbstractType(Var->getLocation(), Type,
7828                                 diag::err_abstract_type_in_decl,
7829                                 AbstractVariableType))
7830        Var->setInvalidDecl();
7831      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7832          Var->getStorageClass() == SC_PrivateExtern) {
7833        Diag(Var->getLocation(), diag::warn_private_extern);
7834        Diag(Var->getLocation(), diag::note_private_extern);
7835      }
7836
7837      return;
7838
7839    case VarDecl::TentativeDefinition:
7840      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7841      // object that has file scope without an initializer, and without a
7842      // storage-class specifier or with the storage-class specifier "static",
7843      // constitutes a tentative definition. Note: A tentative definition with
7844      // external linkage is valid (C99 6.2.2p5).
7845      if (!Var->isInvalidDecl()) {
7846        if (const IncompleteArrayType *ArrayT
7847                                    = Context.getAsIncompleteArrayType(Type)) {
7848          if (RequireCompleteType(Var->getLocation(),
7849                                  ArrayT->getElementType(),
7850                                  diag::err_illegal_decl_array_incomplete_type))
7851            Var->setInvalidDecl();
7852        } else if (Var->getStorageClass() == SC_Static) {
7853          // C99 6.9.2p3: If the declaration of an identifier for an object is
7854          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7855          // declared type shall not be an incomplete type.
7856          // NOTE: code such as the following
7857          //     static struct s;
7858          //     struct s { int a; };
7859          // is accepted by gcc. Hence here we issue a warning instead of
7860          // an error and we do not invalidate the static declaration.
7861          // NOTE: to avoid multiple warnings, only check the first declaration.
7862          if (Var->getPreviousDecl() == 0)
7863            RequireCompleteType(Var->getLocation(), Type,
7864                                diag::ext_typecheck_decl_incomplete_type);
7865        }
7866      }
7867
7868      // Record the tentative definition; we're done.
7869      if (!Var->isInvalidDecl())
7870        TentativeDefinitions.push_back(Var);
7871      return;
7872    }
7873
7874    // Provide a specific diagnostic for uninitialized variable
7875    // definitions with incomplete array type.
7876    if (Type->isIncompleteArrayType()) {
7877      Diag(Var->getLocation(),
7878           diag::err_typecheck_incomplete_array_needs_initializer);
7879      Var->setInvalidDecl();
7880      return;
7881    }
7882
7883    // Provide a specific diagnostic for uninitialized variable
7884    // definitions with reference type.
7885    if (Type->isReferenceType()) {
7886      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7887        << Var->getDeclName()
7888        << SourceRange(Var->getLocation(), Var->getLocation());
7889      Var->setInvalidDecl();
7890      return;
7891    }
7892
7893    // Do not attempt to type-check the default initializer for a
7894    // variable with dependent type.
7895    if (Type->isDependentType())
7896      return;
7897
7898    if (Var->isInvalidDecl())
7899      return;
7900
7901    if (RequireCompleteType(Var->getLocation(),
7902                            Context.getBaseElementType(Type),
7903                            diag::err_typecheck_decl_incomplete_type)) {
7904      Var->setInvalidDecl();
7905      return;
7906    }
7907
7908    // The variable can not have an abstract class type.
7909    if (RequireNonAbstractType(Var->getLocation(), Type,
7910                               diag::err_abstract_type_in_decl,
7911                               AbstractVariableType)) {
7912      Var->setInvalidDecl();
7913      return;
7914    }
7915
7916    // Check for jumps past the implicit initializer.  C++0x
7917    // clarifies that this applies to a "variable with automatic
7918    // storage duration", not a "local variable".
7919    // C++11 [stmt.dcl]p3
7920    //   A program that jumps from a point where a variable with automatic
7921    //   storage duration is not in scope to a point where it is in scope is
7922    //   ill-formed unless the variable has scalar type, class type with a
7923    //   trivial default constructor and a trivial destructor, a cv-qualified
7924    //   version of one of these types, or an array of one of the preceding
7925    //   types and is declared without an initializer.
7926    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7927      if (const RecordType *Record
7928            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7929        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7930        // Mark the function for further checking even if the looser rules of
7931        // C++11 do not require such checks, so that we can diagnose
7932        // incompatibilities with C++98.
7933        if (!CXXRecord->isPOD())
7934          getCurFunction()->setHasBranchProtectedScope();
7935      }
7936    }
7937
7938    // C++03 [dcl.init]p9:
7939    //   If no initializer is specified for an object, and the
7940    //   object is of (possibly cv-qualified) non-POD class type (or
7941    //   array thereof), the object shall be default-initialized; if
7942    //   the object is of const-qualified type, the underlying class
7943    //   type shall have a user-declared default
7944    //   constructor. Otherwise, if no initializer is specified for
7945    //   a non- static object, the object and its subobjects, if
7946    //   any, have an indeterminate initial value); if the object
7947    //   or any of its subobjects are of const-qualified type, the
7948    //   program is ill-formed.
7949    // C++0x [dcl.init]p11:
7950    //   If no initializer is specified for an object, the object is
7951    //   default-initialized; [...].
7952    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7953    InitializationKind Kind
7954      = InitializationKind::CreateDefault(Var->getLocation());
7955
7956    InitializationSequence InitSeq(*this, Entity, Kind, None);
7957    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
7958    if (Init.isInvalid())
7959      Var->setInvalidDecl();
7960    else if (Init.get()) {
7961      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7962      // This is important for template substitution.
7963      Var->setInitStyle(VarDecl::CallInit);
7964    }
7965
7966    CheckCompleteVariableDeclaration(Var);
7967  }
7968}
7969
7970void Sema::ActOnCXXForRangeDecl(Decl *D) {
7971  VarDecl *VD = dyn_cast<VarDecl>(D);
7972  if (!VD) {
7973    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7974    D->setInvalidDecl();
7975    return;
7976  }
7977
7978  VD->setCXXForRangeDecl(true);
7979
7980  // for-range-declaration cannot be given a storage class specifier.
7981  int Error = -1;
7982  switch (VD->getStorageClass()) {
7983  case SC_None:
7984    break;
7985  case SC_Extern:
7986    Error = 0;
7987    break;
7988  case SC_Static:
7989    Error = 1;
7990    break;
7991  case SC_PrivateExtern:
7992    Error = 2;
7993    break;
7994  case SC_Auto:
7995    Error = 3;
7996    break;
7997  case SC_Register:
7998    Error = 4;
7999    break;
8000  case SC_OpenCLWorkGroupLocal:
8001    llvm_unreachable("Unexpected storage class");
8002  }
8003  if (VD->isConstexpr())
8004    Error = 5;
8005  if (Error != -1) {
8006    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8007      << VD->getDeclName() << Error;
8008    D->setInvalidDecl();
8009  }
8010}
8011
8012void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8013  if (var->isInvalidDecl()) return;
8014
8015  // In ARC, don't allow jumps past the implicit initialization of a
8016  // local retaining variable.
8017  if (getLangOpts().ObjCAutoRefCount &&
8018      var->hasLocalStorage()) {
8019    switch (var->getType().getObjCLifetime()) {
8020    case Qualifiers::OCL_None:
8021    case Qualifiers::OCL_ExplicitNone:
8022    case Qualifiers::OCL_Autoreleasing:
8023      break;
8024
8025    case Qualifiers::OCL_Weak:
8026    case Qualifiers::OCL_Strong:
8027      getCurFunction()->setHasBranchProtectedScope();
8028      break;
8029    }
8030  }
8031
8032  if (var->isThisDeclarationADefinition() &&
8033      var->hasExternalLinkage() &&
8034      getDiagnostics().getDiagnosticLevel(
8035                       diag::warn_missing_variable_declarations,
8036                       var->getLocation())) {
8037    // Find a previous declaration that's not a definition.
8038    VarDecl *prev = var->getPreviousDecl();
8039    while (prev && prev->isThisDeclarationADefinition())
8040      prev = prev->getPreviousDecl();
8041
8042    if (!prev)
8043      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8044  }
8045
8046  if (var->getTLSKind() == VarDecl::TLS_Static &&
8047      var->getType().isDestructedType()) {
8048    // GNU C++98 edits for __thread, [basic.start.term]p3:
8049    //   The type of an object with thread storage duration shall not
8050    //   have a non-trivial destructor.
8051    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8052    if (getLangOpts().CPlusPlus11)
8053      Diag(var->getLocation(), diag::note_use_thread_local);
8054  }
8055
8056  // All the following checks are C++ only.
8057  if (!getLangOpts().CPlusPlus) return;
8058
8059  QualType type = var->getType();
8060  if (type->isDependentType()) return;
8061
8062  // __block variables might require us to capture a copy-initializer.
8063  if (var->hasAttr<BlocksAttr>()) {
8064    // It's currently invalid to ever have a __block variable with an
8065    // array type; should we diagnose that here?
8066
8067    // Regardless, we don't want to ignore array nesting when
8068    // constructing this copy.
8069    if (type->isStructureOrClassType()) {
8070      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8071      SourceLocation poi = var->getLocation();
8072      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8073      ExprResult result
8074        = PerformMoveOrCopyInitialization(
8075            InitializedEntity::InitializeBlock(poi, type, false),
8076            var, var->getType(), varRef, /*AllowNRVO=*/true);
8077      if (!result.isInvalid()) {
8078        result = MaybeCreateExprWithCleanups(result);
8079        Expr *init = result.takeAs<Expr>();
8080        Context.setBlockVarCopyInits(var, init);
8081      }
8082    }
8083  }
8084
8085  Expr *Init = var->getInit();
8086  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8087  QualType baseType = Context.getBaseElementType(type);
8088
8089  if (!var->getDeclContext()->isDependentContext() &&
8090      Init && !Init->isValueDependent()) {
8091    if (IsGlobal && !var->isConstexpr() &&
8092        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8093                                            var->getLocation())
8094          != DiagnosticsEngine::Ignored &&
8095        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8096      Diag(var->getLocation(), diag::warn_global_constructor)
8097        << Init->getSourceRange();
8098
8099    if (var->isConstexpr()) {
8100      SmallVector<PartialDiagnosticAt, 8> Notes;
8101      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8102        SourceLocation DiagLoc = var->getLocation();
8103        // If the note doesn't add any useful information other than a source
8104        // location, fold it into the primary diagnostic.
8105        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8106              diag::note_invalid_subexpr_in_const_expr) {
8107          DiagLoc = Notes[0].first;
8108          Notes.clear();
8109        }
8110        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8111          << var << Init->getSourceRange();
8112        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8113          Diag(Notes[I].first, Notes[I].second);
8114      }
8115    } else if (var->isUsableInConstantExpressions(Context)) {
8116      // Check whether the initializer of a const variable of integral or
8117      // enumeration type is an ICE now, since we can't tell whether it was
8118      // initialized by a constant expression if we check later.
8119      var->checkInitIsICE();
8120    }
8121  }
8122
8123  // Require the destructor.
8124  if (const RecordType *recordType = baseType->getAs<RecordType>())
8125    FinalizeVarWithDestructor(var, recordType);
8126}
8127
8128/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8129/// any semantic actions necessary after any initializer has been attached.
8130void
8131Sema::FinalizeDeclaration(Decl *ThisDecl) {
8132  // Note that we are no longer parsing the initializer for this declaration.
8133  ParsingInitForAutoVars.erase(ThisDecl);
8134
8135  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8136  if (!VD)
8137    return;
8138
8139  const DeclContext *DC = VD->getDeclContext();
8140  // If there's a #pragma GCC visibility in scope, and this isn't a class
8141  // member, set the visibility of this variable.
8142  if (!DC->isRecord() && VD->hasExternalLinkage())
8143    AddPushedVisibilityAttribute(VD);
8144
8145  if (VD->isFileVarDecl())
8146    MarkUnusedFileScopedDecl(VD);
8147
8148  // Now we have parsed the initializer and can update the table of magic
8149  // tag values.
8150  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8151      !VD->getType()->isIntegralOrEnumerationType())
8152    return;
8153
8154  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8155         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8156         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8157       I != E; ++I) {
8158    const Expr *MagicValueExpr = VD->getInit();
8159    if (!MagicValueExpr) {
8160      continue;
8161    }
8162    llvm::APSInt MagicValueInt;
8163    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8164      Diag(I->getRange().getBegin(),
8165           diag::err_type_tag_for_datatype_not_ice)
8166        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8167      continue;
8168    }
8169    if (MagicValueInt.getActiveBits() > 64) {
8170      Diag(I->getRange().getBegin(),
8171           diag::err_type_tag_for_datatype_too_large)
8172        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8173      continue;
8174    }
8175    uint64_t MagicValue = MagicValueInt.getZExtValue();
8176    RegisterTypeTagForDatatype(I->getArgumentKind(),
8177                               MagicValue,
8178                               I->getMatchingCType(),
8179                               I->getLayoutCompatible(),
8180                               I->getMustBeNull());
8181  }
8182}
8183
8184Sema::DeclGroupPtrTy
8185Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8186                              Decl **Group, unsigned NumDecls) {
8187  SmallVector<Decl*, 8> Decls;
8188
8189  if (DS.isTypeSpecOwned())
8190    Decls.push_back(DS.getRepAsDecl());
8191
8192  for (unsigned i = 0; i != NumDecls; ++i)
8193    if (Decl *D = Group[i])
8194      Decls.push_back(D);
8195
8196  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8197    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8198      getASTContext().addUnnamedTag(Tag);
8199
8200  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8201                              DS.containsPlaceholderType());
8202}
8203
8204/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8205/// group, performing any necessary semantic checking.
8206Sema::DeclGroupPtrTy
8207Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8208                           bool TypeMayContainAuto) {
8209  // C++0x [dcl.spec.auto]p7:
8210  //   If the type deduced for the template parameter U is not the same in each
8211  //   deduction, the program is ill-formed.
8212  // FIXME: When initializer-list support is added, a distinction is needed
8213  // between the deduced type U and the deduced type which 'auto' stands for.
8214  //   auto a = 0, b = { 1, 2, 3 };
8215  // is legal because the deduced type U is 'int' in both cases.
8216  if (TypeMayContainAuto && NumDecls > 1) {
8217    QualType Deduced;
8218    CanQualType DeducedCanon;
8219    VarDecl *DeducedDecl = 0;
8220    for (unsigned i = 0; i != NumDecls; ++i) {
8221      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8222        AutoType *AT = D->getType()->getContainedAutoType();
8223        // Don't reissue diagnostics when instantiating a template.
8224        if (AT && D->isInvalidDecl())
8225          break;
8226        QualType U = AT ? AT->getDeducedType() : QualType();
8227        if (!U.isNull()) {
8228          CanQualType UCanon = Context.getCanonicalType(U);
8229          if (Deduced.isNull()) {
8230            Deduced = U;
8231            DeducedCanon = UCanon;
8232            DeducedDecl = D;
8233          } else if (DeducedCanon != UCanon) {
8234            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8235                 diag::err_auto_different_deductions)
8236              << (AT->isDecltypeAuto() ? 1 : 0)
8237              << Deduced << DeducedDecl->getDeclName()
8238              << U << D->getDeclName()
8239              << DeducedDecl->getInit()->getSourceRange()
8240              << D->getInit()->getSourceRange();
8241            D->setInvalidDecl();
8242            break;
8243          }
8244        }
8245      }
8246    }
8247  }
8248
8249  ActOnDocumentableDecls(Group, NumDecls);
8250
8251  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8252}
8253
8254void Sema::ActOnDocumentableDecl(Decl *D) {
8255  ActOnDocumentableDecls(&D, 1);
8256}
8257
8258void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8259  // Don't parse the comment if Doxygen diagnostics are ignored.
8260  if (NumDecls == 0 || !Group[0])
8261   return;
8262
8263  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8264                               Group[0]->getLocation())
8265        == DiagnosticsEngine::Ignored)
8266    return;
8267
8268  if (NumDecls >= 2) {
8269    // This is a decl group.  Normally it will contain only declarations
8270    // procuded from declarator list.  But in case we have any definitions or
8271    // additional declaration references:
8272    //   'typedef struct S {} S;'
8273    //   'typedef struct S *S;'
8274    //   'struct S *pS;'
8275    // FinalizeDeclaratorGroup adds these as separate declarations.
8276    Decl *MaybeTagDecl = Group[0];
8277    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8278      Group++;
8279      NumDecls--;
8280    }
8281  }
8282
8283  // See if there are any new comments that are not attached to a decl.
8284  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8285  if (!Comments.empty() &&
8286      !Comments.back()->isAttached()) {
8287    // There is at least one comment that not attached to a decl.
8288    // Maybe it should be attached to one of these decls?
8289    //
8290    // Note that this way we pick up not only comments that precede the
8291    // declaration, but also comments that *follow* the declaration -- thanks to
8292    // the lookahead in the lexer: we've consumed the semicolon and looked
8293    // ahead through comments.
8294    for (unsigned i = 0; i != NumDecls; ++i)
8295      Context.getCommentForDecl(Group[i], &PP);
8296  }
8297}
8298
8299/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8300/// to introduce parameters into function prototype scope.
8301Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8302  const DeclSpec &DS = D.getDeclSpec();
8303
8304  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8305  // C++03 [dcl.stc]p2 also permits 'auto'.
8306  VarDecl::StorageClass StorageClass = SC_None;
8307  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8308    StorageClass = SC_Register;
8309  } else if (getLangOpts().CPlusPlus &&
8310             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8311    StorageClass = SC_Auto;
8312  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8313    Diag(DS.getStorageClassSpecLoc(),
8314         diag::err_invalid_storage_class_in_func_decl);
8315    D.getMutableDeclSpec().ClearStorageClassSpecs();
8316  }
8317
8318  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8319    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8320      << DeclSpec::getSpecifierName(TSCS);
8321  if (DS.isConstexprSpecified())
8322    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8323      << 0;
8324
8325  DiagnoseFunctionSpecifiers(DS);
8326
8327  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8328  QualType parmDeclType = TInfo->getType();
8329
8330  if (getLangOpts().CPlusPlus) {
8331    // Check that there are no default arguments inside the type of this
8332    // parameter.
8333    CheckExtraCXXDefaultArguments(D);
8334
8335    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8336    if (D.getCXXScopeSpec().isSet()) {
8337      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8338        << D.getCXXScopeSpec().getRange();
8339      D.getCXXScopeSpec().clear();
8340    }
8341  }
8342
8343  // Ensure we have a valid name
8344  IdentifierInfo *II = 0;
8345  if (D.hasName()) {
8346    II = D.getIdentifier();
8347    if (!II) {
8348      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8349        << GetNameForDeclarator(D).getName().getAsString();
8350      D.setInvalidType(true);
8351    }
8352  }
8353
8354  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8355  if (II) {
8356    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8357                   ForRedeclaration);
8358    LookupName(R, S);
8359    if (R.isSingleResult()) {
8360      NamedDecl *PrevDecl = R.getFoundDecl();
8361      if (PrevDecl->isTemplateParameter()) {
8362        // Maybe we will complain about the shadowed template parameter.
8363        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8364        // Just pretend that we didn't see the previous declaration.
8365        PrevDecl = 0;
8366      } else if (S->isDeclScope(PrevDecl)) {
8367        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8368        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8369
8370        // Recover by removing the name
8371        II = 0;
8372        D.SetIdentifier(0, D.getIdentifierLoc());
8373        D.setInvalidType(true);
8374      }
8375    }
8376  }
8377
8378  // Temporarily put parameter variables in the translation unit, not
8379  // the enclosing context.  This prevents them from accidentally
8380  // looking like class members in C++.
8381  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8382                                    D.getLocStart(),
8383                                    D.getIdentifierLoc(), II,
8384                                    parmDeclType, TInfo,
8385                                    StorageClass);
8386
8387  if (D.isInvalidType())
8388    New->setInvalidDecl();
8389
8390  assert(S->isFunctionPrototypeScope());
8391  assert(S->getFunctionPrototypeDepth() >= 1);
8392  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8393                    S->getNextFunctionPrototypeIndex());
8394
8395  // Add the parameter declaration into this scope.
8396  S->AddDecl(New);
8397  if (II)
8398    IdResolver.AddDecl(New);
8399
8400  ProcessDeclAttributes(S, New, D);
8401
8402  if (D.getDeclSpec().isModulePrivateSpecified())
8403    Diag(New->getLocation(), diag::err_module_private_local)
8404      << 1 << New->getDeclName()
8405      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8406      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8407
8408  if (New->hasAttr<BlocksAttr>()) {
8409    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8410  }
8411  return New;
8412}
8413
8414/// \brief Synthesizes a variable for a parameter arising from a
8415/// typedef.
8416ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8417                                              SourceLocation Loc,
8418                                              QualType T) {
8419  /* FIXME: setting StartLoc == Loc.
8420     Would it be worth to modify callers so as to provide proper source
8421     location for the unnamed parameters, embedding the parameter's type? */
8422  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8423                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8424                                           SC_None, 0);
8425  Param->setImplicit();
8426  return Param;
8427}
8428
8429void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8430                                    ParmVarDecl * const *ParamEnd) {
8431  // Don't diagnose unused-parameter errors in template instantiations; we
8432  // will already have done so in the template itself.
8433  if (!ActiveTemplateInstantiations.empty())
8434    return;
8435
8436  for (; Param != ParamEnd; ++Param) {
8437    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8438        !(*Param)->hasAttr<UnusedAttr>()) {
8439      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8440        << (*Param)->getDeclName();
8441    }
8442  }
8443}
8444
8445void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8446                                                  ParmVarDecl * const *ParamEnd,
8447                                                  QualType ReturnTy,
8448                                                  NamedDecl *D) {
8449  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8450    return;
8451
8452  // Warn if the return value is pass-by-value and larger than the specified
8453  // threshold.
8454  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8455    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8456    if (Size > LangOpts.NumLargeByValueCopy)
8457      Diag(D->getLocation(), diag::warn_return_value_size)
8458          << D->getDeclName() << Size;
8459  }
8460
8461  // Warn if any parameter is pass-by-value and larger than the specified
8462  // threshold.
8463  for (; Param != ParamEnd; ++Param) {
8464    QualType T = (*Param)->getType();
8465    if (T->isDependentType() || !T.isPODType(Context))
8466      continue;
8467    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8468    if (Size > LangOpts.NumLargeByValueCopy)
8469      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8470          << (*Param)->getDeclName() << Size;
8471  }
8472}
8473
8474ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8475                                  SourceLocation NameLoc, IdentifierInfo *Name,
8476                                  QualType T, TypeSourceInfo *TSInfo,
8477                                  VarDecl::StorageClass StorageClass) {
8478  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8479  if (getLangOpts().ObjCAutoRefCount &&
8480      T.getObjCLifetime() == Qualifiers::OCL_None &&
8481      T->isObjCLifetimeType()) {
8482
8483    Qualifiers::ObjCLifetime lifetime;
8484
8485    // Special cases for arrays:
8486    //   - if it's const, use __unsafe_unretained
8487    //   - otherwise, it's an error
8488    if (T->isArrayType()) {
8489      if (!T.isConstQualified()) {
8490        DelayedDiagnostics.add(
8491            sema::DelayedDiagnostic::makeForbiddenType(
8492            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8493      }
8494      lifetime = Qualifiers::OCL_ExplicitNone;
8495    } else {
8496      lifetime = T->getObjCARCImplicitLifetime();
8497    }
8498    T = Context.getLifetimeQualifiedType(T, lifetime);
8499  }
8500
8501  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8502                                         Context.getAdjustedParameterType(T),
8503                                         TSInfo,
8504                                         StorageClass, 0);
8505
8506  // Parameters can not be abstract class types.
8507  // For record types, this is done by the AbstractClassUsageDiagnoser once
8508  // the class has been completely parsed.
8509  if (!CurContext->isRecord() &&
8510      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8511                             AbstractParamType))
8512    New->setInvalidDecl();
8513
8514  // Parameter declarators cannot be interface types. All ObjC objects are
8515  // passed by reference.
8516  if (T->isObjCObjectType()) {
8517    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8518    Diag(NameLoc,
8519         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8520      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8521    T = Context.getObjCObjectPointerType(T);
8522    New->setType(T);
8523  }
8524
8525  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8526  // duration shall not be qualified by an address-space qualifier."
8527  // Since all parameters have automatic store duration, they can not have
8528  // an address space.
8529  if (T.getAddressSpace() != 0) {
8530    Diag(NameLoc, diag::err_arg_with_address_space);
8531    New->setInvalidDecl();
8532  }
8533
8534  return New;
8535}
8536
8537void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8538                                           SourceLocation LocAfterDecls) {
8539  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8540
8541  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8542  // for a K&R function.
8543  if (!FTI.hasPrototype) {
8544    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8545      --i;
8546      if (FTI.ArgInfo[i].Param == 0) {
8547        SmallString<256> Code;
8548        llvm::raw_svector_ostream(Code) << "  int "
8549                                        << FTI.ArgInfo[i].Ident->getName()
8550                                        << ";\n";
8551        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8552          << FTI.ArgInfo[i].Ident
8553          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8554
8555        // Implicitly declare the argument as type 'int' for lack of a better
8556        // type.
8557        AttributeFactory attrs;
8558        DeclSpec DS(attrs);
8559        const char* PrevSpec; // unused
8560        unsigned DiagID; // unused
8561        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8562                           PrevSpec, DiagID);
8563        // Use the identifier location for the type source range.
8564        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8565        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8566        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8567        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8568        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8569      }
8570    }
8571  }
8572}
8573
8574Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8575  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8576  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8577  Scope *ParentScope = FnBodyScope->getParent();
8578
8579  D.setFunctionDefinitionKind(FDK_Definition);
8580  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8581  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8582}
8583
8584static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8585                             const FunctionDecl*& PossibleZeroParamPrototype) {
8586  // Don't warn about invalid declarations.
8587  if (FD->isInvalidDecl())
8588    return false;
8589
8590  // Or declarations that aren't global.
8591  if (!FD->isGlobal())
8592    return false;
8593
8594  // Don't warn about C++ member functions.
8595  if (isa<CXXMethodDecl>(FD))
8596    return false;
8597
8598  // Don't warn about 'main'.
8599  if (FD->isMain())
8600    return false;
8601
8602  // Don't warn about inline functions.
8603  if (FD->isInlined())
8604    return false;
8605
8606  // Don't warn about function templates.
8607  if (FD->getDescribedFunctionTemplate())
8608    return false;
8609
8610  // Don't warn about function template specializations.
8611  if (FD->isFunctionTemplateSpecialization())
8612    return false;
8613
8614  // Don't warn for OpenCL kernels.
8615  if (FD->hasAttr<OpenCLKernelAttr>())
8616    return false;
8617
8618  bool MissingPrototype = true;
8619  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8620       Prev; Prev = Prev->getPreviousDecl()) {
8621    // Ignore any declarations that occur in function or method
8622    // scope, because they aren't visible from the header.
8623    if (Prev->getDeclContext()->isFunctionOrMethod())
8624      continue;
8625
8626    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8627    if (FD->getNumParams() == 0)
8628      PossibleZeroParamPrototype = Prev;
8629    break;
8630  }
8631
8632  return MissingPrototype;
8633}
8634
8635void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8636  // Don't complain if we're in GNU89 mode and the previous definition
8637  // was an extern inline function.
8638  const FunctionDecl *Definition;
8639  if (FD->isDefined(Definition) &&
8640      !canRedefineFunction(Definition, getLangOpts())) {
8641    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8642        Definition->getStorageClass() == SC_Extern)
8643      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8644        << FD->getDeclName() << getLangOpts().CPlusPlus;
8645    else
8646      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8647    Diag(Definition->getLocation(), diag::note_previous_definition);
8648    FD->setInvalidDecl();
8649  }
8650}
8651
8652Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8653  // Clear the last template instantiation error context.
8654  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8655
8656  if (!D)
8657    return D;
8658  FunctionDecl *FD = 0;
8659
8660  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8661    FD = FunTmpl->getTemplatedDecl();
8662  else
8663    FD = cast<FunctionDecl>(D);
8664
8665  // Enter a new function scope
8666  PushFunctionScope();
8667
8668  // See if this is a redefinition.
8669  if (!FD->isLateTemplateParsed())
8670    CheckForFunctionRedefinition(FD);
8671
8672  // Builtin functions cannot be defined.
8673  if (unsigned BuiltinID = FD->getBuiltinID()) {
8674    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
8675        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
8676      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8677      FD->setInvalidDecl();
8678    }
8679  }
8680
8681  // The return type of a function definition must be complete
8682  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8683  QualType ResultType = FD->getResultType();
8684  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8685      !FD->isInvalidDecl() &&
8686      RequireCompleteType(FD->getLocation(), ResultType,
8687                          diag::err_func_def_incomplete_result))
8688    FD->setInvalidDecl();
8689
8690  // GNU warning -Wmissing-prototypes:
8691  //   Warn if a global function is defined without a previous
8692  //   prototype declaration. This warning is issued even if the
8693  //   definition itself provides a prototype. The aim is to detect
8694  //   global functions that fail to be declared in header files.
8695  const FunctionDecl *PossibleZeroParamPrototype = 0;
8696  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8697    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8698
8699    if (PossibleZeroParamPrototype) {
8700      // We found a declaration that is not a prototype,
8701      // but that could be a zero-parameter prototype
8702      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8703      TypeLoc TL = TI->getTypeLoc();
8704      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8705        Diag(PossibleZeroParamPrototype->getLocation(),
8706             diag::note_declaration_not_a_prototype)
8707          << PossibleZeroParamPrototype
8708          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8709    }
8710  }
8711
8712  if (FnBodyScope)
8713    PushDeclContext(FnBodyScope, FD);
8714
8715  // Check the validity of our function parameters
8716  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8717                           /*CheckParameterNames=*/true);
8718
8719  // Introduce our parameters into the function scope
8720  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8721    ParmVarDecl *Param = FD->getParamDecl(p);
8722    Param->setOwningFunction(FD);
8723
8724    // If this has an identifier, add it to the scope stack.
8725    if (Param->getIdentifier() && FnBodyScope) {
8726      CheckShadow(FnBodyScope, Param);
8727
8728      PushOnScopeChains(Param, FnBodyScope);
8729    }
8730  }
8731
8732  // If we had any tags defined in the function prototype,
8733  // introduce them into the function scope.
8734  if (FnBodyScope) {
8735    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8736           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8737      NamedDecl *D = *I;
8738
8739      // Some of these decls (like enums) may have been pinned to the translation unit
8740      // for lack of a real context earlier. If so, remove from the translation unit
8741      // and reattach to the current context.
8742      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8743        // Is the decl actually in the context?
8744        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8745               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8746          if (*DI == D) {
8747            Context.getTranslationUnitDecl()->removeDecl(D);
8748            break;
8749          }
8750        }
8751        // Either way, reassign the lexical decl context to our FunctionDecl.
8752        D->setLexicalDeclContext(CurContext);
8753      }
8754
8755      // If the decl has a non-null name, make accessible in the current scope.
8756      if (!D->getName().empty())
8757        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8758
8759      // Similarly, dive into enums and fish their constants out, making them
8760      // accessible in this scope.
8761      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8762        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8763               EE = ED->enumerator_end(); EI != EE; ++EI)
8764          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8765      }
8766    }
8767  }
8768
8769  // Ensure that the function's exception specification is instantiated.
8770  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8771    ResolveExceptionSpec(D->getLocation(), FPT);
8772
8773  // Checking attributes of current function definition
8774  // dllimport attribute.
8775  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8776  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8777    // dllimport attribute cannot be directly applied to definition.
8778    // Microsoft accepts dllimport for functions defined within class scope.
8779    if (!DA->isInherited() &&
8780        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8781      Diag(FD->getLocation(),
8782           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8783        << "dllimport";
8784      FD->setInvalidDecl();
8785      return D;
8786    }
8787
8788    // Visual C++ appears to not think this is an issue, so only issue
8789    // a warning when Microsoft extensions are disabled.
8790    if (!LangOpts.MicrosoftExt) {
8791      // If a symbol previously declared dllimport is later defined, the
8792      // attribute is ignored in subsequent references, and a warning is
8793      // emitted.
8794      Diag(FD->getLocation(),
8795           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8796        << FD->getName() << "dllimport";
8797    }
8798  }
8799  // We want to attach documentation to original Decl (which might be
8800  // a function template).
8801  ActOnDocumentableDecl(D);
8802  return D;
8803}
8804
8805/// \brief Given the set of return statements within a function body,
8806/// compute the variables that are subject to the named return value
8807/// optimization.
8808///
8809/// Each of the variables that is subject to the named return value
8810/// optimization will be marked as NRVO variables in the AST, and any
8811/// return statement that has a marked NRVO variable as its NRVO candidate can
8812/// use the named return value optimization.
8813///
8814/// This function applies a very simplistic algorithm for NRVO: if every return
8815/// statement in the function has the same NRVO candidate, that candidate is
8816/// the NRVO variable.
8817///
8818/// FIXME: Employ a smarter algorithm that accounts for multiple return
8819/// statements and the lifetimes of the NRVO candidates. We should be able to
8820/// find a maximal set of NRVO variables.
8821void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8822  ReturnStmt **Returns = Scope->Returns.data();
8823
8824  const VarDecl *NRVOCandidate = 0;
8825  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8826    if (!Returns[I]->getNRVOCandidate())
8827      return;
8828
8829    if (!NRVOCandidate)
8830      NRVOCandidate = Returns[I]->getNRVOCandidate();
8831    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8832      return;
8833  }
8834
8835  if (NRVOCandidate)
8836    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8837}
8838
8839bool Sema::canSkipFunctionBody(Decl *D) {
8840  if (!Consumer.shouldSkipFunctionBody(D))
8841    return false;
8842
8843  if (isa<ObjCMethodDecl>(D))
8844    return true;
8845
8846  FunctionDecl *FD = 0;
8847  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8848    FD = FTD->getTemplatedDecl();
8849  else
8850    FD = cast<FunctionDecl>(D);
8851
8852  // We cannot skip the body of a function (or function template) which is
8853  // constexpr, since we may need to evaluate its body in order to parse the
8854  // rest of the file.
8855  return !FD->isConstexpr();
8856}
8857
8858Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8859  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8860    FD->setHasSkippedBody();
8861  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8862    MD->setHasSkippedBody();
8863  return ActOnFinishFunctionBody(Decl, 0);
8864}
8865
8866Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8867  return ActOnFinishFunctionBody(D, BodyArg, false);
8868}
8869
8870Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8871                                    bool IsInstantiation) {
8872  FunctionDecl *FD = 0;
8873  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8874  if (FunTmpl)
8875    FD = FunTmpl->getTemplatedDecl();
8876  else
8877    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8878
8879  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8880  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8881
8882  if (FD) {
8883    FD->setBody(Body);
8884
8885    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() &&
8886        !FD->isDependentContext()) {
8887      if (FD->getResultType()->isUndeducedType()) {
8888        // If the function has a deduced result type but contains no 'return'
8889        // statements, the result type as written must be exactly 'auto', and
8890        // the deduced result type is 'void'.
8891        if (!FD->getResultType()->getAs<AutoType>()) {
8892          Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
8893            << FD->getResultType();
8894          FD->setInvalidDecl();
8895        }
8896        Context.adjustDeducedFunctionResultType(FD, Context.VoidTy);
8897      }
8898    }
8899
8900    // The only way to be included in UndefinedButUsed is if there is an
8901    // ODR use before the definition. Avoid the expensive map lookup if this
8902    // is the first declaration.
8903    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8904      if (FD->getLinkage() != ExternalLinkage)
8905        UndefinedButUsed.erase(FD);
8906      else if (FD->isInlined() &&
8907               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8908               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8909        UndefinedButUsed.erase(FD);
8910    }
8911
8912    // If the function implicitly returns zero (like 'main') or is naked,
8913    // don't complain about missing return statements.
8914    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8915      WP.disableCheckFallThrough();
8916
8917    // MSVC permits the use of pure specifier (=0) on function definition,
8918    // defined at class scope, warn about this non standard construct.
8919    if (getLangOpts().MicrosoftExt && FD->isPure())
8920      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8921
8922    if (!FD->isInvalidDecl()) {
8923      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8924      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8925                                             FD->getResultType(), FD);
8926
8927      // If this is a constructor, we need a vtable.
8928      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8929        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8930
8931      // Try to apply the named return value optimization. We have to check
8932      // if we can do this here because lambdas keep return statements around
8933      // to deduce an implicit return type.
8934      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8935          !FD->isDependentContext())
8936        computeNRVO(Body, getCurFunction());
8937    }
8938
8939    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8940           "Function parsing confused");
8941  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8942    assert(MD == getCurMethodDecl() && "Method parsing confused");
8943    MD->setBody(Body);
8944    if (!MD->isInvalidDecl()) {
8945      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8946      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8947                                             MD->getResultType(), MD);
8948
8949      if (Body)
8950        computeNRVO(Body, getCurFunction());
8951    }
8952    if (getCurFunction()->ObjCShouldCallSuper) {
8953      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8954        << MD->getSelector().getAsString();
8955      getCurFunction()->ObjCShouldCallSuper = false;
8956    }
8957  } else {
8958    return 0;
8959  }
8960
8961  assert(!getCurFunction()->ObjCShouldCallSuper &&
8962         "This should only be set for ObjC methods, which should have been "
8963         "handled in the block above.");
8964
8965  // Verify and clean out per-function state.
8966  if (Body) {
8967    // C++ constructors that have function-try-blocks can't have return
8968    // statements in the handlers of that block. (C++ [except.handle]p14)
8969    // Verify this.
8970    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8971      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8972
8973    // Verify that gotos and switch cases don't jump into scopes illegally.
8974    if (getCurFunction()->NeedsScopeChecking() &&
8975        !dcl->isInvalidDecl() &&
8976        !hasAnyUnrecoverableErrorsInThisFunction() &&
8977        !PP.isCodeCompletionEnabled())
8978      DiagnoseInvalidJumps(Body);
8979
8980    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8981      if (!Destructor->getParent()->isDependentType())
8982        CheckDestructor(Destructor);
8983
8984      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8985                                             Destructor->getParent());
8986    }
8987
8988    // If any errors have occurred, clear out any temporaries that may have
8989    // been leftover. This ensures that these temporaries won't be picked up for
8990    // deletion in some later function.
8991    if (PP.getDiagnostics().hasErrorOccurred() ||
8992        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8993      DiscardCleanupsInEvaluationContext();
8994    }
8995    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8996        !isa<FunctionTemplateDecl>(dcl)) {
8997      // Since the body is valid, issue any analysis-based warnings that are
8998      // enabled.
8999      ActivePolicy = &WP;
9000    }
9001
9002    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9003        (!CheckConstexprFunctionDecl(FD) ||
9004         !CheckConstexprFunctionBody(FD, Body)))
9005      FD->setInvalidDecl();
9006
9007    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9008    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9009    assert(MaybeODRUseExprs.empty() &&
9010           "Leftover expressions for odr-use checking");
9011  }
9012
9013  if (!IsInstantiation)
9014    PopDeclContext();
9015
9016  PopFunctionScopeInfo(ActivePolicy, dcl);
9017
9018  // If any errors have occurred, clear out any temporaries that may have
9019  // been leftover. This ensures that these temporaries won't be picked up for
9020  // deletion in some later function.
9021  if (getDiagnostics().hasErrorOccurred()) {
9022    DiscardCleanupsInEvaluationContext();
9023  }
9024
9025  return dcl;
9026}
9027
9028
9029/// When we finish delayed parsing of an attribute, we must attach it to the
9030/// relevant Decl.
9031void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9032                                       ParsedAttributes &Attrs) {
9033  // Always attach attributes to the underlying decl.
9034  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9035    D = TD->getTemplatedDecl();
9036  ProcessDeclAttributeList(S, D, Attrs.getList());
9037
9038  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9039    if (Method->isStatic())
9040      checkThisInStaticMemberFunctionAttributes(Method);
9041}
9042
9043
9044/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9045/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9046NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9047                                          IdentifierInfo &II, Scope *S) {
9048  // Before we produce a declaration for an implicitly defined
9049  // function, see whether there was a locally-scoped declaration of
9050  // this name as a function or variable. If so, use that
9051  // (non-visible) declaration, and complain about it.
9052  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
9053    = findLocallyScopedExternCDecl(&II);
9054  if (Pos != LocallyScopedExternCDecls.end()) {
9055    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
9056    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
9057    return Pos->second;
9058  }
9059
9060  // Extension in C99.  Legal in C90, but warn about it.
9061  unsigned diag_id;
9062  if (II.getName().startswith("__builtin_"))
9063    diag_id = diag::warn_builtin_unknown;
9064  else if (getLangOpts().C99)
9065    diag_id = diag::ext_implicit_function_decl;
9066  else
9067    diag_id = diag::warn_implicit_function_decl;
9068  Diag(Loc, diag_id) << &II;
9069
9070  // Because typo correction is expensive, only do it if the implicit
9071  // function declaration is going to be treated as an error.
9072  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9073    TypoCorrection Corrected;
9074    DeclFilterCCC<FunctionDecl> Validator;
9075    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9076                                      LookupOrdinaryName, S, 0, Validator))) {
9077      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9078      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9079      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9080
9081      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9082          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9083
9084      if (Func->getLocation().isValid()
9085          && !II.getName().startswith("__builtin_"))
9086        Diag(Func->getLocation(), diag::note_previous_decl)
9087            << CorrectedQuotedStr;
9088    }
9089  }
9090
9091  // Set a Declarator for the implicit definition: int foo();
9092  const char *Dummy;
9093  AttributeFactory attrFactory;
9094  DeclSpec DS(attrFactory);
9095  unsigned DiagID;
9096  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9097  (void)Error; // Silence warning.
9098  assert(!Error && "Error setting up implicit decl!");
9099  SourceLocation NoLoc;
9100  Declarator D(DS, Declarator::BlockContext);
9101  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9102                                             /*IsAmbiguous=*/false,
9103                                             /*RParenLoc=*/NoLoc,
9104                                             /*ArgInfo=*/0,
9105                                             /*NumArgs=*/0,
9106                                             /*EllipsisLoc=*/NoLoc,
9107                                             /*RParenLoc=*/NoLoc,
9108                                             /*TypeQuals=*/0,
9109                                             /*RefQualifierIsLvalueRef=*/true,
9110                                             /*RefQualifierLoc=*/NoLoc,
9111                                             /*ConstQualifierLoc=*/NoLoc,
9112                                             /*VolatileQualifierLoc=*/NoLoc,
9113                                             /*MutableLoc=*/NoLoc,
9114                                             EST_None,
9115                                             /*ESpecLoc=*/NoLoc,
9116                                             /*Exceptions=*/0,
9117                                             /*ExceptionRanges=*/0,
9118                                             /*NumExceptions=*/0,
9119                                             /*NoexceptExpr=*/0,
9120                                             Loc, Loc, D),
9121                DS.getAttributes(),
9122                SourceLocation());
9123  D.SetIdentifier(&II, Loc);
9124
9125  // Insert this function into translation-unit scope.
9126
9127  DeclContext *PrevDC = CurContext;
9128  CurContext = Context.getTranslationUnitDecl();
9129
9130  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9131  FD->setImplicit();
9132
9133  CurContext = PrevDC;
9134
9135  AddKnownFunctionAttributes(FD);
9136
9137  return FD;
9138}
9139
9140/// \brief Adds any function attributes that we know a priori based on
9141/// the declaration of this function.
9142///
9143/// These attributes can apply both to implicitly-declared builtins
9144/// (like __builtin___printf_chk) or to library-declared functions
9145/// like NSLog or printf.
9146///
9147/// We need to check for duplicate attributes both here and where user-written
9148/// attributes are applied to declarations.
9149void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9150  if (FD->isInvalidDecl())
9151    return;
9152
9153  // If this is a built-in function, map its builtin attributes to
9154  // actual attributes.
9155  if (unsigned BuiltinID = FD->getBuiltinID()) {
9156    // Handle printf-formatting attributes.
9157    unsigned FormatIdx;
9158    bool HasVAListArg;
9159    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9160      if (!FD->getAttr<FormatAttr>()) {
9161        const char *fmt = "printf";
9162        unsigned int NumParams = FD->getNumParams();
9163        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9164            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9165          fmt = "NSString";
9166        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9167                                               fmt, FormatIdx+1,
9168                                               HasVAListArg ? 0 : FormatIdx+2));
9169      }
9170    }
9171    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9172                                             HasVAListArg)) {
9173     if (!FD->getAttr<FormatAttr>())
9174       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9175                                              "scanf", FormatIdx+1,
9176                                              HasVAListArg ? 0 : FormatIdx+2));
9177    }
9178
9179    // Mark const if we don't care about errno and that is the only
9180    // thing preventing the function from being const. This allows
9181    // IRgen to use LLVM intrinsics for such functions.
9182    if (!getLangOpts().MathErrno &&
9183        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9184      if (!FD->getAttr<ConstAttr>())
9185        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9186    }
9187
9188    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9189        !FD->getAttr<ReturnsTwiceAttr>())
9190      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9191    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9192      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9193    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9194      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9195  }
9196
9197  IdentifierInfo *Name = FD->getIdentifier();
9198  if (!Name)
9199    return;
9200  if ((!getLangOpts().CPlusPlus &&
9201       FD->getDeclContext()->isTranslationUnit()) ||
9202      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9203       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9204       LinkageSpecDecl::lang_c)) {
9205    // Okay: this could be a libc/libm/Objective-C function we know
9206    // about.
9207  } else
9208    return;
9209
9210  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9211    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9212    // target-specific builtins, perhaps?
9213    if (!FD->getAttr<FormatAttr>())
9214      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9215                                             "printf", 2,
9216                                             Name->isStr("vasprintf") ? 0 : 3));
9217  }
9218
9219  if (Name->isStr("__CFStringMakeConstantString")) {
9220    // We already have a __builtin___CFStringMakeConstantString,
9221    // but builds that use -fno-constant-cfstrings don't go through that.
9222    if (!FD->getAttr<FormatArgAttr>())
9223      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9224  }
9225}
9226
9227TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9228                                    TypeSourceInfo *TInfo) {
9229  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9230  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9231
9232  if (!TInfo) {
9233    assert(D.isInvalidType() && "no declarator info for valid type");
9234    TInfo = Context.getTrivialTypeSourceInfo(T);
9235  }
9236
9237  // Scope manipulation handled by caller.
9238  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9239                                           D.getLocStart(),
9240                                           D.getIdentifierLoc(),
9241                                           D.getIdentifier(),
9242                                           TInfo);
9243
9244  // Bail out immediately if we have an invalid declaration.
9245  if (D.isInvalidType()) {
9246    NewTD->setInvalidDecl();
9247    return NewTD;
9248  }
9249
9250  if (D.getDeclSpec().isModulePrivateSpecified()) {
9251    if (CurContext->isFunctionOrMethod())
9252      Diag(NewTD->getLocation(), diag::err_module_private_local)
9253        << 2 << NewTD->getDeclName()
9254        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9255        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9256    else
9257      NewTD->setModulePrivate();
9258  }
9259
9260  // C++ [dcl.typedef]p8:
9261  //   If the typedef declaration defines an unnamed class (or
9262  //   enum), the first typedef-name declared by the declaration
9263  //   to be that class type (or enum type) is used to denote the
9264  //   class type (or enum type) for linkage purposes only.
9265  // We need to check whether the type was declared in the declaration.
9266  switch (D.getDeclSpec().getTypeSpecType()) {
9267  case TST_enum:
9268  case TST_struct:
9269  case TST_interface:
9270  case TST_union:
9271  case TST_class: {
9272    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9273
9274    // Do nothing if the tag is not anonymous or already has an
9275    // associated typedef (from an earlier typedef in this decl group).
9276    if (tagFromDeclSpec->getIdentifier()) break;
9277    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9278
9279    // A well-formed anonymous tag must always be a TUK_Definition.
9280    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9281
9282    // The type must match the tag exactly;  no qualifiers allowed.
9283    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9284      break;
9285
9286    // Otherwise, set this is the anon-decl typedef for the tag.
9287    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9288    break;
9289  }
9290
9291  default:
9292    break;
9293  }
9294
9295  return NewTD;
9296}
9297
9298
9299/// \brief Check that this is a valid underlying type for an enum declaration.
9300bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9301  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9302  QualType T = TI->getType();
9303
9304  if (T->isDependentType())
9305    return false;
9306
9307  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9308    if (BT->isInteger())
9309      return false;
9310
9311  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9312  return true;
9313}
9314
9315/// Check whether this is a valid redeclaration of a previous enumeration.
9316/// \return true if the redeclaration was invalid.
9317bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9318                                  QualType EnumUnderlyingTy,
9319                                  const EnumDecl *Prev) {
9320  bool IsFixed = !EnumUnderlyingTy.isNull();
9321
9322  if (IsScoped != Prev->isScoped()) {
9323    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9324      << Prev->isScoped();
9325    Diag(Prev->getLocation(), diag::note_previous_use);
9326    return true;
9327  }
9328
9329  if (IsFixed && Prev->isFixed()) {
9330    if (!EnumUnderlyingTy->isDependentType() &&
9331        !Prev->getIntegerType()->isDependentType() &&
9332        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9333                                        Prev->getIntegerType())) {
9334      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9335        << EnumUnderlyingTy << Prev->getIntegerType();
9336      Diag(Prev->getLocation(), diag::note_previous_use);
9337      return true;
9338    }
9339  } else if (IsFixed != Prev->isFixed()) {
9340    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9341      << Prev->isFixed();
9342    Diag(Prev->getLocation(), diag::note_previous_use);
9343    return true;
9344  }
9345
9346  return false;
9347}
9348
9349/// \brief Get diagnostic %select index for tag kind for
9350/// redeclaration diagnostic message.
9351/// WARNING: Indexes apply to particular diagnostics only!
9352///
9353/// \returns diagnostic %select index.
9354static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9355  switch (Tag) {
9356  case TTK_Struct: return 0;
9357  case TTK_Interface: return 1;
9358  case TTK_Class:  return 2;
9359  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9360  }
9361}
9362
9363/// \brief Determine if tag kind is a class-key compatible with
9364/// class for redeclaration (class, struct, or __interface).
9365///
9366/// \returns true iff the tag kind is compatible.
9367static bool isClassCompatTagKind(TagTypeKind Tag)
9368{
9369  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9370}
9371
9372/// \brief Determine whether a tag with a given kind is acceptable
9373/// as a redeclaration of the given tag declaration.
9374///
9375/// \returns true if the new tag kind is acceptable, false otherwise.
9376bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9377                                        TagTypeKind NewTag, bool isDefinition,
9378                                        SourceLocation NewTagLoc,
9379                                        const IdentifierInfo &Name) {
9380  // C++ [dcl.type.elab]p3:
9381  //   The class-key or enum keyword present in the
9382  //   elaborated-type-specifier shall agree in kind with the
9383  //   declaration to which the name in the elaborated-type-specifier
9384  //   refers. This rule also applies to the form of
9385  //   elaborated-type-specifier that declares a class-name or
9386  //   friend class since it can be construed as referring to the
9387  //   definition of the class. Thus, in any
9388  //   elaborated-type-specifier, the enum keyword shall be used to
9389  //   refer to an enumeration (7.2), the union class-key shall be
9390  //   used to refer to a union (clause 9), and either the class or
9391  //   struct class-key shall be used to refer to a class (clause 9)
9392  //   declared using the class or struct class-key.
9393  TagTypeKind OldTag = Previous->getTagKind();
9394  if (!isDefinition || !isClassCompatTagKind(NewTag))
9395    if (OldTag == NewTag)
9396      return true;
9397
9398  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9399    // Warn about the struct/class tag mismatch.
9400    bool isTemplate = false;
9401    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9402      isTemplate = Record->getDescribedClassTemplate();
9403
9404    if (!ActiveTemplateInstantiations.empty()) {
9405      // In a template instantiation, do not offer fix-its for tag mismatches
9406      // since they usually mess up the template instead of fixing the problem.
9407      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9408        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9409        << getRedeclDiagFromTagKind(OldTag);
9410      return true;
9411    }
9412
9413    if (isDefinition) {
9414      // On definitions, check previous tags and issue a fix-it for each
9415      // one that doesn't match the current tag.
9416      if (Previous->getDefinition()) {
9417        // Don't suggest fix-its for redefinitions.
9418        return true;
9419      }
9420
9421      bool previousMismatch = false;
9422      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9423           E(Previous->redecls_end()); I != E; ++I) {
9424        if (I->getTagKind() != NewTag) {
9425          if (!previousMismatch) {
9426            previousMismatch = true;
9427            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9428              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9429              << getRedeclDiagFromTagKind(I->getTagKind());
9430          }
9431          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9432            << getRedeclDiagFromTagKind(NewTag)
9433            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9434                 TypeWithKeyword::getTagTypeKindName(NewTag));
9435        }
9436      }
9437      return true;
9438    }
9439
9440    // Check for a previous definition.  If current tag and definition
9441    // are same type, do nothing.  If no definition, but disagree with
9442    // with previous tag type, give a warning, but no fix-it.
9443    const TagDecl *Redecl = Previous->getDefinition() ?
9444                            Previous->getDefinition() : Previous;
9445    if (Redecl->getTagKind() == NewTag) {
9446      return true;
9447    }
9448
9449    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9450      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9451      << getRedeclDiagFromTagKind(OldTag);
9452    Diag(Redecl->getLocation(), diag::note_previous_use);
9453
9454    // If there is a previous defintion, suggest a fix-it.
9455    if (Previous->getDefinition()) {
9456        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9457          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9458          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9459               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9460    }
9461
9462    return true;
9463  }
9464  return false;
9465}
9466
9467/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9468/// former case, Name will be non-null.  In the later case, Name will be null.
9469/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9470/// reference/declaration/definition of a tag.
9471Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9472                     SourceLocation KWLoc, CXXScopeSpec &SS,
9473                     IdentifierInfo *Name, SourceLocation NameLoc,
9474                     AttributeList *Attr, AccessSpecifier AS,
9475                     SourceLocation ModulePrivateLoc,
9476                     MultiTemplateParamsArg TemplateParameterLists,
9477                     bool &OwnedDecl, bool &IsDependent,
9478                     SourceLocation ScopedEnumKWLoc,
9479                     bool ScopedEnumUsesClassTag,
9480                     TypeResult UnderlyingType) {
9481  // If this is not a definition, it must have a name.
9482  IdentifierInfo *OrigName = Name;
9483  assert((Name != 0 || TUK == TUK_Definition) &&
9484         "Nameless record must be a definition!");
9485  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9486
9487  OwnedDecl = false;
9488  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9489  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9490
9491  // FIXME: Check explicit specializations more carefully.
9492  bool isExplicitSpecialization = false;
9493  bool Invalid = false;
9494
9495  // We only need to do this matching if we have template parameters
9496  // or a scope specifier, which also conveniently avoids this work
9497  // for non-C++ cases.
9498  if (TemplateParameterLists.size() > 0 ||
9499      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9500    if (TemplateParameterList *TemplateParams
9501          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9502                                                TemplateParameterLists.data(),
9503                                                TemplateParameterLists.size(),
9504                                                    TUK == TUK_Friend,
9505                                                    isExplicitSpecialization,
9506                                                    Invalid)) {
9507      if (Kind == TTK_Enum) {
9508        Diag(KWLoc, diag::err_enum_template);
9509        return 0;
9510      }
9511
9512      if (TemplateParams->size() > 0) {
9513        // This is a declaration or definition of a class template (which may
9514        // be a member of another template).
9515
9516        if (Invalid)
9517          return 0;
9518
9519        OwnedDecl = false;
9520        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9521                                               SS, Name, NameLoc, Attr,
9522                                               TemplateParams, AS,
9523                                               ModulePrivateLoc,
9524                                               TemplateParameterLists.size()-1,
9525                                               TemplateParameterLists.data());
9526        return Result.get();
9527      } else {
9528        // The "template<>" header is extraneous.
9529        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9530          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9531        isExplicitSpecialization = true;
9532      }
9533    }
9534  }
9535
9536  // Figure out the underlying type if this a enum declaration. We need to do
9537  // this early, because it's needed to detect if this is an incompatible
9538  // redeclaration.
9539  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9540
9541  if (Kind == TTK_Enum) {
9542    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9543      // No underlying type explicitly specified, or we failed to parse the
9544      // type, default to int.
9545      EnumUnderlying = Context.IntTy.getTypePtr();
9546    else if (UnderlyingType.get()) {
9547      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9548      // integral type; any cv-qualification is ignored.
9549      TypeSourceInfo *TI = 0;
9550      GetTypeFromParser(UnderlyingType.get(), &TI);
9551      EnumUnderlying = TI;
9552
9553      if (CheckEnumUnderlyingType(TI))
9554        // Recover by falling back to int.
9555        EnumUnderlying = Context.IntTy.getTypePtr();
9556
9557      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9558                                          UPPC_FixedUnderlyingType))
9559        EnumUnderlying = Context.IntTy.getTypePtr();
9560
9561    } else if (getLangOpts().MicrosoftMode)
9562      // Microsoft enums are always of int type.
9563      EnumUnderlying = Context.IntTy.getTypePtr();
9564  }
9565
9566  DeclContext *SearchDC = CurContext;
9567  DeclContext *DC = CurContext;
9568  bool isStdBadAlloc = false;
9569
9570  RedeclarationKind Redecl = ForRedeclaration;
9571  if (TUK == TUK_Friend || TUK == TUK_Reference)
9572    Redecl = NotForRedeclaration;
9573
9574  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9575
9576  if (Name && SS.isNotEmpty()) {
9577    // We have a nested-name tag ('struct foo::bar').
9578
9579    // Check for invalid 'foo::'.
9580    if (SS.isInvalid()) {
9581      Name = 0;
9582      goto CreateNewDecl;
9583    }
9584
9585    // If this is a friend or a reference to a class in a dependent
9586    // context, don't try to make a decl for it.
9587    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9588      DC = computeDeclContext(SS, false);
9589      if (!DC) {
9590        IsDependent = true;
9591        return 0;
9592      }
9593    } else {
9594      DC = computeDeclContext(SS, true);
9595      if (!DC) {
9596        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9597          << SS.getRange();
9598        return 0;
9599      }
9600    }
9601
9602    if (RequireCompleteDeclContext(SS, DC))
9603      return 0;
9604
9605    SearchDC = DC;
9606    // Look-up name inside 'foo::'.
9607    LookupQualifiedName(Previous, DC);
9608
9609    if (Previous.isAmbiguous())
9610      return 0;
9611
9612    if (Previous.empty()) {
9613      // Name lookup did not find anything. However, if the
9614      // nested-name-specifier refers to the current instantiation,
9615      // and that current instantiation has any dependent base
9616      // classes, we might find something at instantiation time: treat
9617      // this as a dependent elaborated-type-specifier.
9618      // But this only makes any sense for reference-like lookups.
9619      if (Previous.wasNotFoundInCurrentInstantiation() &&
9620          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9621        IsDependent = true;
9622        return 0;
9623      }
9624
9625      // A tag 'foo::bar' must already exist.
9626      Diag(NameLoc, diag::err_not_tag_in_scope)
9627        << Kind << Name << DC << SS.getRange();
9628      Name = 0;
9629      Invalid = true;
9630      goto CreateNewDecl;
9631    }
9632  } else if (Name) {
9633    // If this is a named struct, check to see if there was a previous forward
9634    // declaration or definition.
9635    // FIXME: We're looking into outer scopes here, even when we
9636    // shouldn't be. Doing so can result in ambiguities that we
9637    // shouldn't be diagnosing.
9638    LookupName(Previous, S);
9639
9640    // When declaring or defining a tag, ignore ambiguities introduced
9641    // by types using'ed into this scope.
9642    if (Previous.isAmbiguous() &&
9643        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9644      LookupResult::Filter F = Previous.makeFilter();
9645      while (F.hasNext()) {
9646        NamedDecl *ND = F.next();
9647        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9648          F.erase();
9649      }
9650      F.done();
9651    }
9652
9653    // C++11 [namespace.memdef]p3:
9654    //   If the name in a friend declaration is neither qualified nor
9655    //   a template-id and the declaration is a function or an
9656    //   elaborated-type-specifier, the lookup to determine whether
9657    //   the entity has been previously declared shall not consider
9658    //   any scopes outside the innermost enclosing namespace.
9659    //
9660    // Does it matter that this should be by scope instead of by
9661    // semantic context?
9662    if (!Previous.empty() && TUK == TUK_Friend) {
9663      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9664      LookupResult::Filter F = Previous.makeFilter();
9665      while (F.hasNext()) {
9666        NamedDecl *ND = F.next();
9667        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9668        if (DC->isFileContext() && !EnclosingNS->Encloses(ND->getDeclContext()))
9669          F.erase();
9670      }
9671      F.done();
9672    }
9673
9674    // Note:  there used to be some attempt at recovery here.
9675    if (Previous.isAmbiguous())
9676      return 0;
9677
9678    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9679      // FIXME: This makes sure that we ignore the contexts associated
9680      // with C structs, unions, and enums when looking for a matching
9681      // tag declaration or definition. See the similar lookup tweak
9682      // in Sema::LookupName; is there a better way to deal with this?
9683      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9684        SearchDC = SearchDC->getParent();
9685    }
9686  } else if (S->isFunctionPrototypeScope()) {
9687    // If this is an enum declaration in function prototype scope, set its
9688    // initial context to the translation unit.
9689    // FIXME: [citation needed]
9690    SearchDC = Context.getTranslationUnitDecl();
9691  }
9692
9693  if (Previous.isSingleResult() &&
9694      Previous.getFoundDecl()->isTemplateParameter()) {
9695    // Maybe we will complain about the shadowed template parameter.
9696    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9697    // Just pretend that we didn't see the previous declaration.
9698    Previous.clear();
9699  }
9700
9701  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9702      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9703    // This is a declaration of or a reference to "std::bad_alloc".
9704    isStdBadAlloc = true;
9705
9706    if (Previous.empty() && StdBadAlloc) {
9707      // std::bad_alloc has been implicitly declared (but made invisible to
9708      // name lookup). Fill in this implicit declaration as the previous
9709      // declaration, so that the declarations get chained appropriately.
9710      Previous.addDecl(getStdBadAlloc());
9711    }
9712  }
9713
9714  // If we didn't find a previous declaration, and this is a reference
9715  // (or friend reference), move to the correct scope.  In C++, we
9716  // also need to do a redeclaration lookup there, just in case
9717  // there's a shadow friend decl.
9718  if (Name && Previous.empty() &&
9719      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9720    if (Invalid) goto CreateNewDecl;
9721    assert(SS.isEmpty());
9722
9723    if (TUK == TUK_Reference) {
9724      // C++ [basic.scope.pdecl]p5:
9725      //   -- for an elaborated-type-specifier of the form
9726      //
9727      //          class-key identifier
9728      //
9729      //      if the elaborated-type-specifier is used in the
9730      //      decl-specifier-seq or parameter-declaration-clause of a
9731      //      function defined in namespace scope, the identifier is
9732      //      declared as a class-name in the namespace that contains
9733      //      the declaration; otherwise, except as a friend
9734      //      declaration, the identifier is declared in the smallest
9735      //      non-class, non-function-prototype scope that contains the
9736      //      declaration.
9737      //
9738      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9739      // C structs and unions.
9740      //
9741      // It is an error in C++ to declare (rather than define) an enum
9742      // type, including via an elaborated type specifier.  We'll
9743      // diagnose that later; for now, declare the enum in the same
9744      // scope as we would have picked for any other tag type.
9745      //
9746      // GNU C also supports this behavior as part of its incomplete
9747      // enum types extension, while GNU C++ does not.
9748      //
9749      // Find the context where we'll be declaring the tag.
9750      // FIXME: We would like to maintain the current DeclContext as the
9751      // lexical context,
9752      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9753        SearchDC = SearchDC->getParent();
9754
9755      // Find the scope where we'll be declaring the tag.
9756      while (S->isClassScope() ||
9757             (getLangOpts().CPlusPlus &&
9758              S->isFunctionPrototypeScope()) ||
9759             ((S->getFlags() & Scope::DeclScope) == 0) ||
9760             (S->getEntity() &&
9761              ((DeclContext *)S->getEntity())->isTransparentContext()))
9762        S = S->getParent();
9763    } else {
9764      assert(TUK == TUK_Friend);
9765      // C++ [namespace.memdef]p3:
9766      //   If a friend declaration in a non-local class first declares a
9767      //   class or function, the friend class or function is a member of
9768      //   the innermost enclosing namespace.
9769      SearchDC = SearchDC->getEnclosingNamespaceContext();
9770    }
9771
9772    // In C++, we need to do a redeclaration lookup to properly
9773    // diagnose some problems.
9774    if (getLangOpts().CPlusPlus) {
9775      Previous.setRedeclarationKind(ForRedeclaration);
9776      LookupQualifiedName(Previous, SearchDC);
9777    }
9778  }
9779
9780  if (!Previous.empty()) {
9781    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9782
9783    // It's okay to have a tag decl in the same scope as a typedef
9784    // which hides a tag decl in the same scope.  Finding this
9785    // insanity with a redeclaration lookup can only actually happen
9786    // in C++.
9787    //
9788    // This is also okay for elaborated-type-specifiers, which is
9789    // technically forbidden by the current standard but which is
9790    // okay according to the likely resolution of an open issue;
9791    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9792    if (getLangOpts().CPlusPlus) {
9793      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9794        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9795          TagDecl *Tag = TT->getDecl();
9796          if (Tag->getDeclName() == Name &&
9797              Tag->getDeclContext()->getRedeclContext()
9798                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9799            PrevDecl = Tag;
9800            Previous.clear();
9801            Previous.addDecl(Tag);
9802            Previous.resolveKind();
9803          }
9804        }
9805      }
9806    }
9807
9808    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9809      // If this is a use of a previous tag, or if the tag is already declared
9810      // in the same scope (so that the definition/declaration completes or
9811      // rementions the tag), reuse the decl.
9812      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9813          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9814        // Make sure that this wasn't declared as an enum and now used as a
9815        // struct or something similar.
9816        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9817                                          TUK == TUK_Definition, KWLoc,
9818                                          *Name)) {
9819          bool SafeToContinue
9820            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9821               Kind != TTK_Enum);
9822          if (SafeToContinue)
9823            Diag(KWLoc, diag::err_use_with_wrong_tag)
9824              << Name
9825              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9826                                              PrevTagDecl->getKindName());
9827          else
9828            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9829          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9830
9831          if (SafeToContinue)
9832            Kind = PrevTagDecl->getTagKind();
9833          else {
9834            // Recover by making this an anonymous redefinition.
9835            Name = 0;
9836            Previous.clear();
9837            Invalid = true;
9838          }
9839        }
9840
9841        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9842          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9843
9844          // If this is an elaborated-type-specifier for a scoped enumeration,
9845          // the 'class' keyword is not necessary and not permitted.
9846          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9847            if (ScopedEnum)
9848              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9849                << PrevEnum->isScoped()
9850                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9851            return PrevTagDecl;
9852          }
9853
9854          QualType EnumUnderlyingTy;
9855          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9856            EnumUnderlyingTy = TI->getType();
9857          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9858            EnumUnderlyingTy = QualType(T, 0);
9859
9860          // All conflicts with previous declarations are recovered by
9861          // returning the previous declaration, unless this is a definition,
9862          // in which case we want the caller to bail out.
9863          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9864                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9865            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9866        }
9867
9868        if (!Invalid) {
9869          // If this is a use, just return the declaration we found.
9870
9871          // FIXME: In the future, return a variant or some other clue
9872          // for the consumer of this Decl to know it doesn't own it.
9873          // For our current ASTs this shouldn't be a problem, but will
9874          // need to be changed with DeclGroups.
9875          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9876               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9877            return PrevTagDecl;
9878
9879          // Diagnose attempts to redefine a tag.
9880          if (TUK == TUK_Definition) {
9881            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9882              // If we're defining a specialization and the previous definition
9883              // is from an implicit instantiation, don't emit an error
9884              // here; we'll catch this in the general case below.
9885              bool IsExplicitSpecializationAfterInstantiation = false;
9886              if (isExplicitSpecialization) {
9887                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9888                  IsExplicitSpecializationAfterInstantiation =
9889                    RD->getTemplateSpecializationKind() !=
9890                    TSK_ExplicitSpecialization;
9891                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9892                  IsExplicitSpecializationAfterInstantiation =
9893                    ED->getTemplateSpecializationKind() !=
9894                    TSK_ExplicitSpecialization;
9895              }
9896
9897              if (!IsExplicitSpecializationAfterInstantiation) {
9898                // A redeclaration in function prototype scope in C isn't
9899                // visible elsewhere, so merely issue a warning.
9900                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9901                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9902                else
9903                  Diag(NameLoc, diag::err_redefinition) << Name;
9904                Diag(Def->getLocation(), diag::note_previous_definition);
9905                // If this is a redefinition, recover by making this
9906                // struct be anonymous, which will make any later
9907                // references get the previous definition.
9908                Name = 0;
9909                Previous.clear();
9910                Invalid = true;
9911              }
9912            } else {
9913              // If the type is currently being defined, complain
9914              // about a nested redefinition.
9915              const TagType *Tag
9916                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9917              if (Tag->isBeingDefined()) {
9918                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9919                Diag(PrevTagDecl->getLocation(),
9920                     diag::note_previous_definition);
9921                Name = 0;
9922                Previous.clear();
9923                Invalid = true;
9924              }
9925            }
9926
9927            // Okay, this is definition of a previously declared or referenced
9928            // tag PrevDecl. We're going to create a new Decl for it.
9929          }
9930        }
9931        // If we get here we have (another) forward declaration or we
9932        // have a definition.  Just create a new decl.
9933
9934      } else {
9935        // If we get here, this is a definition of a new tag type in a nested
9936        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9937        // new decl/type.  We set PrevDecl to NULL so that the entities
9938        // have distinct types.
9939        Previous.clear();
9940      }
9941      // If we get here, we're going to create a new Decl. If PrevDecl
9942      // is non-NULL, it's a definition of the tag declared by
9943      // PrevDecl. If it's NULL, we have a new definition.
9944
9945
9946    // Otherwise, PrevDecl is not a tag, but was found with tag
9947    // lookup.  This is only actually possible in C++, where a few
9948    // things like templates still live in the tag namespace.
9949    } else {
9950      // Use a better diagnostic if an elaborated-type-specifier
9951      // found the wrong kind of type on the first
9952      // (non-redeclaration) lookup.
9953      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9954          !Previous.isForRedeclaration()) {
9955        unsigned Kind = 0;
9956        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9957        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9958        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9959        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9960        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9961        Invalid = true;
9962
9963      // Otherwise, only diagnose if the declaration is in scope.
9964      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9965                                isExplicitSpecialization)) {
9966        // do nothing
9967
9968      // Diagnose implicit declarations introduced by elaborated types.
9969      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9970        unsigned Kind = 0;
9971        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9972        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9973        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9974        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9975        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9976        Invalid = true;
9977
9978      // Otherwise it's a declaration.  Call out a particularly common
9979      // case here.
9980      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9981        unsigned Kind = 0;
9982        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9983        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9984          << Name << Kind << TND->getUnderlyingType();
9985        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9986        Invalid = true;
9987
9988      // Otherwise, diagnose.
9989      } else {
9990        // The tag name clashes with something else in the target scope,
9991        // issue an error and recover by making this tag be anonymous.
9992        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9993        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9994        Name = 0;
9995        Invalid = true;
9996      }
9997
9998      // The existing declaration isn't relevant to us; we're in a
9999      // new scope, so clear out the previous declaration.
10000      Previous.clear();
10001    }
10002  }
10003
10004CreateNewDecl:
10005
10006  TagDecl *PrevDecl = 0;
10007  if (Previous.isSingleResult())
10008    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10009
10010  // If there is an identifier, use the location of the identifier as the
10011  // location of the decl, otherwise use the location of the struct/union
10012  // keyword.
10013  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10014
10015  // Otherwise, create a new declaration. If there is a previous
10016  // declaration of the same entity, the two will be linked via
10017  // PrevDecl.
10018  TagDecl *New;
10019
10020  bool IsForwardReference = false;
10021  if (Kind == TTK_Enum) {
10022    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10023    // enum X { A, B, C } D;    D should chain to X.
10024    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10025                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10026                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10027    // If this is an undefined enum, warn.
10028    if (TUK != TUK_Definition && !Invalid) {
10029      TagDecl *Def;
10030      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10031          cast<EnumDecl>(New)->isFixed()) {
10032        // C++0x: 7.2p2: opaque-enum-declaration.
10033        // Conflicts are diagnosed above. Do nothing.
10034      }
10035      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10036        Diag(Loc, diag::ext_forward_ref_enum_def)
10037          << New;
10038        Diag(Def->getLocation(), diag::note_previous_definition);
10039      } else {
10040        unsigned DiagID = diag::ext_forward_ref_enum;
10041        if (getLangOpts().MicrosoftMode)
10042          DiagID = diag::ext_ms_forward_ref_enum;
10043        else if (getLangOpts().CPlusPlus)
10044          DiagID = diag::err_forward_ref_enum;
10045        Diag(Loc, DiagID);
10046
10047        // If this is a forward-declared reference to an enumeration, make a
10048        // note of it; we won't actually be introducing the declaration into
10049        // the declaration context.
10050        if (TUK == TUK_Reference)
10051          IsForwardReference = true;
10052      }
10053    }
10054
10055    if (EnumUnderlying) {
10056      EnumDecl *ED = cast<EnumDecl>(New);
10057      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10058        ED->setIntegerTypeSourceInfo(TI);
10059      else
10060        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10061      ED->setPromotionType(ED->getIntegerType());
10062    }
10063
10064  } else {
10065    // struct/union/class
10066
10067    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10068    // struct X { int A; } D;    D should chain to X.
10069    if (getLangOpts().CPlusPlus) {
10070      // FIXME: Look for a way to use RecordDecl for simple structs.
10071      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10072                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10073
10074      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10075        StdBadAlloc = cast<CXXRecordDecl>(New);
10076    } else
10077      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10078                               cast_or_null<RecordDecl>(PrevDecl));
10079  }
10080
10081  // Maybe add qualifier info.
10082  if (SS.isNotEmpty()) {
10083    if (SS.isSet()) {
10084      // If this is either a declaration or a definition, check the
10085      // nested-name-specifier against the current context. We don't do this
10086      // for explicit specializations, because they have similar checking
10087      // (with more specific diagnostics) in the call to
10088      // CheckMemberSpecialization, below.
10089      if (!isExplicitSpecialization &&
10090          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10091          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10092        Invalid = true;
10093
10094      New->setQualifierInfo(SS.getWithLocInContext(Context));
10095      if (TemplateParameterLists.size() > 0) {
10096        New->setTemplateParameterListsInfo(Context,
10097                                           TemplateParameterLists.size(),
10098                                           TemplateParameterLists.data());
10099      }
10100    }
10101    else
10102      Invalid = true;
10103  }
10104
10105  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10106    // Add alignment attributes if necessary; these attributes are checked when
10107    // the ASTContext lays out the structure.
10108    //
10109    // It is important for implementing the correct semantics that this
10110    // happen here (in act on tag decl). The #pragma pack stack is
10111    // maintained as a result of parser callbacks which can occur at
10112    // many points during the parsing of a struct declaration (because
10113    // the #pragma tokens are effectively skipped over during the
10114    // parsing of the struct).
10115    if (TUK == TUK_Definition) {
10116      AddAlignmentAttributesForRecord(RD);
10117      AddMsStructLayoutForRecord(RD);
10118    }
10119  }
10120
10121  if (ModulePrivateLoc.isValid()) {
10122    if (isExplicitSpecialization)
10123      Diag(New->getLocation(), diag::err_module_private_specialization)
10124        << 2
10125        << FixItHint::CreateRemoval(ModulePrivateLoc);
10126    // __module_private__ does not apply to local classes. However, we only
10127    // diagnose this as an error when the declaration specifiers are
10128    // freestanding. Here, we just ignore the __module_private__.
10129    else if (!SearchDC->isFunctionOrMethod())
10130      New->setModulePrivate();
10131  }
10132
10133  // If this is a specialization of a member class (of a class template),
10134  // check the specialization.
10135  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10136    Invalid = true;
10137
10138  if (Invalid)
10139    New->setInvalidDecl();
10140
10141  if (Attr)
10142    ProcessDeclAttributeList(S, New, Attr);
10143
10144  // If we're declaring or defining a tag in function prototype scope
10145  // in C, note that this type can only be used within the function.
10146  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10147    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10148
10149  // Set the lexical context. If the tag has a C++ scope specifier, the
10150  // lexical context will be different from the semantic context.
10151  New->setLexicalDeclContext(CurContext);
10152
10153  // Mark this as a friend decl if applicable.
10154  // In Microsoft mode, a friend declaration also acts as a forward
10155  // declaration so we always pass true to setObjectOfFriendDecl to make
10156  // the tag name visible.
10157  if (TUK == TUK_Friend)
10158    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10159                               getLangOpts().MicrosoftExt);
10160
10161  // Set the access specifier.
10162  if (!Invalid && SearchDC->isRecord())
10163    SetMemberAccessSpecifier(New, PrevDecl, AS);
10164
10165  if (TUK == TUK_Definition)
10166    New->startDefinition();
10167
10168  // If this has an identifier, add it to the scope stack.
10169  if (TUK == TUK_Friend) {
10170    // We might be replacing an existing declaration in the lookup tables;
10171    // if so, borrow its access specifier.
10172    if (PrevDecl)
10173      New->setAccess(PrevDecl->getAccess());
10174
10175    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10176    DC->makeDeclVisibleInContext(New);
10177    if (Name) // can be null along some error paths
10178      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10179        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10180  } else if (Name) {
10181    S = getNonFieldDeclScope(S);
10182    PushOnScopeChains(New, S, !IsForwardReference);
10183    if (IsForwardReference)
10184      SearchDC->makeDeclVisibleInContext(New);
10185
10186  } else {
10187    CurContext->addDecl(New);
10188  }
10189
10190  // If this is the C FILE type, notify the AST context.
10191  if (IdentifierInfo *II = New->getIdentifier())
10192    if (!New->isInvalidDecl() &&
10193        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10194        II->isStr("FILE"))
10195      Context.setFILEDecl(New);
10196
10197  // If we were in function prototype scope (and not in C++ mode), add this
10198  // tag to the list of decls to inject into the function definition scope.
10199  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10200      InFunctionDeclarator && Name)
10201    DeclsInPrototypeScope.push_back(New);
10202
10203  if (PrevDecl)
10204    mergeDeclAttributes(New, PrevDecl);
10205
10206  // If there's a #pragma GCC visibility in scope, set the visibility of this
10207  // record.
10208  AddPushedVisibilityAttribute(New);
10209
10210  OwnedDecl = true;
10211  // In C++, don't return an invalid declaration. We can't recover well from
10212  // the cases where we make the type anonymous.
10213  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10214}
10215
10216void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10217  AdjustDeclIfTemplate(TagD);
10218  TagDecl *Tag = cast<TagDecl>(TagD);
10219
10220  // Enter the tag context.
10221  PushDeclContext(S, Tag);
10222
10223  ActOnDocumentableDecl(TagD);
10224
10225  // If there's a #pragma GCC visibility in scope, set the visibility of this
10226  // record.
10227  AddPushedVisibilityAttribute(Tag);
10228}
10229
10230Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10231  assert(isa<ObjCContainerDecl>(IDecl) &&
10232         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10233  DeclContext *OCD = cast<DeclContext>(IDecl);
10234  assert(getContainingDC(OCD) == CurContext &&
10235      "The next DeclContext should be lexically contained in the current one.");
10236  CurContext = OCD;
10237  return IDecl;
10238}
10239
10240void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10241                                           SourceLocation FinalLoc,
10242                                           SourceLocation LBraceLoc) {
10243  AdjustDeclIfTemplate(TagD);
10244  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10245
10246  FieldCollector->StartClass();
10247
10248  if (!Record->getIdentifier())
10249    return;
10250
10251  if (FinalLoc.isValid())
10252    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10253
10254  // C++ [class]p2:
10255  //   [...] The class-name is also inserted into the scope of the
10256  //   class itself; this is known as the injected-class-name. For
10257  //   purposes of access checking, the injected-class-name is treated
10258  //   as if it were a public member name.
10259  CXXRecordDecl *InjectedClassName
10260    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10261                            Record->getLocStart(), Record->getLocation(),
10262                            Record->getIdentifier(),
10263                            /*PrevDecl=*/0,
10264                            /*DelayTypeCreation=*/true);
10265  Context.getTypeDeclType(InjectedClassName, Record);
10266  InjectedClassName->setImplicit();
10267  InjectedClassName->setAccess(AS_public);
10268  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10269      InjectedClassName->setDescribedClassTemplate(Template);
10270  PushOnScopeChains(InjectedClassName, S);
10271  assert(InjectedClassName->isInjectedClassName() &&
10272         "Broken injected-class-name");
10273}
10274
10275void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10276                                    SourceLocation RBraceLoc) {
10277  AdjustDeclIfTemplate(TagD);
10278  TagDecl *Tag = cast<TagDecl>(TagD);
10279  Tag->setRBraceLoc(RBraceLoc);
10280
10281  // Make sure we "complete" the definition even it is invalid.
10282  if (Tag->isBeingDefined()) {
10283    assert(Tag->isInvalidDecl() && "We should already have completed it");
10284    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10285      RD->completeDefinition();
10286  }
10287
10288  if (isa<CXXRecordDecl>(Tag))
10289    FieldCollector->FinishClass();
10290
10291  // Exit this scope of this tag's definition.
10292  PopDeclContext();
10293
10294  if (getCurLexicalContext()->isObjCContainer() &&
10295      Tag->getDeclContext()->isFileContext())
10296    Tag->setTopLevelDeclInObjCContainer();
10297
10298  // Notify the consumer that we've defined a tag.
10299  Consumer.HandleTagDeclDefinition(Tag);
10300}
10301
10302void Sema::ActOnObjCContainerFinishDefinition() {
10303  // Exit this scope of this interface definition.
10304  PopDeclContext();
10305}
10306
10307void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10308  assert(DC == CurContext && "Mismatch of container contexts");
10309  OriginalLexicalContext = DC;
10310  ActOnObjCContainerFinishDefinition();
10311}
10312
10313void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10314  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10315  OriginalLexicalContext = 0;
10316}
10317
10318void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10319  AdjustDeclIfTemplate(TagD);
10320  TagDecl *Tag = cast<TagDecl>(TagD);
10321  Tag->setInvalidDecl();
10322
10323  // Make sure we "complete" the definition even it is invalid.
10324  if (Tag->isBeingDefined()) {
10325    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10326      RD->completeDefinition();
10327  }
10328
10329  // We're undoing ActOnTagStartDefinition here, not
10330  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10331  // the FieldCollector.
10332
10333  PopDeclContext();
10334}
10335
10336// Note that FieldName may be null for anonymous bitfields.
10337ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10338                                IdentifierInfo *FieldName,
10339                                QualType FieldTy, Expr *BitWidth,
10340                                bool *ZeroWidth) {
10341  // Default to true; that shouldn't confuse checks for emptiness
10342  if (ZeroWidth)
10343    *ZeroWidth = true;
10344
10345  // C99 6.7.2.1p4 - verify the field type.
10346  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10347  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10348    // Handle incomplete types with specific error.
10349    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10350      return ExprError();
10351    if (FieldName)
10352      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10353        << FieldName << FieldTy << BitWidth->getSourceRange();
10354    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10355      << FieldTy << BitWidth->getSourceRange();
10356  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10357                                             UPPC_BitFieldWidth))
10358    return ExprError();
10359
10360  // If the bit-width is type- or value-dependent, don't try to check
10361  // it now.
10362  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10363    return Owned(BitWidth);
10364
10365  llvm::APSInt Value;
10366  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10367  if (ICE.isInvalid())
10368    return ICE;
10369  BitWidth = ICE.take();
10370
10371  if (Value != 0 && ZeroWidth)
10372    *ZeroWidth = false;
10373
10374  // Zero-width bitfield is ok for anonymous field.
10375  if (Value == 0 && FieldName)
10376    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10377
10378  if (Value.isSigned() && Value.isNegative()) {
10379    if (FieldName)
10380      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10381               << FieldName << Value.toString(10);
10382    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10383      << Value.toString(10);
10384  }
10385
10386  if (!FieldTy->isDependentType()) {
10387    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10388    if (Value.getZExtValue() > TypeSize) {
10389      if (!getLangOpts().CPlusPlus) {
10390        if (FieldName)
10391          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10392            << FieldName << (unsigned)Value.getZExtValue()
10393            << (unsigned)TypeSize;
10394
10395        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10396          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10397      }
10398
10399      if (FieldName)
10400        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10401          << FieldName << (unsigned)Value.getZExtValue()
10402          << (unsigned)TypeSize;
10403      else
10404        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10405          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10406    }
10407  }
10408
10409  return Owned(BitWidth);
10410}
10411
10412/// ActOnField - Each field of a C struct/union is passed into this in order
10413/// to create a FieldDecl object for it.
10414Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10415                       Declarator &D, Expr *BitfieldWidth) {
10416  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10417                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10418                               /*InitStyle=*/ICIS_NoInit, AS_public);
10419  return Res;
10420}
10421
10422/// HandleField - Analyze a field of a C struct or a C++ data member.
10423///
10424FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10425                             SourceLocation DeclStart,
10426                             Declarator &D, Expr *BitWidth,
10427                             InClassInitStyle InitStyle,
10428                             AccessSpecifier AS) {
10429  IdentifierInfo *II = D.getIdentifier();
10430  SourceLocation Loc = DeclStart;
10431  if (II) Loc = D.getIdentifierLoc();
10432
10433  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10434  QualType T = TInfo->getType();
10435  if (getLangOpts().CPlusPlus) {
10436    CheckExtraCXXDefaultArguments(D);
10437
10438    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10439                                        UPPC_DataMemberType)) {
10440      D.setInvalidType();
10441      T = Context.IntTy;
10442      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10443    }
10444  }
10445
10446  // TR 18037 does not allow fields to be declared with address spaces.
10447  if (T.getQualifiers().hasAddressSpace()) {
10448    Diag(Loc, diag::err_field_with_address_space);
10449    D.setInvalidType();
10450  }
10451
10452  // OpenCL 1.2 spec, s6.9 r:
10453  // The event type cannot be used to declare a structure or union field.
10454  if (LangOpts.OpenCL && T->isEventT()) {
10455    Diag(Loc, diag::err_event_t_struct_field);
10456    D.setInvalidType();
10457  }
10458
10459  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10460
10461  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
10462    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
10463         diag::err_invalid_thread)
10464      << DeclSpec::getSpecifierName(TSCS);
10465
10466  // Check to see if this name was declared as a member previously
10467  NamedDecl *PrevDecl = 0;
10468  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10469  LookupName(Previous, S);
10470  switch (Previous.getResultKind()) {
10471    case LookupResult::Found:
10472    case LookupResult::FoundUnresolvedValue:
10473      PrevDecl = Previous.getAsSingle<NamedDecl>();
10474      break;
10475
10476    case LookupResult::FoundOverloaded:
10477      PrevDecl = Previous.getRepresentativeDecl();
10478      break;
10479
10480    case LookupResult::NotFound:
10481    case LookupResult::NotFoundInCurrentInstantiation:
10482    case LookupResult::Ambiguous:
10483      break;
10484  }
10485  Previous.suppressDiagnostics();
10486
10487  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10488    // Maybe we will complain about the shadowed template parameter.
10489    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10490    // Just pretend that we didn't see the previous declaration.
10491    PrevDecl = 0;
10492  }
10493
10494  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10495    PrevDecl = 0;
10496
10497  bool Mutable
10498    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10499  SourceLocation TSSL = D.getLocStart();
10500  FieldDecl *NewFD
10501    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10502                     TSSL, AS, PrevDecl, &D);
10503
10504  if (NewFD->isInvalidDecl())
10505    Record->setInvalidDecl();
10506
10507  if (D.getDeclSpec().isModulePrivateSpecified())
10508    NewFD->setModulePrivate();
10509
10510  if (NewFD->isInvalidDecl() && PrevDecl) {
10511    // Don't introduce NewFD into scope; there's already something
10512    // with the same name in the same scope.
10513  } else if (II) {
10514    PushOnScopeChains(NewFD, S);
10515  } else
10516    Record->addDecl(NewFD);
10517
10518  return NewFD;
10519}
10520
10521/// \brief Build a new FieldDecl and check its well-formedness.
10522///
10523/// This routine builds a new FieldDecl given the fields name, type,
10524/// record, etc. \p PrevDecl should refer to any previous declaration
10525/// with the same name and in the same scope as the field to be
10526/// created.
10527///
10528/// \returns a new FieldDecl.
10529///
10530/// \todo The Declarator argument is a hack. It will be removed once
10531FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10532                                TypeSourceInfo *TInfo,
10533                                RecordDecl *Record, SourceLocation Loc,
10534                                bool Mutable, Expr *BitWidth,
10535                                InClassInitStyle InitStyle,
10536                                SourceLocation TSSL,
10537                                AccessSpecifier AS, NamedDecl *PrevDecl,
10538                                Declarator *D) {
10539  IdentifierInfo *II = Name.getAsIdentifierInfo();
10540  bool InvalidDecl = false;
10541  if (D) InvalidDecl = D->isInvalidType();
10542
10543  // If we receive a broken type, recover by assuming 'int' and
10544  // marking this declaration as invalid.
10545  if (T.isNull()) {
10546    InvalidDecl = true;
10547    T = Context.IntTy;
10548  }
10549
10550  QualType EltTy = Context.getBaseElementType(T);
10551  if (!EltTy->isDependentType()) {
10552    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10553      // Fields of incomplete type force their record to be invalid.
10554      Record->setInvalidDecl();
10555      InvalidDecl = true;
10556    } else {
10557      NamedDecl *Def;
10558      EltTy->isIncompleteType(&Def);
10559      if (Def && Def->isInvalidDecl()) {
10560        Record->setInvalidDecl();
10561        InvalidDecl = true;
10562      }
10563    }
10564  }
10565
10566  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10567  if (BitWidth && getLangOpts().OpenCL) {
10568    Diag(Loc, diag::err_opencl_bitfields);
10569    InvalidDecl = true;
10570  }
10571
10572  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10573  // than a variably modified type.
10574  if (!InvalidDecl && T->isVariablyModifiedType()) {
10575    bool SizeIsNegative;
10576    llvm::APSInt Oversized;
10577
10578    TypeSourceInfo *FixedTInfo =
10579      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10580                                                    SizeIsNegative,
10581                                                    Oversized);
10582    if (FixedTInfo) {
10583      Diag(Loc, diag::warn_illegal_constant_array_size);
10584      TInfo = FixedTInfo;
10585      T = FixedTInfo->getType();
10586    } else {
10587      if (SizeIsNegative)
10588        Diag(Loc, diag::err_typecheck_negative_array_size);
10589      else if (Oversized.getBoolValue())
10590        Diag(Loc, diag::err_array_too_large)
10591          << Oversized.toString(10);
10592      else
10593        Diag(Loc, diag::err_typecheck_field_variable_size);
10594      InvalidDecl = true;
10595    }
10596  }
10597
10598  // Fields can not have abstract class types
10599  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10600                                             diag::err_abstract_type_in_decl,
10601                                             AbstractFieldType))
10602    InvalidDecl = true;
10603
10604  bool ZeroWidth = false;
10605  // If this is declared as a bit-field, check the bit-field.
10606  if (!InvalidDecl && BitWidth) {
10607    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10608    if (!BitWidth) {
10609      InvalidDecl = true;
10610      BitWidth = 0;
10611      ZeroWidth = false;
10612    }
10613  }
10614
10615  // Check that 'mutable' is consistent with the type of the declaration.
10616  if (!InvalidDecl && Mutable) {
10617    unsigned DiagID = 0;
10618    if (T->isReferenceType())
10619      DiagID = diag::err_mutable_reference;
10620    else if (T.isConstQualified())
10621      DiagID = diag::err_mutable_const;
10622
10623    if (DiagID) {
10624      SourceLocation ErrLoc = Loc;
10625      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10626        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10627      Diag(ErrLoc, DiagID);
10628      Mutable = false;
10629      InvalidDecl = true;
10630    }
10631  }
10632
10633  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10634                                       BitWidth, Mutable, InitStyle);
10635  if (InvalidDecl)
10636    NewFD->setInvalidDecl();
10637
10638  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10639    Diag(Loc, diag::err_duplicate_member) << II;
10640    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10641    NewFD->setInvalidDecl();
10642  }
10643
10644  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10645    if (Record->isUnion()) {
10646      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10647        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10648        if (RDecl->getDefinition()) {
10649          // C++ [class.union]p1: An object of a class with a non-trivial
10650          // constructor, a non-trivial copy constructor, a non-trivial
10651          // destructor, or a non-trivial copy assignment operator
10652          // cannot be a member of a union, nor can an array of such
10653          // objects.
10654          if (CheckNontrivialField(NewFD))
10655            NewFD->setInvalidDecl();
10656        }
10657      }
10658
10659      // C++ [class.union]p1: If a union contains a member of reference type,
10660      // the program is ill-formed.
10661      if (EltTy->isReferenceType()) {
10662        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10663          << NewFD->getDeclName() << EltTy;
10664        NewFD->setInvalidDecl();
10665      }
10666    }
10667  }
10668
10669  // FIXME: We need to pass in the attributes given an AST
10670  // representation, not a parser representation.
10671  if (D) {
10672    // FIXME: The current scope is almost... but not entirely... correct here.
10673    ProcessDeclAttributes(getCurScope(), NewFD, *D);
10674
10675    if (NewFD->hasAttrs())
10676      CheckAlignasUnderalignment(NewFD);
10677  }
10678
10679  // In auto-retain/release, infer strong retension for fields of
10680  // retainable type.
10681  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10682    NewFD->setInvalidDecl();
10683
10684  if (T.isObjCGCWeak())
10685    Diag(Loc, diag::warn_attribute_weak_on_field);
10686
10687  NewFD->setAccess(AS);
10688  return NewFD;
10689}
10690
10691bool Sema::CheckNontrivialField(FieldDecl *FD) {
10692  assert(FD);
10693  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10694
10695  if (FD->isInvalidDecl())
10696    return true;
10697
10698  QualType EltTy = Context.getBaseElementType(FD->getType());
10699  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10700    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10701    if (RDecl->getDefinition()) {
10702      // We check for copy constructors before constructors
10703      // because otherwise we'll never get complaints about
10704      // copy constructors.
10705
10706      CXXSpecialMember member = CXXInvalid;
10707      // We're required to check for any non-trivial constructors. Since the
10708      // implicit default constructor is suppressed if there are any
10709      // user-declared constructors, we just need to check that there is a
10710      // trivial default constructor and a trivial copy constructor. (We don't
10711      // worry about move constructors here, since this is a C++98 check.)
10712      if (RDecl->hasNonTrivialCopyConstructor())
10713        member = CXXCopyConstructor;
10714      else if (!RDecl->hasTrivialDefaultConstructor())
10715        member = CXXDefaultConstructor;
10716      else if (RDecl->hasNonTrivialCopyAssignment())
10717        member = CXXCopyAssignment;
10718      else if (RDecl->hasNonTrivialDestructor())
10719        member = CXXDestructor;
10720
10721      if (member != CXXInvalid) {
10722        if (!getLangOpts().CPlusPlus11 &&
10723            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10724          // Objective-C++ ARC: it is an error to have a non-trivial field of
10725          // a union. However, system headers in Objective-C programs
10726          // occasionally have Objective-C lifetime objects within unions,
10727          // and rather than cause the program to fail, we make those
10728          // members unavailable.
10729          SourceLocation Loc = FD->getLocation();
10730          if (getSourceManager().isInSystemHeader(Loc)) {
10731            if (!FD->hasAttr<UnavailableAttr>())
10732              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10733                                  "this system field has retaining ownership"));
10734            return false;
10735          }
10736        }
10737
10738        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10739               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10740               diag::err_illegal_union_or_anon_struct_member)
10741          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10742        DiagnoseNontrivial(RDecl, member);
10743        return !getLangOpts().CPlusPlus11;
10744      }
10745    }
10746  }
10747
10748  return false;
10749}
10750
10751/// TranslateIvarVisibility - Translate visibility from a token ID to an
10752///  AST enum value.
10753static ObjCIvarDecl::AccessControl
10754TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10755  switch (ivarVisibility) {
10756  default: llvm_unreachable("Unknown visitibility kind");
10757  case tok::objc_private: return ObjCIvarDecl::Private;
10758  case tok::objc_public: return ObjCIvarDecl::Public;
10759  case tok::objc_protected: return ObjCIvarDecl::Protected;
10760  case tok::objc_package: return ObjCIvarDecl::Package;
10761  }
10762}
10763
10764/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10765/// in order to create an IvarDecl object for it.
10766Decl *Sema::ActOnIvar(Scope *S,
10767                                SourceLocation DeclStart,
10768                                Declarator &D, Expr *BitfieldWidth,
10769                                tok::ObjCKeywordKind Visibility) {
10770
10771  IdentifierInfo *II = D.getIdentifier();
10772  Expr *BitWidth = (Expr*)BitfieldWidth;
10773  SourceLocation Loc = DeclStart;
10774  if (II) Loc = D.getIdentifierLoc();
10775
10776  // FIXME: Unnamed fields can be handled in various different ways, for
10777  // example, unnamed unions inject all members into the struct namespace!
10778
10779  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10780  QualType T = TInfo->getType();
10781
10782  if (BitWidth) {
10783    // 6.7.2.1p3, 6.7.2.1p4
10784    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10785    if (!BitWidth)
10786      D.setInvalidType();
10787  } else {
10788    // Not a bitfield.
10789
10790    // validate II.
10791
10792  }
10793  if (T->isReferenceType()) {
10794    Diag(Loc, diag::err_ivar_reference_type);
10795    D.setInvalidType();
10796  }
10797  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10798  // than a variably modified type.
10799  else if (T->isVariablyModifiedType()) {
10800    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10801    D.setInvalidType();
10802  }
10803
10804  // Get the visibility (access control) for this ivar.
10805  ObjCIvarDecl::AccessControl ac =
10806    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10807                                        : ObjCIvarDecl::None;
10808  // Must set ivar's DeclContext to its enclosing interface.
10809  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10810  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10811    return 0;
10812  ObjCContainerDecl *EnclosingContext;
10813  if (ObjCImplementationDecl *IMPDecl =
10814      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10815    if (LangOpts.ObjCRuntime.isFragile()) {
10816    // Case of ivar declared in an implementation. Context is that of its class.
10817      EnclosingContext = IMPDecl->getClassInterface();
10818      assert(EnclosingContext && "Implementation has no class interface!");
10819    }
10820    else
10821      EnclosingContext = EnclosingDecl;
10822  } else {
10823    if (ObjCCategoryDecl *CDecl =
10824        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10825      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10826        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10827        return 0;
10828      }
10829    }
10830    EnclosingContext = EnclosingDecl;
10831  }
10832
10833  // Construct the decl.
10834  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10835                                             DeclStart, Loc, II, T,
10836                                             TInfo, ac, (Expr *)BitfieldWidth);
10837
10838  if (II) {
10839    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10840                                           ForRedeclaration);
10841    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10842        && !isa<TagDecl>(PrevDecl)) {
10843      Diag(Loc, diag::err_duplicate_member) << II;
10844      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10845      NewID->setInvalidDecl();
10846    }
10847  }
10848
10849  // Process attributes attached to the ivar.
10850  ProcessDeclAttributes(S, NewID, D);
10851
10852  if (D.isInvalidType())
10853    NewID->setInvalidDecl();
10854
10855  // In ARC, infer 'retaining' for ivars of retainable type.
10856  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10857    NewID->setInvalidDecl();
10858
10859  if (D.getDeclSpec().isModulePrivateSpecified())
10860    NewID->setModulePrivate();
10861
10862  if (II) {
10863    // FIXME: When interfaces are DeclContexts, we'll need to add
10864    // these to the interface.
10865    S->AddDecl(NewID);
10866    IdResolver.AddDecl(NewID);
10867  }
10868
10869  if (LangOpts.ObjCRuntime.isNonFragile() &&
10870      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10871    Diag(Loc, diag::warn_ivars_in_interface);
10872
10873  return NewID;
10874}
10875
10876/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10877/// class and class extensions. For every class \@interface and class
10878/// extension \@interface, if the last ivar is a bitfield of any type,
10879/// then add an implicit `char :0` ivar to the end of that interface.
10880void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10881                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10882  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10883    return;
10884
10885  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10886  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10887
10888  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10889    return;
10890  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10891  if (!ID) {
10892    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10893      if (!CD->IsClassExtension())
10894        return;
10895    }
10896    // No need to add this to end of @implementation.
10897    else
10898      return;
10899  }
10900  // All conditions are met. Add a new bitfield to the tail end of ivars.
10901  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10902  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10903
10904  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10905                              DeclLoc, DeclLoc, 0,
10906                              Context.CharTy,
10907                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10908                                                               DeclLoc),
10909                              ObjCIvarDecl::Private, BW,
10910                              true);
10911  AllIvarDecls.push_back(Ivar);
10912}
10913
10914void Sema::ActOnFields(Scope* S,
10915                       SourceLocation RecLoc, Decl *EnclosingDecl,
10916                       llvm::ArrayRef<Decl *> Fields,
10917                       SourceLocation LBrac, SourceLocation RBrac,
10918                       AttributeList *Attr) {
10919  assert(EnclosingDecl && "missing record or interface decl");
10920
10921  // If this is an Objective-C @implementation or category and we have
10922  // new fields here we should reset the layout of the interface since
10923  // it will now change.
10924  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10925    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10926    switch (DC->getKind()) {
10927    default: break;
10928    case Decl::ObjCCategory:
10929      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10930      break;
10931    case Decl::ObjCImplementation:
10932      Context.
10933        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10934      break;
10935    }
10936  }
10937
10938  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10939
10940  // Start counting up the number of named members; make sure to include
10941  // members of anonymous structs and unions in the total.
10942  unsigned NumNamedMembers = 0;
10943  if (Record) {
10944    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10945                                   e = Record->decls_end(); i != e; i++) {
10946      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10947        if (IFD->getDeclName())
10948          ++NumNamedMembers;
10949    }
10950  }
10951
10952  // Verify that all the fields are okay.
10953  SmallVector<FieldDecl*, 32> RecFields;
10954
10955  bool ARCErrReported = false;
10956  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10957       i != end; ++i) {
10958    FieldDecl *FD = cast<FieldDecl>(*i);
10959
10960    // Get the type for the field.
10961    const Type *FDTy = FD->getType().getTypePtr();
10962
10963    if (!FD->isAnonymousStructOrUnion()) {
10964      // Remember all fields written by the user.
10965      RecFields.push_back(FD);
10966    }
10967
10968    // If the field is already invalid for some reason, don't emit more
10969    // diagnostics about it.
10970    if (FD->isInvalidDecl()) {
10971      EnclosingDecl->setInvalidDecl();
10972      continue;
10973    }
10974
10975    // C99 6.7.2.1p2:
10976    //   A structure or union shall not contain a member with
10977    //   incomplete or function type (hence, a structure shall not
10978    //   contain an instance of itself, but may contain a pointer to
10979    //   an instance of itself), except that the last member of a
10980    //   structure with more than one named member may have incomplete
10981    //   array type; such a structure (and any union containing,
10982    //   possibly recursively, a member that is such a structure)
10983    //   shall not be a member of a structure or an element of an
10984    //   array.
10985    if (FDTy->isFunctionType()) {
10986      // Field declared as a function.
10987      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10988        << FD->getDeclName();
10989      FD->setInvalidDecl();
10990      EnclosingDecl->setInvalidDecl();
10991      continue;
10992    } else if (FDTy->isIncompleteArrayType() && Record &&
10993               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10994                ((getLangOpts().MicrosoftExt ||
10995                  getLangOpts().CPlusPlus) &&
10996                 (i + 1 == Fields.end() || Record->isUnion())))) {
10997      // Flexible array member.
10998      // Microsoft and g++ is more permissive regarding flexible array.
10999      // It will accept flexible array in union and also
11000      // as the sole element of a struct/class.
11001      if (getLangOpts().MicrosoftExt) {
11002        if (Record->isUnion())
11003          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11004            << FD->getDeclName();
11005        else if (Fields.size() == 1)
11006          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11007            << FD->getDeclName() << Record->getTagKind();
11008      } else if (getLangOpts().CPlusPlus) {
11009        if (Record->isUnion())
11010          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11011            << FD->getDeclName();
11012        else if (Fields.size() == 1)
11013          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11014            << FD->getDeclName() << Record->getTagKind();
11015      } else if (!getLangOpts().C99) {
11016      if (Record->isUnion())
11017        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11018          << FD->getDeclName();
11019      else
11020        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11021          << FD->getDeclName() << Record->getTagKind();
11022      } else if (NumNamedMembers < 1) {
11023        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11024          << FD->getDeclName();
11025        FD->setInvalidDecl();
11026        EnclosingDecl->setInvalidDecl();
11027        continue;
11028      }
11029      if (!FD->getType()->isDependentType() &&
11030          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11031        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11032          << FD->getDeclName() << FD->getType();
11033        FD->setInvalidDecl();
11034        EnclosingDecl->setInvalidDecl();
11035        continue;
11036      }
11037      // Okay, we have a legal flexible array member at the end of the struct.
11038      if (Record)
11039        Record->setHasFlexibleArrayMember(true);
11040    } else if (!FDTy->isDependentType() &&
11041               RequireCompleteType(FD->getLocation(), FD->getType(),
11042                                   diag::err_field_incomplete)) {
11043      // Incomplete type
11044      FD->setInvalidDecl();
11045      EnclosingDecl->setInvalidDecl();
11046      continue;
11047    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11048      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11049        // If this is a member of a union, then entire union becomes "flexible".
11050        if (Record && Record->isUnion()) {
11051          Record->setHasFlexibleArrayMember(true);
11052        } else {
11053          // If this is a struct/class and this is not the last element, reject
11054          // it.  Note that GCC supports variable sized arrays in the middle of
11055          // structures.
11056          if (i + 1 != Fields.end())
11057            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11058              << FD->getDeclName() << FD->getType();
11059          else {
11060            // We support flexible arrays at the end of structs in
11061            // other structs as an extension.
11062            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11063              << FD->getDeclName();
11064            if (Record)
11065              Record->setHasFlexibleArrayMember(true);
11066          }
11067        }
11068      }
11069      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11070          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11071                                 diag::err_abstract_type_in_decl,
11072                                 AbstractIvarType)) {
11073        // Ivars can not have abstract class types
11074        FD->setInvalidDecl();
11075      }
11076      if (Record && FDTTy->getDecl()->hasObjectMember())
11077        Record->setHasObjectMember(true);
11078      if (Record && FDTTy->getDecl()->hasVolatileMember())
11079        Record->setHasVolatileMember(true);
11080    } else if (FDTy->isObjCObjectType()) {
11081      /// A field cannot be an Objective-c object
11082      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11083        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11084      QualType T = Context.getObjCObjectPointerType(FD->getType());
11085      FD->setType(T);
11086    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11087               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11088      // It's an error in ARC if a field has lifetime.
11089      // We don't want to report this in a system header, though,
11090      // so we just make the field unavailable.
11091      // FIXME: that's really not sufficient; we need to make the type
11092      // itself invalid to, say, initialize or copy.
11093      QualType T = FD->getType();
11094      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11095      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11096        SourceLocation loc = FD->getLocation();
11097        if (getSourceManager().isInSystemHeader(loc)) {
11098          if (!FD->hasAttr<UnavailableAttr>()) {
11099            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11100                              "this system field has retaining ownership"));
11101          }
11102        } else {
11103          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11104            << T->isBlockPointerType() << Record->getTagKind();
11105        }
11106        ARCErrReported = true;
11107      }
11108    } else if (getLangOpts().ObjC1 &&
11109               getLangOpts().getGC() != LangOptions::NonGC &&
11110               Record && !Record->hasObjectMember()) {
11111      if (FD->getType()->isObjCObjectPointerType() ||
11112          FD->getType().isObjCGCStrong())
11113        Record->setHasObjectMember(true);
11114      else if (Context.getAsArrayType(FD->getType())) {
11115        QualType BaseType = Context.getBaseElementType(FD->getType());
11116        if (BaseType->isRecordType() &&
11117            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11118          Record->setHasObjectMember(true);
11119        else if (BaseType->isObjCObjectPointerType() ||
11120                 BaseType.isObjCGCStrong())
11121               Record->setHasObjectMember(true);
11122      }
11123    }
11124    if (Record && FD->getType().isVolatileQualified())
11125      Record->setHasVolatileMember(true);
11126    // Keep track of the number of named members.
11127    if (FD->getIdentifier())
11128      ++NumNamedMembers;
11129  }
11130
11131  // Okay, we successfully defined 'Record'.
11132  if (Record) {
11133    bool Completed = false;
11134    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11135      if (!CXXRecord->isInvalidDecl()) {
11136        // Set access bits correctly on the directly-declared conversions.
11137        for (CXXRecordDecl::conversion_iterator
11138               I = CXXRecord->conversion_begin(),
11139               E = CXXRecord->conversion_end(); I != E; ++I)
11140          I.setAccess((*I)->getAccess());
11141
11142        if (!CXXRecord->isDependentType()) {
11143          // Adjust user-defined destructor exception spec.
11144          if (getLangOpts().CPlusPlus11 &&
11145              CXXRecord->hasUserDeclaredDestructor())
11146            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
11147
11148          // Add any implicitly-declared members to this class.
11149          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11150
11151          // If we have virtual base classes, we may end up finding multiple
11152          // final overriders for a given virtual function. Check for this
11153          // problem now.
11154          if (CXXRecord->getNumVBases()) {
11155            CXXFinalOverriderMap FinalOverriders;
11156            CXXRecord->getFinalOverriders(FinalOverriders);
11157
11158            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11159                                             MEnd = FinalOverriders.end();
11160                 M != MEnd; ++M) {
11161              for (OverridingMethods::iterator SO = M->second.begin(),
11162                                            SOEnd = M->second.end();
11163                   SO != SOEnd; ++SO) {
11164                assert(SO->second.size() > 0 &&
11165                       "Virtual function without overridding functions?");
11166                if (SO->second.size() == 1)
11167                  continue;
11168
11169                // C++ [class.virtual]p2:
11170                //   In a derived class, if a virtual member function of a base
11171                //   class subobject has more than one final overrider the
11172                //   program is ill-formed.
11173                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11174                  << (const NamedDecl *)M->first << Record;
11175                Diag(M->first->getLocation(),
11176                     diag::note_overridden_virtual_function);
11177                for (OverridingMethods::overriding_iterator
11178                          OM = SO->second.begin(),
11179                       OMEnd = SO->second.end();
11180                     OM != OMEnd; ++OM)
11181                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11182                    << (const NamedDecl *)M->first << OM->Method->getParent();
11183
11184                Record->setInvalidDecl();
11185              }
11186            }
11187            CXXRecord->completeDefinition(&FinalOverriders);
11188            Completed = true;
11189          }
11190        }
11191      }
11192    }
11193
11194    if (!Completed)
11195      Record->completeDefinition();
11196
11197    if (Record->hasAttrs())
11198      CheckAlignasUnderalignment(Record);
11199  } else {
11200    ObjCIvarDecl **ClsFields =
11201      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11202    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11203      ID->setEndOfDefinitionLoc(RBrac);
11204      // Add ivar's to class's DeclContext.
11205      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11206        ClsFields[i]->setLexicalDeclContext(ID);
11207        ID->addDecl(ClsFields[i]);
11208      }
11209      // Must enforce the rule that ivars in the base classes may not be
11210      // duplicates.
11211      if (ID->getSuperClass())
11212        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11213    } else if (ObjCImplementationDecl *IMPDecl =
11214                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11215      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11216      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11217        // Ivar declared in @implementation never belongs to the implementation.
11218        // Only it is in implementation's lexical context.
11219        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11220      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11221      IMPDecl->setIvarLBraceLoc(LBrac);
11222      IMPDecl->setIvarRBraceLoc(RBrac);
11223    } else if (ObjCCategoryDecl *CDecl =
11224                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11225      // case of ivars in class extension; all other cases have been
11226      // reported as errors elsewhere.
11227      // FIXME. Class extension does not have a LocEnd field.
11228      // CDecl->setLocEnd(RBrac);
11229      // Add ivar's to class extension's DeclContext.
11230      // Diagnose redeclaration of private ivars.
11231      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11232      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11233        if (IDecl) {
11234          if (const ObjCIvarDecl *ClsIvar =
11235              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11236            Diag(ClsFields[i]->getLocation(),
11237                 diag::err_duplicate_ivar_declaration);
11238            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11239            continue;
11240          }
11241          for (ObjCInterfaceDecl::known_extensions_iterator
11242                 Ext = IDecl->known_extensions_begin(),
11243                 ExtEnd = IDecl->known_extensions_end();
11244               Ext != ExtEnd; ++Ext) {
11245            if (const ObjCIvarDecl *ClsExtIvar
11246                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11247              Diag(ClsFields[i]->getLocation(),
11248                   diag::err_duplicate_ivar_declaration);
11249              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11250              continue;
11251            }
11252          }
11253        }
11254        ClsFields[i]->setLexicalDeclContext(CDecl);
11255        CDecl->addDecl(ClsFields[i]);
11256      }
11257      CDecl->setIvarLBraceLoc(LBrac);
11258      CDecl->setIvarRBraceLoc(RBrac);
11259    }
11260  }
11261
11262  if (Attr)
11263    ProcessDeclAttributeList(S, Record, Attr);
11264}
11265
11266/// \brief Determine whether the given integral value is representable within
11267/// the given type T.
11268static bool isRepresentableIntegerValue(ASTContext &Context,
11269                                        llvm::APSInt &Value,
11270                                        QualType T) {
11271  assert(T->isIntegralType(Context) && "Integral type required!");
11272  unsigned BitWidth = Context.getIntWidth(T);
11273
11274  if (Value.isUnsigned() || Value.isNonNegative()) {
11275    if (T->isSignedIntegerOrEnumerationType())
11276      --BitWidth;
11277    return Value.getActiveBits() <= BitWidth;
11278  }
11279  return Value.getMinSignedBits() <= BitWidth;
11280}
11281
11282// \brief Given an integral type, return the next larger integral type
11283// (or a NULL type of no such type exists).
11284static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11285  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11286  // enum checking below.
11287  assert(T->isIntegralType(Context) && "Integral type required!");
11288  const unsigned NumTypes = 4;
11289  QualType SignedIntegralTypes[NumTypes] = {
11290    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11291  };
11292  QualType UnsignedIntegralTypes[NumTypes] = {
11293    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11294    Context.UnsignedLongLongTy
11295  };
11296
11297  unsigned BitWidth = Context.getTypeSize(T);
11298  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11299                                                        : UnsignedIntegralTypes;
11300  for (unsigned I = 0; I != NumTypes; ++I)
11301    if (Context.getTypeSize(Types[I]) > BitWidth)
11302      return Types[I];
11303
11304  return QualType();
11305}
11306
11307EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11308                                          EnumConstantDecl *LastEnumConst,
11309                                          SourceLocation IdLoc,
11310                                          IdentifierInfo *Id,
11311                                          Expr *Val) {
11312  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11313  llvm::APSInt EnumVal(IntWidth);
11314  QualType EltTy;
11315
11316  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11317    Val = 0;
11318
11319  if (Val)
11320    Val = DefaultLvalueConversion(Val).take();
11321
11322  if (Val) {
11323    if (Enum->isDependentType() || Val->isTypeDependent())
11324      EltTy = Context.DependentTy;
11325    else {
11326      SourceLocation ExpLoc;
11327      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11328          !getLangOpts().MicrosoftMode) {
11329        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11330        // constant-expression in the enumerator-definition shall be a converted
11331        // constant expression of the underlying type.
11332        EltTy = Enum->getIntegerType();
11333        ExprResult Converted =
11334          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11335                                           CCEK_Enumerator);
11336        if (Converted.isInvalid())
11337          Val = 0;
11338        else
11339          Val = Converted.take();
11340      } else if (!Val->isValueDependent() &&
11341                 !(Val = VerifyIntegerConstantExpression(Val,
11342                                                         &EnumVal).take())) {
11343        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11344      } else {
11345        if (Enum->isFixed()) {
11346          EltTy = Enum->getIntegerType();
11347
11348          // In Obj-C and Microsoft mode, require the enumeration value to be
11349          // representable in the underlying type of the enumeration. In C++11,
11350          // we perform a non-narrowing conversion as part of converted constant
11351          // expression checking.
11352          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11353            if (getLangOpts().MicrosoftMode) {
11354              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11355              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11356            } else
11357              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11358          } else
11359            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11360        } else if (getLangOpts().CPlusPlus) {
11361          // C++11 [dcl.enum]p5:
11362          //   If the underlying type is not fixed, the type of each enumerator
11363          //   is the type of its initializing value:
11364          //     - If an initializer is specified for an enumerator, the
11365          //       initializing value has the same type as the expression.
11366          EltTy = Val->getType();
11367        } else {
11368          // C99 6.7.2.2p2:
11369          //   The expression that defines the value of an enumeration constant
11370          //   shall be an integer constant expression that has a value
11371          //   representable as an int.
11372
11373          // Complain if the value is not representable in an int.
11374          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11375            Diag(IdLoc, diag::ext_enum_value_not_int)
11376              << EnumVal.toString(10) << Val->getSourceRange()
11377              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11378          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11379            // Force the type of the expression to 'int'.
11380            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11381          }
11382          EltTy = Val->getType();
11383        }
11384      }
11385    }
11386  }
11387
11388  if (!Val) {
11389    if (Enum->isDependentType())
11390      EltTy = Context.DependentTy;
11391    else if (!LastEnumConst) {
11392      // C++0x [dcl.enum]p5:
11393      //   If the underlying type is not fixed, the type of each enumerator
11394      //   is the type of its initializing value:
11395      //     - If no initializer is specified for the first enumerator, the
11396      //       initializing value has an unspecified integral type.
11397      //
11398      // GCC uses 'int' for its unspecified integral type, as does
11399      // C99 6.7.2.2p3.
11400      if (Enum->isFixed()) {
11401        EltTy = Enum->getIntegerType();
11402      }
11403      else {
11404        EltTy = Context.IntTy;
11405      }
11406    } else {
11407      // Assign the last value + 1.
11408      EnumVal = LastEnumConst->getInitVal();
11409      ++EnumVal;
11410      EltTy = LastEnumConst->getType();
11411
11412      // Check for overflow on increment.
11413      if (EnumVal < LastEnumConst->getInitVal()) {
11414        // C++0x [dcl.enum]p5:
11415        //   If the underlying type is not fixed, the type of each enumerator
11416        //   is the type of its initializing value:
11417        //
11418        //     - Otherwise the type of the initializing value is the same as
11419        //       the type of the initializing value of the preceding enumerator
11420        //       unless the incremented value is not representable in that type,
11421        //       in which case the type is an unspecified integral type
11422        //       sufficient to contain the incremented value. If no such type
11423        //       exists, the program is ill-formed.
11424        QualType T = getNextLargerIntegralType(Context, EltTy);
11425        if (T.isNull() || Enum->isFixed()) {
11426          // There is no integral type larger enough to represent this
11427          // value. Complain, then allow the value to wrap around.
11428          EnumVal = LastEnumConst->getInitVal();
11429          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11430          ++EnumVal;
11431          if (Enum->isFixed())
11432            // When the underlying type is fixed, this is ill-formed.
11433            Diag(IdLoc, diag::err_enumerator_wrapped)
11434              << EnumVal.toString(10)
11435              << EltTy;
11436          else
11437            Diag(IdLoc, diag::warn_enumerator_too_large)
11438              << EnumVal.toString(10);
11439        } else {
11440          EltTy = T;
11441        }
11442
11443        // Retrieve the last enumerator's value, extent that type to the
11444        // type that is supposed to be large enough to represent the incremented
11445        // value, then increment.
11446        EnumVal = LastEnumConst->getInitVal();
11447        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11448        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11449        ++EnumVal;
11450
11451        // If we're not in C++, diagnose the overflow of enumerator values,
11452        // which in C99 means that the enumerator value is not representable in
11453        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11454        // permits enumerator values that are representable in some larger
11455        // integral type.
11456        if (!getLangOpts().CPlusPlus && !T.isNull())
11457          Diag(IdLoc, diag::warn_enum_value_overflow);
11458      } else if (!getLangOpts().CPlusPlus &&
11459                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11460        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11461        Diag(IdLoc, diag::ext_enum_value_not_int)
11462          << EnumVal.toString(10) << 1;
11463      }
11464    }
11465  }
11466
11467  if (!EltTy->isDependentType()) {
11468    // Make the enumerator value match the signedness and size of the
11469    // enumerator's type.
11470    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11471    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11472  }
11473
11474  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11475                                  Val, EnumVal);
11476}
11477
11478
11479Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11480                              SourceLocation IdLoc, IdentifierInfo *Id,
11481                              AttributeList *Attr,
11482                              SourceLocation EqualLoc, Expr *Val) {
11483  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11484  EnumConstantDecl *LastEnumConst =
11485    cast_or_null<EnumConstantDecl>(lastEnumConst);
11486
11487  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11488  // we find one that is.
11489  S = getNonFieldDeclScope(S);
11490
11491  // Verify that there isn't already something declared with this name in this
11492  // scope.
11493  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11494                                         ForRedeclaration);
11495  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11496    // Maybe we will complain about the shadowed template parameter.
11497    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11498    // Just pretend that we didn't see the previous declaration.
11499    PrevDecl = 0;
11500  }
11501
11502  if (PrevDecl) {
11503    // When in C++, we may get a TagDecl with the same name; in this case the
11504    // enum constant will 'hide' the tag.
11505    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11506           "Received TagDecl when not in C++!");
11507    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11508      if (isa<EnumConstantDecl>(PrevDecl))
11509        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11510      else
11511        Diag(IdLoc, diag::err_redefinition) << Id;
11512      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11513      return 0;
11514    }
11515  }
11516
11517  // C++ [class.mem]p15:
11518  // If T is the name of a class, then each of the following shall have a name
11519  // different from T:
11520  // - every enumerator of every member of class T that is an unscoped
11521  // enumerated type
11522  if (CXXRecordDecl *Record
11523                      = dyn_cast<CXXRecordDecl>(
11524                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11525    if (!TheEnumDecl->isScoped() &&
11526        Record->getIdentifier() && Record->getIdentifier() == Id)
11527      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11528
11529  EnumConstantDecl *New =
11530    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11531
11532  if (New) {
11533    // Process attributes.
11534    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11535
11536    // Register this decl in the current scope stack.
11537    New->setAccess(TheEnumDecl->getAccess());
11538    PushOnScopeChains(New, S);
11539  }
11540
11541  ActOnDocumentableDecl(New);
11542
11543  return New;
11544}
11545
11546// Returns true when the enum initial expression does not trigger the
11547// duplicate enum warning.  A few common cases are exempted as follows:
11548// Element2 = Element1
11549// Element2 = Element1 + 1
11550// Element2 = Element1 - 1
11551// Where Element2 and Element1 are from the same enum.
11552static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11553  Expr *InitExpr = ECD->getInitExpr();
11554  if (!InitExpr)
11555    return true;
11556  InitExpr = InitExpr->IgnoreImpCasts();
11557
11558  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11559    if (!BO->isAdditiveOp())
11560      return true;
11561    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11562    if (!IL)
11563      return true;
11564    if (IL->getValue() != 1)
11565      return true;
11566
11567    InitExpr = BO->getLHS();
11568  }
11569
11570  // This checks if the elements are from the same enum.
11571  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11572  if (!DRE)
11573    return true;
11574
11575  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11576  if (!EnumConstant)
11577    return true;
11578
11579  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11580      Enum)
11581    return true;
11582
11583  return false;
11584}
11585
11586struct DupKey {
11587  int64_t val;
11588  bool isTombstoneOrEmptyKey;
11589  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11590    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11591};
11592
11593static DupKey GetDupKey(const llvm::APSInt& Val) {
11594  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11595                false);
11596}
11597
11598struct DenseMapInfoDupKey {
11599  static DupKey getEmptyKey() { return DupKey(0, true); }
11600  static DupKey getTombstoneKey() { return DupKey(1, true); }
11601  static unsigned getHashValue(const DupKey Key) {
11602    return (unsigned)(Key.val * 37);
11603  }
11604  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11605    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11606           LHS.val == RHS.val;
11607  }
11608};
11609
11610// Emits a warning when an element is implicitly set a value that
11611// a previous element has already been set to.
11612static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
11613                                        EnumDecl *Enum,
11614                                        QualType EnumType) {
11615  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11616                                 Enum->getLocation()) ==
11617      DiagnosticsEngine::Ignored)
11618    return;
11619  // Avoid anonymous enums
11620  if (!Enum->getIdentifier())
11621    return;
11622
11623  // Only check for small enums.
11624  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11625    return;
11626
11627  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11628  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11629
11630  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11631  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11632          ValueToVectorMap;
11633
11634  DuplicatesVector DupVector;
11635  ValueToVectorMap EnumMap;
11636
11637  // Populate the EnumMap with all values represented by enum constants without
11638  // an initialier.
11639  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11640    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11641
11642    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11643    // this constant.  Skip this enum since it may be ill-formed.
11644    if (!ECD) {
11645      return;
11646    }
11647
11648    if (ECD->getInitExpr())
11649      continue;
11650
11651    DupKey Key = GetDupKey(ECD->getInitVal());
11652    DeclOrVector &Entry = EnumMap[Key];
11653
11654    // First time encountering this value.
11655    if (Entry.isNull())
11656      Entry = ECD;
11657  }
11658
11659  // Create vectors for any values that has duplicates.
11660  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11661    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11662    if (!ValidDuplicateEnum(ECD, Enum))
11663      continue;
11664
11665    DupKey Key = GetDupKey(ECD->getInitVal());
11666
11667    DeclOrVector& Entry = EnumMap[Key];
11668    if (Entry.isNull())
11669      continue;
11670
11671    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11672      // Ensure constants are different.
11673      if (D == ECD)
11674        continue;
11675
11676      // Create new vector and push values onto it.
11677      ECDVector *Vec = new ECDVector();
11678      Vec->push_back(D);
11679      Vec->push_back(ECD);
11680
11681      // Update entry to point to the duplicates vector.
11682      Entry = Vec;
11683
11684      // Store the vector somewhere we can consult later for quick emission of
11685      // diagnostics.
11686      DupVector.push_back(Vec);
11687      continue;
11688    }
11689
11690    ECDVector *Vec = Entry.get<ECDVector*>();
11691    // Make sure constants are not added more than once.
11692    if (*Vec->begin() == ECD)
11693      continue;
11694
11695    Vec->push_back(ECD);
11696  }
11697
11698  // Emit diagnostics.
11699  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11700                                  DupVectorEnd = DupVector.end();
11701       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11702    ECDVector *Vec = *DupVectorIter;
11703    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11704
11705    // Emit warning for one enum constant.
11706    ECDVector::iterator I = Vec->begin();
11707    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11708      << (*I)->getName() << (*I)->getInitVal().toString(10)
11709      << (*I)->getSourceRange();
11710    ++I;
11711
11712    // Emit one note for each of the remaining enum constants with
11713    // the same value.
11714    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11715      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11716        << (*I)->getName() << (*I)->getInitVal().toString(10)
11717        << (*I)->getSourceRange();
11718    delete Vec;
11719  }
11720}
11721
11722void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11723                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11724                         ArrayRef<Decl *> Elements,
11725                         Scope *S, AttributeList *Attr) {
11726  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11727  QualType EnumType = Context.getTypeDeclType(Enum);
11728
11729  if (Attr)
11730    ProcessDeclAttributeList(S, Enum, Attr);
11731
11732  if (Enum->isDependentType()) {
11733    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11734      EnumConstantDecl *ECD =
11735        cast_or_null<EnumConstantDecl>(Elements[i]);
11736      if (!ECD) continue;
11737
11738      ECD->setType(EnumType);
11739    }
11740
11741    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11742    return;
11743  }
11744
11745  // TODO: If the result value doesn't fit in an int, it must be a long or long
11746  // long value.  ISO C does not support this, but GCC does as an extension,
11747  // emit a warning.
11748  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11749  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11750  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11751
11752  // Verify that all the values are okay, compute the size of the values, and
11753  // reverse the list.
11754  unsigned NumNegativeBits = 0;
11755  unsigned NumPositiveBits = 0;
11756
11757  // Keep track of whether all elements have type int.
11758  bool AllElementsInt = true;
11759
11760  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11761    EnumConstantDecl *ECD =
11762      cast_or_null<EnumConstantDecl>(Elements[i]);
11763    if (!ECD) continue;  // Already issued a diagnostic.
11764
11765    const llvm::APSInt &InitVal = ECD->getInitVal();
11766
11767    // Keep track of the size of positive and negative values.
11768    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11769      NumPositiveBits = std::max(NumPositiveBits,
11770                                 (unsigned)InitVal.getActiveBits());
11771    else
11772      NumNegativeBits = std::max(NumNegativeBits,
11773                                 (unsigned)InitVal.getMinSignedBits());
11774
11775    // Keep track of whether every enum element has type int (very commmon).
11776    if (AllElementsInt)
11777      AllElementsInt = ECD->getType() == Context.IntTy;
11778  }
11779
11780  // Figure out the type that should be used for this enum.
11781  QualType BestType;
11782  unsigned BestWidth;
11783
11784  // C++0x N3000 [conv.prom]p3:
11785  //   An rvalue of an unscoped enumeration type whose underlying
11786  //   type is not fixed can be converted to an rvalue of the first
11787  //   of the following types that can represent all the values of
11788  //   the enumeration: int, unsigned int, long int, unsigned long
11789  //   int, long long int, or unsigned long long int.
11790  // C99 6.4.4.3p2:
11791  //   An identifier declared as an enumeration constant has type int.
11792  // The C99 rule is modified by a gcc extension
11793  QualType BestPromotionType;
11794
11795  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11796  // -fshort-enums is the equivalent to specifying the packed attribute on all
11797  // enum definitions.
11798  if (LangOpts.ShortEnums)
11799    Packed = true;
11800
11801  if (Enum->isFixed()) {
11802    BestType = Enum->getIntegerType();
11803    if (BestType->isPromotableIntegerType())
11804      BestPromotionType = Context.getPromotedIntegerType(BestType);
11805    else
11806      BestPromotionType = BestType;
11807    // We don't need to set BestWidth, because BestType is going to be the type
11808    // of the enumerators, but we do anyway because otherwise some compilers
11809    // warn that it might be used uninitialized.
11810    BestWidth = CharWidth;
11811  }
11812  else if (NumNegativeBits) {
11813    // If there is a negative value, figure out the smallest integer type (of
11814    // int/long/longlong) that fits.
11815    // If it's packed, check also if it fits a char or a short.
11816    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11817      BestType = Context.SignedCharTy;
11818      BestWidth = CharWidth;
11819    } else if (Packed && NumNegativeBits <= ShortWidth &&
11820               NumPositiveBits < ShortWidth) {
11821      BestType = Context.ShortTy;
11822      BestWidth = ShortWidth;
11823    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11824      BestType = Context.IntTy;
11825      BestWidth = IntWidth;
11826    } else {
11827      BestWidth = Context.getTargetInfo().getLongWidth();
11828
11829      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11830        BestType = Context.LongTy;
11831      } else {
11832        BestWidth = Context.getTargetInfo().getLongLongWidth();
11833
11834        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11835          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11836        BestType = Context.LongLongTy;
11837      }
11838    }
11839    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11840  } else {
11841    // If there is no negative value, figure out the smallest type that fits
11842    // all of the enumerator values.
11843    // If it's packed, check also if it fits a char or a short.
11844    if (Packed && NumPositiveBits <= CharWidth) {
11845      BestType = Context.UnsignedCharTy;
11846      BestPromotionType = Context.IntTy;
11847      BestWidth = CharWidth;
11848    } else if (Packed && NumPositiveBits <= ShortWidth) {
11849      BestType = Context.UnsignedShortTy;
11850      BestPromotionType = Context.IntTy;
11851      BestWidth = ShortWidth;
11852    } else if (NumPositiveBits <= IntWidth) {
11853      BestType = Context.UnsignedIntTy;
11854      BestWidth = IntWidth;
11855      BestPromotionType
11856        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11857                           ? Context.UnsignedIntTy : Context.IntTy;
11858    } else if (NumPositiveBits <=
11859               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11860      BestType = Context.UnsignedLongTy;
11861      BestPromotionType
11862        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11863                           ? Context.UnsignedLongTy : Context.LongTy;
11864    } else {
11865      BestWidth = Context.getTargetInfo().getLongLongWidth();
11866      assert(NumPositiveBits <= BestWidth &&
11867             "How could an initializer get larger than ULL?");
11868      BestType = Context.UnsignedLongLongTy;
11869      BestPromotionType
11870        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11871                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11872    }
11873  }
11874
11875  // Loop over all of the enumerator constants, changing their types to match
11876  // the type of the enum if needed.
11877  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11878    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11879    if (!ECD) continue;  // Already issued a diagnostic.
11880
11881    // Standard C says the enumerators have int type, but we allow, as an
11882    // extension, the enumerators to be larger than int size.  If each
11883    // enumerator value fits in an int, type it as an int, otherwise type it the
11884    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11885    // that X has type 'int', not 'unsigned'.
11886
11887    // Determine whether the value fits into an int.
11888    llvm::APSInt InitVal = ECD->getInitVal();
11889
11890    // If it fits into an integer type, force it.  Otherwise force it to match
11891    // the enum decl type.
11892    QualType NewTy;
11893    unsigned NewWidth;
11894    bool NewSign;
11895    if (!getLangOpts().CPlusPlus &&
11896        !Enum->isFixed() &&
11897        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11898      NewTy = Context.IntTy;
11899      NewWidth = IntWidth;
11900      NewSign = true;
11901    } else if (ECD->getType() == BestType) {
11902      // Already the right type!
11903      if (getLangOpts().CPlusPlus)
11904        // C++ [dcl.enum]p4: Following the closing brace of an
11905        // enum-specifier, each enumerator has the type of its
11906        // enumeration.
11907        ECD->setType(EnumType);
11908      continue;
11909    } else {
11910      NewTy = BestType;
11911      NewWidth = BestWidth;
11912      NewSign = BestType->isSignedIntegerOrEnumerationType();
11913    }
11914
11915    // Adjust the APSInt value.
11916    InitVal = InitVal.extOrTrunc(NewWidth);
11917    InitVal.setIsSigned(NewSign);
11918    ECD->setInitVal(InitVal);
11919
11920    // Adjust the Expr initializer and type.
11921    if (ECD->getInitExpr() &&
11922        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11923      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11924                                                CK_IntegralCast,
11925                                                ECD->getInitExpr(),
11926                                                /*base paths*/ 0,
11927                                                VK_RValue));
11928    if (getLangOpts().CPlusPlus)
11929      // C++ [dcl.enum]p4: Following the closing brace of an
11930      // enum-specifier, each enumerator has the type of its
11931      // enumeration.
11932      ECD->setType(EnumType);
11933    else
11934      ECD->setType(NewTy);
11935  }
11936
11937  Enum->completeDefinition(BestType, BestPromotionType,
11938                           NumPositiveBits, NumNegativeBits);
11939
11940  // If we're declaring a function, ensure this decl isn't forgotten about -
11941  // it needs to go into the function scope.
11942  if (InFunctionDeclarator)
11943    DeclsInPrototypeScope.push_back(Enum);
11944
11945  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
11946
11947  // Now that the enum type is defined, ensure it's not been underaligned.
11948  if (Enum->hasAttrs())
11949    CheckAlignasUnderalignment(Enum);
11950}
11951
11952Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11953                                  SourceLocation StartLoc,
11954                                  SourceLocation EndLoc) {
11955  StringLiteral *AsmString = cast<StringLiteral>(expr);
11956
11957  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11958                                                   AsmString, StartLoc,
11959                                                   EndLoc);
11960  CurContext->addDecl(New);
11961  return New;
11962}
11963
11964DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11965                                   SourceLocation ImportLoc,
11966                                   ModuleIdPath Path) {
11967  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11968                                                Module::AllVisible,
11969                                                /*IsIncludeDirective=*/false);
11970  if (!Mod)
11971    return true;
11972
11973  SmallVector<SourceLocation, 2> IdentifierLocs;
11974  Module *ModCheck = Mod;
11975  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11976    // If we've run out of module parents, just drop the remaining identifiers.
11977    // We need the length to be consistent.
11978    if (!ModCheck)
11979      break;
11980    ModCheck = ModCheck->Parent;
11981
11982    IdentifierLocs.push_back(Path[I].second);
11983  }
11984
11985  ImportDecl *Import = ImportDecl::Create(Context,
11986                                          Context.getTranslationUnitDecl(),
11987                                          AtLoc.isValid()? AtLoc : ImportLoc,
11988                                          Mod, IdentifierLocs);
11989  Context.getTranslationUnitDecl()->addDecl(Import);
11990  return Import;
11991}
11992
11993void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11994  // Create the implicit import declaration.
11995  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11996  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11997                                                   Loc, Mod, Loc);
11998  TU->addDecl(ImportD);
11999  Consumer.HandleImplicitImportDecl(ImportD);
12000
12001  // Make the module visible.
12002  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12003                                         /*Complain=*/false);
12004}
12005
12006void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12007                                      IdentifierInfo* AliasName,
12008                                      SourceLocation PragmaLoc,
12009                                      SourceLocation NameLoc,
12010                                      SourceLocation AliasNameLoc) {
12011  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12012                                    LookupOrdinaryName);
12013  AsmLabelAttr *Attr =
12014     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12015
12016  if (PrevDecl)
12017    PrevDecl->addAttr(Attr);
12018  else
12019    (void)ExtnameUndeclaredIdentifiers.insert(
12020      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12021}
12022
12023void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12024                             SourceLocation PragmaLoc,
12025                             SourceLocation NameLoc) {
12026  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12027
12028  if (PrevDecl) {
12029    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12030  } else {
12031    (void)WeakUndeclaredIdentifiers.insert(
12032      std::pair<IdentifierInfo*,WeakInfo>
12033        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12034  }
12035}
12036
12037void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12038                                IdentifierInfo* AliasName,
12039                                SourceLocation PragmaLoc,
12040                                SourceLocation NameLoc,
12041                                SourceLocation AliasNameLoc) {
12042  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12043                                    LookupOrdinaryName);
12044  WeakInfo W = WeakInfo(Name, NameLoc);
12045
12046  if (PrevDecl) {
12047    if (!PrevDecl->hasAttr<AliasAttr>())
12048      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12049        DeclApplyPragmaWeak(TUScope, ND, W);
12050  } else {
12051    (void)WeakUndeclaredIdentifiers.insert(
12052      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12053  }
12054}
12055
12056Decl *Sema::getObjCDeclContext() const {
12057  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12058}
12059
12060AvailabilityResult Sema::getCurContextAvailability() const {
12061  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12062  return D->getAvailability();
12063}
12064