SemaDecl.cpp revision 243830
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
354/// cases in C where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Interface: return DeclSpec::TST_interface;
365      case TTK_Union:  return DeclSpec::TST_union;
366      case TTK_Class:  return DeclSpec::TST_class;
367      case TTK_Enum:   return DeclSpec::TST_enum;
368      }
369    }
370
371  return DeclSpec::TST_unspecified;
372}
373
374/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
375/// if a CXXScopeSpec's type is equal to the type of one of the base classes
376/// then downgrade the missing typename error to a warning.
377/// This is needed for MSVC compatibility; Example:
378/// @code
379/// template<class T> class A {
380/// public:
381///   typedef int TYPE;
382/// };
383/// template<class T> class B : public A<T> {
384/// public:
385///   A<T>::TYPE a; // no typename required because A<T> is a base class.
386/// };
387/// @endcode
388bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
389  if (CurContext->isRecord()) {
390    const Type *Ty = SS->getScopeRep()->getAsType();
391
392    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
393    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
394          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
395      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
396        return true;
397    return S->isFunctionPrototypeScope();
398  }
399  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
400}
401
402bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
403                                   SourceLocation IILoc,
404                                   Scope *S,
405                                   CXXScopeSpec *SS,
406                                   ParsedType &SuggestedType) {
407  // We don't have anything to suggest (yet).
408  SuggestedType = ParsedType();
409
410  // There may have been a typo in the name of the type. Look up typo
411  // results, in case we have something that we can suggest.
412  TypeNameValidatorCCC Validator(false);
413  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
414                                             LookupOrdinaryName, S, SS,
415                                             Validator)) {
416    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
417    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
418
419    if (Corrected.isKeyword()) {
420      // We corrected to a keyword.
421      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
422      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
423        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
424      Diag(IILoc, diag::err_unknown_typename_suggest)
425        << II << CorrectedQuotedStr
426        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
427      II = NewII;
428    } else {
429      NamedDecl *Result = Corrected.getCorrectionDecl();
430      // We found a similarly-named type or interface; suggest that.
431      if (!SS || !SS->isSet())
432        Diag(IILoc, diag::err_unknown_typename_suggest)
433          << II << CorrectedQuotedStr
434          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
435      else if (DeclContext *DC = computeDeclContext(*SS, false))
436        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
437          << II << DC << CorrectedQuotedStr << SS->getRange()
438          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
439                                          CorrectedStr);
440      else
441        llvm_unreachable("could not have corrected a typo here");
442
443      Diag(Result->getLocation(), diag::note_previous_decl)
444        << CorrectedQuotedStr;
445
446      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
447                                  false, false, ParsedType(),
448                                  /*IsCtorOrDtorName=*/false,
449                                  /*NonTrivialTypeSourceInfo=*/true);
450    }
451    return true;
452  }
453
454  if (getLangOpts().CPlusPlus) {
455    // See if II is a class template that the user forgot to pass arguments to.
456    UnqualifiedId Name;
457    Name.setIdentifier(II, IILoc);
458    CXXScopeSpec EmptySS;
459    TemplateTy TemplateResult;
460    bool MemberOfUnknownSpecialization;
461    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
462                       Name, ParsedType(), true, TemplateResult,
463                       MemberOfUnknownSpecialization) == TNK_Type_template) {
464      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
465      Diag(IILoc, diag::err_template_missing_args) << TplName;
466      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
467        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
468          << TplDecl->getTemplateParameters()->getSourceRange();
469      }
470      return true;
471    }
472  }
473
474  // FIXME: Should we move the logic that tries to recover from a missing tag
475  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
476
477  if (!SS || (!SS->isSet() && !SS->isInvalid()))
478    Diag(IILoc, diag::err_unknown_typename) << II;
479  else if (DeclContext *DC = computeDeclContext(*SS, false))
480    Diag(IILoc, diag::err_typename_nested_not_found)
481      << II << DC << SS->getRange();
482  else if (isDependentScopeSpecifier(*SS)) {
483    unsigned DiagID = diag::err_typename_missing;
484    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
485      DiagID = diag::warn_typename_missing;
486
487    Diag(SS->getRange().getBegin(), DiagID)
488      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
489      << SourceRange(SS->getRange().getBegin(), IILoc)
490      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
491    SuggestedType = ActOnTypenameType(S, SourceLocation(),
492                                      *SS, *II, IILoc).get();
493  } else {
494    assert(SS && SS->isInvalid() &&
495           "Invalid scope specifier has already been diagnosed");
496  }
497
498  return true;
499}
500
501/// \brief Determine whether the given result set contains either a type name
502/// or
503static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
504  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
505                       NextToken.is(tok::less);
506
507  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
508    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
509      return true;
510
511    if (CheckTemplate && isa<TemplateDecl>(*I))
512      return true;
513  }
514
515  return false;
516}
517
518static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
519                                    Scope *S, CXXScopeSpec &SS,
520                                    IdentifierInfo *&Name,
521                                    SourceLocation NameLoc) {
522  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
523  SemaRef.LookupParsedName(R, S, &SS);
524  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
525    const char *TagName = 0;
526    const char *FixItTagName = 0;
527    switch (Tag->getTagKind()) {
528      case TTK_Class:
529        TagName = "class";
530        FixItTagName = "class ";
531        break;
532
533      case TTK_Enum:
534        TagName = "enum";
535        FixItTagName = "enum ";
536        break;
537
538      case TTK_Struct:
539        TagName = "struct";
540        FixItTagName = "struct ";
541        break;
542
543      case TTK_Interface:
544        TagName = "__interface";
545        FixItTagName = "__interface ";
546        break;
547
548      case TTK_Union:
549        TagName = "union";
550        FixItTagName = "union ";
551        break;
552    }
553
554    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
555      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
556      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
557
558    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
559         I != IEnd; ++I)
560      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
561        << Name << TagName;
562
563    // Replace lookup results with just the tag decl.
564    Result.clear(Sema::LookupTagName);
565    SemaRef.LookupParsedName(Result, S, &SS);
566    return true;
567  }
568
569  return false;
570}
571
572/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
573static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
574                                  QualType T, SourceLocation NameLoc) {
575  ASTContext &Context = S.Context;
576
577  TypeLocBuilder Builder;
578  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
579
580  T = S.getElaboratedType(ETK_None, SS, T);
581  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
582  ElabTL.setElaboratedKeywordLoc(SourceLocation());
583  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
584  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
585}
586
587Sema::NameClassification Sema::ClassifyName(Scope *S,
588                                            CXXScopeSpec &SS,
589                                            IdentifierInfo *&Name,
590                                            SourceLocation NameLoc,
591                                            const Token &NextToken,
592                                            bool IsAddressOfOperand,
593                                            CorrectionCandidateCallback *CCC) {
594  DeclarationNameInfo NameInfo(Name, NameLoc);
595  ObjCMethodDecl *CurMethod = getCurMethodDecl();
596
597  if (NextToken.is(tok::coloncolon)) {
598    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
599                                QualType(), false, SS, 0, false);
600
601  }
602
603  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
604  LookupParsedName(Result, S, &SS, !CurMethod);
605
606  // Perform lookup for Objective-C instance variables (including automatically
607  // synthesized instance variables), if we're in an Objective-C method.
608  // FIXME: This lookup really, really needs to be folded in to the normal
609  // unqualified lookup mechanism.
610  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
611    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
612    if (E.get() || E.isInvalid())
613      return E;
614  }
615
616  bool SecondTry = false;
617  bool IsFilteredTemplateName = false;
618
619Corrected:
620  switch (Result.getResultKind()) {
621  case LookupResult::NotFound:
622    // If an unqualified-id is followed by a '(', then we have a function
623    // call.
624    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
625      // In C++, this is an ADL-only call.
626      // FIXME: Reference?
627      if (getLangOpts().CPlusPlus)
628        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
629
630      // C90 6.3.2.2:
631      //   If the expression that precedes the parenthesized argument list in a
632      //   function call consists solely of an identifier, and if no
633      //   declaration is visible for this identifier, the identifier is
634      //   implicitly declared exactly as if, in the innermost block containing
635      //   the function call, the declaration
636      //
637      //     extern int identifier ();
638      //
639      //   appeared.
640      //
641      // We also allow this in C99 as an extension.
642      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
643        Result.addDecl(D);
644        Result.resolveKind();
645        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
646      }
647    }
648
649    // In C, we first see whether there is a tag type by the same name, in
650    // which case it's likely that the user just forget to write "enum",
651    // "struct", or "union".
652    if (!getLangOpts().CPlusPlus && !SecondTry &&
653        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
654      break;
655    }
656
657    // Perform typo correction to determine if there is another name that is
658    // close to this name.
659    if (!SecondTry && CCC) {
660      SecondTry = true;
661      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
662                                                 Result.getLookupKind(), S,
663                                                 &SS, *CCC)) {
664        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
665        unsigned QualifiedDiag = diag::err_no_member_suggest;
666        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
667        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
668
669        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
670        NamedDecl *UnderlyingFirstDecl
671          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
672        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
673            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
674          UnqualifiedDiag = diag::err_no_template_suggest;
675          QualifiedDiag = diag::err_no_member_template_suggest;
676        } else if (UnderlyingFirstDecl &&
677                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
679                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
680           UnqualifiedDiag = diag::err_unknown_typename_suggest;
681           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
682         }
683
684        if (SS.isEmpty())
685          Diag(NameLoc, UnqualifiedDiag)
686            << Name << CorrectedQuotedStr
687            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
688        else // FIXME: is this even reachable? Test it.
689          Diag(NameLoc, QualifiedDiag)
690            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
691            << SS.getRange()
692            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
693                                            CorrectedStr);
694
695        // Update the name, so that the caller has the new name.
696        Name = Corrected.getCorrectionAsIdentifierInfo();
697
698        // Typo correction corrected to a keyword.
699        if (Corrected.isKeyword())
700          return Corrected.getCorrectionAsIdentifierInfo();
701
702        // Also update the LookupResult...
703        // FIXME: This should probably go away at some point
704        Result.clear();
705        Result.setLookupName(Corrected.getCorrection());
706        if (FirstDecl) {
707          Result.addDecl(FirstDecl);
708          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
709            << CorrectedQuotedStr;
710        }
711
712        // If we found an Objective-C instance variable, let
713        // LookupInObjCMethod build the appropriate expression to
714        // reference the ivar.
715        // FIXME: This is a gross hack.
716        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
717          Result.clear();
718          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
719          return E;
720        }
721
722        goto Corrected;
723      }
724    }
725
726    // We failed to correct; just fall through and let the parser deal with it.
727    Result.suppressDiagnostics();
728    return NameClassification::Unknown();
729
730  case LookupResult::NotFoundInCurrentInstantiation: {
731    // We performed name lookup into the current instantiation, and there were
732    // dependent bases, so we treat this result the same way as any other
733    // dependent nested-name-specifier.
734
735    // C++ [temp.res]p2:
736    //   A name used in a template declaration or definition and that is
737    //   dependent on a template-parameter is assumed not to name a type
738    //   unless the applicable name lookup finds a type name or the name is
739    //   qualified by the keyword typename.
740    //
741    // FIXME: If the next token is '<', we might want to ask the parser to
742    // perform some heroics to see if we actually have a
743    // template-argument-list, which would indicate a missing 'template'
744    // keyword here.
745    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
746                                      NameInfo, IsAddressOfOperand,
747                                      /*TemplateArgs=*/0);
748  }
749
750  case LookupResult::Found:
751  case LookupResult::FoundOverloaded:
752  case LookupResult::FoundUnresolvedValue:
753    break;
754
755  case LookupResult::Ambiguous:
756    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
757        hasAnyAcceptableTemplateNames(Result)) {
758      // C++ [temp.local]p3:
759      //   A lookup that finds an injected-class-name (10.2) can result in an
760      //   ambiguity in certain cases (for example, if it is found in more than
761      //   one base class). If all of the injected-class-names that are found
762      //   refer to specializations of the same class template, and if the name
763      //   is followed by a template-argument-list, the reference refers to the
764      //   class template itself and not a specialization thereof, and is not
765      //   ambiguous.
766      //
767      // This filtering can make an ambiguous result into an unambiguous one,
768      // so try again after filtering out template names.
769      FilterAcceptableTemplateNames(Result);
770      if (!Result.isAmbiguous()) {
771        IsFilteredTemplateName = true;
772        break;
773      }
774    }
775
776    // Diagnose the ambiguity and return an error.
777    return NameClassification::Error();
778  }
779
780  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
781      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
782    // C++ [temp.names]p3:
783    //   After name lookup (3.4) finds that a name is a template-name or that
784    //   an operator-function-id or a literal- operator-id refers to a set of
785    //   overloaded functions any member of which is a function template if
786    //   this is followed by a <, the < is always taken as the delimiter of a
787    //   template-argument-list and never as the less-than operator.
788    if (!IsFilteredTemplateName)
789      FilterAcceptableTemplateNames(Result);
790
791    if (!Result.empty()) {
792      bool IsFunctionTemplate;
793      TemplateName Template;
794      if (Result.end() - Result.begin() > 1) {
795        IsFunctionTemplate = true;
796        Template = Context.getOverloadedTemplateName(Result.begin(),
797                                                     Result.end());
798      } else {
799        TemplateDecl *TD
800          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
801        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
802
803        if (SS.isSet() && !SS.isInvalid())
804          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
805                                                    /*TemplateKeyword=*/false,
806                                                      TD);
807        else
808          Template = TemplateName(TD);
809      }
810
811      if (IsFunctionTemplate) {
812        // Function templates always go through overload resolution, at which
813        // point we'll perform the various checks (e.g., accessibility) we need
814        // to based on which function we selected.
815        Result.suppressDiagnostics();
816
817        return NameClassification::FunctionTemplate(Template);
818      }
819
820      return NameClassification::TypeTemplate(Template);
821    }
822  }
823
824  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
825  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
826    DiagnoseUseOfDecl(Type, NameLoc);
827    QualType T = Context.getTypeDeclType(Type);
828    if (SS.isNotEmpty())
829      return buildNestedType(*this, SS, T, NameLoc);
830    return ParsedType::make(T);
831  }
832
833  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
834  if (!Class) {
835    // FIXME: It's unfortunate that we don't have a Type node for handling this.
836    if (ObjCCompatibleAliasDecl *Alias
837                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
838      Class = Alias->getClassInterface();
839  }
840
841  if (Class) {
842    DiagnoseUseOfDecl(Class, NameLoc);
843
844    if (NextToken.is(tok::period)) {
845      // Interface. <something> is parsed as a property reference expression.
846      // Just return "unknown" as a fall-through for now.
847      Result.suppressDiagnostics();
848      return NameClassification::Unknown();
849    }
850
851    QualType T = Context.getObjCInterfaceType(Class);
852    return ParsedType::make(T);
853  }
854
855  // We can have a type template here if we're classifying a template argument.
856  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
857    return NameClassification::TypeTemplate(
858        TemplateName(cast<TemplateDecl>(FirstDecl)));
859
860  // Check for a tag type hidden by a non-type decl in a few cases where it
861  // seems likely a type is wanted instead of the non-type that was found.
862  if (!getLangOpts().ObjC1) {
863    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
864    if ((NextToken.is(tok::identifier) ||
865         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
866        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
867      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
868      DiagnoseUseOfDecl(Type, NameLoc);
869      QualType T = Context.getTypeDeclType(Type);
870      if (SS.isNotEmpty())
871        return buildNestedType(*this, SS, T, NameLoc);
872      return ParsedType::make(T);
873    }
874  }
875
876  if (FirstDecl->isCXXClassMember())
877    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
878
879  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
880  return BuildDeclarationNameExpr(SS, Result, ADL);
881}
882
883// Determines the context to return to after temporarily entering a
884// context.  This depends in an unnecessarily complicated way on the
885// exact ordering of callbacks from the parser.
886DeclContext *Sema::getContainingDC(DeclContext *DC) {
887
888  // Functions defined inline within classes aren't parsed until we've
889  // finished parsing the top-level class, so the top-level class is
890  // the context we'll need to return to.
891  if (isa<FunctionDecl>(DC)) {
892    DC = DC->getLexicalParent();
893
894    // A function not defined within a class will always return to its
895    // lexical context.
896    if (!isa<CXXRecordDecl>(DC))
897      return DC;
898
899    // A C++ inline method/friend is parsed *after* the topmost class
900    // it was declared in is fully parsed ("complete");  the topmost
901    // class is the context we need to return to.
902    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
903      DC = RD;
904
905    // Return the declaration context of the topmost class the inline method is
906    // declared in.
907    return DC;
908  }
909
910  return DC->getLexicalParent();
911}
912
913void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
914  assert(getContainingDC(DC) == CurContext &&
915      "The next DeclContext should be lexically contained in the current one.");
916  CurContext = DC;
917  S->setEntity(DC);
918}
919
920void Sema::PopDeclContext() {
921  assert(CurContext && "DeclContext imbalance!");
922
923  CurContext = getContainingDC(CurContext);
924  assert(CurContext && "Popped translation unit!");
925}
926
927/// EnterDeclaratorContext - Used when we must lookup names in the context
928/// of a declarator's nested name specifier.
929///
930void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
931  // C++0x [basic.lookup.unqual]p13:
932  //   A name used in the definition of a static data member of class
933  //   X (after the qualified-id of the static member) is looked up as
934  //   if the name was used in a member function of X.
935  // C++0x [basic.lookup.unqual]p14:
936  //   If a variable member of a namespace is defined outside of the
937  //   scope of its namespace then any name used in the definition of
938  //   the variable member (after the declarator-id) is looked up as
939  //   if the definition of the variable member occurred in its
940  //   namespace.
941  // Both of these imply that we should push a scope whose context
942  // is the semantic context of the declaration.  We can't use
943  // PushDeclContext here because that context is not necessarily
944  // lexically contained in the current context.  Fortunately,
945  // the containing scope should have the appropriate information.
946
947  assert(!S->getEntity() && "scope already has entity");
948
949#ifndef NDEBUG
950  Scope *Ancestor = S->getParent();
951  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
952  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
953#endif
954
955  CurContext = DC;
956  S->setEntity(DC);
957}
958
959void Sema::ExitDeclaratorContext(Scope *S) {
960  assert(S->getEntity() == CurContext && "Context imbalance!");
961
962  // Switch back to the lexical context.  The safety of this is
963  // enforced by an assert in EnterDeclaratorContext.
964  Scope *Ancestor = S->getParent();
965  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
966  CurContext = (DeclContext*) Ancestor->getEntity();
967
968  // We don't need to do anything with the scope, which is going to
969  // disappear.
970}
971
972
973void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
974  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
975  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
976    // We assume that the caller has already called
977    // ActOnReenterTemplateScope
978    FD = TFD->getTemplatedDecl();
979  }
980  if (!FD)
981    return;
982
983  // Same implementation as PushDeclContext, but enters the context
984  // from the lexical parent, rather than the top-level class.
985  assert(CurContext == FD->getLexicalParent() &&
986    "The next DeclContext should be lexically contained in the current one.");
987  CurContext = FD;
988  S->setEntity(CurContext);
989
990  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
991    ParmVarDecl *Param = FD->getParamDecl(P);
992    // If the parameter has an identifier, then add it to the scope
993    if (Param->getIdentifier()) {
994      S->AddDecl(Param);
995      IdResolver.AddDecl(Param);
996    }
997  }
998}
999
1000
1001void Sema::ActOnExitFunctionContext() {
1002  // Same implementation as PopDeclContext, but returns to the lexical parent,
1003  // rather than the top-level class.
1004  assert(CurContext && "DeclContext imbalance!");
1005  CurContext = CurContext->getLexicalParent();
1006  assert(CurContext && "Popped translation unit!");
1007}
1008
1009
1010/// \brief Determine whether we allow overloading of the function
1011/// PrevDecl with another declaration.
1012///
1013/// This routine determines whether overloading is possible, not
1014/// whether some new function is actually an overload. It will return
1015/// true in C++ (where we can always provide overloads) or, as an
1016/// extension, in C when the previous function is already an
1017/// overloaded function declaration or has the "overloadable"
1018/// attribute.
1019static bool AllowOverloadingOfFunction(LookupResult &Previous,
1020                                       ASTContext &Context) {
1021  if (Context.getLangOpts().CPlusPlus)
1022    return true;
1023
1024  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1025    return true;
1026
1027  return (Previous.getResultKind() == LookupResult::Found
1028          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1029}
1030
1031/// Add this decl to the scope shadowed decl chains.
1032void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1033  // Move up the scope chain until we find the nearest enclosing
1034  // non-transparent context. The declaration will be introduced into this
1035  // scope.
1036  while (S->getEntity() &&
1037         ((DeclContext *)S->getEntity())->isTransparentContext())
1038    S = S->getParent();
1039
1040  // Add scoped declarations into their context, so that they can be
1041  // found later. Declarations without a context won't be inserted
1042  // into any context.
1043  if (AddToContext)
1044    CurContext->addDecl(D);
1045
1046  // Out-of-line definitions shouldn't be pushed into scope in C++.
1047  // Out-of-line variable and function definitions shouldn't even in C.
1048  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1049      D->isOutOfLine() &&
1050      !D->getDeclContext()->getRedeclContext()->Equals(
1051        D->getLexicalDeclContext()->getRedeclContext()))
1052    return;
1053
1054  // Template instantiations should also not be pushed into scope.
1055  if (isa<FunctionDecl>(D) &&
1056      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1057    return;
1058
1059  // If this replaces anything in the current scope,
1060  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1061                               IEnd = IdResolver.end();
1062  for (; I != IEnd; ++I) {
1063    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1064      S->RemoveDecl(*I);
1065      IdResolver.RemoveDecl(*I);
1066
1067      // Should only need to replace one decl.
1068      break;
1069    }
1070  }
1071
1072  S->AddDecl(D);
1073
1074  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1075    // Implicitly-generated labels may end up getting generated in an order that
1076    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1077    // the label at the appropriate place in the identifier chain.
1078    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1079      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1080      if (IDC == CurContext) {
1081        if (!S->isDeclScope(*I))
1082          continue;
1083      } else if (IDC->Encloses(CurContext))
1084        break;
1085    }
1086
1087    IdResolver.InsertDeclAfter(I, D);
1088  } else {
1089    IdResolver.AddDecl(D);
1090  }
1091}
1092
1093void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1094  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1095    TUScope->AddDecl(D);
1096}
1097
1098bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1099                         bool ExplicitInstantiationOrSpecialization) {
1100  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1101                                  ExplicitInstantiationOrSpecialization);
1102}
1103
1104Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1105  DeclContext *TargetDC = DC->getPrimaryContext();
1106  do {
1107    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1108      if (ScopeDC->getPrimaryContext() == TargetDC)
1109        return S;
1110  } while ((S = S->getParent()));
1111
1112  return 0;
1113}
1114
1115static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1116                                            DeclContext*,
1117                                            ASTContext&);
1118
1119/// Filters out lookup results that don't fall within the given scope
1120/// as determined by isDeclInScope.
1121void Sema::FilterLookupForScope(LookupResult &R,
1122                                DeclContext *Ctx, Scope *S,
1123                                bool ConsiderLinkage,
1124                                bool ExplicitInstantiationOrSpecialization) {
1125  LookupResult::Filter F = R.makeFilter();
1126  while (F.hasNext()) {
1127    NamedDecl *D = F.next();
1128
1129    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1130      continue;
1131
1132    if (ConsiderLinkage &&
1133        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1134      continue;
1135
1136    F.erase();
1137  }
1138
1139  F.done();
1140}
1141
1142static bool isUsingDecl(NamedDecl *D) {
1143  return isa<UsingShadowDecl>(D) ||
1144         isa<UnresolvedUsingTypenameDecl>(D) ||
1145         isa<UnresolvedUsingValueDecl>(D);
1146}
1147
1148/// Removes using shadow declarations from the lookup results.
1149static void RemoveUsingDecls(LookupResult &R) {
1150  LookupResult::Filter F = R.makeFilter();
1151  while (F.hasNext())
1152    if (isUsingDecl(F.next()))
1153      F.erase();
1154
1155  F.done();
1156}
1157
1158/// \brief Check for this common pattern:
1159/// @code
1160/// class S {
1161///   S(const S&); // DO NOT IMPLEMENT
1162///   void operator=(const S&); // DO NOT IMPLEMENT
1163/// };
1164/// @endcode
1165static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1166  // FIXME: Should check for private access too but access is set after we get
1167  // the decl here.
1168  if (D->doesThisDeclarationHaveABody())
1169    return false;
1170
1171  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1172    return CD->isCopyConstructor();
1173  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1174    return Method->isCopyAssignmentOperator();
1175  return false;
1176}
1177
1178bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1179  assert(D);
1180
1181  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1182    return false;
1183
1184  // Ignore class templates.
1185  if (D->getDeclContext()->isDependentContext() ||
1186      D->getLexicalDeclContext()->isDependentContext())
1187    return false;
1188
1189  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1190    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1191      return false;
1192
1193    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1194      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1195        return false;
1196    } else {
1197      // 'static inline' functions are used in headers; don't warn.
1198      if (FD->getStorageClass() == SC_Static &&
1199          FD->isInlineSpecified())
1200        return false;
1201    }
1202
1203    if (FD->doesThisDeclarationHaveABody() &&
1204        Context.DeclMustBeEmitted(FD))
1205      return false;
1206  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1207    // Don't warn on variables of const-qualified or reference type, since their
1208    // values can be used even if though they're not odr-used, and because const
1209    // qualified variables can appear in headers in contexts where they're not
1210    // intended to be used.
1211    // FIXME: Use more principled rules for these exemptions.
1212    if (!VD->isFileVarDecl() ||
1213        VD->getType().isConstQualified() ||
1214        VD->getType()->isReferenceType() ||
1215        Context.DeclMustBeEmitted(VD))
1216      return false;
1217
1218    if (VD->isStaticDataMember() &&
1219        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1220      return false;
1221
1222  } else {
1223    return false;
1224  }
1225
1226  // Only warn for unused decls internal to the translation unit.
1227  if (D->getLinkage() == ExternalLinkage)
1228    return false;
1229
1230  return true;
1231}
1232
1233void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1234  if (!D)
1235    return;
1236
1237  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1238    const FunctionDecl *First = FD->getFirstDeclaration();
1239    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1240      return; // First should already be in the vector.
1241  }
1242
1243  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1244    const VarDecl *First = VD->getFirstDeclaration();
1245    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1246      return; // First should already be in the vector.
1247  }
1248
1249  if (ShouldWarnIfUnusedFileScopedDecl(D))
1250    UnusedFileScopedDecls.push_back(D);
1251}
1252
1253static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1254  if (D->isInvalidDecl())
1255    return false;
1256
1257  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1258    return false;
1259
1260  if (isa<LabelDecl>(D))
1261    return true;
1262
1263  // White-list anything that isn't a local variable.
1264  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1265      !D->getDeclContext()->isFunctionOrMethod())
1266    return false;
1267
1268  // Types of valid local variables should be complete, so this should succeed.
1269  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1270
1271    // White-list anything with an __attribute__((unused)) type.
1272    QualType Ty = VD->getType();
1273
1274    // Only look at the outermost level of typedef.
1275    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1276      if (TT->getDecl()->hasAttr<UnusedAttr>())
1277        return false;
1278    }
1279
1280    // If we failed to complete the type for some reason, or if the type is
1281    // dependent, don't diagnose the variable.
1282    if (Ty->isIncompleteType() || Ty->isDependentType())
1283      return false;
1284
1285    if (const TagType *TT = Ty->getAs<TagType>()) {
1286      const TagDecl *Tag = TT->getDecl();
1287      if (Tag->hasAttr<UnusedAttr>())
1288        return false;
1289
1290      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1291        if (!RD->hasTrivialDestructor())
1292          return false;
1293
1294        if (const Expr *Init = VD->getInit()) {
1295          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1296            Init = Cleanups->getSubExpr();
1297          const CXXConstructExpr *Construct =
1298            dyn_cast<CXXConstructExpr>(Init);
1299          if (Construct && !Construct->isElidable()) {
1300            CXXConstructorDecl *CD = Construct->getConstructor();
1301            if (!CD->isTrivial())
1302              return false;
1303          }
1304        }
1305      }
1306    }
1307
1308    // TODO: __attribute__((unused)) templates?
1309  }
1310
1311  return true;
1312}
1313
1314static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1315                                     FixItHint &Hint) {
1316  if (isa<LabelDecl>(D)) {
1317    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1318                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1319    if (AfterColon.isInvalid())
1320      return;
1321    Hint = FixItHint::CreateRemoval(CharSourceRange::
1322                                    getCharRange(D->getLocStart(), AfterColon));
1323  }
1324  return;
1325}
1326
1327/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1328/// unless they are marked attr(unused).
1329void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1330  FixItHint Hint;
1331  if (!ShouldDiagnoseUnusedDecl(D))
1332    return;
1333
1334  GenerateFixForUnusedDecl(D, Context, Hint);
1335
1336  unsigned DiagID;
1337  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1338    DiagID = diag::warn_unused_exception_param;
1339  else if (isa<LabelDecl>(D))
1340    DiagID = diag::warn_unused_label;
1341  else
1342    DiagID = diag::warn_unused_variable;
1343
1344  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1345}
1346
1347static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1348  // Verify that we have no forward references left.  If so, there was a goto
1349  // or address of a label taken, but no definition of it.  Label fwd
1350  // definitions are indicated with a null substmt.
1351  if (L->getStmt() == 0)
1352    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1353}
1354
1355void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1356  if (S->decl_empty()) return;
1357  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1358         "Scope shouldn't contain decls!");
1359
1360  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1361       I != E; ++I) {
1362    Decl *TmpD = (*I);
1363    assert(TmpD && "This decl didn't get pushed??");
1364
1365    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1366    NamedDecl *D = cast<NamedDecl>(TmpD);
1367
1368    if (!D->getDeclName()) continue;
1369
1370    // Diagnose unused variables in this scope.
1371    if (!S->hasErrorOccurred())
1372      DiagnoseUnusedDecl(D);
1373
1374    // If this was a forward reference to a label, verify it was defined.
1375    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1376      CheckPoppedLabel(LD, *this);
1377
1378    // Remove this name from our lexical scope.
1379    IdResolver.RemoveDecl(D);
1380  }
1381}
1382
1383void Sema::ActOnStartFunctionDeclarator() {
1384  ++InFunctionDeclarator;
1385}
1386
1387void Sema::ActOnEndFunctionDeclarator() {
1388  assert(InFunctionDeclarator);
1389  --InFunctionDeclarator;
1390}
1391
1392/// \brief Look for an Objective-C class in the translation unit.
1393///
1394/// \param Id The name of the Objective-C class we're looking for. If
1395/// typo-correction fixes this name, the Id will be updated
1396/// to the fixed name.
1397///
1398/// \param IdLoc The location of the name in the translation unit.
1399///
1400/// \param DoTypoCorrection If true, this routine will attempt typo correction
1401/// if there is no class with the given name.
1402///
1403/// \returns The declaration of the named Objective-C class, or NULL if the
1404/// class could not be found.
1405ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1406                                              SourceLocation IdLoc,
1407                                              bool DoTypoCorrection) {
1408  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1409  // creation from this context.
1410  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1411
1412  if (!IDecl && DoTypoCorrection) {
1413    // Perform typo correction at the given location, but only if we
1414    // find an Objective-C class name.
1415    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1416    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1417                                       LookupOrdinaryName, TUScope, NULL,
1418                                       Validator)) {
1419      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1420      Diag(IdLoc, diag::err_undef_interface_suggest)
1421        << Id << IDecl->getDeclName()
1422        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1423      Diag(IDecl->getLocation(), diag::note_previous_decl)
1424        << IDecl->getDeclName();
1425
1426      Id = IDecl->getIdentifier();
1427    }
1428  }
1429  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1430  // This routine must always return a class definition, if any.
1431  if (Def && Def->getDefinition())
1432      Def = Def->getDefinition();
1433  return Def;
1434}
1435
1436/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1437/// from S, where a non-field would be declared. This routine copes
1438/// with the difference between C and C++ scoping rules in structs and
1439/// unions. For example, the following code is well-formed in C but
1440/// ill-formed in C++:
1441/// @code
1442/// struct S6 {
1443///   enum { BAR } e;
1444/// };
1445///
1446/// void test_S6() {
1447///   struct S6 a;
1448///   a.e = BAR;
1449/// }
1450/// @endcode
1451/// For the declaration of BAR, this routine will return a different
1452/// scope. The scope S will be the scope of the unnamed enumeration
1453/// within S6. In C++, this routine will return the scope associated
1454/// with S6, because the enumeration's scope is a transparent
1455/// context but structures can contain non-field names. In C, this
1456/// routine will return the translation unit scope, since the
1457/// enumeration's scope is a transparent context and structures cannot
1458/// contain non-field names.
1459Scope *Sema::getNonFieldDeclScope(Scope *S) {
1460  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1461         (S->getEntity() &&
1462          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1463         (S->isClassScope() && !getLangOpts().CPlusPlus))
1464    S = S->getParent();
1465  return S;
1466}
1467
1468/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1469/// file scope.  lazily create a decl for it. ForRedeclaration is true
1470/// if we're creating this built-in in anticipation of redeclaring the
1471/// built-in.
1472NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1473                                     Scope *S, bool ForRedeclaration,
1474                                     SourceLocation Loc) {
1475  Builtin::ID BID = (Builtin::ID)bid;
1476
1477  ASTContext::GetBuiltinTypeError Error;
1478  QualType R = Context.GetBuiltinType(BID, Error);
1479  switch (Error) {
1480  case ASTContext::GE_None:
1481    // Okay
1482    break;
1483
1484  case ASTContext::GE_Missing_stdio:
1485    if (ForRedeclaration)
1486      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1487        << Context.BuiltinInfo.GetName(BID);
1488    return 0;
1489
1490  case ASTContext::GE_Missing_setjmp:
1491    if (ForRedeclaration)
1492      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1493        << Context.BuiltinInfo.GetName(BID);
1494    return 0;
1495
1496  case ASTContext::GE_Missing_ucontext:
1497    if (ForRedeclaration)
1498      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1499        << Context.BuiltinInfo.GetName(BID);
1500    return 0;
1501  }
1502
1503  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1504    Diag(Loc, diag::ext_implicit_lib_function_decl)
1505      << Context.BuiltinInfo.GetName(BID)
1506      << R;
1507    if (Context.BuiltinInfo.getHeaderName(BID) &&
1508        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1509          != DiagnosticsEngine::Ignored)
1510      Diag(Loc, diag::note_please_include_header)
1511        << Context.BuiltinInfo.getHeaderName(BID)
1512        << Context.BuiltinInfo.GetName(BID);
1513  }
1514
1515  FunctionDecl *New = FunctionDecl::Create(Context,
1516                                           Context.getTranslationUnitDecl(),
1517                                           Loc, Loc, II, R, /*TInfo=*/0,
1518                                           SC_Extern,
1519                                           SC_None, false,
1520                                           /*hasPrototype=*/true);
1521  New->setImplicit();
1522
1523  // Create Decl objects for each parameter, adding them to the
1524  // FunctionDecl.
1525  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1526    SmallVector<ParmVarDecl*, 16> Params;
1527    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1528      ParmVarDecl *parm =
1529        ParmVarDecl::Create(Context, New, SourceLocation(),
1530                            SourceLocation(), 0,
1531                            FT->getArgType(i), /*TInfo=*/0,
1532                            SC_None, SC_None, 0);
1533      parm->setScopeInfo(0, i);
1534      Params.push_back(parm);
1535    }
1536    New->setParams(Params);
1537  }
1538
1539  AddKnownFunctionAttributes(New);
1540
1541  // TUScope is the translation-unit scope to insert this function into.
1542  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1543  // relate Scopes to DeclContexts, and probably eliminate CurContext
1544  // entirely, but we're not there yet.
1545  DeclContext *SavedContext = CurContext;
1546  CurContext = Context.getTranslationUnitDecl();
1547  PushOnScopeChains(New, TUScope);
1548  CurContext = SavedContext;
1549  return New;
1550}
1551
1552bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1553  QualType OldType;
1554  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1555    OldType = OldTypedef->getUnderlyingType();
1556  else
1557    OldType = Context.getTypeDeclType(Old);
1558  QualType NewType = New->getUnderlyingType();
1559
1560  if (NewType->isVariablyModifiedType()) {
1561    // Must not redefine a typedef with a variably-modified type.
1562    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1563    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1564      << Kind << NewType;
1565    if (Old->getLocation().isValid())
1566      Diag(Old->getLocation(), diag::note_previous_definition);
1567    New->setInvalidDecl();
1568    return true;
1569  }
1570
1571  if (OldType != NewType &&
1572      !OldType->isDependentType() &&
1573      !NewType->isDependentType() &&
1574      !Context.hasSameType(OldType, NewType)) {
1575    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1576    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1577      << Kind << NewType << OldType;
1578    if (Old->getLocation().isValid())
1579      Diag(Old->getLocation(), diag::note_previous_definition);
1580    New->setInvalidDecl();
1581    return true;
1582  }
1583  return false;
1584}
1585
1586/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1587/// same name and scope as a previous declaration 'Old'.  Figure out
1588/// how to resolve this situation, merging decls or emitting
1589/// diagnostics as appropriate. If there was an error, set New to be invalid.
1590///
1591void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1592  // If the new decl is known invalid already, don't bother doing any
1593  // merging checks.
1594  if (New->isInvalidDecl()) return;
1595
1596  // Allow multiple definitions for ObjC built-in typedefs.
1597  // FIXME: Verify the underlying types are equivalent!
1598  if (getLangOpts().ObjC1) {
1599    const IdentifierInfo *TypeID = New->getIdentifier();
1600    switch (TypeID->getLength()) {
1601    default: break;
1602    case 2:
1603      {
1604        if (!TypeID->isStr("id"))
1605          break;
1606        QualType T = New->getUnderlyingType();
1607        if (!T->isPointerType())
1608          break;
1609        if (!T->isVoidPointerType()) {
1610          QualType PT = T->getAs<PointerType>()->getPointeeType();
1611          if (!PT->isStructureType())
1612            break;
1613        }
1614        Context.setObjCIdRedefinitionType(T);
1615        // Install the built-in type for 'id', ignoring the current definition.
1616        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1617        return;
1618      }
1619    case 5:
1620      if (!TypeID->isStr("Class"))
1621        break;
1622      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1623      // Install the built-in type for 'Class', ignoring the current definition.
1624      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1625      return;
1626    case 3:
1627      if (!TypeID->isStr("SEL"))
1628        break;
1629      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1630      // Install the built-in type for 'SEL', ignoring the current definition.
1631      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1632      return;
1633    }
1634    // Fall through - the typedef name was not a builtin type.
1635  }
1636
1637  // Verify the old decl was also a type.
1638  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1639  if (!Old) {
1640    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1641      << New->getDeclName();
1642
1643    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1644    if (OldD->getLocation().isValid())
1645      Diag(OldD->getLocation(), diag::note_previous_definition);
1646
1647    return New->setInvalidDecl();
1648  }
1649
1650  // If the old declaration is invalid, just give up here.
1651  if (Old->isInvalidDecl())
1652    return New->setInvalidDecl();
1653
1654  // If the typedef types are not identical, reject them in all languages and
1655  // with any extensions enabled.
1656  if (isIncompatibleTypedef(Old, New))
1657    return;
1658
1659  // The types match.  Link up the redeclaration chain if the old
1660  // declaration was a typedef.
1661  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1662    New->setPreviousDeclaration(Typedef);
1663
1664  if (getLangOpts().MicrosoftExt)
1665    return;
1666
1667  if (getLangOpts().CPlusPlus) {
1668    // C++ [dcl.typedef]p2:
1669    //   In a given non-class scope, a typedef specifier can be used to
1670    //   redefine the name of any type declared in that scope to refer
1671    //   to the type to which it already refers.
1672    if (!isa<CXXRecordDecl>(CurContext))
1673      return;
1674
1675    // C++0x [dcl.typedef]p4:
1676    //   In a given class scope, a typedef specifier can be used to redefine
1677    //   any class-name declared in that scope that is not also a typedef-name
1678    //   to refer to the type to which it already refers.
1679    //
1680    // This wording came in via DR424, which was a correction to the
1681    // wording in DR56, which accidentally banned code like:
1682    //
1683    //   struct S {
1684    //     typedef struct A { } A;
1685    //   };
1686    //
1687    // in the C++03 standard. We implement the C++0x semantics, which
1688    // allow the above but disallow
1689    //
1690    //   struct S {
1691    //     typedef int I;
1692    //     typedef int I;
1693    //   };
1694    //
1695    // since that was the intent of DR56.
1696    if (!isa<TypedefNameDecl>(Old))
1697      return;
1698
1699    Diag(New->getLocation(), diag::err_redefinition)
1700      << New->getDeclName();
1701    Diag(Old->getLocation(), diag::note_previous_definition);
1702    return New->setInvalidDecl();
1703  }
1704
1705  // Modules always permit redefinition of typedefs, as does C11.
1706  if (getLangOpts().Modules || getLangOpts().C11)
1707    return;
1708
1709  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1710  // is normally mapped to an error, but can be controlled with
1711  // -Wtypedef-redefinition.  If either the original or the redefinition is
1712  // in a system header, don't emit this for compatibility with GCC.
1713  if (getDiagnostics().getSuppressSystemWarnings() &&
1714      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1715       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1716    return;
1717
1718  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1719    << New->getDeclName();
1720  Diag(Old->getLocation(), diag::note_previous_definition);
1721  return;
1722}
1723
1724/// DeclhasAttr - returns true if decl Declaration already has the target
1725/// attribute.
1726static bool
1727DeclHasAttr(const Decl *D, const Attr *A) {
1728  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1729  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1730  // responsible for making sure they are consistent.
1731  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1732  if (AA)
1733    return false;
1734
1735  // The following thread safety attributes can also be duplicated.
1736  switch (A->getKind()) {
1737    case attr::ExclusiveLocksRequired:
1738    case attr::SharedLocksRequired:
1739    case attr::LocksExcluded:
1740    case attr::ExclusiveLockFunction:
1741    case attr::SharedLockFunction:
1742    case attr::UnlockFunction:
1743    case attr::ExclusiveTrylockFunction:
1744    case attr::SharedTrylockFunction:
1745    case attr::GuardedBy:
1746    case attr::PtGuardedBy:
1747    case attr::AcquiredBefore:
1748    case attr::AcquiredAfter:
1749      return false;
1750    default:
1751      ;
1752  }
1753
1754  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1755  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1756  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1757    if ((*i)->getKind() == A->getKind()) {
1758      if (Ann) {
1759        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1760          return true;
1761        continue;
1762      }
1763      // FIXME: Don't hardcode this check
1764      if (OA && isa<OwnershipAttr>(*i))
1765        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1766      return true;
1767    }
1768
1769  return false;
1770}
1771
1772bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1773  InheritableAttr *NewAttr = NULL;
1774  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1775    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1776                                    AA->getIntroduced(), AA->getDeprecated(),
1777                                    AA->getObsoleted(), AA->getUnavailable(),
1778                                    AA->getMessage());
1779  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1780    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1781  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1782    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1783  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1784    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1785  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1786    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1787                              FA->getFormatIdx(), FA->getFirstArg());
1788  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1789    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1790  else if (!DeclHasAttr(D, Attr))
1791    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1792
1793  if (NewAttr) {
1794    NewAttr->setInherited(true);
1795    D->addAttr(NewAttr);
1796    return true;
1797  }
1798
1799  return false;
1800}
1801
1802static const Decl *getDefinition(const Decl *D) {
1803  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1804    return TD->getDefinition();
1805  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1806    return VD->getDefinition();
1807  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1808    const FunctionDecl* Def;
1809    if (FD->hasBody(Def))
1810      return Def;
1811  }
1812  return NULL;
1813}
1814
1815static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1816  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1817       I != E; ++I) {
1818    Attr *Attribute = *I;
1819    if (Attribute->getKind() == Kind)
1820      return true;
1821  }
1822  return false;
1823}
1824
1825/// checkNewAttributesAfterDef - If we already have a definition, check that
1826/// there are no new attributes in this declaration.
1827static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1828  if (!New->hasAttrs())
1829    return;
1830
1831  const Decl *Def = getDefinition(Old);
1832  if (!Def || Def == New)
1833    return;
1834
1835  AttrVec &NewAttributes = New->getAttrs();
1836  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1837    const Attr *NewAttribute = NewAttributes[I];
1838    if (hasAttribute(Def, NewAttribute->getKind())) {
1839      ++I;
1840      continue; // regular attr merging will take care of validating this.
1841    }
1842    S.Diag(NewAttribute->getLocation(),
1843           diag::warn_attribute_precede_definition);
1844    S.Diag(Def->getLocation(), diag::note_previous_definition);
1845    NewAttributes.erase(NewAttributes.begin() + I);
1846    --E;
1847  }
1848}
1849
1850/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1851void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1852                               bool MergeDeprecation) {
1853  // attributes declared post-definition are currently ignored
1854  checkNewAttributesAfterDef(*this, New, Old);
1855
1856  if (!Old->hasAttrs())
1857    return;
1858
1859  bool foundAny = New->hasAttrs();
1860
1861  // Ensure that any moving of objects within the allocated map is done before
1862  // we process them.
1863  if (!foundAny) New->setAttrs(AttrVec());
1864
1865  for (specific_attr_iterator<InheritableAttr>
1866         i = Old->specific_attr_begin<InheritableAttr>(),
1867         e = Old->specific_attr_end<InheritableAttr>();
1868       i != e; ++i) {
1869    // Ignore deprecated/unavailable/availability attributes if requested.
1870    if (!MergeDeprecation &&
1871        (isa<DeprecatedAttr>(*i) ||
1872         isa<UnavailableAttr>(*i) ||
1873         isa<AvailabilityAttr>(*i)))
1874      continue;
1875
1876    if (mergeDeclAttribute(New, *i))
1877      foundAny = true;
1878  }
1879
1880  if (!foundAny) New->dropAttrs();
1881}
1882
1883/// mergeParamDeclAttributes - Copy attributes from the old parameter
1884/// to the new one.
1885static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1886                                     const ParmVarDecl *oldDecl,
1887                                     ASTContext &C) {
1888  if (!oldDecl->hasAttrs())
1889    return;
1890
1891  bool foundAny = newDecl->hasAttrs();
1892
1893  // Ensure that any moving of objects within the allocated map is
1894  // done before we process them.
1895  if (!foundAny) newDecl->setAttrs(AttrVec());
1896
1897  for (specific_attr_iterator<InheritableParamAttr>
1898       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1899       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1900    if (!DeclHasAttr(newDecl, *i)) {
1901      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1902      newAttr->setInherited(true);
1903      newDecl->addAttr(newAttr);
1904      foundAny = true;
1905    }
1906  }
1907
1908  if (!foundAny) newDecl->dropAttrs();
1909}
1910
1911namespace {
1912
1913/// Used in MergeFunctionDecl to keep track of function parameters in
1914/// C.
1915struct GNUCompatibleParamWarning {
1916  ParmVarDecl *OldParm;
1917  ParmVarDecl *NewParm;
1918  QualType PromotedType;
1919};
1920
1921}
1922
1923/// getSpecialMember - get the special member enum for a method.
1924Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1925  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1926    if (Ctor->isDefaultConstructor())
1927      return Sema::CXXDefaultConstructor;
1928
1929    if (Ctor->isCopyConstructor())
1930      return Sema::CXXCopyConstructor;
1931
1932    if (Ctor->isMoveConstructor())
1933      return Sema::CXXMoveConstructor;
1934  } else if (isa<CXXDestructorDecl>(MD)) {
1935    return Sema::CXXDestructor;
1936  } else if (MD->isCopyAssignmentOperator()) {
1937    return Sema::CXXCopyAssignment;
1938  } else if (MD->isMoveAssignmentOperator()) {
1939    return Sema::CXXMoveAssignment;
1940  }
1941
1942  return Sema::CXXInvalid;
1943}
1944
1945/// canRedefineFunction - checks if a function can be redefined. Currently,
1946/// only extern inline functions can be redefined, and even then only in
1947/// GNU89 mode.
1948static bool canRedefineFunction(const FunctionDecl *FD,
1949                                const LangOptions& LangOpts) {
1950  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1951          !LangOpts.CPlusPlus &&
1952          FD->isInlineSpecified() &&
1953          FD->getStorageClass() == SC_Extern);
1954}
1955
1956/// Is the given calling convention the ABI default for the given
1957/// declaration?
1958static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
1959  CallingConv ABIDefaultCC;
1960  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1961    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
1962  } else {
1963    // Free C function or a static method.
1964    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
1965  }
1966  return ABIDefaultCC == CC;
1967}
1968
1969/// MergeFunctionDecl - We just parsed a function 'New' from
1970/// declarator D which has the same name and scope as a previous
1971/// declaration 'Old'.  Figure out how to resolve this situation,
1972/// merging decls or emitting diagnostics as appropriate.
1973///
1974/// In C++, New and Old must be declarations that are not
1975/// overloaded. Use IsOverload to determine whether New and Old are
1976/// overloaded, and to select the Old declaration that New should be
1977/// merged with.
1978///
1979/// Returns true if there was an error, false otherwise.
1980bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1981  // Verify the old decl was also a function.
1982  FunctionDecl *Old = 0;
1983  if (FunctionTemplateDecl *OldFunctionTemplate
1984        = dyn_cast<FunctionTemplateDecl>(OldD))
1985    Old = OldFunctionTemplate->getTemplatedDecl();
1986  else
1987    Old = dyn_cast<FunctionDecl>(OldD);
1988  if (!Old) {
1989    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1990      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1991      Diag(Shadow->getTargetDecl()->getLocation(),
1992           diag::note_using_decl_target);
1993      Diag(Shadow->getUsingDecl()->getLocation(),
1994           diag::note_using_decl) << 0;
1995      return true;
1996    }
1997
1998    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1999      << New->getDeclName();
2000    Diag(OldD->getLocation(), diag::note_previous_definition);
2001    return true;
2002  }
2003
2004  // Determine whether the previous declaration was a definition,
2005  // implicit declaration, or a declaration.
2006  diag::kind PrevDiag;
2007  if (Old->isThisDeclarationADefinition())
2008    PrevDiag = diag::note_previous_definition;
2009  else if (Old->isImplicit())
2010    PrevDiag = diag::note_previous_implicit_declaration;
2011  else
2012    PrevDiag = diag::note_previous_declaration;
2013
2014  QualType OldQType = Context.getCanonicalType(Old->getType());
2015  QualType NewQType = Context.getCanonicalType(New->getType());
2016
2017  // Don't complain about this if we're in GNU89 mode and the old function
2018  // is an extern inline function.
2019  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2020      New->getStorageClass() == SC_Static &&
2021      Old->getStorageClass() != SC_Static &&
2022      !canRedefineFunction(Old, getLangOpts())) {
2023    if (getLangOpts().MicrosoftExt) {
2024      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2025      Diag(Old->getLocation(), PrevDiag);
2026    } else {
2027      Diag(New->getLocation(), diag::err_static_non_static) << New;
2028      Diag(Old->getLocation(), PrevDiag);
2029      return true;
2030    }
2031  }
2032
2033  // If a function is first declared with a calling convention, but is
2034  // later declared or defined without one, the second decl assumes the
2035  // calling convention of the first.
2036  //
2037  // It's OK if a function is first declared without a calling convention,
2038  // but is later declared or defined with the default calling convention.
2039  //
2040  // For the new decl, we have to look at the NON-canonical type to tell the
2041  // difference between a function that really doesn't have a calling
2042  // convention and one that is declared cdecl. That's because in
2043  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2044  // because it is the default calling convention.
2045  //
2046  // Note also that we DO NOT return at this point, because we still have
2047  // other tests to run.
2048  const FunctionType *OldType = cast<FunctionType>(OldQType);
2049  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2050  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2051  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2052  bool RequiresAdjustment = false;
2053  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2054    // Fast path: nothing to do.
2055
2056  // Inherit the CC from the previous declaration if it was specified
2057  // there but not here.
2058  } else if (NewTypeInfo.getCC() == CC_Default) {
2059    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2060    RequiresAdjustment = true;
2061
2062  // Don't complain about mismatches when the default CC is
2063  // effectively the same as the explict one.
2064  } else if (OldTypeInfo.getCC() == CC_Default &&
2065             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2066    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2067    RequiresAdjustment = true;
2068
2069  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2070                                     NewTypeInfo.getCC())) {
2071    // Calling conventions really aren't compatible, so complain.
2072    Diag(New->getLocation(), diag::err_cconv_change)
2073      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2074      << (OldTypeInfo.getCC() == CC_Default)
2075      << (OldTypeInfo.getCC() == CC_Default ? "" :
2076          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2077    Diag(Old->getLocation(), diag::note_previous_declaration);
2078    return true;
2079  }
2080
2081  // FIXME: diagnose the other way around?
2082  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2083    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2084    RequiresAdjustment = true;
2085  }
2086
2087  // Merge regparm attribute.
2088  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2089      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2090    if (NewTypeInfo.getHasRegParm()) {
2091      Diag(New->getLocation(), diag::err_regparm_mismatch)
2092        << NewType->getRegParmType()
2093        << OldType->getRegParmType();
2094      Diag(Old->getLocation(), diag::note_previous_declaration);
2095      return true;
2096    }
2097
2098    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2099    RequiresAdjustment = true;
2100  }
2101
2102  // Merge ns_returns_retained attribute.
2103  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2104    if (NewTypeInfo.getProducesResult()) {
2105      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2106      Diag(Old->getLocation(), diag::note_previous_declaration);
2107      return true;
2108    }
2109
2110    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2111    RequiresAdjustment = true;
2112  }
2113
2114  if (RequiresAdjustment) {
2115    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2116    New->setType(QualType(NewType, 0));
2117    NewQType = Context.getCanonicalType(New->getType());
2118  }
2119
2120  if (getLangOpts().CPlusPlus) {
2121    // (C++98 13.1p2):
2122    //   Certain function declarations cannot be overloaded:
2123    //     -- Function declarations that differ only in the return type
2124    //        cannot be overloaded.
2125    QualType OldReturnType = OldType->getResultType();
2126    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2127    QualType ResQT;
2128    if (OldReturnType != NewReturnType) {
2129      if (NewReturnType->isObjCObjectPointerType()
2130          && OldReturnType->isObjCObjectPointerType())
2131        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2132      if (ResQT.isNull()) {
2133        if (New->isCXXClassMember() && New->isOutOfLine())
2134          Diag(New->getLocation(),
2135               diag::err_member_def_does_not_match_ret_type) << New;
2136        else
2137          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2138        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2139        return true;
2140      }
2141      else
2142        NewQType = ResQT;
2143    }
2144
2145    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2146    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2147    if (OldMethod && NewMethod) {
2148      // Preserve triviality.
2149      NewMethod->setTrivial(OldMethod->isTrivial());
2150
2151      // MSVC allows explicit template specialization at class scope:
2152      // 2 CXMethodDecls referring to the same function will be injected.
2153      // We don't want a redeclartion error.
2154      bool IsClassScopeExplicitSpecialization =
2155                              OldMethod->isFunctionTemplateSpecialization() &&
2156                              NewMethod->isFunctionTemplateSpecialization();
2157      bool isFriend = NewMethod->getFriendObjectKind();
2158
2159      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2160          !IsClassScopeExplicitSpecialization) {
2161        //    -- Member function declarations with the same name and the
2162        //       same parameter types cannot be overloaded if any of them
2163        //       is a static member function declaration.
2164        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2165          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2166          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2167          return true;
2168        }
2169
2170        // C++ [class.mem]p1:
2171        //   [...] A member shall not be declared twice in the
2172        //   member-specification, except that a nested class or member
2173        //   class template can be declared and then later defined.
2174        if (ActiveTemplateInstantiations.empty()) {
2175          unsigned NewDiag;
2176          if (isa<CXXConstructorDecl>(OldMethod))
2177            NewDiag = diag::err_constructor_redeclared;
2178          else if (isa<CXXDestructorDecl>(NewMethod))
2179            NewDiag = diag::err_destructor_redeclared;
2180          else if (isa<CXXConversionDecl>(NewMethod))
2181            NewDiag = diag::err_conv_function_redeclared;
2182          else
2183            NewDiag = diag::err_member_redeclared;
2184
2185          Diag(New->getLocation(), NewDiag);
2186        } else {
2187          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2188            << New << New->getType();
2189        }
2190        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2191
2192      // Complain if this is an explicit declaration of a special
2193      // member that was initially declared implicitly.
2194      //
2195      // As an exception, it's okay to befriend such methods in order
2196      // to permit the implicit constructor/destructor/operator calls.
2197      } else if (OldMethod->isImplicit()) {
2198        if (isFriend) {
2199          NewMethod->setImplicit();
2200        } else {
2201          Diag(NewMethod->getLocation(),
2202               diag::err_definition_of_implicitly_declared_member)
2203            << New << getSpecialMember(OldMethod);
2204          return true;
2205        }
2206      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2207        Diag(NewMethod->getLocation(),
2208             diag::err_definition_of_explicitly_defaulted_member)
2209          << getSpecialMember(OldMethod);
2210        return true;
2211      }
2212    }
2213
2214    // (C++98 8.3.5p3):
2215    //   All declarations for a function shall agree exactly in both the
2216    //   return type and the parameter-type-list.
2217    // We also want to respect all the extended bits except noreturn.
2218
2219    // noreturn should now match unless the old type info didn't have it.
2220    QualType OldQTypeForComparison = OldQType;
2221    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2222      assert(OldQType == QualType(OldType, 0));
2223      const FunctionType *OldTypeForComparison
2224        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2225      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2226      assert(OldQTypeForComparison.isCanonical());
2227    }
2228
2229    if (OldQTypeForComparison == NewQType)
2230      return MergeCompatibleFunctionDecls(New, Old, S);
2231
2232    // Fall through for conflicting redeclarations and redefinitions.
2233  }
2234
2235  // C: Function types need to be compatible, not identical. This handles
2236  // duplicate function decls like "void f(int); void f(enum X);" properly.
2237  if (!getLangOpts().CPlusPlus &&
2238      Context.typesAreCompatible(OldQType, NewQType)) {
2239    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2240    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2241    const FunctionProtoType *OldProto = 0;
2242    if (isa<FunctionNoProtoType>(NewFuncType) &&
2243        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2244      // The old declaration provided a function prototype, but the
2245      // new declaration does not. Merge in the prototype.
2246      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2247      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2248                                                 OldProto->arg_type_end());
2249      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2250                                         ParamTypes.data(), ParamTypes.size(),
2251                                         OldProto->getExtProtoInfo());
2252      New->setType(NewQType);
2253      New->setHasInheritedPrototype();
2254
2255      // Synthesize a parameter for each argument type.
2256      SmallVector<ParmVarDecl*, 16> Params;
2257      for (FunctionProtoType::arg_type_iterator
2258             ParamType = OldProto->arg_type_begin(),
2259             ParamEnd = OldProto->arg_type_end();
2260           ParamType != ParamEnd; ++ParamType) {
2261        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2262                                                 SourceLocation(),
2263                                                 SourceLocation(), 0,
2264                                                 *ParamType, /*TInfo=*/0,
2265                                                 SC_None, SC_None,
2266                                                 0);
2267        Param->setScopeInfo(0, Params.size());
2268        Param->setImplicit();
2269        Params.push_back(Param);
2270      }
2271
2272      New->setParams(Params);
2273    }
2274
2275    return MergeCompatibleFunctionDecls(New, Old, S);
2276  }
2277
2278  // GNU C permits a K&R definition to follow a prototype declaration
2279  // if the declared types of the parameters in the K&R definition
2280  // match the types in the prototype declaration, even when the
2281  // promoted types of the parameters from the K&R definition differ
2282  // from the types in the prototype. GCC then keeps the types from
2283  // the prototype.
2284  //
2285  // If a variadic prototype is followed by a non-variadic K&R definition,
2286  // the K&R definition becomes variadic.  This is sort of an edge case, but
2287  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2288  // C99 6.9.1p8.
2289  if (!getLangOpts().CPlusPlus &&
2290      Old->hasPrototype() && !New->hasPrototype() &&
2291      New->getType()->getAs<FunctionProtoType>() &&
2292      Old->getNumParams() == New->getNumParams()) {
2293    SmallVector<QualType, 16> ArgTypes;
2294    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2295    const FunctionProtoType *OldProto
2296      = Old->getType()->getAs<FunctionProtoType>();
2297    const FunctionProtoType *NewProto
2298      = New->getType()->getAs<FunctionProtoType>();
2299
2300    // Determine whether this is the GNU C extension.
2301    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2302                                               NewProto->getResultType());
2303    bool LooseCompatible = !MergedReturn.isNull();
2304    for (unsigned Idx = 0, End = Old->getNumParams();
2305         LooseCompatible && Idx != End; ++Idx) {
2306      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2307      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2308      if (Context.typesAreCompatible(OldParm->getType(),
2309                                     NewProto->getArgType(Idx))) {
2310        ArgTypes.push_back(NewParm->getType());
2311      } else if (Context.typesAreCompatible(OldParm->getType(),
2312                                            NewParm->getType(),
2313                                            /*CompareUnqualified=*/true)) {
2314        GNUCompatibleParamWarning Warn
2315          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2316        Warnings.push_back(Warn);
2317        ArgTypes.push_back(NewParm->getType());
2318      } else
2319        LooseCompatible = false;
2320    }
2321
2322    if (LooseCompatible) {
2323      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2324        Diag(Warnings[Warn].NewParm->getLocation(),
2325             diag::ext_param_promoted_not_compatible_with_prototype)
2326          << Warnings[Warn].PromotedType
2327          << Warnings[Warn].OldParm->getType();
2328        if (Warnings[Warn].OldParm->getLocation().isValid())
2329          Diag(Warnings[Warn].OldParm->getLocation(),
2330               diag::note_previous_declaration);
2331      }
2332
2333      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2334                                           ArgTypes.size(),
2335                                           OldProto->getExtProtoInfo()));
2336      return MergeCompatibleFunctionDecls(New, Old, S);
2337    }
2338
2339    // Fall through to diagnose conflicting types.
2340  }
2341
2342  // A function that has already been declared has been redeclared or defined
2343  // with a different type- show appropriate diagnostic
2344  if (unsigned BuiltinID = Old->getBuiltinID()) {
2345    // The user has declared a builtin function with an incompatible
2346    // signature.
2347    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2348      // The function the user is redeclaring is a library-defined
2349      // function like 'malloc' or 'printf'. Warn about the
2350      // redeclaration, then pretend that we don't know about this
2351      // library built-in.
2352      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2353      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2354        << Old << Old->getType();
2355      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2356      Old->setInvalidDecl();
2357      return false;
2358    }
2359
2360    PrevDiag = diag::note_previous_builtin_declaration;
2361  }
2362
2363  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2364  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2365  return true;
2366}
2367
2368/// \brief Completes the merge of two function declarations that are
2369/// known to be compatible.
2370///
2371/// This routine handles the merging of attributes and other
2372/// properties of function declarations form the old declaration to
2373/// the new declaration, once we know that New is in fact a
2374/// redeclaration of Old.
2375///
2376/// \returns false
2377bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2378                                        Scope *S) {
2379  // Merge the attributes
2380  mergeDeclAttributes(New, Old);
2381
2382  // Merge the storage class.
2383  if (Old->getStorageClass() != SC_Extern &&
2384      Old->getStorageClass() != SC_None)
2385    New->setStorageClass(Old->getStorageClass());
2386
2387  // Merge "pure" flag.
2388  if (Old->isPure())
2389    New->setPure();
2390
2391  // Merge attributes from the parameters.  These can mismatch with K&R
2392  // declarations.
2393  if (New->getNumParams() == Old->getNumParams())
2394    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2395      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2396                               Context);
2397
2398  if (getLangOpts().CPlusPlus)
2399    return MergeCXXFunctionDecl(New, Old, S);
2400
2401  return false;
2402}
2403
2404
2405void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2406                                ObjCMethodDecl *oldMethod) {
2407
2408  // Merge the attributes, including deprecated/unavailable
2409  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2410
2411  // Merge attributes from the parameters.
2412  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2413                                       oe = oldMethod->param_end();
2414  for (ObjCMethodDecl::param_iterator
2415         ni = newMethod->param_begin(), ne = newMethod->param_end();
2416       ni != ne && oi != oe; ++ni, ++oi)
2417    mergeParamDeclAttributes(*ni, *oi, Context);
2418
2419  CheckObjCMethodOverride(newMethod, oldMethod, true);
2420}
2421
2422/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2423/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2424/// emitting diagnostics as appropriate.
2425///
2426/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2427/// to here in AddInitializerToDecl. We can't check them before the initializer
2428/// is attached.
2429void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2430  if (New->isInvalidDecl() || Old->isInvalidDecl())
2431    return;
2432
2433  QualType MergedT;
2434  if (getLangOpts().CPlusPlus) {
2435    AutoType *AT = New->getType()->getContainedAutoType();
2436    if (AT && !AT->isDeduced()) {
2437      // We don't know what the new type is until the initializer is attached.
2438      return;
2439    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2440      // These could still be something that needs exception specs checked.
2441      return MergeVarDeclExceptionSpecs(New, Old);
2442    }
2443    // C++ [basic.link]p10:
2444    //   [...] the types specified by all declarations referring to a given
2445    //   object or function shall be identical, except that declarations for an
2446    //   array object can specify array types that differ by the presence or
2447    //   absence of a major array bound (8.3.4).
2448    else if (Old->getType()->isIncompleteArrayType() &&
2449             New->getType()->isArrayType()) {
2450      CanQual<ArrayType> OldArray
2451        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2452      CanQual<ArrayType> NewArray
2453        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2454      if (OldArray->getElementType() == NewArray->getElementType())
2455        MergedT = New->getType();
2456    } else if (Old->getType()->isArrayType() &&
2457             New->getType()->isIncompleteArrayType()) {
2458      CanQual<ArrayType> OldArray
2459        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2460      CanQual<ArrayType> NewArray
2461        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2462      if (OldArray->getElementType() == NewArray->getElementType())
2463        MergedT = Old->getType();
2464    } else if (New->getType()->isObjCObjectPointerType()
2465               && Old->getType()->isObjCObjectPointerType()) {
2466        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2467                                                        Old->getType());
2468    }
2469  } else {
2470    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2471  }
2472  if (MergedT.isNull()) {
2473    Diag(New->getLocation(), diag::err_redefinition_different_type)
2474      << New->getDeclName() << New->getType() << Old->getType();
2475    Diag(Old->getLocation(), diag::note_previous_definition);
2476    return New->setInvalidDecl();
2477  }
2478  New->setType(MergedT);
2479}
2480
2481/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2482/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2483/// situation, merging decls or emitting diagnostics as appropriate.
2484///
2485/// Tentative definition rules (C99 6.9.2p2) are checked by
2486/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2487/// definitions here, since the initializer hasn't been attached.
2488///
2489void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2490  // If the new decl is already invalid, don't do any other checking.
2491  if (New->isInvalidDecl())
2492    return;
2493
2494  // Verify the old decl was also a variable.
2495  VarDecl *Old = 0;
2496  if (!Previous.isSingleResult() ||
2497      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2498    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2499      << New->getDeclName();
2500    Diag(Previous.getRepresentativeDecl()->getLocation(),
2501         diag::note_previous_definition);
2502    return New->setInvalidDecl();
2503  }
2504
2505  // C++ [class.mem]p1:
2506  //   A member shall not be declared twice in the member-specification [...]
2507  //
2508  // Here, we need only consider static data members.
2509  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2510    Diag(New->getLocation(), diag::err_duplicate_member)
2511      << New->getIdentifier();
2512    Diag(Old->getLocation(), diag::note_previous_declaration);
2513    New->setInvalidDecl();
2514  }
2515
2516  mergeDeclAttributes(New, Old);
2517  // Warn if an already-declared variable is made a weak_import in a subsequent
2518  // declaration
2519  if (New->getAttr<WeakImportAttr>() &&
2520      Old->getStorageClass() == SC_None &&
2521      !Old->getAttr<WeakImportAttr>()) {
2522    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2523    Diag(Old->getLocation(), diag::note_previous_definition);
2524    // Remove weak_import attribute on new declaration.
2525    New->dropAttr<WeakImportAttr>();
2526  }
2527
2528  // Merge the types.
2529  MergeVarDeclTypes(New, Old);
2530  if (New->isInvalidDecl())
2531    return;
2532
2533  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2534  if (New->getStorageClass() == SC_Static &&
2535      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2536    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2537    Diag(Old->getLocation(), diag::note_previous_definition);
2538    return New->setInvalidDecl();
2539  }
2540  // C99 6.2.2p4:
2541  //   For an identifier declared with the storage-class specifier
2542  //   extern in a scope in which a prior declaration of that
2543  //   identifier is visible,23) if the prior declaration specifies
2544  //   internal or external linkage, the linkage of the identifier at
2545  //   the later declaration is the same as the linkage specified at
2546  //   the prior declaration. If no prior declaration is visible, or
2547  //   if the prior declaration specifies no linkage, then the
2548  //   identifier has external linkage.
2549  if (New->hasExternalStorage() && Old->hasLinkage())
2550    /* Okay */;
2551  else if (New->getStorageClass() != SC_Static &&
2552           Old->getStorageClass() == SC_Static) {
2553    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2554    Diag(Old->getLocation(), diag::note_previous_definition);
2555    return New->setInvalidDecl();
2556  }
2557
2558  // Check if extern is followed by non-extern and vice-versa.
2559  if (New->hasExternalStorage() &&
2560      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2561    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2562    Diag(Old->getLocation(), diag::note_previous_definition);
2563    return New->setInvalidDecl();
2564  }
2565  if (Old->hasExternalStorage() &&
2566      !New->hasLinkage() && New->isLocalVarDecl()) {
2567    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2568    Diag(Old->getLocation(), diag::note_previous_definition);
2569    return New->setInvalidDecl();
2570  }
2571
2572  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2573
2574  // FIXME: The test for external storage here seems wrong? We still
2575  // need to check for mismatches.
2576  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2577      // Don't complain about out-of-line definitions of static members.
2578      !(Old->getLexicalDeclContext()->isRecord() &&
2579        !New->getLexicalDeclContext()->isRecord())) {
2580    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2581    Diag(Old->getLocation(), diag::note_previous_definition);
2582    return New->setInvalidDecl();
2583  }
2584
2585  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2586    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2587    Diag(Old->getLocation(), diag::note_previous_definition);
2588  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2589    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2590    Diag(Old->getLocation(), diag::note_previous_definition);
2591  }
2592
2593  // C++ doesn't have tentative definitions, so go right ahead and check here.
2594  const VarDecl *Def;
2595  if (getLangOpts().CPlusPlus &&
2596      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2597      (Def = Old->getDefinition())) {
2598    Diag(New->getLocation(), diag::err_redefinition)
2599      << New->getDeclName();
2600    Diag(Def->getLocation(), diag::note_previous_definition);
2601    New->setInvalidDecl();
2602    return;
2603  }
2604  // c99 6.2.2 P4.
2605  // For an identifier declared with the storage-class specifier extern in a
2606  // scope in which a prior declaration of that identifier is visible, if
2607  // the prior declaration specifies internal or external linkage, the linkage
2608  // of the identifier at the later declaration is the same as the linkage
2609  // specified at the prior declaration.
2610  // FIXME. revisit this code.
2611  if (New->hasExternalStorage() &&
2612      Old->getLinkage() == InternalLinkage &&
2613      New->getDeclContext() == Old->getDeclContext())
2614    New->setStorageClass(Old->getStorageClass());
2615
2616  // Keep a chain of previous declarations.
2617  New->setPreviousDeclaration(Old);
2618
2619  // Inherit access appropriately.
2620  New->setAccess(Old->getAccess());
2621}
2622
2623/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2624/// no declarator (e.g. "struct foo;") is parsed.
2625Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2626                                       DeclSpec &DS) {
2627  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2628}
2629
2630/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2631/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2632/// parameters to cope with template friend declarations.
2633Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2634                                       DeclSpec &DS,
2635                                       MultiTemplateParamsArg TemplateParams) {
2636  Decl *TagD = 0;
2637  TagDecl *Tag = 0;
2638  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2639      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2640      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2641      DS.getTypeSpecType() == DeclSpec::TST_union ||
2642      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2643    TagD = DS.getRepAsDecl();
2644
2645    if (!TagD) // We probably had an error
2646      return 0;
2647
2648    // Note that the above type specs guarantee that the
2649    // type rep is a Decl, whereas in many of the others
2650    // it's a Type.
2651    if (isa<TagDecl>(TagD))
2652      Tag = cast<TagDecl>(TagD);
2653    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2654      Tag = CTD->getTemplatedDecl();
2655  }
2656
2657  if (Tag) {
2658    Tag->setFreeStanding();
2659    if (Tag->isInvalidDecl())
2660      return Tag;
2661  }
2662
2663  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2664    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2665    // or incomplete types shall not be restrict-qualified."
2666    if (TypeQuals & DeclSpec::TQ_restrict)
2667      Diag(DS.getRestrictSpecLoc(),
2668           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2669           << DS.getSourceRange();
2670  }
2671
2672  if (DS.isConstexprSpecified()) {
2673    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2674    // and definitions of functions and variables.
2675    if (Tag)
2676      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2677        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2678            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2679            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2680            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2681    else
2682      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2683    // Don't emit warnings after this error.
2684    return TagD;
2685  }
2686
2687  if (DS.isFriendSpecified()) {
2688    // If we're dealing with a decl but not a TagDecl, assume that
2689    // whatever routines created it handled the friendship aspect.
2690    if (TagD && !Tag)
2691      return 0;
2692    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2693  }
2694
2695  // Track whether we warned about the fact that there aren't any
2696  // declarators.
2697  bool emittedWarning = false;
2698
2699  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2700    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2701        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2702      if (getLangOpts().CPlusPlus ||
2703          Record->getDeclContext()->isRecord())
2704        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2705
2706      Diag(DS.getLocStart(), diag::ext_no_declarators)
2707        << DS.getSourceRange();
2708      emittedWarning = true;
2709    }
2710  }
2711
2712  // Check for Microsoft C extension: anonymous struct.
2713  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2714      CurContext->isRecord() &&
2715      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2716    // Handle 2 kinds of anonymous struct:
2717    //   struct STRUCT;
2718    // and
2719    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2720    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2721    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2722        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2723         DS.getRepAsType().get()->isStructureType())) {
2724      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2725        << DS.getSourceRange();
2726      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2727    }
2728  }
2729
2730  if (getLangOpts().CPlusPlus &&
2731      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2732    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2733      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2734          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2735        Diag(Enum->getLocation(), diag::ext_no_declarators)
2736          << DS.getSourceRange();
2737        emittedWarning = true;
2738      }
2739
2740  // Skip all the checks below if we have a type error.
2741  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2742
2743  if (!DS.isMissingDeclaratorOk()) {
2744    // Warn about typedefs of enums without names, since this is an
2745    // extension in both Microsoft and GNU.
2746    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2747        Tag && isa<EnumDecl>(Tag)) {
2748      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2749        << DS.getSourceRange();
2750      return Tag;
2751    }
2752
2753    Diag(DS.getLocStart(), diag::ext_no_declarators)
2754      << DS.getSourceRange();
2755    emittedWarning = true;
2756  }
2757
2758  // We're going to complain about a bunch of spurious specifiers;
2759  // only do this if we're declaring a tag, because otherwise we
2760  // should be getting diag::ext_no_declarators.
2761  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2762    return TagD;
2763
2764  // Note that a linkage-specification sets a storage class, but
2765  // 'extern "C" struct foo;' is actually valid and not theoretically
2766  // useless.
2767  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2768    if (!DS.isExternInLinkageSpec())
2769      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2770        << DeclSpec::getSpecifierName(scs);
2771
2772  if (DS.isThreadSpecified())
2773    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2774  if (DS.getTypeQualifiers()) {
2775    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2776      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2777    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2778      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2779    // Restrict is covered above.
2780  }
2781  if (DS.isInlineSpecified())
2782    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2783  if (DS.isVirtualSpecified())
2784    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2785  if (DS.isExplicitSpecified())
2786    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2787
2788  if (DS.isModulePrivateSpecified() &&
2789      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2790    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2791      << Tag->getTagKind()
2792      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2793
2794  // Warn about ignored type attributes, for example:
2795  // __attribute__((aligned)) struct A;
2796  // Attributes should be placed after tag to apply to type declaration.
2797  if (!DS.getAttributes().empty()) {
2798    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2799    if (TypeSpecType == DeclSpec::TST_class ||
2800        TypeSpecType == DeclSpec::TST_struct ||
2801        TypeSpecType == DeclSpec::TST_interface ||
2802        TypeSpecType == DeclSpec::TST_union ||
2803        TypeSpecType == DeclSpec::TST_enum) {
2804      AttributeList* attrs = DS.getAttributes().getList();
2805      while (attrs) {
2806        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2807        << attrs->getName()
2808        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2809            TypeSpecType == DeclSpec::TST_struct ? 1 :
2810            TypeSpecType == DeclSpec::TST_union ? 2 :
2811            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2812        attrs = attrs->getNext();
2813      }
2814    }
2815  }
2816
2817  ActOnDocumentableDecl(TagD);
2818
2819  return TagD;
2820}
2821
2822/// We are trying to inject an anonymous member into the given scope;
2823/// check if there's an existing declaration that can't be overloaded.
2824///
2825/// \return true if this is a forbidden redeclaration
2826static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2827                                         Scope *S,
2828                                         DeclContext *Owner,
2829                                         DeclarationName Name,
2830                                         SourceLocation NameLoc,
2831                                         unsigned diagnostic) {
2832  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2833                 Sema::ForRedeclaration);
2834  if (!SemaRef.LookupName(R, S)) return false;
2835
2836  if (R.getAsSingle<TagDecl>())
2837    return false;
2838
2839  // Pick a representative declaration.
2840  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2841  assert(PrevDecl && "Expected a non-null Decl");
2842
2843  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2844    return false;
2845
2846  SemaRef.Diag(NameLoc, diagnostic) << Name;
2847  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2848
2849  return true;
2850}
2851
2852/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2853/// anonymous struct or union AnonRecord into the owning context Owner
2854/// and scope S. This routine will be invoked just after we realize
2855/// that an unnamed union or struct is actually an anonymous union or
2856/// struct, e.g.,
2857///
2858/// @code
2859/// union {
2860///   int i;
2861///   float f;
2862/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2863///    // f into the surrounding scope.x
2864/// @endcode
2865///
2866/// This routine is recursive, injecting the names of nested anonymous
2867/// structs/unions into the owning context and scope as well.
2868static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2869                                                DeclContext *Owner,
2870                                                RecordDecl *AnonRecord,
2871                                                AccessSpecifier AS,
2872                              SmallVector<NamedDecl*, 2> &Chaining,
2873                                                      bool MSAnonStruct) {
2874  unsigned diagKind
2875    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2876                            : diag::err_anonymous_struct_member_redecl;
2877
2878  bool Invalid = false;
2879
2880  // Look every FieldDecl and IndirectFieldDecl with a name.
2881  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2882                               DEnd = AnonRecord->decls_end();
2883       D != DEnd; ++D) {
2884    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2885        cast<NamedDecl>(*D)->getDeclName()) {
2886      ValueDecl *VD = cast<ValueDecl>(*D);
2887      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2888                                       VD->getLocation(), diagKind)) {
2889        // C++ [class.union]p2:
2890        //   The names of the members of an anonymous union shall be
2891        //   distinct from the names of any other entity in the
2892        //   scope in which the anonymous union is declared.
2893        Invalid = true;
2894      } else {
2895        // C++ [class.union]p2:
2896        //   For the purpose of name lookup, after the anonymous union
2897        //   definition, the members of the anonymous union are
2898        //   considered to have been defined in the scope in which the
2899        //   anonymous union is declared.
2900        unsigned OldChainingSize = Chaining.size();
2901        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2902          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2903               PE = IF->chain_end(); PI != PE; ++PI)
2904            Chaining.push_back(*PI);
2905        else
2906          Chaining.push_back(VD);
2907
2908        assert(Chaining.size() >= 2);
2909        NamedDecl **NamedChain =
2910          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2911        for (unsigned i = 0; i < Chaining.size(); i++)
2912          NamedChain[i] = Chaining[i];
2913
2914        IndirectFieldDecl* IndirectField =
2915          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2916                                    VD->getIdentifier(), VD->getType(),
2917                                    NamedChain, Chaining.size());
2918
2919        IndirectField->setAccess(AS);
2920        IndirectField->setImplicit();
2921        SemaRef.PushOnScopeChains(IndirectField, S);
2922
2923        // That includes picking up the appropriate access specifier.
2924        if (AS != AS_none) IndirectField->setAccess(AS);
2925
2926        Chaining.resize(OldChainingSize);
2927      }
2928    }
2929  }
2930
2931  return Invalid;
2932}
2933
2934/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2935/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2936/// illegal input values are mapped to SC_None.
2937static StorageClass
2938StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2939  switch (StorageClassSpec) {
2940  case DeclSpec::SCS_unspecified:    return SC_None;
2941  case DeclSpec::SCS_extern:         return SC_Extern;
2942  case DeclSpec::SCS_static:         return SC_Static;
2943  case DeclSpec::SCS_auto:           return SC_Auto;
2944  case DeclSpec::SCS_register:       return SC_Register;
2945  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2946    // Illegal SCSs map to None: error reporting is up to the caller.
2947  case DeclSpec::SCS_mutable:        // Fall through.
2948  case DeclSpec::SCS_typedef:        return SC_None;
2949  }
2950  llvm_unreachable("unknown storage class specifier");
2951}
2952
2953/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2954/// a StorageClass. Any error reporting is up to the caller:
2955/// illegal input values are mapped to SC_None.
2956static StorageClass
2957StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2958  switch (StorageClassSpec) {
2959  case DeclSpec::SCS_unspecified:    return SC_None;
2960  case DeclSpec::SCS_extern:         return SC_Extern;
2961  case DeclSpec::SCS_static:         return SC_Static;
2962  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2963    // Illegal SCSs map to None: error reporting is up to the caller.
2964  case DeclSpec::SCS_auto:           // Fall through.
2965  case DeclSpec::SCS_mutable:        // Fall through.
2966  case DeclSpec::SCS_register:       // Fall through.
2967  case DeclSpec::SCS_typedef:        return SC_None;
2968  }
2969  llvm_unreachable("unknown storage class specifier");
2970}
2971
2972/// BuildAnonymousStructOrUnion - Handle the declaration of an
2973/// anonymous structure or union. Anonymous unions are a C++ feature
2974/// (C++ [class.union]) and a C11 feature; anonymous structures
2975/// are a C11 feature and GNU C++ extension.
2976Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2977                                             AccessSpecifier AS,
2978                                             RecordDecl *Record) {
2979  DeclContext *Owner = Record->getDeclContext();
2980
2981  // Diagnose whether this anonymous struct/union is an extension.
2982  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2983    Diag(Record->getLocation(), diag::ext_anonymous_union);
2984  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2985    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2986  else if (!Record->isUnion() && !getLangOpts().C11)
2987    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2988
2989  // C and C++ require different kinds of checks for anonymous
2990  // structs/unions.
2991  bool Invalid = false;
2992  if (getLangOpts().CPlusPlus) {
2993    const char* PrevSpec = 0;
2994    unsigned DiagID;
2995    if (Record->isUnion()) {
2996      // C++ [class.union]p6:
2997      //   Anonymous unions declared in a named namespace or in the
2998      //   global namespace shall be declared static.
2999      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3000          (isa<TranslationUnitDecl>(Owner) ||
3001           (isa<NamespaceDecl>(Owner) &&
3002            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3003        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3004          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3005
3006        // Recover by adding 'static'.
3007        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3008                               PrevSpec, DiagID);
3009      }
3010      // C++ [class.union]p6:
3011      //   A storage class is not allowed in a declaration of an
3012      //   anonymous union in a class scope.
3013      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3014               isa<RecordDecl>(Owner)) {
3015        Diag(DS.getStorageClassSpecLoc(),
3016             diag::err_anonymous_union_with_storage_spec)
3017          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3018
3019        // Recover by removing the storage specifier.
3020        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3021                               SourceLocation(),
3022                               PrevSpec, DiagID);
3023      }
3024    }
3025
3026    // Ignore const/volatile/restrict qualifiers.
3027    if (DS.getTypeQualifiers()) {
3028      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3029        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3030          << Record->isUnion() << 0
3031          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3032      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3033        Diag(DS.getVolatileSpecLoc(),
3034             diag::ext_anonymous_struct_union_qualified)
3035          << Record->isUnion() << 1
3036          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3037      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3038        Diag(DS.getRestrictSpecLoc(),
3039             diag::ext_anonymous_struct_union_qualified)
3040          << Record->isUnion() << 2
3041          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3042
3043      DS.ClearTypeQualifiers();
3044    }
3045
3046    // C++ [class.union]p2:
3047    //   The member-specification of an anonymous union shall only
3048    //   define non-static data members. [Note: nested types and
3049    //   functions cannot be declared within an anonymous union. ]
3050    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3051                                 MemEnd = Record->decls_end();
3052         Mem != MemEnd; ++Mem) {
3053      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3054        // C++ [class.union]p3:
3055        //   An anonymous union shall not have private or protected
3056        //   members (clause 11).
3057        assert(FD->getAccess() != AS_none);
3058        if (FD->getAccess() != AS_public) {
3059          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3060            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3061          Invalid = true;
3062        }
3063
3064        // C++ [class.union]p1
3065        //   An object of a class with a non-trivial constructor, a non-trivial
3066        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3067        //   assignment operator cannot be a member of a union, nor can an
3068        //   array of such objects.
3069        if (CheckNontrivialField(FD))
3070          Invalid = true;
3071      } else if ((*Mem)->isImplicit()) {
3072        // Any implicit members are fine.
3073      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3074        // This is a type that showed up in an
3075        // elaborated-type-specifier inside the anonymous struct or
3076        // union, but which actually declares a type outside of the
3077        // anonymous struct or union. It's okay.
3078      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3079        if (!MemRecord->isAnonymousStructOrUnion() &&
3080            MemRecord->getDeclName()) {
3081          // Visual C++ allows type definition in anonymous struct or union.
3082          if (getLangOpts().MicrosoftExt)
3083            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3084              << (int)Record->isUnion();
3085          else {
3086            // This is a nested type declaration.
3087            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3088              << (int)Record->isUnion();
3089            Invalid = true;
3090          }
3091        }
3092      } else if (isa<AccessSpecDecl>(*Mem)) {
3093        // Any access specifier is fine.
3094      } else {
3095        // We have something that isn't a non-static data
3096        // member. Complain about it.
3097        unsigned DK = diag::err_anonymous_record_bad_member;
3098        if (isa<TypeDecl>(*Mem))
3099          DK = diag::err_anonymous_record_with_type;
3100        else if (isa<FunctionDecl>(*Mem))
3101          DK = diag::err_anonymous_record_with_function;
3102        else if (isa<VarDecl>(*Mem))
3103          DK = diag::err_anonymous_record_with_static;
3104
3105        // Visual C++ allows type definition in anonymous struct or union.
3106        if (getLangOpts().MicrosoftExt &&
3107            DK == diag::err_anonymous_record_with_type)
3108          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3109            << (int)Record->isUnion();
3110        else {
3111          Diag((*Mem)->getLocation(), DK)
3112              << (int)Record->isUnion();
3113          Invalid = true;
3114        }
3115      }
3116    }
3117  }
3118
3119  if (!Record->isUnion() && !Owner->isRecord()) {
3120    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3121      << (int)getLangOpts().CPlusPlus;
3122    Invalid = true;
3123  }
3124
3125  // Mock up a declarator.
3126  Declarator Dc(DS, Declarator::MemberContext);
3127  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3128  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3129
3130  // Create a declaration for this anonymous struct/union.
3131  NamedDecl *Anon = 0;
3132  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3133    Anon = FieldDecl::Create(Context, OwningClass,
3134                             DS.getLocStart(),
3135                             Record->getLocation(),
3136                             /*IdentifierInfo=*/0,
3137                             Context.getTypeDeclType(Record),
3138                             TInfo,
3139                             /*BitWidth=*/0, /*Mutable=*/false,
3140                             /*InitStyle=*/ICIS_NoInit);
3141    Anon->setAccess(AS);
3142    if (getLangOpts().CPlusPlus)
3143      FieldCollector->Add(cast<FieldDecl>(Anon));
3144  } else {
3145    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3146    assert(SCSpec != DeclSpec::SCS_typedef &&
3147           "Parser allowed 'typedef' as storage class VarDecl.");
3148    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3149    if (SCSpec == DeclSpec::SCS_mutable) {
3150      // mutable can only appear on non-static class members, so it's always
3151      // an error here
3152      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3153      Invalid = true;
3154      SC = SC_None;
3155    }
3156    SCSpec = DS.getStorageClassSpecAsWritten();
3157    VarDecl::StorageClass SCAsWritten
3158      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3159
3160    Anon = VarDecl::Create(Context, Owner,
3161                           DS.getLocStart(),
3162                           Record->getLocation(), /*IdentifierInfo=*/0,
3163                           Context.getTypeDeclType(Record),
3164                           TInfo, SC, SCAsWritten);
3165
3166    // Default-initialize the implicit variable. This initialization will be
3167    // trivial in almost all cases, except if a union member has an in-class
3168    // initializer:
3169    //   union { int n = 0; };
3170    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3171  }
3172  Anon->setImplicit();
3173
3174  // Add the anonymous struct/union object to the current
3175  // context. We'll be referencing this object when we refer to one of
3176  // its members.
3177  Owner->addDecl(Anon);
3178
3179  // Inject the members of the anonymous struct/union into the owning
3180  // context and into the identifier resolver chain for name lookup
3181  // purposes.
3182  SmallVector<NamedDecl*, 2> Chain;
3183  Chain.push_back(Anon);
3184
3185  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3186                                          Chain, false))
3187    Invalid = true;
3188
3189  // Mark this as an anonymous struct/union type. Note that we do not
3190  // do this until after we have already checked and injected the
3191  // members of this anonymous struct/union type, because otherwise
3192  // the members could be injected twice: once by DeclContext when it
3193  // builds its lookup table, and once by
3194  // InjectAnonymousStructOrUnionMembers.
3195  Record->setAnonymousStructOrUnion(true);
3196
3197  if (Invalid)
3198    Anon->setInvalidDecl();
3199
3200  return Anon;
3201}
3202
3203/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3204/// Microsoft C anonymous structure.
3205/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3206/// Example:
3207///
3208/// struct A { int a; };
3209/// struct B { struct A; int b; };
3210///
3211/// void foo() {
3212///   B var;
3213///   var.a = 3;
3214/// }
3215///
3216Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3217                                           RecordDecl *Record) {
3218
3219  // If there is no Record, get the record via the typedef.
3220  if (!Record)
3221    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3222
3223  // Mock up a declarator.
3224  Declarator Dc(DS, Declarator::TypeNameContext);
3225  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3226  assert(TInfo && "couldn't build declarator info for anonymous struct");
3227
3228  // Create a declaration for this anonymous struct.
3229  NamedDecl* Anon = FieldDecl::Create(Context,
3230                             cast<RecordDecl>(CurContext),
3231                             DS.getLocStart(),
3232                             DS.getLocStart(),
3233                             /*IdentifierInfo=*/0,
3234                             Context.getTypeDeclType(Record),
3235                             TInfo,
3236                             /*BitWidth=*/0, /*Mutable=*/false,
3237                             /*InitStyle=*/ICIS_NoInit);
3238  Anon->setImplicit();
3239
3240  // Add the anonymous struct object to the current context.
3241  CurContext->addDecl(Anon);
3242
3243  // Inject the members of the anonymous struct into the current
3244  // context and into the identifier resolver chain for name lookup
3245  // purposes.
3246  SmallVector<NamedDecl*, 2> Chain;
3247  Chain.push_back(Anon);
3248
3249  RecordDecl *RecordDef = Record->getDefinition();
3250  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3251                                                        RecordDef, AS_none,
3252                                                        Chain, true))
3253    Anon->setInvalidDecl();
3254
3255  return Anon;
3256}
3257
3258/// GetNameForDeclarator - Determine the full declaration name for the
3259/// given Declarator.
3260DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3261  return GetNameFromUnqualifiedId(D.getName());
3262}
3263
3264/// \brief Retrieves the declaration name from a parsed unqualified-id.
3265DeclarationNameInfo
3266Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3267  DeclarationNameInfo NameInfo;
3268  NameInfo.setLoc(Name.StartLocation);
3269
3270  switch (Name.getKind()) {
3271
3272  case UnqualifiedId::IK_ImplicitSelfParam:
3273  case UnqualifiedId::IK_Identifier:
3274    NameInfo.setName(Name.Identifier);
3275    NameInfo.setLoc(Name.StartLocation);
3276    return NameInfo;
3277
3278  case UnqualifiedId::IK_OperatorFunctionId:
3279    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3280                                           Name.OperatorFunctionId.Operator));
3281    NameInfo.setLoc(Name.StartLocation);
3282    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3283      = Name.OperatorFunctionId.SymbolLocations[0];
3284    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3285      = Name.EndLocation.getRawEncoding();
3286    return NameInfo;
3287
3288  case UnqualifiedId::IK_LiteralOperatorId:
3289    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3290                                                           Name.Identifier));
3291    NameInfo.setLoc(Name.StartLocation);
3292    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3293    return NameInfo;
3294
3295  case UnqualifiedId::IK_ConversionFunctionId: {
3296    TypeSourceInfo *TInfo;
3297    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3298    if (Ty.isNull())
3299      return DeclarationNameInfo();
3300    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3301                                               Context.getCanonicalType(Ty)));
3302    NameInfo.setLoc(Name.StartLocation);
3303    NameInfo.setNamedTypeInfo(TInfo);
3304    return NameInfo;
3305  }
3306
3307  case UnqualifiedId::IK_ConstructorName: {
3308    TypeSourceInfo *TInfo;
3309    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3310    if (Ty.isNull())
3311      return DeclarationNameInfo();
3312    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3313                                              Context.getCanonicalType(Ty)));
3314    NameInfo.setLoc(Name.StartLocation);
3315    NameInfo.setNamedTypeInfo(TInfo);
3316    return NameInfo;
3317  }
3318
3319  case UnqualifiedId::IK_ConstructorTemplateId: {
3320    // In well-formed code, we can only have a constructor
3321    // template-id that refers to the current context, so go there
3322    // to find the actual type being constructed.
3323    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3324    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3325      return DeclarationNameInfo();
3326
3327    // Determine the type of the class being constructed.
3328    QualType CurClassType = Context.getTypeDeclType(CurClass);
3329
3330    // FIXME: Check two things: that the template-id names the same type as
3331    // CurClassType, and that the template-id does not occur when the name
3332    // was qualified.
3333
3334    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3335                                    Context.getCanonicalType(CurClassType)));
3336    NameInfo.setLoc(Name.StartLocation);
3337    // FIXME: should we retrieve TypeSourceInfo?
3338    NameInfo.setNamedTypeInfo(0);
3339    return NameInfo;
3340  }
3341
3342  case UnqualifiedId::IK_DestructorName: {
3343    TypeSourceInfo *TInfo;
3344    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3345    if (Ty.isNull())
3346      return DeclarationNameInfo();
3347    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3348                                              Context.getCanonicalType(Ty)));
3349    NameInfo.setLoc(Name.StartLocation);
3350    NameInfo.setNamedTypeInfo(TInfo);
3351    return NameInfo;
3352  }
3353
3354  case UnqualifiedId::IK_TemplateId: {
3355    TemplateName TName = Name.TemplateId->Template.get();
3356    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3357    return Context.getNameForTemplate(TName, TNameLoc);
3358  }
3359
3360  } // switch (Name.getKind())
3361
3362  llvm_unreachable("Unknown name kind");
3363}
3364
3365static QualType getCoreType(QualType Ty) {
3366  do {
3367    if (Ty->isPointerType() || Ty->isReferenceType())
3368      Ty = Ty->getPointeeType();
3369    else if (Ty->isArrayType())
3370      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3371    else
3372      return Ty.withoutLocalFastQualifiers();
3373  } while (true);
3374}
3375
3376/// hasSimilarParameters - Determine whether the C++ functions Declaration
3377/// and Definition have "nearly" matching parameters. This heuristic is
3378/// used to improve diagnostics in the case where an out-of-line function
3379/// definition doesn't match any declaration within the class or namespace.
3380/// Also sets Params to the list of indices to the parameters that differ
3381/// between the declaration and the definition. If hasSimilarParameters
3382/// returns true and Params is empty, then all of the parameters match.
3383static bool hasSimilarParameters(ASTContext &Context,
3384                                     FunctionDecl *Declaration,
3385                                     FunctionDecl *Definition,
3386                                     llvm::SmallVectorImpl<unsigned> &Params) {
3387  Params.clear();
3388  if (Declaration->param_size() != Definition->param_size())
3389    return false;
3390  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3391    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3392    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3393
3394    // The parameter types are identical
3395    if (Context.hasSameType(DefParamTy, DeclParamTy))
3396      continue;
3397
3398    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3399    QualType DefParamBaseTy = getCoreType(DefParamTy);
3400    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3401    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3402
3403    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3404        (DeclTyName && DeclTyName == DefTyName))
3405      Params.push_back(Idx);
3406    else  // The two parameters aren't even close
3407      return false;
3408  }
3409
3410  return true;
3411}
3412
3413/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3414/// declarator needs to be rebuilt in the current instantiation.
3415/// Any bits of declarator which appear before the name are valid for
3416/// consideration here.  That's specifically the type in the decl spec
3417/// and the base type in any member-pointer chunks.
3418static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3419                                                    DeclarationName Name) {
3420  // The types we specifically need to rebuild are:
3421  //   - typenames, typeofs, and decltypes
3422  //   - types which will become injected class names
3423  // Of course, we also need to rebuild any type referencing such a
3424  // type.  It's safest to just say "dependent", but we call out a
3425  // few cases here.
3426
3427  DeclSpec &DS = D.getMutableDeclSpec();
3428  switch (DS.getTypeSpecType()) {
3429  case DeclSpec::TST_typename:
3430  case DeclSpec::TST_typeofType:
3431  case DeclSpec::TST_underlyingType:
3432  case DeclSpec::TST_atomic: {
3433    // Grab the type from the parser.
3434    TypeSourceInfo *TSI = 0;
3435    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3436    if (T.isNull() || !T->isDependentType()) break;
3437
3438    // Make sure there's a type source info.  This isn't really much
3439    // of a waste; most dependent types should have type source info
3440    // attached already.
3441    if (!TSI)
3442      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3443
3444    // Rebuild the type in the current instantiation.
3445    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3446    if (!TSI) return true;
3447
3448    // Store the new type back in the decl spec.
3449    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3450    DS.UpdateTypeRep(LocType);
3451    break;
3452  }
3453
3454  case DeclSpec::TST_decltype:
3455  case DeclSpec::TST_typeofExpr: {
3456    Expr *E = DS.getRepAsExpr();
3457    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3458    if (Result.isInvalid()) return true;
3459    DS.UpdateExprRep(Result.get());
3460    break;
3461  }
3462
3463  default:
3464    // Nothing to do for these decl specs.
3465    break;
3466  }
3467
3468  // It doesn't matter what order we do this in.
3469  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3470    DeclaratorChunk &Chunk = D.getTypeObject(I);
3471
3472    // The only type information in the declarator which can come
3473    // before the declaration name is the base type of a member
3474    // pointer.
3475    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3476      continue;
3477
3478    // Rebuild the scope specifier in-place.
3479    CXXScopeSpec &SS = Chunk.Mem.Scope();
3480    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3481      return true;
3482  }
3483
3484  return false;
3485}
3486
3487Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3488  D.setFunctionDefinitionKind(FDK_Declaration);
3489  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3490
3491  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3492      Dcl && Dcl->getDeclContext()->isFileContext())
3493    Dcl->setTopLevelDeclInObjCContainer();
3494
3495  return Dcl;
3496}
3497
3498/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3499///   If T is the name of a class, then each of the following shall have a
3500///   name different from T:
3501///     - every static data member of class T;
3502///     - every member function of class T
3503///     - every member of class T that is itself a type;
3504/// \returns true if the declaration name violates these rules.
3505bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3506                                   DeclarationNameInfo NameInfo) {
3507  DeclarationName Name = NameInfo.getName();
3508
3509  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3510    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3511      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3512      return true;
3513    }
3514
3515  return false;
3516}
3517
3518/// \brief Diagnose a declaration whose declarator-id has the given
3519/// nested-name-specifier.
3520///
3521/// \param SS The nested-name-specifier of the declarator-id.
3522///
3523/// \param DC The declaration context to which the nested-name-specifier
3524/// resolves.
3525///
3526/// \param Name The name of the entity being declared.
3527///
3528/// \param Loc The location of the name of the entity being declared.
3529///
3530/// \returns true if we cannot safely recover from this error, false otherwise.
3531bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3532                                        DeclarationName Name,
3533                                      SourceLocation Loc) {
3534  DeclContext *Cur = CurContext;
3535  while (isa<LinkageSpecDecl>(Cur))
3536    Cur = Cur->getParent();
3537
3538  // C++ [dcl.meaning]p1:
3539  //   A declarator-id shall not be qualified except for the definition
3540  //   of a member function (9.3) or static data member (9.4) outside of
3541  //   its class, the definition or explicit instantiation of a function
3542  //   or variable member of a namespace outside of its namespace, or the
3543  //   definition of an explicit specialization outside of its namespace,
3544  //   or the declaration of a friend function that is a member of
3545  //   another class or namespace (11.3). [...]
3546
3547  // The user provided a superfluous scope specifier that refers back to the
3548  // class or namespaces in which the entity is already declared.
3549  //
3550  // class X {
3551  //   void X::f();
3552  // };
3553  if (Cur->Equals(DC)) {
3554    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3555                                   : diag::err_member_extra_qualification)
3556      << Name << FixItHint::CreateRemoval(SS.getRange());
3557    SS.clear();
3558    return false;
3559  }
3560
3561  // Check whether the qualifying scope encloses the scope of the original
3562  // declaration.
3563  if (!Cur->Encloses(DC)) {
3564    if (Cur->isRecord())
3565      Diag(Loc, diag::err_member_qualification)
3566        << Name << SS.getRange();
3567    else if (isa<TranslationUnitDecl>(DC))
3568      Diag(Loc, diag::err_invalid_declarator_global_scope)
3569        << Name << SS.getRange();
3570    else if (isa<FunctionDecl>(Cur))
3571      Diag(Loc, diag::err_invalid_declarator_in_function)
3572        << Name << SS.getRange();
3573    else
3574      Diag(Loc, diag::err_invalid_declarator_scope)
3575      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3576
3577    return true;
3578  }
3579
3580  if (Cur->isRecord()) {
3581    // Cannot qualify members within a class.
3582    Diag(Loc, diag::err_member_qualification)
3583      << Name << SS.getRange();
3584    SS.clear();
3585
3586    // C++ constructors and destructors with incorrect scopes can break
3587    // our AST invariants by having the wrong underlying types. If
3588    // that's the case, then drop this declaration entirely.
3589    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3590         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3591        !Context.hasSameType(Name.getCXXNameType(),
3592                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3593      return true;
3594
3595    return false;
3596  }
3597
3598  // C++11 [dcl.meaning]p1:
3599  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3600  //   not begin with a decltype-specifer"
3601  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3602  while (SpecLoc.getPrefix())
3603    SpecLoc = SpecLoc.getPrefix();
3604  if (dyn_cast_or_null<DecltypeType>(
3605        SpecLoc.getNestedNameSpecifier()->getAsType()))
3606    Diag(Loc, diag::err_decltype_in_declarator)
3607      << SpecLoc.getTypeLoc().getSourceRange();
3608
3609  return false;
3610}
3611
3612Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3613                             MultiTemplateParamsArg TemplateParamLists) {
3614  // TODO: consider using NameInfo for diagnostic.
3615  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3616  DeclarationName Name = NameInfo.getName();
3617
3618  // All of these full declarators require an identifier.  If it doesn't have
3619  // one, the ParsedFreeStandingDeclSpec action should be used.
3620  if (!Name) {
3621    if (!D.isInvalidType())  // Reject this if we think it is valid.
3622      Diag(D.getDeclSpec().getLocStart(),
3623           diag::err_declarator_need_ident)
3624        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3625    return 0;
3626  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3627    return 0;
3628
3629  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3630  // we find one that is.
3631  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3632         (S->getFlags() & Scope::TemplateParamScope) != 0)
3633    S = S->getParent();
3634
3635  DeclContext *DC = CurContext;
3636  if (D.getCXXScopeSpec().isInvalid())
3637    D.setInvalidType();
3638  else if (D.getCXXScopeSpec().isSet()) {
3639    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3640                                        UPPC_DeclarationQualifier))
3641      return 0;
3642
3643    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3644    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3645    if (!DC) {
3646      // If we could not compute the declaration context, it's because the
3647      // declaration context is dependent but does not refer to a class,
3648      // class template, or class template partial specialization. Complain
3649      // and return early, to avoid the coming semantic disaster.
3650      Diag(D.getIdentifierLoc(),
3651           diag::err_template_qualified_declarator_no_match)
3652        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3653        << D.getCXXScopeSpec().getRange();
3654      return 0;
3655    }
3656    bool IsDependentContext = DC->isDependentContext();
3657
3658    if (!IsDependentContext &&
3659        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3660      return 0;
3661
3662    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3663      Diag(D.getIdentifierLoc(),
3664           diag::err_member_def_undefined_record)
3665        << Name << DC << D.getCXXScopeSpec().getRange();
3666      D.setInvalidType();
3667    } else if (!D.getDeclSpec().isFriendSpecified()) {
3668      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3669                                      Name, D.getIdentifierLoc())) {
3670        if (DC->isRecord())
3671          return 0;
3672
3673        D.setInvalidType();
3674      }
3675    }
3676
3677    // Check whether we need to rebuild the type of the given
3678    // declaration in the current instantiation.
3679    if (EnteringContext && IsDependentContext &&
3680        TemplateParamLists.size() != 0) {
3681      ContextRAII SavedContext(*this, DC);
3682      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3683        D.setInvalidType();
3684    }
3685  }
3686
3687  if (DiagnoseClassNameShadow(DC, NameInfo))
3688    // If this is a typedef, we'll end up spewing multiple diagnostics.
3689    // Just return early; it's safer.
3690    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3691      return 0;
3692
3693  NamedDecl *New;
3694
3695  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3696  QualType R = TInfo->getType();
3697
3698  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3699                                      UPPC_DeclarationType))
3700    D.setInvalidType();
3701
3702  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3703                        ForRedeclaration);
3704
3705  // See if this is a redefinition of a variable in the same scope.
3706  if (!D.getCXXScopeSpec().isSet()) {
3707    bool IsLinkageLookup = false;
3708
3709    // If the declaration we're planning to build will be a function
3710    // or object with linkage, then look for another declaration with
3711    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3712    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3713      /* Do nothing*/;
3714    else if (R->isFunctionType()) {
3715      if (CurContext->isFunctionOrMethod() ||
3716          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3717        IsLinkageLookup = true;
3718    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3719      IsLinkageLookup = true;
3720    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3721             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3722      IsLinkageLookup = true;
3723
3724    if (IsLinkageLookup)
3725      Previous.clear(LookupRedeclarationWithLinkage);
3726
3727    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3728  } else { // Something like "int foo::x;"
3729    LookupQualifiedName(Previous, DC);
3730
3731    // C++ [dcl.meaning]p1:
3732    //   When the declarator-id is qualified, the declaration shall refer to a
3733    //  previously declared member of the class or namespace to which the
3734    //  qualifier refers (or, in the case of a namespace, of an element of the
3735    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3736    //  thereof; [...]
3737    //
3738    // Note that we already checked the context above, and that we do not have
3739    // enough information to make sure that Previous contains the declaration
3740    // we want to match. For example, given:
3741    //
3742    //   class X {
3743    //     void f();
3744    //     void f(float);
3745    //   };
3746    //
3747    //   void X::f(int) { } // ill-formed
3748    //
3749    // In this case, Previous will point to the overload set
3750    // containing the two f's declared in X, but neither of them
3751    // matches.
3752
3753    // C++ [dcl.meaning]p1:
3754    //   [...] the member shall not merely have been introduced by a
3755    //   using-declaration in the scope of the class or namespace nominated by
3756    //   the nested-name-specifier of the declarator-id.
3757    RemoveUsingDecls(Previous);
3758  }
3759
3760  if (Previous.isSingleResult() &&
3761      Previous.getFoundDecl()->isTemplateParameter()) {
3762    // Maybe we will complain about the shadowed template parameter.
3763    if (!D.isInvalidType())
3764      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3765                                      Previous.getFoundDecl());
3766
3767    // Just pretend that we didn't see the previous declaration.
3768    Previous.clear();
3769  }
3770
3771  // In C++, the previous declaration we find might be a tag type
3772  // (class or enum). In this case, the new declaration will hide the
3773  // tag type. Note that this does does not apply if we're declaring a
3774  // typedef (C++ [dcl.typedef]p4).
3775  if (Previous.isSingleTagDecl() &&
3776      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3777    Previous.clear();
3778
3779  bool AddToScope = true;
3780  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3781    if (TemplateParamLists.size()) {
3782      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3783      return 0;
3784    }
3785
3786    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3787  } else if (R->isFunctionType()) {
3788    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3789                                  TemplateParamLists,
3790                                  AddToScope);
3791  } else {
3792    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3793                                  TemplateParamLists);
3794  }
3795
3796  if (New == 0)
3797    return 0;
3798
3799  // If this has an identifier and is not an invalid redeclaration or
3800  // function template specialization, add it to the scope stack.
3801  if (New->getDeclName() && AddToScope &&
3802       !(D.isRedeclaration() && New->isInvalidDecl()))
3803    PushOnScopeChains(New, S);
3804
3805  return New;
3806}
3807
3808/// Helper method to turn variable array types into constant array
3809/// types in certain situations which would otherwise be errors (for
3810/// GCC compatibility).
3811static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3812                                                    ASTContext &Context,
3813                                                    bool &SizeIsNegative,
3814                                                    llvm::APSInt &Oversized) {
3815  // This method tries to turn a variable array into a constant
3816  // array even when the size isn't an ICE.  This is necessary
3817  // for compatibility with code that depends on gcc's buggy
3818  // constant expression folding, like struct {char x[(int)(char*)2];}
3819  SizeIsNegative = false;
3820  Oversized = 0;
3821
3822  if (T->isDependentType())
3823    return QualType();
3824
3825  QualifierCollector Qs;
3826  const Type *Ty = Qs.strip(T);
3827
3828  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3829    QualType Pointee = PTy->getPointeeType();
3830    QualType FixedType =
3831        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3832                                            Oversized);
3833    if (FixedType.isNull()) return FixedType;
3834    FixedType = Context.getPointerType(FixedType);
3835    return Qs.apply(Context, FixedType);
3836  }
3837  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3838    QualType Inner = PTy->getInnerType();
3839    QualType FixedType =
3840        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3841                                            Oversized);
3842    if (FixedType.isNull()) return FixedType;
3843    FixedType = Context.getParenType(FixedType);
3844    return Qs.apply(Context, FixedType);
3845  }
3846
3847  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3848  if (!VLATy)
3849    return QualType();
3850  // FIXME: We should probably handle this case
3851  if (VLATy->getElementType()->isVariablyModifiedType())
3852    return QualType();
3853
3854  llvm::APSInt Res;
3855  if (!VLATy->getSizeExpr() ||
3856      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3857    return QualType();
3858
3859  // Check whether the array size is negative.
3860  if (Res.isSigned() && Res.isNegative()) {
3861    SizeIsNegative = true;
3862    return QualType();
3863  }
3864
3865  // Check whether the array is too large to be addressed.
3866  unsigned ActiveSizeBits
3867    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3868                                              Res);
3869  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3870    Oversized = Res;
3871    return QualType();
3872  }
3873
3874  return Context.getConstantArrayType(VLATy->getElementType(),
3875                                      Res, ArrayType::Normal, 0);
3876}
3877
3878static void
3879FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
3880  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
3881    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
3882    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
3883                                      DstPTL->getPointeeLoc());
3884    DstPTL->setStarLoc(SrcPTL->getStarLoc());
3885    return;
3886  }
3887  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
3888    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
3889    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
3890                                      DstPTL->getInnerLoc());
3891    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
3892    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
3893    return;
3894  }
3895  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
3896  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
3897  TypeLoc SrcElemTL = SrcATL->getElementLoc();
3898  TypeLoc DstElemTL = DstATL->getElementLoc();
3899  DstElemTL.initializeFullCopy(SrcElemTL);
3900  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
3901  DstATL->setSizeExpr(SrcATL->getSizeExpr());
3902  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
3903}
3904
3905/// Helper method to turn variable array types into constant array
3906/// types in certain situations which would otherwise be errors (for
3907/// GCC compatibility).
3908static TypeSourceInfo*
3909TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
3910                                              ASTContext &Context,
3911                                              bool &SizeIsNegative,
3912                                              llvm::APSInt &Oversized) {
3913  QualType FixedTy
3914    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
3915                                          SizeIsNegative, Oversized);
3916  if (FixedTy.isNull())
3917    return 0;
3918  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
3919  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
3920                                    FixedTInfo->getTypeLoc());
3921  return FixedTInfo;
3922}
3923
3924/// \brief Register the given locally-scoped external C declaration so
3925/// that it can be found later for redeclarations
3926void
3927Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3928                                       const LookupResult &Previous,
3929                                       Scope *S) {
3930  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3931         "Decl is not a locally-scoped decl!");
3932  // Note that we have a locally-scoped external with this name.
3933  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3934
3935  if (!Previous.isSingleResult())
3936    return;
3937
3938  NamedDecl *PrevDecl = Previous.getFoundDecl();
3939
3940  // If there was a previous declaration of this variable, it may be
3941  // in our identifier chain. Update the identifier chain with the new
3942  // declaration.
3943  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3944    // The previous declaration was found on the identifer resolver
3945    // chain, so remove it from its scope.
3946
3947    if (S->isDeclScope(PrevDecl)) {
3948      // Special case for redeclarations in the SAME scope.
3949      // Because this declaration is going to be added to the identifier chain
3950      // later, we should temporarily take it OFF the chain.
3951      IdResolver.RemoveDecl(ND);
3952
3953    } else {
3954      // Find the scope for the original declaration.
3955      while (S && !S->isDeclScope(PrevDecl))
3956        S = S->getParent();
3957    }
3958
3959    if (S)
3960      S->RemoveDecl(PrevDecl);
3961  }
3962}
3963
3964llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3965Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3966  if (ExternalSource) {
3967    // Load locally-scoped external decls from the external source.
3968    SmallVector<NamedDecl *, 4> Decls;
3969    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3970    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3971      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3972        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3973      if (Pos == LocallyScopedExternalDecls.end())
3974        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3975    }
3976  }
3977
3978  return LocallyScopedExternalDecls.find(Name);
3979}
3980
3981/// \brief Diagnose function specifiers on a declaration of an identifier that
3982/// does not identify a function.
3983void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3984  // FIXME: We should probably indicate the identifier in question to avoid
3985  // confusion for constructs like "inline int a(), b;"
3986  if (D.getDeclSpec().isInlineSpecified())
3987    Diag(D.getDeclSpec().getInlineSpecLoc(),
3988         diag::err_inline_non_function);
3989
3990  if (D.getDeclSpec().isVirtualSpecified())
3991    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3992         diag::err_virtual_non_function);
3993
3994  if (D.getDeclSpec().isExplicitSpecified())
3995    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3996         diag::err_explicit_non_function);
3997}
3998
3999NamedDecl*
4000Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4001                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4002  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4003  if (D.getCXXScopeSpec().isSet()) {
4004    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4005      << D.getCXXScopeSpec().getRange();
4006    D.setInvalidType();
4007    // Pretend we didn't see the scope specifier.
4008    DC = CurContext;
4009    Previous.clear();
4010  }
4011
4012  if (getLangOpts().CPlusPlus) {
4013    // Check that there are no default arguments (C++ only).
4014    CheckExtraCXXDefaultArguments(D);
4015  }
4016
4017  DiagnoseFunctionSpecifiers(D);
4018
4019  if (D.getDeclSpec().isThreadSpecified())
4020    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4021  if (D.getDeclSpec().isConstexprSpecified())
4022    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4023      << 1;
4024
4025  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4026    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4027      << D.getName().getSourceRange();
4028    return 0;
4029  }
4030
4031  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4032  if (!NewTD) return 0;
4033
4034  // Handle attributes prior to checking for duplicates in MergeVarDecl
4035  ProcessDeclAttributes(S, NewTD, D);
4036
4037  CheckTypedefForVariablyModifiedType(S, NewTD);
4038
4039  bool Redeclaration = D.isRedeclaration();
4040  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4041  D.setRedeclaration(Redeclaration);
4042  return ND;
4043}
4044
4045void
4046Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4047  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4048  // then it shall have block scope.
4049  // Note that variably modified types must be fixed before merging the decl so
4050  // that redeclarations will match.
4051  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4052  QualType T = TInfo->getType();
4053  if (T->isVariablyModifiedType()) {
4054    getCurFunction()->setHasBranchProtectedScope();
4055
4056    if (S->getFnParent() == 0) {
4057      bool SizeIsNegative;
4058      llvm::APSInt Oversized;
4059      TypeSourceInfo *FixedTInfo =
4060        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4061                                                      SizeIsNegative,
4062                                                      Oversized);
4063      if (FixedTInfo) {
4064        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4065        NewTD->setTypeSourceInfo(FixedTInfo);
4066      } else {
4067        if (SizeIsNegative)
4068          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4069        else if (T->isVariableArrayType())
4070          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4071        else if (Oversized.getBoolValue())
4072          Diag(NewTD->getLocation(), diag::err_array_too_large)
4073            << Oversized.toString(10);
4074        else
4075          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4076        NewTD->setInvalidDecl();
4077      }
4078    }
4079  }
4080}
4081
4082
4083/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4084/// declares a typedef-name, either using the 'typedef' type specifier or via
4085/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4086NamedDecl*
4087Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4088                           LookupResult &Previous, bool &Redeclaration) {
4089  // Merge the decl with the existing one if appropriate. If the decl is
4090  // in an outer scope, it isn't the same thing.
4091  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4092                       /*ExplicitInstantiationOrSpecialization=*/false);
4093  if (!Previous.empty()) {
4094    Redeclaration = true;
4095    MergeTypedefNameDecl(NewTD, Previous);
4096  }
4097
4098  // If this is the C FILE type, notify the AST context.
4099  if (IdentifierInfo *II = NewTD->getIdentifier())
4100    if (!NewTD->isInvalidDecl() &&
4101        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4102      if (II->isStr("FILE"))
4103        Context.setFILEDecl(NewTD);
4104      else if (II->isStr("jmp_buf"))
4105        Context.setjmp_bufDecl(NewTD);
4106      else if (II->isStr("sigjmp_buf"))
4107        Context.setsigjmp_bufDecl(NewTD);
4108      else if (II->isStr("ucontext_t"))
4109        Context.setucontext_tDecl(NewTD);
4110    }
4111
4112  return NewTD;
4113}
4114
4115/// \brief Determines whether the given declaration is an out-of-scope
4116/// previous declaration.
4117///
4118/// This routine should be invoked when name lookup has found a
4119/// previous declaration (PrevDecl) that is not in the scope where a
4120/// new declaration by the same name is being introduced. If the new
4121/// declaration occurs in a local scope, previous declarations with
4122/// linkage may still be considered previous declarations (C99
4123/// 6.2.2p4-5, C++ [basic.link]p6).
4124///
4125/// \param PrevDecl the previous declaration found by name
4126/// lookup
4127///
4128/// \param DC the context in which the new declaration is being
4129/// declared.
4130///
4131/// \returns true if PrevDecl is an out-of-scope previous declaration
4132/// for a new delcaration with the same name.
4133static bool
4134isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4135                                ASTContext &Context) {
4136  if (!PrevDecl)
4137    return false;
4138
4139  if (!PrevDecl->hasLinkage())
4140    return false;
4141
4142  if (Context.getLangOpts().CPlusPlus) {
4143    // C++ [basic.link]p6:
4144    //   If there is a visible declaration of an entity with linkage
4145    //   having the same name and type, ignoring entities declared
4146    //   outside the innermost enclosing namespace scope, the block
4147    //   scope declaration declares that same entity and receives the
4148    //   linkage of the previous declaration.
4149    DeclContext *OuterContext = DC->getRedeclContext();
4150    if (!OuterContext->isFunctionOrMethod())
4151      // This rule only applies to block-scope declarations.
4152      return false;
4153
4154    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4155    if (PrevOuterContext->isRecord())
4156      // We found a member function: ignore it.
4157      return false;
4158
4159    // Find the innermost enclosing namespace for the new and
4160    // previous declarations.
4161    OuterContext = OuterContext->getEnclosingNamespaceContext();
4162    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4163
4164    // The previous declaration is in a different namespace, so it
4165    // isn't the same function.
4166    if (!OuterContext->Equals(PrevOuterContext))
4167      return false;
4168  }
4169
4170  return true;
4171}
4172
4173static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4174  CXXScopeSpec &SS = D.getCXXScopeSpec();
4175  if (!SS.isSet()) return;
4176  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4177}
4178
4179bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4180  QualType type = decl->getType();
4181  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4182  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4183    // Various kinds of declaration aren't allowed to be __autoreleasing.
4184    unsigned kind = -1U;
4185    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4186      if (var->hasAttr<BlocksAttr>())
4187        kind = 0; // __block
4188      else if (!var->hasLocalStorage())
4189        kind = 1; // global
4190    } else if (isa<ObjCIvarDecl>(decl)) {
4191      kind = 3; // ivar
4192    } else if (isa<FieldDecl>(decl)) {
4193      kind = 2; // field
4194    }
4195
4196    if (kind != -1U) {
4197      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4198        << kind;
4199    }
4200  } else if (lifetime == Qualifiers::OCL_None) {
4201    // Try to infer lifetime.
4202    if (!type->isObjCLifetimeType())
4203      return false;
4204
4205    lifetime = type->getObjCARCImplicitLifetime();
4206    type = Context.getLifetimeQualifiedType(type, lifetime);
4207    decl->setType(type);
4208  }
4209
4210  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4211    // Thread-local variables cannot have lifetime.
4212    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4213        var->isThreadSpecified()) {
4214      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4215        << var->getType();
4216      return true;
4217    }
4218  }
4219
4220  return false;
4221}
4222
4223NamedDecl*
4224Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4225                              TypeSourceInfo *TInfo, LookupResult &Previous,
4226                              MultiTemplateParamsArg TemplateParamLists) {
4227  QualType R = TInfo->getType();
4228  DeclarationName Name = GetNameForDeclarator(D).getName();
4229
4230  // Check that there are no default arguments (C++ only).
4231  if (getLangOpts().CPlusPlus)
4232    CheckExtraCXXDefaultArguments(D);
4233
4234  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4235  assert(SCSpec != DeclSpec::SCS_typedef &&
4236         "Parser allowed 'typedef' as storage class VarDecl.");
4237  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4238  if (SCSpec == DeclSpec::SCS_mutable) {
4239    // mutable can only appear on non-static class members, so it's always
4240    // an error here
4241    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4242    D.setInvalidType();
4243    SC = SC_None;
4244  }
4245  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4246  VarDecl::StorageClass SCAsWritten
4247    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4248
4249  IdentifierInfo *II = Name.getAsIdentifierInfo();
4250  if (!II) {
4251    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4252      << Name;
4253    return 0;
4254  }
4255
4256  DiagnoseFunctionSpecifiers(D);
4257
4258  if (!DC->isRecord() && S->getFnParent() == 0) {
4259    // C99 6.9p2: The storage-class specifiers auto and register shall not
4260    // appear in the declaration specifiers in an external declaration.
4261    if (SC == SC_Auto || SC == SC_Register) {
4262
4263      // If this is a register variable with an asm label specified, then this
4264      // is a GNU extension.
4265      if (SC == SC_Register && D.getAsmLabel())
4266        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4267      else
4268        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4269      D.setInvalidType();
4270    }
4271  }
4272
4273  if (getLangOpts().OpenCL) {
4274    // Set up the special work-group-local storage class for variables in the
4275    // OpenCL __local address space.
4276    if (R.getAddressSpace() == LangAS::opencl_local)
4277      SC = SC_OpenCLWorkGroupLocal;
4278  }
4279
4280  bool isExplicitSpecialization = false;
4281  VarDecl *NewVD;
4282  if (!getLangOpts().CPlusPlus) {
4283    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4284                            D.getIdentifierLoc(), II,
4285                            R, TInfo, SC, SCAsWritten);
4286
4287    if (D.isInvalidType())
4288      NewVD->setInvalidDecl();
4289  } else {
4290    if (DC->isRecord() && !CurContext->isRecord()) {
4291      // This is an out-of-line definition of a static data member.
4292      if (SC == SC_Static) {
4293        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4294             diag::err_static_out_of_line)
4295          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4296      } else if (SC == SC_None)
4297        SC = SC_Static;
4298    }
4299    if (SC == SC_Static && CurContext->isRecord()) {
4300      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4301        if (RD->isLocalClass())
4302          Diag(D.getIdentifierLoc(),
4303               diag::err_static_data_member_not_allowed_in_local_class)
4304            << Name << RD->getDeclName();
4305
4306        // C++98 [class.union]p1: If a union contains a static data member,
4307        // the program is ill-formed. C++11 drops this restriction.
4308        if (RD->isUnion())
4309          Diag(D.getIdentifierLoc(),
4310               getLangOpts().CPlusPlus0x
4311                 ? diag::warn_cxx98_compat_static_data_member_in_union
4312                 : diag::ext_static_data_member_in_union) << Name;
4313        // We conservatively disallow static data members in anonymous structs.
4314        else if (!RD->getDeclName())
4315          Diag(D.getIdentifierLoc(),
4316               diag::err_static_data_member_not_allowed_in_anon_struct)
4317            << Name << RD->isUnion();
4318      }
4319    }
4320
4321    // Match up the template parameter lists with the scope specifier, then
4322    // determine whether we have a template or a template specialization.
4323    isExplicitSpecialization = false;
4324    bool Invalid = false;
4325    if (TemplateParameterList *TemplateParams
4326        = MatchTemplateParametersToScopeSpecifier(
4327                                  D.getDeclSpec().getLocStart(),
4328                                                  D.getIdentifierLoc(),
4329                                                  D.getCXXScopeSpec(),
4330                                                  TemplateParamLists.data(),
4331                                                  TemplateParamLists.size(),
4332                                                  /*never a friend*/ false,
4333                                                  isExplicitSpecialization,
4334                                                  Invalid)) {
4335      if (TemplateParams->size() > 0) {
4336        // There is no such thing as a variable template.
4337        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4338          << II
4339          << SourceRange(TemplateParams->getTemplateLoc(),
4340                         TemplateParams->getRAngleLoc());
4341        return 0;
4342      } else {
4343        // There is an extraneous 'template<>' for this variable. Complain
4344        // about it, but allow the declaration of the variable.
4345        Diag(TemplateParams->getTemplateLoc(),
4346             diag::err_template_variable_noparams)
4347          << II
4348          << SourceRange(TemplateParams->getTemplateLoc(),
4349                         TemplateParams->getRAngleLoc());
4350      }
4351    }
4352
4353    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4354                            D.getIdentifierLoc(), II,
4355                            R, TInfo, SC, SCAsWritten);
4356
4357    // If this decl has an auto type in need of deduction, make a note of the
4358    // Decl so we can diagnose uses of it in its own initializer.
4359    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4360        R->getContainedAutoType())
4361      ParsingInitForAutoVars.insert(NewVD);
4362
4363    if (D.isInvalidType() || Invalid)
4364      NewVD->setInvalidDecl();
4365
4366    SetNestedNameSpecifier(NewVD, D);
4367
4368    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4369      NewVD->setTemplateParameterListsInfo(Context,
4370                                           TemplateParamLists.size(),
4371                                           TemplateParamLists.data());
4372    }
4373
4374    if (D.getDeclSpec().isConstexprSpecified())
4375      NewVD->setConstexpr(true);
4376  }
4377
4378  // Set the lexical context. If the declarator has a C++ scope specifier, the
4379  // lexical context will be different from the semantic context.
4380  NewVD->setLexicalDeclContext(CurContext);
4381
4382  if (D.getDeclSpec().isThreadSpecified()) {
4383    if (NewVD->hasLocalStorage())
4384      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4385    else if (!Context.getTargetInfo().isTLSSupported())
4386      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4387    else
4388      NewVD->setThreadSpecified(true);
4389  }
4390
4391  if (D.getDeclSpec().isModulePrivateSpecified()) {
4392    if (isExplicitSpecialization)
4393      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4394        << 2
4395        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4396    else if (NewVD->hasLocalStorage())
4397      Diag(NewVD->getLocation(), diag::err_module_private_local)
4398        << 0 << NewVD->getDeclName()
4399        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4400        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4401    else
4402      NewVD->setModulePrivate();
4403  }
4404
4405  // Handle attributes prior to checking for duplicates in MergeVarDecl
4406  ProcessDeclAttributes(S, NewVD, D);
4407
4408  if (getLangOpts().CUDA) {
4409    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4410    // storage [duration]."
4411    if (SC == SC_None && S->getFnParent() != 0 &&
4412       (NewVD->hasAttr<CUDASharedAttr>() || NewVD->hasAttr<CUDAConstantAttr>()))
4413      NewVD->setStorageClass(SC_Static);
4414  }
4415
4416  // In auto-retain/release, infer strong retension for variables of
4417  // retainable type.
4418  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4419    NewVD->setInvalidDecl();
4420
4421  // Handle GNU asm-label extension (encoded as an attribute).
4422  if (Expr *E = (Expr*)D.getAsmLabel()) {
4423    // The parser guarantees this is a string.
4424    StringLiteral *SE = cast<StringLiteral>(E);
4425    StringRef Label = SE->getString();
4426    if (S->getFnParent() != 0) {
4427      switch (SC) {
4428      case SC_None:
4429      case SC_Auto:
4430        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4431        break;
4432      case SC_Register:
4433        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4434          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4435        break;
4436      case SC_Static:
4437      case SC_Extern:
4438      case SC_PrivateExtern:
4439      case SC_OpenCLWorkGroupLocal:
4440        break;
4441      }
4442    }
4443
4444    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4445                                                Context, Label));
4446  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4447    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4448      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4449    if (I != ExtnameUndeclaredIdentifiers.end()) {
4450      NewVD->addAttr(I->second);
4451      ExtnameUndeclaredIdentifiers.erase(I);
4452    }
4453  }
4454
4455  // Diagnose shadowed variables before filtering for scope.
4456  if (!D.getCXXScopeSpec().isSet())
4457    CheckShadow(S, NewVD, Previous);
4458
4459  // Don't consider existing declarations that are in a different
4460  // scope and are out-of-semantic-context declarations (if the new
4461  // declaration has linkage).
4462  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4463                       isExplicitSpecialization);
4464
4465  if (!getLangOpts().CPlusPlus) {
4466    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4467  } else {
4468    // Merge the decl with the existing one if appropriate.
4469    if (!Previous.empty()) {
4470      if (Previous.isSingleResult() &&
4471          isa<FieldDecl>(Previous.getFoundDecl()) &&
4472          D.getCXXScopeSpec().isSet()) {
4473        // The user tried to define a non-static data member
4474        // out-of-line (C++ [dcl.meaning]p1).
4475        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4476          << D.getCXXScopeSpec().getRange();
4477        Previous.clear();
4478        NewVD->setInvalidDecl();
4479      }
4480    } else if (D.getCXXScopeSpec().isSet()) {
4481      // No previous declaration in the qualifying scope.
4482      Diag(D.getIdentifierLoc(), diag::err_no_member)
4483        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4484        << D.getCXXScopeSpec().getRange();
4485      NewVD->setInvalidDecl();
4486    }
4487
4488    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4489
4490    // This is an explicit specialization of a static data member. Check it.
4491    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4492        CheckMemberSpecialization(NewVD, Previous))
4493      NewVD->setInvalidDecl();
4494  }
4495
4496  // If this is a locally-scoped extern C variable, update the map of
4497  // such variables.
4498  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4499      !NewVD->isInvalidDecl())
4500    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4501
4502  // If there's a #pragma GCC visibility in scope, and this isn't a class
4503  // member, set the visibility of this variable.
4504  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4505    AddPushedVisibilityAttribute(NewVD);
4506
4507  MarkUnusedFileScopedDecl(NewVD);
4508
4509  return NewVD;
4510}
4511
4512/// \brief Diagnose variable or built-in function shadowing.  Implements
4513/// -Wshadow.
4514///
4515/// This method is called whenever a VarDecl is added to a "useful"
4516/// scope.
4517///
4518/// \param S the scope in which the shadowing name is being declared
4519/// \param R the lookup of the name
4520///
4521void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4522  // Return if warning is ignored.
4523  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4524        DiagnosticsEngine::Ignored)
4525    return;
4526
4527  // Don't diagnose declarations at file scope.
4528  if (D->hasGlobalStorage())
4529    return;
4530
4531  DeclContext *NewDC = D->getDeclContext();
4532
4533  // Only diagnose if we're shadowing an unambiguous field or variable.
4534  if (R.getResultKind() != LookupResult::Found)
4535    return;
4536
4537  NamedDecl* ShadowedDecl = R.getFoundDecl();
4538  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4539    return;
4540
4541  // Fields are not shadowed by variables in C++ static methods.
4542  if (isa<FieldDecl>(ShadowedDecl))
4543    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4544      if (MD->isStatic())
4545        return;
4546
4547  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4548    if (shadowedVar->isExternC()) {
4549      // For shadowing external vars, make sure that we point to the global
4550      // declaration, not a locally scoped extern declaration.
4551      for (VarDecl::redecl_iterator
4552             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4553           I != E; ++I)
4554        if (I->isFileVarDecl()) {
4555          ShadowedDecl = *I;
4556          break;
4557        }
4558    }
4559
4560  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4561
4562  // Only warn about certain kinds of shadowing for class members.
4563  if (NewDC && NewDC->isRecord()) {
4564    // In particular, don't warn about shadowing non-class members.
4565    if (!OldDC->isRecord())
4566      return;
4567
4568    // TODO: should we warn about static data members shadowing
4569    // static data members from base classes?
4570
4571    // TODO: don't diagnose for inaccessible shadowed members.
4572    // This is hard to do perfectly because we might friend the
4573    // shadowing context, but that's just a false negative.
4574  }
4575
4576  // Determine what kind of declaration we're shadowing.
4577  unsigned Kind;
4578  if (isa<RecordDecl>(OldDC)) {
4579    if (isa<FieldDecl>(ShadowedDecl))
4580      Kind = 3; // field
4581    else
4582      Kind = 2; // static data member
4583  } else if (OldDC->isFileContext())
4584    Kind = 1; // global
4585  else
4586    Kind = 0; // local
4587
4588  DeclarationName Name = R.getLookupName();
4589
4590  // Emit warning and note.
4591  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4592  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4593}
4594
4595/// \brief Check -Wshadow without the advantage of a previous lookup.
4596void Sema::CheckShadow(Scope *S, VarDecl *D) {
4597  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4598        DiagnosticsEngine::Ignored)
4599    return;
4600
4601  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4602                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4603  LookupName(R, S);
4604  CheckShadow(S, D, R);
4605}
4606
4607/// \brief Perform semantic checking on a newly-created variable
4608/// declaration.
4609///
4610/// This routine performs all of the type-checking required for a
4611/// variable declaration once it has been built. It is used both to
4612/// check variables after they have been parsed and their declarators
4613/// have been translated into a declaration, and to check variables
4614/// that have been instantiated from a template.
4615///
4616/// Sets NewVD->isInvalidDecl() if an error was encountered.
4617///
4618/// Returns true if the variable declaration is a redeclaration.
4619bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4620                                    LookupResult &Previous) {
4621  // If the decl is already known invalid, don't check it.
4622  if (NewVD->isInvalidDecl())
4623    return false;
4624
4625  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4626  QualType T = TInfo->getType();
4627
4628  if (T->isObjCObjectType()) {
4629    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4630      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4631    T = Context.getObjCObjectPointerType(T);
4632    NewVD->setType(T);
4633  }
4634
4635  // Emit an error if an address space was applied to decl with local storage.
4636  // This includes arrays of objects with address space qualifiers, but not
4637  // automatic variables that point to other address spaces.
4638  // ISO/IEC TR 18037 S5.1.2
4639  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4640    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4641    NewVD->setInvalidDecl();
4642    return false;
4643  }
4644
4645  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4646  // scope.
4647  if ((getLangOpts().OpenCLVersion >= 120)
4648      && NewVD->isStaticLocal()) {
4649    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4650    NewVD->setInvalidDecl();
4651    return false;
4652  }
4653
4654  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4655      && !NewVD->hasAttr<BlocksAttr>()) {
4656    if (getLangOpts().getGC() != LangOptions::NonGC)
4657      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4658    else {
4659      assert(!getLangOpts().ObjCAutoRefCount);
4660      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4661    }
4662  }
4663
4664  bool isVM = T->isVariablyModifiedType();
4665  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4666      NewVD->hasAttr<BlocksAttr>())
4667    getCurFunction()->setHasBranchProtectedScope();
4668
4669  if ((isVM && NewVD->hasLinkage()) ||
4670      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4671    bool SizeIsNegative;
4672    llvm::APSInt Oversized;
4673    TypeSourceInfo *FixedTInfo =
4674      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4675                                                    SizeIsNegative, Oversized);
4676    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4677      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4678      // FIXME: This won't give the correct result for
4679      // int a[10][n];
4680      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4681
4682      if (NewVD->isFileVarDecl())
4683        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4684        << SizeRange;
4685      else if (NewVD->getStorageClass() == SC_Static)
4686        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4687        << SizeRange;
4688      else
4689        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4690        << SizeRange;
4691      NewVD->setInvalidDecl();
4692      return false;
4693    }
4694
4695    if (FixedTInfo == 0) {
4696      if (NewVD->isFileVarDecl())
4697        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4698      else
4699        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4700      NewVD->setInvalidDecl();
4701      return false;
4702    }
4703
4704    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4705    NewVD->setType(FixedTInfo->getType());
4706    NewVD->setTypeSourceInfo(FixedTInfo);
4707  }
4708
4709  if (Previous.empty() && NewVD->isExternC()) {
4710    // Since we did not find anything by this name and we're declaring
4711    // an extern "C" variable, look for a non-visible extern "C"
4712    // declaration with the same name.
4713    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4714      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4715    if (Pos != LocallyScopedExternalDecls.end())
4716      Previous.addDecl(Pos->second);
4717  }
4718
4719  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4720    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4721      << T;
4722    NewVD->setInvalidDecl();
4723    return false;
4724  }
4725
4726  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4727    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4728    NewVD->setInvalidDecl();
4729    return false;
4730  }
4731
4732  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4733    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4734    NewVD->setInvalidDecl();
4735    return false;
4736  }
4737
4738  if (NewVD->isConstexpr() && !T->isDependentType() &&
4739      RequireLiteralType(NewVD->getLocation(), T,
4740                         diag::err_constexpr_var_non_literal)) {
4741    NewVD->setInvalidDecl();
4742    return false;
4743  }
4744
4745  if (!Previous.empty()) {
4746    MergeVarDecl(NewVD, Previous);
4747    return true;
4748  }
4749  return false;
4750}
4751
4752/// \brief Data used with FindOverriddenMethod
4753struct FindOverriddenMethodData {
4754  Sema *S;
4755  CXXMethodDecl *Method;
4756};
4757
4758/// \brief Member lookup function that determines whether a given C++
4759/// method overrides a method in a base class, to be used with
4760/// CXXRecordDecl::lookupInBases().
4761static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4762                                 CXXBasePath &Path,
4763                                 void *UserData) {
4764  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4765
4766  FindOverriddenMethodData *Data
4767    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4768
4769  DeclarationName Name = Data->Method->getDeclName();
4770
4771  // FIXME: Do we care about other names here too?
4772  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4773    // We really want to find the base class destructor here.
4774    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4775    CanQualType CT = Data->S->Context.getCanonicalType(T);
4776
4777    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4778  }
4779
4780  for (Path.Decls = BaseRecord->lookup(Name);
4781       Path.Decls.first != Path.Decls.second;
4782       ++Path.Decls.first) {
4783    NamedDecl *D = *Path.Decls.first;
4784    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4785      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4786        return true;
4787    }
4788  }
4789
4790  return false;
4791}
4792
4793namespace {
4794  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
4795}
4796/// \brief Report an error regarding overriding, along with any relevant
4797/// overriden methods.
4798///
4799/// \param DiagID the primary error to report.
4800/// \param MD the overriding method.
4801/// \param OEK which overrides to include as notes.
4802static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
4803                            OverrideErrorKind OEK = OEK_All) {
4804  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
4805  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4806                                      E = MD->end_overridden_methods();
4807       I != E; ++I) {
4808    // This check (& the OEK parameter) could be replaced by a predicate, but
4809    // without lambdas that would be overkill. This is still nicer than writing
4810    // out the diag loop 3 times.
4811    if ((OEK == OEK_All) ||
4812        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
4813        (OEK == OEK_Deleted && (*I)->isDeleted()))
4814      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
4815  }
4816}
4817
4818/// AddOverriddenMethods - See if a method overrides any in the base classes,
4819/// and if so, check that it's a valid override and remember it.
4820bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4821  // Look for virtual methods in base classes that this method might override.
4822  CXXBasePaths Paths;
4823  FindOverriddenMethodData Data;
4824  Data.Method = MD;
4825  Data.S = this;
4826  bool hasDeletedOverridenMethods = false;
4827  bool hasNonDeletedOverridenMethods = false;
4828  bool AddedAny = false;
4829  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4830    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4831         E = Paths.found_decls_end(); I != E; ++I) {
4832      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4833        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4834        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4835            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4836            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4837          hasDeletedOverridenMethods |= OldMD->isDeleted();
4838          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
4839          AddedAny = true;
4840        }
4841      }
4842    }
4843  }
4844
4845  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
4846    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
4847  }
4848  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
4849    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
4850  }
4851
4852  return AddedAny;
4853}
4854
4855namespace {
4856  // Struct for holding all of the extra arguments needed by
4857  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4858  struct ActOnFDArgs {
4859    Scope *S;
4860    Declarator &D;
4861    MultiTemplateParamsArg TemplateParamLists;
4862    bool AddToScope;
4863  };
4864}
4865
4866namespace {
4867
4868// Callback to only accept typo corrections that have a non-zero edit distance.
4869// Also only accept corrections that have the same parent decl.
4870class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4871 public:
4872  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4873                            CXXRecordDecl *Parent)
4874      : Context(Context), OriginalFD(TypoFD),
4875        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4876
4877  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4878    if (candidate.getEditDistance() == 0)
4879      return false;
4880
4881    llvm::SmallVector<unsigned, 1> MismatchedParams;
4882    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4883                                          CDeclEnd = candidate.end();
4884         CDecl != CDeclEnd; ++CDecl) {
4885      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4886
4887      if (FD && !FD->hasBody() &&
4888          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4889        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4890          CXXRecordDecl *Parent = MD->getParent();
4891          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4892            return true;
4893        } else if (!ExpectedParent) {
4894          return true;
4895        }
4896      }
4897    }
4898
4899    return false;
4900  }
4901
4902 private:
4903  ASTContext &Context;
4904  FunctionDecl *OriginalFD;
4905  CXXRecordDecl *ExpectedParent;
4906};
4907
4908}
4909
4910/// \brief Generate diagnostics for an invalid function redeclaration.
4911///
4912/// This routine handles generating the diagnostic messages for an invalid
4913/// function redeclaration, including finding possible similar declarations
4914/// or performing typo correction if there are no previous declarations with
4915/// the same name.
4916///
4917/// Returns a NamedDecl iff typo correction was performed and substituting in
4918/// the new declaration name does not cause new errors.
4919static NamedDecl* DiagnoseInvalidRedeclaration(
4920    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4921    ActOnFDArgs &ExtraArgs) {
4922  NamedDecl *Result = NULL;
4923  DeclarationName Name = NewFD->getDeclName();
4924  DeclContext *NewDC = NewFD->getDeclContext();
4925  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4926                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4927  llvm::SmallVector<unsigned, 1> MismatchedParams;
4928  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4929  TypoCorrection Correction;
4930  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4931                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4932  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4933                                  : diag::err_member_def_does_not_match;
4934
4935  NewFD->setInvalidDecl();
4936  SemaRef.LookupQualifiedName(Prev, NewDC);
4937  assert(!Prev.isAmbiguous() &&
4938         "Cannot have an ambiguity in previous-declaration lookup");
4939  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4940  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4941                                      MD ? MD->getParent() : 0);
4942  if (!Prev.empty()) {
4943    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4944         Func != FuncEnd; ++Func) {
4945      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4946      if (FD &&
4947          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4948        // Add 1 to the index so that 0 can mean the mismatch didn't
4949        // involve a parameter
4950        unsigned ParamNum =
4951            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4952        NearMatches.push_back(std::make_pair(FD, ParamNum));
4953      }
4954    }
4955  // If the qualified name lookup yielded nothing, try typo correction
4956  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4957                                         Prev.getLookupKind(), 0, 0,
4958                                         Validator, NewDC))) {
4959    // Trap errors.
4960    Sema::SFINAETrap Trap(SemaRef);
4961
4962    // Set up everything for the call to ActOnFunctionDeclarator
4963    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4964                              ExtraArgs.D.getIdentifierLoc());
4965    Previous.clear();
4966    Previous.setLookupName(Correction.getCorrection());
4967    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4968                                    CDeclEnd = Correction.end();
4969         CDecl != CDeclEnd; ++CDecl) {
4970      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4971      if (FD && !FD->hasBody() &&
4972          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4973        Previous.addDecl(FD);
4974      }
4975    }
4976    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4977    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4978    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4979    // eliminate the need for the parameter pack ExtraArgs.
4980    Result = SemaRef.ActOnFunctionDeclarator(
4981        ExtraArgs.S, ExtraArgs.D,
4982        Correction.getCorrectionDecl()->getDeclContext(),
4983        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4984        ExtraArgs.AddToScope);
4985    if (Trap.hasErrorOccurred()) {
4986      // Pretend the typo correction never occurred
4987      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4988                                ExtraArgs.D.getIdentifierLoc());
4989      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4990      Previous.clear();
4991      Previous.setLookupName(Name);
4992      Result = NULL;
4993    } else {
4994      for (LookupResult::iterator Func = Previous.begin(),
4995                               FuncEnd = Previous.end();
4996           Func != FuncEnd; ++Func) {
4997        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4998          NearMatches.push_back(std::make_pair(FD, 0));
4999      }
5000    }
5001    if (NearMatches.empty()) {
5002      // Ignore the correction if it didn't yield any close FunctionDecl matches
5003      Correction = TypoCorrection();
5004    } else {
5005      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5006                             : diag::err_member_def_does_not_match_suggest;
5007    }
5008  }
5009
5010  if (Correction) {
5011    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5012    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5013    // turn causes the correction to fully qualify the name. If we fix
5014    // CorrectTypo to minimally qualify then this change should be good.
5015    SourceRange FixItLoc(NewFD->getLocation());
5016    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5017    if (Correction.getCorrectionSpecifier() && SS.isValid())
5018      FixItLoc.setBegin(SS.getBeginLoc());
5019    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5020        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5021        << FixItHint::CreateReplacement(
5022            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5023  } else {
5024    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5025        << Name << NewDC << NewFD->getLocation();
5026  }
5027
5028  bool NewFDisConst = false;
5029  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5030    NewFDisConst = NewMD->isConst();
5031
5032  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
5033       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5034       NearMatch != NearMatchEnd; ++NearMatch) {
5035    FunctionDecl *FD = NearMatch->first;
5036    bool FDisConst = false;
5037    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5038      FDisConst = MD->isConst();
5039
5040    if (unsigned Idx = NearMatch->second) {
5041      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5042      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5043      if (Loc.isInvalid()) Loc = FD->getLocation();
5044      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5045          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5046    } else if (Correction) {
5047      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5048          << Correction.getQuoted(SemaRef.getLangOpts());
5049    } else if (FDisConst != NewFDisConst) {
5050      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5051          << NewFDisConst << FD->getSourceRange().getEnd();
5052    } else
5053      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5054  }
5055  return Result;
5056}
5057
5058static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5059                                                          Declarator &D) {
5060  switch (D.getDeclSpec().getStorageClassSpec()) {
5061  default: llvm_unreachable("Unknown storage class!");
5062  case DeclSpec::SCS_auto:
5063  case DeclSpec::SCS_register:
5064  case DeclSpec::SCS_mutable:
5065    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5066                 diag::err_typecheck_sclass_func);
5067    D.setInvalidType();
5068    break;
5069  case DeclSpec::SCS_unspecified: break;
5070  case DeclSpec::SCS_extern: return SC_Extern;
5071  case DeclSpec::SCS_static: {
5072    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5073      // C99 6.7.1p5:
5074      //   The declaration of an identifier for a function that has
5075      //   block scope shall have no explicit storage-class specifier
5076      //   other than extern
5077      // See also (C++ [dcl.stc]p4).
5078      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5079                   diag::err_static_block_func);
5080      break;
5081    } else
5082      return SC_Static;
5083  }
5084  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5085  }
5086
5087  // No explicit storage class has already been returned
5088  return SC_None;
5089}
5090
5091static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5092                                           DeclContext *DC, QualType &R,
5093                                           TypeSourceInfo *TInfo,
5094                                           FunctionDecl::StorageClass SC,
5095                                           bool &IsVirtualOkay) {
5096  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5097  DeclarationName Name = NameInfo.getName();
5098
5099  FunctionDecl *NewFD = 0;
5100  bool isInline = D.getDeclSpec().isInlineSpecified();
5101  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5102  FunctionDecl::StorageClass SCAsWritten
5103    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5104
5105  if (!SemaRef.getLangOpts().CPlusPlus) {
5106    // Determine whether the function was written with a
5107    // prototype. This true when:
5108    //   - there is a prototype in the declarator, or
5109    //   - the type R of the function is some kind of typedef or other reference
5110    //     to a type name (which eventually refers to a function type).
5111    bool HasPrototype =
5112      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5113      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5114
5115    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5116                                 D.getLocStart(), NameInfo, R,
5117                                 TInfo, SC, SCAsWritten, isInline,
5118                                 HasPrototype);
5119    if (D.isInvalidType())
5120      NewFD->setInvalidDecl();
5121
5122    // Set the lexical context.
5123    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5124
5125    return NewFD;
5126  }
5127
5128  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5129  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5130
5131  // Check that the return type is not an abstract class type.
5132  // For record types, this is done by the AbstractClassUsageDiagnoser once
5133  // the class has been completely parsed.
5134  if (!DC->isRecord() &&
5135      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5136                                     R->getAs<FunctionType>()->getResultType(),
5137                                     diag::err_abstract_type_in_decl,
5138                                     SemaRef.AbstractReturnType))
5139    D.setInvalidType();
5140
5141  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5142    // This is a C++ constructor declaration.
5143    assert(DC->isRecord() &&
5144           "Constructors can only be declared in a member context");
5145
5146    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5147    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5148                                      D.getLocStart(), NameInfo,
5149                                      R, TInfo, isExplicit, isInline,
5150                                      /*isImplicitlyDeclared=*/false,
5151                                      isConstexpr);
5152
5153  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5154    // This is a C++ destructor declaration.
5155    if (DC->isRecord()) {
5156      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5157      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5158      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5159                                        SemaRef.Context, Record,
5160                                        D.getLocStart(),
5161                                        NameInfo, R, TInfo, isInline,
5162                                        /*isImplicitlyDeclared=*/false);
5163
5164      // If the class is complete, then we now create the implicit exception
5165      // specification. If the class is incomplete or dependent, we can't do
5166      // it yet.
5167      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
5168          Record->getDefinition() && !Record->isBeingDefined() &&
5169          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5170        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5171      }
5172
5173      IsVirtualOkay = true;
5174      return NewDD;
5175
5176    } else {
5177      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5178      D.setInvalidType();
5179
5180      // Create a FunctionDecl to satisfy the function definition parsing
5181      // code path.
5182      return FunctionDecl::Create(SemaRef.Context, DC,
5183                                  D.getLocStart(),
5184                                  D.getIdentifierLoc(), Name, R, TInfo,
5185                                  SC, SCAsWritten, isInline,
5186                                  /*hasPrototype=*/true, isConstexpr);
5187    }
5188
5189  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5190    if (!DC->isRecord()) {
5191      SemaRef.Diag(D.getIdentifierLoc(),
5192           diag::err_conv_function_not_member);
5193      return 0;
5194    }
5195
5196    SemaRef.CheckConversionDeclarator(D, R, SC);
5197    IsVirtualOkay = true;
5198    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5199                                     D.getLocStart(), NameInfo,
5200                                     R, TInfo, isInline, isExplicit,
5201                                     isConstexpr, SourceLocation());
5202
5203  } else if (DC->isRecord()) {
5204    // If the name of the function is the same as the name of the record,
5205    // then this must be an invalid constructor that has a return type.
5206    // (The parser checks for a return type and makes the declarator a
5207    // constructor if it has no return type).
5208    if (Name.getAsIdentifierInfo() &&
5209        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5210      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5211        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5212        << SourceRange(D.getIdentifierLoc());
5213      return 0;
5214    }
5215
5216    bool isStatic = SC == SC_Static;
5217
5218    // [class.free]p1:
5219    // Any allocation function for a class T is a static member
5220    // (even if not explicitly declared static).
5221    if (Name.getCXXOverloadedOperator() == OO_New ||
5222        Name.getCXXOverloadedOperator() == OO_Array_New)
5223      isStatic = true;
5224
5225    // [class.free]p6 Any deallocation function for a class X is a static member
5226    // (even if not explicitly declared static).
5227    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5228        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5229      isStatic = true;
5230
5231    IsVirtualOkay = !isStatic;
5232
5233    // This is a C++ method declaration.
5234    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5235                                 D.getLocStart(), NameInfo, R,
5236                                 TInfo, isStatic, SCAsWritten, isInline,
5237                                 isConstexpr, SourceLocation());
5238
5239  } else {
5240    // Determine whether the function was written with a
5241    // prototype. This true when:
5242    //   - we're in C++ (where every function has a prototype),
5243    return FunctionDecl::Create(SemaRef.Context, DC,
5244                                D.getLocStart(),
5245                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5246                                true/*HasPrototype*/, isConstexpr);
5247  }
5248}
5249
5250void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5251  // In C++, the empty parameter-type-list must be spelled "void"; a
5252  // typedef of void is not permitted.
5253  if (getLangOpts().CPlusPlus &&
5254      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5255    bool IsTypeAlias = false;
5256    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5257      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5258    else if (const TemplateSpecializationType *TST =
5259               Param->getType()->getAs<TemplateSpecializationType>())
5260      IsTypeAlias = TST->isTypeAlias();
5261    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5262      << IsTypeAlias;
5263  }
5264}
5265
5266NamedDecl*
5267Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5268                              TypeSourceInfo *TInfo, LookupResult &Previous,
5269                              MultiTemplateParamsArg TemplateParamLists,
5270                              bool &AddToScope) {
5271  QualType R = TInfo->getType();
5272
5273  assert(R.getTypePtr()->isFunctionType());
5274
5275  // TODO: consider using NameInfo for diagnostic.
5276  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5277  DeclarationName Name = NameInfo.getName();
5278  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5279
5280  if (D.getDeclSpec().isThreadSpecified())
5281    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5282
5283  // Do not allow returning a objc interface by-value.
5284  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5285    Diag(D.getIdentifierLoc(),
5286         diag::err_object_cannot_be_passed_returned_by_value) << 0
5287    << R->getAs<FunctionType>()->getResultType()
5288    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5289
5290    QualType T = R->getAs<FunctionType>()->getResultType();
5291    T = Context.getObjCObjectPointerType(T);
5292    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5293      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5294      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5295                                  FPT->getNumArgs(), EPI);
5296    }
5297    else if (isa<FunctionNoProtoType>(R))
5298      R = Context.getFunctionNoProtoType(T);
5299  }
5300
5301  bool isFriend = false;
5302  FunctionTemplateDecl *FunctionTemplate = 0;
5303  bool isExplicitSpecialization = false;
5304  bool isFunctionTemplateSpecialization = false;
5305
5306  bool isDependentClassScopeExplicitSpecialization = false;
5307  bool HasExplicitTemplateArgs = false;
5308  TemplateArgumentListInfo TemplateArgs;
5309
5310  bool isVirtualOkay = false;
5311
5312  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5313                                              isVirtualOkay);
5314  if (!NewFD) return 0;
5315
5316  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5317    NewFD->setTopLevelDeclInObjCContainer();
5318
5319  if (getLangOpts().CPlusPlus) {
5320    bool isInline = D.getDeclSpec().isInlineSpecified();
5321    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5322    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5323    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5324    isFriend = D.getDeclSpec().isFriendSpecified();
5325    if (isFriend && !isInline && D.isFunctionDefinition()) {
5326      // C++ [class.friend]p5
5327      //   A function can be defined in a friend declaration of a
5328      //   class . . . . Such a function is implicitly inline.
5329      NewFD->setImplicitlyInline();
5330    }
5331
5332    // If this is a method defined in an __interface, and is not a constructor
5333    // or an overloaded operator, then set the pure flag (isVirtual will already
5334    // return true).
5335    if (const CXXRecordDecl *Parent =
5336          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5337      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5338        NewFD->setPure(true);
5339    }
5340
5341    SetNestedNameSpecifier(NewFD, D);
5342    isExplicitSpecialization = false;
5343    isFunctionTemplateSpecialization = false;
5344    if (D.isInvalidType())
5345      NewFD->setInvalidDecl();
5346
5347    // Set the lexical context. If the declarator has a C++
5348    // scope specifier, or is the object of a friend declaration, the
5349    // lexical context will be different from the semantic context.
5350    NewFD->setLexicalDeclContext(CurContext);
5351
5352    // Match up the template parameter lists with the scope specifier, then
5353    // determine whether we have a template or a template specialization.
5354    bool Invalid = false;
5355    if (TemplateParameterList *TemplateParams
5356          = MatchTemplateParametersToScopeSpecifier(
5357                                  D.getDeclSpec().getLocStart(),
5358                                  D.getIdentifierLoc(),
5359                                  D.getCXXScopeSpec(),
5360                                  TemplateParamLists.data(),
5361                                  TemplateParamLists.size(),
5362                                  isFriend,
5363                                  isExplicitSpecialization,
5364                                  Invalid)) {
5365      if (TemplateParams->size() > 0) {
5366        // This is a function template
5367
5368        // Check that we can declare a template here.
5369        if (CheckTemplateDeclScope(S, TemplateParams))
5370          return 0;
5371
5372        // A destructor cannot be a template.
5373        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5374          Diag(NewFD->getLocation(), diag::err_destructor_template);
5375          return 0;
5376        }
5377
5378        // If we're adding a template to a dependent context, we may need to
5379        // rebuilding some of the types used within the template parameter list,
5380        // now that we know what the current instantiation is.
5381        if (DC->isDependentContext()) {
5382          ContextRAII SavedContext(*this, DC);
5383          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5384            Invalid = true;
5385        }
5386
5387
5388        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5389                                                        NewFD->getLocation(),
5390                                                        Name, TemplateParams,
5391                                                        NewFD);
5392        FunctionTemplate->setLexicalDeclContext(CurContext);
5393        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5394
5395        // For source fidelity, store the other template param lists.
5396        if (TemplateParamLists.size() > 1) {
5397          NewFD->setTemplateParameterListsInfo(Context,
5398                                               TemplateParamLists.size() - 1,
5399                                               TemplateParamLists.data());
5400        }
5401      } else {
5402        // This is a function template specialization.
5403        isFunctionTemplateSpecialization = true;
5404        // For source fidelity, store all the template param lists.
5405        NewFD->setTemplateParameterListsInfo(Context,
5406                                             TemplateParamLists.size(),
5407                                             TemplateParamLists.data());
5408
5409        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5410        if (isFriend) {
5411          // We want to remove the "template<>", found here.
5412          SourceRange RemoveRange = TemplateParams->getSourceRange();
5413
5414          // If we remove the template<> and the name is not a
5415          // template-id, we're actually silently creating a problem:
5416          // the friend declaration will refer to an untemplated decl,
5417          // and clearly the user wants a template specialization.  So
5418          // we need to insert '<>' after the name.
5419          SourceLocation InsertLoc;
5420          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5421            InsertLoc = D.getName().getSourceRange().getEnd();
5422            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5423          }
5424
5425          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5426            << Name << RemoveRange
5427            << FixItHint::CreateRemoval(RemoveRange)
5428            << FixItHint::CreateInsertion(InsertLoc, "<>");
5429        }
5430      }
5431    }
5432    else {
5433      // All template param lists were matched against the scope specifier:
5434      // this is NOT (an explicit specialization of) a template.
5435      if (TemplateParamLists.size() > 0)
5436        // For source fidelity, store all the template param lists.
5437        NewFD->setTemplateParameterListsInfo(Context,
5438                                             TemplateParamLists.size(),
5439                                             TemplateParamLists.data());
5440    }
5441
5442    if (Invalid) {
5443      NewFD->setInvalidDecl();
5444      if (FunctionTemplate)
5445        FunctionTemplate->setInvalidDecl();
5446    }
5447
5448    // C++ [dcl.fct.spec]p5:
5449    //   The virtual specifier shall only be used in declarations of
5450    //   nonstatic class member functions that appear within a
5451    //   member-specification of a class declaration; see 10.3.
5452    //
5453    if (isVirtual && !NewFD->isInvalidDecl()) {
5454      if (!isVirtualOkay) {
5455        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5456             diag::err_virtual_non_function);
5457      } else if (!CurContext->isRecord()) {
5458        // 'virtual' was specified outside of the class.
5459        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5460             diag::err_virtual_out_of_class)
5461          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5462      } else if (NewFD->getDescribedFunctionTemplate()) {
5463        // C++ [temp.mem]p3:
5464        //  A member function template shall not be virtual.
5465        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5466             diag::err_virtual_member_function_template)
5467          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5468      } else {
5469        // Okay: Add virtual to the method.
5470        NewFD->setVirtualAsWritten(true);
5471      }
5472    }
5473
5474    // C++ [dcl.fct.spec]p3:
5475    //  The inline specifier shall not appear on a block scope function
5476    //  declaration.
5477    if (isInline && !NewFD->isInvalidDecl()) {
5478      if (CurContext->isFunctionOrMethod()) {
5479        // 'inline' is not allowed on block scope function declaration.
5480        Diag(D.getDeclSpec().getInlineSpecLoc(),
5481             diag::err_inline_declaration_block_scope) << Name
5482          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5483      }
5484    }
5485
5486    // C++ [dcl.fct.spec]p6:
5487    //  The explicit specifier shall be used only in the declaration of a
5488    //  constructor or conversion function within its class definition;
5489    //  see 12.3.1 and 12.3.2.
5490    if (isExplicit && !NewFD->isInvalidDecl()) {
5491      if (!CurContext->isRecord()) {
5492        // 'explicit' was specified outside of the class.
5493        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5494             diag::err_explicit_out_of_class)
5495          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5496      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5497                 !isa<CXXConversionDecl>(NewFD)) {
5498        // 'explicit' was specified on a function that wasn't a constructor
5499        // or conversion function.
5500        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5501             diag::err_explicit_non_ctor_or_conv_function)
5502          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5503      }
5504    }
5505
5506    if (isConstexpr) {
5507      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5508      // are implicitly inline.
5509      NewFD->setImplicitlyInline();
5510
5511      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5512      // be either constructors or to return a literal type. Therefore,
5513      // destructors cannot be declared constexpr.
5514      if (isa<CXXDestructorDecl>(NewFD))
5515        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5516    }
5517
5518    // If __module_private__ was specified, mark the function accordingly.
5519    if (D.getDeclSpec().isModulePrivateSpecified()) {
5520      if (isFunctionTemplateSpecialization) {
5521        SourceLocation ModulePrivateLoc
5522          = D.getDeclSpec().getModulePrivateSpecLoc();
5523        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5524          << 0
5525          << FixItHint::CreateRemoval(ModulePrivateLoc);
5526      } else {
5527        NewFD->setModulePrivate();
5528        if (FunctionTemplate)
5529          FunctionTemplate->setModulePrivate();
5530      }
5531    }
5532
5533    if (isFriend) {
5534      // For now, claim that the objects have no previous declaration.
5535      if (FunctionTemplate) {
5536        FunctionTemplate->setObjectOfFriendDecl(false);
5537        FunctionTemplate->setAccess(AS_public);
5538      }
5539      NewFD->setObjectOfFriendDecl(false);
5540      NewFD->setAccess(AS_public);
5541    }
5542
5543    // If a function is defined as defaulted or deleted, mark it as such now.
5544    switch (D.getFunctionDefinitionKind()) {
5545      case FDK_Declaration:
5546      case FDK_Definition:
5547        break;
5548
5549      case FDK_Defaulted:
5550        NewFD->setDefaulted();
5551        break;
5552
5553      case FDK_Deleted:
5554        NewFD->setDeletedAsWritten();
5555        break;
5556    }
5557
5558    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5559        D.isFunctionDefinition()) {
5560      // C++ [class.mfct]p2:
5561      //   A member function may be defined (8.4) in its class definition, in
5562      //   which case it is an inline member function (7.1.2)
5563      NewFD->setImplicitlyInline();
5564    }
5565
5566    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5567        !CurContext->isRecord()) {
5568      // C++ [class.static]p1:
5569      //   A data or function member of a class may be declared static
5570      //   in a class definition, in which case it is a static member of
5571      //   the class.
5572
5573      // Complain about the 'static' specifier if it's on an out-of-line
5574      // member function definition.
5575      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5576           diag::err_static_out_of_line)
5577        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5578    }
5579
5580    // C++11 [except.spec]p15:
5581    //   A deallocation function with no exception-specification is treated
5582    //   as if it were specified with noexcept(true).
5583    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5584    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5585         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5586        getLangOpts().CPlusPlus0x && FPT && !FPT->hasExceptionSpec()) {
5587      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5588      EPI.ExceptionSpecType = EST_BasicNoexcept;
5589      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5590                                             FPT->arg_type_begin(),
5591                                             FPT->getNumArgs(), EPI));
5592    }
5593  }
5594
5595  // Filter out previous declarations that don't match the scope.
5596  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5597                       isExplicitSpecialization ||
5598                       isFunctionTemplateSpecialization);
5599
5600  // Handle GNU asm-label extension (encoded as an attribute).
5601  if (Expr *E = (Expr*) D.getAsmLabel()) {
5602    // The parser guarantees this is a string.
5603    StringLiteral *SE = cast<StringLiteral>(E);
5604    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5605                                                SE->getString()));
5606  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5607    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5608      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5609    if (I != ExtnameUndeclaredIdentifiers.end()) {
5610      NewFD->addAttr(I->second);
5611      ExtnameUndeclaredIdentifiers.erase(I);
5612    }
5613  }
5614
5615  // Copy the parameter declarations from the declarator D to the function
5616  // declaration NewFD, if they are available.  First scavenge them into Params.
5617  SmallVector<ParmVarDecl*, 16> Params;
5618  if (D.isFunctionDeclarator()) {
5619    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5620
5621    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5622    // function that takes no arguments, not a function that takes a
5623    // single void argument.
5624    // We let through "const void" here because Sema::GetTypeForDeclarator
5625    // already checks for that case.
5626    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5627        FTI.ArgInfo[0].Param &&
5628        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5629      // Empty arg list, don't push any params.
5630      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5631    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5632      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5633        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5634        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5635        Param->setDeclContext(NewFD);
5636        Params.push_back(Param);
5637
5638        if (Param->isInvalidDecl())
5639          NewFD->setInvalidDecl();
5640      }
5641    }
5642
5643  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5644    // When we're declaring a function with a typedef, typeof, etc as in the
5645    // following example, we'll need to synthesize (unnamed)
5646    // parameters for use in the declaration.
5647    //
5648    // @code
5649    // typedef void fn(int);
5650    // fn f;
5651    // @endcode
5652
5653    // Synthesize a parameter for each argument type.
5654    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5655         AE = FT->arg_type_end(); AI != AE; ++AI) {
5656      ParmVarDecl *Param =
5657        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5658      Param->setScopeInfo(0, Params.size());
5659      Params.push_back(Param);
5660    }
5661  } else {
5662    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5663           "Should not need args for typedef of non-prototype fn");
5664  }
5665
5666  // Finally, we know we have the right number of parameters, install them.
5667  NewFD->setParams(Params);
5668
5669  // Find all anonymous symbols defined during the declaration of this function
5670  // and add to NewFD. This lets us track decls such 'enum Y' in:
5671  //
5672  //   void f(enum Y {AA} x) {}
5673  //
5674  // which would otherwise incorrectly end up in the translation unit scope.
5675  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5676  DeclsInPrototypeScope.clear();
5677
5678  // Process the non-inheritable attributes on this declaration.
5679  ProcessDeclAttributes(S, NewFD, D,
5680                        /*NonInheritable=*/true, /*Inheritable=*/false);
5681
5682  // Functions returning a variably modified type violate C99 6.7.5.2p2
5683  // because all functions have linkage.
5684  if (!NewFD->isInvalidDecl() &&
5685      NewFD->getResultType()->isVariablyModifiedType()) {
5686    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5687    NewFD->setInvalidDecl();
5688  }
5689
5690  // Handle attributes.
5691  ProcessDeclAttributes(S, NewFD, D,
5692                        /*NonInheritable=*/false, /*Inheritable=*/true);
5693
5694  if (!getLangOpts().CPlusPlus) {
5695    // Perform semantic checking on the function declaration.
5696    bool isExplicitSpecialization=false;
5697    if (!NewFD->isInvalidDecl()) {
5698      if (NewFD->isMain())
5699        CheckMain(NewFD, D.getDeclSpec());
5700      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5701                                                  isExplicitSpecialization));
5702    }
5703    // Make graceful recovery from an invalid redeclaration.
5704    else if (!Previous.empty())
5705           D.setRedeclaration(true);
5706    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5707            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5708           "previous declaration set still overloaded");
5709  } else {
5710    // If the declarator is a template-id, translate the parser's template
5711    // argument list into our AST format.
5712    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5713      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5714      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5715      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5716      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5717                                         TemplateId->NumArgs);
5718      translateTemplateArguments(TemplateArgsPtr,
5719                                 TemplateArgs);
5720
5721      HasExplicitTemplateArgs = true;
5722
5723      if (NewFD->isInvalidDecl()) {
5724        HasExplicitTemplateArgs = false;
5725      } else if (FunctionTemplate) {
5726        // Function template with explicit template arguments.
5727        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5728          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5729
5730        HasExplicitTemplateArgs = false;
5731      } else if (!isFunctionTemplateSpecialization &&
5732                 !D.getDeclSpec().isFriendSpecified()) {
5733        // We have encountered something that the user meant to be a
5734        // specialization (because it has explicitly-specified template
5735        // arguments) but that was not introduced with a "template<>" (or had
5736        // too few of them).
5737        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5738          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5739          << FixItHint::CreateInsertion(
5740                                    D.getDeclSpec().getLocStart(),
5741                                        "template<> ");
5742        isFunctionTemplateSpecialization = true;
5743      } else {
5744        // "friend void foo<>(int);" is an implicit specialization decl.
5745        isFunctionTemplateSpecialization = true;
5746      }
5747    } else if (isFriend && isFunctionTemplateSpecialization) {
5748      // This combination is only possible in a recovery case;  the user
5749      // wrote something like:
5750      //   template <> friend void foo(int);
5751      // which we're recovering from as if the user had written:
5752      //   friend void foo<>(int);
5753      // Go ahead and fake up a template id.
5754      HasExplicitTemplateArgs = true;
5755        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5756      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5757    }
5758
5759    // If it's a friend (and only if it's a friend), it's possible
5760    // that either the specialized function type or the specialized
5761    // template is dependent, and therefore matching will fail.  In
5762    // this case, don't check the specialization yet.
5763    bool InstantiationDependent = false;
5764    if (isFunctionTemplateSpecialization && isFriend &&
5765        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5766         TemplateSpecializationType::anyDependentTemplateArguments(
5767            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5768            InstantiationDependent))) {
5769      assert(HasExplicitTemplateArgs &&
5770             "friend function specialization without template args");
5771      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5772                                                       Previous))
5773        NewFD->setInvalidDecl();
5774    } else if (isFunctionTemplateSpecialization) {
5775      if (CurContext->isDependentContext() && CurContext->isRecord()
5776          && !isFriend) {
5777        isDependentClassScopeExplicitSpecialization = true;
5778        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5779          diag::ext_function_specialization_in_class :
5780          diag::err_function_specialization_in_class)
5781          << NewFD->getDeclName();
5782      } else if (CheckFunctionTemplateSpecialization(NewFD,
5783                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5784                                                     Previous))
5785        NewFD->setInvalidDecl();
5786
5787      // C++ [dcl.stc]p1:
5788      //   A storage-class-specifier shall not be specified in an explicit
5789      //   specialization (14.7.3)
5790      if (SC != SC_None) {
5791        if (SC != NewFD->getStorageClass())
5792          Diag(NewFD->getLocation(),
5793               diag::err_explicit_specialization_inconsistent_storage_class)
5794            << SC
5795            << FixItHint::CreateRemoval(
5796                                      D.getDeclSpec().getStorageClassSpecLoc());
5797
5798        else
5799          Diag(NewFD->getLocation(),
5800               diag::ext_explicit_specialization_storage_class)
5801            << FixItHint::CreateRemoval(
5802                                      D.getDeclSpec().getStorageClassSpecLoc());
5803      }
5804
5805    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5806      if (CheckMemberSpecialization(NewFD, Previous))
5807          NewFD->setInvalidDecl();
5808    }
5809
5810    // Perform semantic checking on the function declaration.
5811    if (!isDependentClassScopeExplicitSpecialization) {
5812      if (NewFD->isInvalidDecl()) {
5813        // If this is a class member, mark the class invalid immediately.
5814        // This avoids some consistency errors later.
5815        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5816          methodDecl->getParent()->setInvalidDecl();
5817      } else {
5818        if (NewFD->isMain())
5819          CheckMain(NewFD, D.getDeclSpec());
5820        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5821                                                    isExplicitSpecialization));
5822      }
5823    }
5824
5825    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5826            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5827           "previous declaration set still overloaded");
5828
5829    NamedDecl *PrincipalDecl = (FunctionTemplate
5830                                ? cast<NamedDecl>(FunctionTemplate)
5831                                : NewFD);
5832
5833    if (isFriend && D.isRedeclaration()) {
5834      AccessSpecifier Access = AS_public;
5835      if (!NewFD->isInvalidDecl())
5836        Access = NewFD->getPreviousDecl()->getAccess();
5837
5838      NewFD->setAccess(Access);
5839      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5840
5841      PrincipalDecl->setObjectOfFriendDecl(true);
5842    }
5843
5844    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5845        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5846      PrincipalDecl->setNonMemberOperator();
5847
5848    // If we have a function template, check the template parameter
5849    // list. This will check and merge default template arguments.
5850    if (FunctionTemplate) {
5851      FunctionTemplateDecl *PrevTemplate =
5852                                     FunctionTemplate->getPreviousDecl();
5853      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5854                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5855                            D.getDeclSpec().isFriendSpecified()
5856                              ? (D.isFunctionDefinition()
5857                                   ? TPC_FriendFunctionTemplateDefinition
5858                                   : TPC_FriendFunctionTemplate)
5859                              : (D.getCXXScopeSpec().isSet() &&
5860                                 DC && DC->isRecord() &&
5861                                 DC->isDependentContext())
5862                                  ? TPC_ClassTemplateMember
5863                                  : TPC_FunctionTemplate);
5864    }
5865
5866    if (NewFD->isInvalidDecl()) {
5867      // Ignore all the rest of this.
5868    } else if (!D.isRedeclaration()) {
5869      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5870                                       AddToScope };
5871      // Fake up an access specifier if it's supposed to be a class member.
5872      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5873        NewFD->setAccess(AS_public);
5874
5875      // Qualified decls generally require a previous declaration.
5876      if (D.getCXXScopeSpec().isSet()) {
5877        // ...with the major exception of templated-scope or
5878        // dependent-scope friend declarations.
5879
5880        // TODO: we currently also suppress this check in dependent
5881        // contexts because (1) the parameter depth will be off when
5882        // matching friend templates and (2) we might actually be
5883        // selecting a friend based on a dependent factor.  But there
5884        // are situations where these conditions don't apply and we
5885        // can actually do this check immediately.
5886        if (isFriend &&
5887            (TemplateParamLists.size() ||
5888             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5889             CurContext->isDependentContext())) {
5890          // ignore these
5891        } else {
5892          // The user tried to provide an out-of-line definition for a
5893          // function that is a member of a class or namespace, but there
5894          // was no such member function declared (C++ [class.mfct]p2,
5895          // C++ [namespace.memdef]p2). For example:
5896          //
5897          // class X {
5898          //   void f() const;
5899          // };
5900          //
5901          // void X::f() { } // ill-formed
5902          //
5903          // Complain about this problem, and attempt to suggest close
5904          // matches (e.g., those that differ only in cv-qualifiers and
5905          // whether the parameter types are references).
5906
5907          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5908                                                               NewFD,
5909                                                               ExtraArgs)) {
5910            AddToScope = ExtraArgs.AddToScope;
5911            return Result;
5912          }
5913        }
5914
5915        // Unqualified local friend declarations are required to resolve
5916        // to something.
5917      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5918        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5919                                                             NewFD,
5920                                                             ExtraArgs)) {
5921          AddToScope = ExtraArgs.AddToScope;
5922          return Result;
5923        }
5924      }
5925
5926    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5927               !isFriend && !isFunctionTemplateSpecialization &&
5928               !isExplicitSpecialization) {
5929      // An out-of-line member function declaration must also be a
5930      // definition (C++ [dcl.meaning]p1).
5931      // Note that this is not the case for explicit specializations of
5932      // function templates or member functions of class templates, per
5933      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5934      // extension for compatibility with old SWIG code which likes to
5935      // generate them.
5936      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5937        << D.getCXXScopeSpec().getRange();
5938    }
5939  }
5940
5941  AddKnownFunctionAttributes(NewFD);
5942
5943  if (NewFD->hasAttr<OverloadableAttr>() &&
5944      !NewFD->getType()->getAs<FunctionProtoType>()) {
5945    Diag(NewFD->getLocation(),
5946         diag::err_attribute_overloadable_no_prototype)
5947      << NewFD;
5948
5949    // Turn this into a variadic function with no parameters.
5950    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5951    FunctionProtoType::ExtProtoInfo EPI;
5952    EPI.Variadic = true;
5953    EPI.ExtInfo = FT->getExtInfo();
5954
5955    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5956    NewFD->setType(R);
5957  }
5958
5959  // If there's a #pragma GCC visibility in scope, and this isn't a class
5960  // member, set the visibility of this function.
5961  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5962    AddPushedVisibilityAttribute(NewFD);
5963
5964  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5965  // marking the function.
5966  AddCFAuditedAttribute(NewFD);
5967
5968  // If this is a locally-scoped extern C function, update the
5969  // map of such names.
5970  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5971      && !NewFD->isInvalidDecl())
5972    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5973
5974  // Set this FunctionDecl's range up to the right paren.
5975  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5976
5977  if (getLangOpts().CPlusPlus) {
5978    if (FunctionTemplate) {
5979      if (NewFD->isInvalidDecl())
5980        FunctionTemplate->setInvalidDecl();
5981      return FunctionTemplate;
5982    }
5983  }
5984
5985  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5986  if ((getLangOpts().OpenCLVersion >= 120)
5987      && NewFD->hasAttr<OpenCLKernelAttr>()
5988      && (SC == SC_Static)) {
5989    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5990    D.setInvalidType();
5991  }
5992
5993  MarkUnusedFileScopedDecl(NewFD);
5994
5995  if (getLangOpts().CUDA)
5996    if (IdentifierInfo *II = NewFD->getIdentifier())
5997      if (!NewFD->isInvalidDecl() &&
5998          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5999        if (II->isStr("cudaConfigureCall")) {
6000          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6001            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6002
6003          Context.setcudaConfigureCallDecl(NewFD);
6004        }
6005      }
6006
6007  // Here we have an function template explicit specialization at class scope.
6008  // The actually specialization will be postponed to template instatiation
6009  // time via the ClassScopeFunctionSpecializationDecl node.
6010  if (isDependentClassScopeExplicitSpecialization) {
6011    ClassScopeFunctionSpecializationDecl *NewSpec =
6012                         ClassScopeFunctionSpecializationDecl::Create(
6013                                Context, CurContext, SourceLocation(),
6014                                cast<CXXMethodDecl>(NewFD),
6015                                HasExplicitTemplateArgs, TemplateArgs);
6016    CurContext->addDecl(NewSpec);
6017    AddToScope = false;
6018  }
6019
6020  return NewFD;
6021}
6022
6023/// \brief Perform semantic checking of a new function declaration.
6024///
6025/// Performs semantic analysis of the new function declaration
6026/// NewFD. This routine performs all semantic checking that does not
6027/// require the actual declarator involved in the declaration, and is
6028/// used both for the declaration of functions as they are parsed
6029/// (called via ActOnDeclarator) and for the declaration of functions
6030/// that have been instantiated via C++ template instantiation (called
6031/// via InstantiateDecl).
6032///
6033/// \param IsExplicitSpecialization whether this new function declaration is
6034/// an explicit specialization of the previous declaration.
6035///
6036/// This sets NewFD->isInvalidDecl() to true if there was an error.
6037///
6038/// \returns true if the function declaration is a redeclaration.
6039bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6040                                    LookupResult &Previous,
6041                                    bool IsExplicitSpecialization) {
6042  assert(!NewFD->getResultType()->isVariablyModifiedType()
6043         && "Variably modified return types are not handled here");
6044
6045  // Check for a previous declaration of this name.
6046  if (Previous.empty() && NewFD->isExternC()) {
6047    // Since we did not find anything by this name and we're declaring
6048    // an extern "C" function, look for a non-visible extern "C"
6049    // declaration with the same name.
6050    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6051      = findLocallyScopedExternalDecl(NewFD->getDeclName());
6052    if (Pos != LocallyScopedExternalDecls.end())
6053      Previous.addDecl(Pos->second);
6054  }
6055
6056  bool Redeclaration = false;
6057
6058  // Merge or overload the declaration with an existing declaration of
6059  // the same name, if appropriate.
6060  if (!Previous.empty()) {
6061    // Determine whether NewFD is an overload of PrevDecl or
6062    // a declaration that requires merging. If it's an overload,
6063    // there's no more work to do here; we'll just add the new
6064    // function to the scope.
6065
6066    NamedDecl *OldDecl = 0;
6067    if (!AllowOverloadingOfFunction(Previous, Context)) {
6068      Redeclaration = true;
6069      OldDecl = Previous.getFoundDecl();
6070    } else {
6071      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6072                            /*NewIsUsingDecl*/ false)) {
6073      case Ovl_Match:
6074        Redeclaration = true;
6075        break;
6076
6077      case Ovl_NonFunction:
6078        Redeclaration = true;
6079        break;
6080
6081      case Ovl_Overload:
6082        Redeclaration = false;
6083        break;
6084      }
6085
6086      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6087        // If a function name is overloadable in C, then every function
6088        // with that name must be marked "overloadable".
6089        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6090          << Redeclaration << NewFD;
6091        NamedDecl *OverloadedDecl = 0;
6092        if (Redeclaration)
6093          OverloadedDecl = OldDecl;
6094        else if (!Previous.empty())
6095          OverloadedDecl = Previous.getRepresentativeDecl();
6096        if (OverloadedDecl)
6097          Diag(OverloadedDecl->getLocation(),
6098               diag::note_attribute_overloadable_prev_overload);
6099        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6100                                                        Context));
6101      }
6102    }
6103
6104    if (Redeclaration) {
6105      // NewFD and OldDecl represent declarations that need to be
6106      // merged.
6107      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6108        NewFD->setInvalidDecl();
6109        return Redeclaration;
6110      }
6111
6112      Previous.clear();
6113      Previous.addDecl(OldDecl);
6114
6115      if (FunctionTemplateDecl *OldTemplateDecl
6116                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6117        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6118        FunctionTemplateDecl *NewTemplateDecl
6119          = NewFD->getDescribedFunctionTemplate();
6120        assert(NewTemplateDecl && "Template/non-template mismatch");
6121        if (CXXMethodDecl *Method
6122              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6123          Method->setAccess(OldTemplateDecl->getAccess());
6124          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6125        }
6126
6127        // If this is an explicit specialization of a member that is a function
6128        // template, mark it as a member specialization.
6129        if (IsExplicitSpecialization &&
6130            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6131          NewTemplateDecl->setMemberSpecialization();
6132          assert(OldTemplateDecl->isMemberSpecialization());
6133        }
6134
6135      } else {
6136        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
6137          NewFD->setAccess(OldDecl->getAccess());
6138        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6139      }
6140    }
6141  }
6142
6143  // Semantic checking for this function declaration (in isolation).
6144  if (getLangOpts().CPlusPlus) {
6145    // C++-specific checks.
6146    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6147      CheckConstructor(Constructor);
6148    } else if (CXXDestructorDecl *Destructor =
6149                dyn_cast<CXXDestructorDecl>(NewFD)) {
6150      CXXRecordDecl *Record = Destructor->getParent();
6151      QualType ClassType = Context.getTypeDeclType(Record);
6152
6153      // FIXME: Shouldn't we be able to perform this check even when the class
6154      // type is dependent? Both gcc and edg can handle that.
6155      if (!ClassType->isDependentType()) {
6156        DeclarationName Name
6157          = Context.DeclarationNames.getCXXDestructorName(
6158                                        Context.getCanonicalType(ClassType));
6159        if (NewFD->getDeclName() != Name) {
6160          Diag(NewFD->getLocation(), diag::err_destructor_name);
6161          NewFD->setInvalidDecl();
6162          return Redeclaration;
6163        }
6164      }
6165    } else if (CXXConversionDecl *Conversion
6166               = dyn_cast<CXXConversionDecl>(NewFD)) {
6167      ActOnConversionDeclarator(Conversion);
6168    }
6169
6170    // Find any virtual functions that this function overrides.
6171    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6172      if (!Method->isFunctionTemplateSpecialization() &&
6173          !Method->getDescribedFunctionTemplate() &&
6174          Method->isCanonicalDecl()) {
6175        if (AddOverriddenMethods(Method->getParent(), Method)) {
6176          // If the function was marked as "static", we have a problem.
6177          if (NewFD->getStorageClass() == SC_Static) {
6178            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6179          }
6180        }
6181      }
6182
6183      if (Method->isStatic())
6184        checkThisInStaticMemberFunctionType(Method);
6185    }
6186
6187    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6188    if (NewFD->isOverloadedOperator() &&
6189        CheckOverloadedOperatorDeclaration(NewFD)) {
6190      NewFD->setInvalidDecl();
6191      return Redeclaration;
6192    }
6193
6194    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6195    if (NewFD->getLiteralIdentifier() &&
6196        CheckLiteralOperatorDeclaration(NewFD)) {
6197      NewFD->setInvalidDecl();
6198      return Redeclaration;
6199    }
6200
6201    // In C++, check default arguments now that we have merged decls. Unless
6202    // the lexical context is the class, because in this case this is done
6203    // during delayed parsing anyway.
6204    if (!CurContext->isRecord())
6205      CheckCXXDefaultArguments(NewFD);
6206
6207    // If this function declares a builtin function, check the type of this
6208    // declaration against the expected type for the builtin.
6209    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6210      ASTContext::GetBuiltinTypeError Error;
6211      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6212      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6213        // The type of this function differs from the type of the builtin,
6214        // so forget about the builtin entirely.
6215        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6216      }
6217    }
6218
6219    // If this function is declared as being extern "C", then check to see if
6220    // the function returns a UDT (class, struct, or union type) that is not C
6221    // compatible, and if it does, warn the user.
6222    if (NewFD->isExternC()) {
6223      QualType R = NewFD->getResultType();
6224      if (R->isIncompleteType() && !R->isVoidType())
6225        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6226            << NewFD << R;
6227      else if (!R.isPODType(Context) && !R->isVoidType() &&
6228               !R->isObjCObjectPointerType())
6229        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6230    }
6231  }
6232  return Redeclaration;
6233}
6234
6235void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6236  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6237  //   static or constexpr is ill-formed.
6238  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6239  //   shall not appear in a declaration of main.
6240  // static main is not an error under C99, but we should warn about it.
6241  if (FD->getStorageClass() == SC_Static)
6242    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6243         ? diag::err_static_main : diag::warn_static_main)
6244      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6245  if (FD->isInlineSpecified())
6246    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6247      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6248  if (FD->isConstexpr()) {
6249    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6250      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6251    FD->setConstexpr(false);
6252  }
6253
6254  QualType T = FD->getType();
6255  assert(T->isFunctionType() && "function decl is not of function type");
6256  const FunctionType* FT = T->castAs<FunctionType>();
6257
6258  // All the standards say that main() should should return 'int'.
6259  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6260    // In C and C++, main magically returns 0 if you fall off the end;
6261    // set the flag which tells us that.
6262    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6263    FD->setHasImplicitReturnZero(true);
6264
6265  // In C with GNU extensions we allow main() to have non-integer return
6266  // type, but we should warn about the extension, and we disable the
6267  // implicit-return-zero rule.
6268  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6269    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6270
6271  // Otherwise, this is just a flat-out error.
6272  } else {
6273    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6274    FD->setInvalidDecl(true);
6275  }
6276
6277  // Treat protoless main() as nullary.
6278  if (isa<FunctionNoProtoType>(FT)) return;
6279
6280  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6281  unsigned nparams = FTP->getNumArgs();
6282  assert(FD->getNumParams() == nparams);
6283
6284  bool HasExtraParameters = (nparams > 3);
6285
6286  // Darwin passes an undocumented fourth argument of type char**.  If
6287  // other platforms start sprouting these, the logic below will start
6288  // getting shifty.
6289  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6290    HasExtraParameters = false;
6291
6292  if (HasExtraParameters) {
6293    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6294    FD->setInvalidDecl(true);
6295    nparams = 3;
6296  }
6297
6298  // FIXME: a lot of the following diagnostics would be improved
6299  // if we had some location information about types.
6300
6301  QualType CharPP =
6302    Context.getPointerType(Context.getPointerType(Context.CharTy));
6303  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6304
6305  for (unsigned i = 0; i < nparams; ++i) {
6306    QualType AT = FTP->getArgType(i);
6307
6308    bool mismatch = true;
6309
6310    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6311      mismatch = false;
6312    else if (Expected[i] == CharPP) {
6313      // As an extension, the following forms are okay:
6314      //   char const **
6315      //   char const * const *
6316      //   char * const *
6317
6318      QualifierCollector qs;
6319      const PointerType* PT;
6320      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6321          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6322          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6323        qs.removeConst();
6324        mismatch = !qs.empty();
6325      }
6326    }
6327
6328    if (mismatch) {
6329      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6330      // TODO: suggest replacing given type with expected type
6331      FD->setInvalidDecl(true);
6332    }
6333  }
6334
6335  if (nparams == 1 && !FD->isInvalidDecl()) {
6336    Diag(FD->getLocation(), diag::warn_main_one_arg);
6337  }
6338
6339  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6340    Diag(FD->getLocation(), diag::err_main_template_decl);
6341    FD->setInvalidDecl();
6342  }
6343}
6344
6345bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6346  // FIXME: Need strict checking.  In C89, we need to check for
6347  // any assignment, increment, decrement, function-calls, or
6348  // commas outside of a sizeof.  In C99, it's the same list,
6349  // except that the aforementioned are allowed in unevaluated
6350  // expressions.  Everything else falls under the
6351  // "may accept other forms of constant expressions" exception.
6352  // (We never end up here for C++, so the constant expression
6353  // rules there don't matter.)
6354  if (Init->isConstantInitializer(Context, false))
6355    return false;
6356  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6357    << Init->getSourceRange();
6358  return true;
6359}
6360
6361namespace {
6362  // Visits an initialization expression to see if OrigDecl is evaluated in
6363  // its own initialization and throws a warning if it does.
6364  class SelfReferenceChecker
6365      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6366    Sema &S;
6367    Decl *OrigDecl;
6368    bool isRecordType;
6369    bool isPODType;
6370    bool isReferenceType;
6371
6372  public:
6373    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6374
6375    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6376                                                    S(S), OrigDecl(OrigDecl) {
6377      isPODType = false;
6378      isRecordType = false;
6379      isReferenceType = false;
6380      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6381        isPODType = VD->getType().isPODType(S.Context);
6382        isRecordType = VD->getType()->isRecordType();
6383        isReferenceType = VD->getType()->isReferenceType();
6384      }
6385    }
6386
6387    // For most expressions, the cast is directly above the DeclRefExpr.
6388    // For conditional operators, the cast can be outside the conditional
6389    // operator if both expressions are DeclRefExpr's.
6390    void HandleValue(Expr *E) {
6391      if (isReferenceType)
6392        return;
6393      E = E->IgnoreParenImpCasts();
6394      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6395        HandleDeclRefExpr(DRE);
6396        return;
6397      }
6398
6399      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6400        HandleValue(CO->getTrueExpr());
6401        HandleValue(CO->getFalseExpr());
6402        return;
6403      }
6404
6405      if (isa<MemberExpr>(E)) {
6406        Expr *Base = E->IgnoreParenImpCasts();
6407        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6408          // Check for static member variables and don't warn on them.
6409          if (!isa<FieldDecl>(ME->getMemberDecl()))
6410            return;
6411          Base = ME->getBase()->IgnoreParenImpCasts();
6412        }
6413        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6414          HandleDeclRefExpr(DRE);
6415        return;
6416      }
6417    }
6418
6419    // Reference types are handled here since all uses of references are
6420    // bad, not just r-value uses.
6421    void VisitDeclRefExpr(DeclRefExpr *E) {
6422      if (isReferenceType)
6423        HandleDeclRefExpr(E);
6424    }
6425
6426    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6427      if (E->getCastKind() == CK_LValueToRValue ||
6428          (isRecordType && E->getCastKind() == CK_NoOp))
6429        HandleValue(E->getSubExpr());
6430
6431      Inherited::VisitImplicitCastExpr(E);
6432    }
6433
6434    void VisitMemberExpr(MemberExpr *E) {
6435      // Don't warn on arrays since they can be treated as pointers.
6436      if (E->getType()->canDecayToPointerType()) return;
6437
6438      // Warn when a non-static method call is followed by non-static member
6439      // field accesses, which is followed by a DeclRefExpr.
6440      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6441      bool Warn = (MD && !MD->isStatic());
6442      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6443      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6444        if (!isa<FieldDecl>(ME->getMemberDecl()))
6445          Warn = false;
6446        Base = ME->getBase()->IgnoreParenImpCasts();
6447      }
6448
6449      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6450        if (Warn)
6451          HandleDeclRefExpr(DRE);
6452        return;
6453      }
6454
6455      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6456      // Visit that expression.
6457      Visit(Base);
6458    }
6459
6460    void VisitUnaryOperator(UnaryOperator *E) {
6461      // For POD record types, addresses of its own members are well-defined.
6462      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6463          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6464        if (!isPODType)
6465          HandleValue(E->getSubExpr());
6466        return;
6467      }
6468      Inherited::VisitUnaryOperator(E);
6469    }
6470
6471    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6472
6473    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6474      Decl* ReferenceDecl = DRE->getDecl();
6475      if (OrigDecl != ReferenceDecl) return;
6476      unsigned diag = isReferenceType
6477          ? diag::warn_uninit_self_reference_in_reference_init
6478          : diag::warn_uninit_self_reference_in_init;
6479      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6480                            S.PDiag(diag)
6481                              << DRE->getNameInfo().getName()
6482                              << OrigDecl->getLocation()
6483                              << DRE->getSourceRange());
6484    }
6485  };
6486
6487  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6488  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6489                                 bool DirectInit) {
6490    // Parameters arguments are occassionially constructed with itself,
6491    // for instance, in recursive functions.  Skip them.
6492    if (isa<ParmVarDecl>(OrigDecl))
6493      return;
6494
6495    E = E->IgnoreParens();
6496
6497    // Skip checking T a = a where T is not a record or reference type.
6498    // Doing so is a way to silence uninitialized warnings.
6499    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6500      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6501        if (ICE->getCastKind() == CK_LValueToRValue)
6502          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6503            if (DRE->getDecl() == OrigDecl)
6504              return;
6505
6506    SelfReferenceChecker(S, OrigDecl).Visit(E);
6507  }
6508}
6509
6510/// AddInitializerToDecl - Adds the initializer Init to the
6511/// declaration dcl. If DirectInit is true, this is C++ direct
6512/// initialization rather than copy initialization.
6513void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6514                                bool DirectInit, bool TypeMayContainAuto) {
6515  // If there is no declaration, there was an error parsing it.  Just ignore
6516  // the initializer.
6517  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6518    return;
6519
6520  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6521    // With declarators parsed the way they are, the parser cannot
6522    // distinguish between a normal initializer and a pure-specifier.
6523    // Thus this grotesque test.
6524    IntegerLiteral *IL;
6525    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6526        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6527      CheckPureMethod(Method, Init->getSourceRange());
6528    else {
6529      Diag(Method->getLocation(), diag::err_member_function_initialization)
6530        << Method->getDeclName() << Init->getSourceRange();
6531      Method->setInvalidDecl();
6532    }
6533    return;
6534  }
6535
6536  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6537  if (!VDecl) {
6538    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6539    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6540    RealDecl->setInvalidDecl();
6541    return;
6542  }
6543
6544  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6545
6546  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6547  AutoType *Auto = 0;
6548  if (TypeMayContainAuto &&
6549      (Auto = VDecl->getType()->getContainedAutoType()) &&
6550      !Auto->isDeduced()) {
6551    Expr *DeduceInit = Init;
6552    // Initializer could be a C++ direct-initializer. Deduction only works if it
6553    // contains exactly one expression.
6554    if (CXXDirectInit) {
6555      if (CXXDirectInit->getNumExprs() == 0) {
6556        // It isn't possible to write this directly, but it is possible to
6557        // end up in this situation with "auto x(some_pack...);"
6558        Diag(CXXDirectInit->getLocStart(),
6559             diag::err_auto_var_init_no_expression)
6560          << VDecl->getDeclName() << VDecl->getType()
6561          << VDecl->getSourceRange();
6562        RealDecl->setInvalidDecl();
6563        return;
6564      } else if (CXXDirectInit->getNumExprs() > 1) {
6565        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6566             diag::err_auto_var_init_multiple_expressions)
6567          << VDecl->getDeclName() << VDecl->getType()
6568          << VDecl->getSourceRange();
6569        RealDecl->setInvalidDecl();
6570        return;
6571      } else {
6572        DeduceInit = CXXDirectInit->getExpr(0);
6573      }
6574    }
6575    TypeSourceInfo *DeducedType = 0;
6576    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6577            DAR_Failed)
6578      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6579    if (!DeducedType) {
6580      RealDecl->setInvalidDecl();
6581      return;
6582    }
6583    VDecl->setTypeSourceInfo(DeducedType);
6584    VDecl->setType(DeducedType->getType());
6585    VDecl->ClearLinkageCache();
6586
6587    // In ARC, infer lifetime.
6588    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6589      VDecl->setInvalidDecl();
6590
6591    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6592    // 'id' instead of a specific object type prevents most of our usual checks.
6593    // We only want to warn outside of template instantiations, though:
6594    // inside a template, the 'id' could have come from a parameter.
6595    if (ActiveTemplateInstantiations.empty() &&
6596        DeducedType->getType()->isObjCIdType()) {
6597      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6598      Diag(Loc, diag::warn_auto_var_is_id)
6599        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6600    }
6601
6602    // If this is a redeclaration, check that the type we just deduced matches
6603    // the previously declared type.
6604    if (VarDecl *Old = VDecl->getPreviousDecl())
6605      MergeVarDeclTypes(VDecl, Old);
6606  }
6607
6608  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6609    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6610    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6611    VDecl->setInvalidDecl();
6612    return;
6613  }
6614
6615  if (!VDecl->getType()->isDependentType()) {
6616    // A definition must end up with a complete type, which means it must be
6617    // complete with the restriction that an array type might be completed by
6618    // the initializer; note that later code assumes this restriction.
6619    QualType BaseDeclType = VDecl->getType();
6620    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6621      BaseDeclType = Array->getElementType();
6622    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6623                            diag::err_typecheck_decl_incomplete_type)) {
6624      RealDecl->setInvalidDecl();
6625      return;
6626    }
6627
6628    // The variable can not have an abstract class type.
6629    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6630                               diag::err_abstract_type_in_decl,
6631                               AbstractVariableType))
6632      VDecl->setInvalidDecl();
6633  }
6634
6635  const VarDecl *Def;
6636  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6637    Diag(VDecl->getLocation(), diag::err_redefinition)
6638      << VDecl->getDeclName();
6639    Diag(Def->getLocation(), diag::note_previous_definition);
6640    VDecl->setInvalidDecl();
6641    return;
6642  }
6643
6644  const VarDecl* PrevInit = 0;
6645  if (getLangOpts().CPlusPlus) {
6646    // C++ [class.static.data]p4
6647    //   If a static data member is of const integral or const
6648    //   enumeration type, its declaration in the class definition can
6649    //   specify a constant-initializer which shall be an integral
6650    //   constant expression (5.19). In that case, the member can appear
6651    //   in integral constant expressions. The member shall still be
6652    //   defined in a namespace scope if it is used in the program and the
6653    //   namespace scope definition shall not contain an initializer.
6654    //
6655    // We already performed a redefinition check above, but for static
6656    // data members we also need to check whether there was an in-class
6657    // declaration with an initializer.
6658    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6659      Diag(VDecl->getLocation(), diag::err_redefinition)
6660        << VDecl->getDeclName();
6661      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6662      return;
6663    }
6664
6665    if (VDecl->hasLocalStorage())
6666      getCurFunction()->setHasBranchProtectedScope();
6667
6668    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6669      VDecl->setInvalidDecl();
6670      return;
6671    }
6672  }
6673
6674  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6675  // a kernel function cannot be initialized."
6676  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6677    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6678    VDecl->setInvalidDecl();
6679    return;
6680  }
6681
6682  // Get the decls type and save a reference for later, since
6683  // CheckInitializerTypes may change it.
6684  QualType DclT = VDecl->getType(), SavT = DclT;
6685
6686  // Top-level message sends default to 'id' when we're in a debugger
6687  // and we are assigning it to a variable of 'id' type.
6688  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6689    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6690      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6691      if (Result.isInvalid()) {
6692        VDecl->setInvalidDecl();
6693        return;
6694      }
6695      Init = Result.take();
6696    }
6697
6698  // Perform the initialization.
6699  if (!VDecl->isInvalidDecl()) {
6700    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6701    InitializationKind Kind
6702      = DirectInit ?
6703          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6704                                                           Init->getLocStart(),
6705                                                           Init->getLocEnd())
6706                        : InitializationKind::CreateDirectList(
6707                                                          VDecl->getLocation())
6708                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6709                                                    Init->getLocStart());
6710
6711    Expr **Args = &Init;
6712    unsigned NumArgs = 1;
6713    if (CXXDirectInit) {
6714      Args = CXXDirectInit->getExprs();
6715      NumArgs = CXXDirectInit->getNumExprs();
6716    }
6717    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6718    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6719                                        MultiExprArg(Args, NumArgs), &DclT);
6720    if (Result.isInvalid()) {
6721      VDecl->setInvalidDecl();
6722      return;
6723    }
6724
6725    Init = Result.takeAs<Expr>();
6726  }
6727
6728  // Check for self-references within variable initializers.
6729  // Variables declared within a function/method body (except for references)
6730  // are handled by a dataflow analysis.
6731  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
6732      VDecl->getType()->isReferenceType()) {
6733    CheckSelfReference(*this, RealDecl, Init, DirectInit);
6734  }
6735
6736  // If the type changed, it means we had an incomplete type that was
6737  // completed by the initializer. For example:
6738  //   int ary[] = { 1, 3, 5 };
6739  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6740  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6741    VDecl->setType(DclT);
6742
6743  // Check any implicit conversions within the expression.
6744  CheckImplicitConversions(Init, VDecl->getLocation());
6745
6746  if (!VDecl->isInvalidDecl()) {
6747    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6748
6749    if (VDecl->hasAttr<BlocksAttr>())
6750      checkRetainCycles(VDecl, Init);
6751
6752    // It is safe to assign a weak reference into a strong variable.
6753    // Although this code can still have problems:
6754    //   id x = self.weakProp;
6755    //   id y = self.weakProp;
6756    // we do not warn to warn spuriously when 'x' and 'y' are on separate
6757    // paths through the function. This should be revisited if
6758    // -Wrepeated-use-of-weak is made flow-sensitive.
6759    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
6760      DiagnosticsEngine::Level Level =
6761        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
6762                                 Init->getLocStart());
6763      if (Level != DiagnosticsEngine::Ignored)
6764        getCurFunction()->markSafeWeakUse(Init);
6765    }
6766  }
6767
6768  Init = MaybeCreateExprWithCleanups(Init);
6769  // Attach the initializer to the decl.
6770  VDecl->setInit(Init);
6771
6772  if (VDecl->isLocalVarDecl()) {
6773    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6774    // static storage duration shall be constant expressions or string literals.
6775    // C++ does not have this restriction.
6776    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6777        VDecl->getStorageClass() == SC_Static)
6778      CheckForConstantInitializer(Init, DclT);
6779  } else if (VDecl->isStaticDataMember() &&
6780             VDecl->getLexicalDeclContext()->isRecord()) {
6781    // This is an in-class initialization for a static data member, e.g.,
6782    //
6783    // struct S {
6784    //   static const int value = 17;
6785    // };
6786
6787    // C++ [class.mem]p4:
6788    //   A member-declarator can contain a constant-initializer only
6789    //   if it declares a static member (9.4) of const integral or
6790    //   const enumeration type, see 9.4.2.
6791    //
6792    // C++11 [class.static.data]p3:
6793    //   If a non-volatile const static data member is of integral or
6794    //   enumeration type, its declaration in the class definition can
6795    //   specify a brace-or-equal-initializer in which every initalizer-clause
6796    //   that is an assignment-expression is a constant expression. A static
6797    //   data member of literal type can be declared in the class definition
6798    //   with the constexpr specifier; if so, its declaration shall specify a
6799    //   brace-or-equal-initializer in which every initializer-clause that is
6800    //   an assignment-expression is a constant expression.
6801
6802    // Do nothing on dependent types.
6803    if (DclT->isDependentType()) {
6804
6805    // Allow any 'static constexpr' members, whether or not they are of literal
6806    // type. We separately check that every constexpr variable is of literal
6807    // type.
6808    } else if (VDecl->isConstexpr()) {
6809
6810    // Require constness.
6811    } else if (!DclT.isConstQualified()) {
6812      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6813        << Init->getSourceRange();
6814      VDecl->setInvalidDecl();
6815
6816    // We allow integer constant expressions in all cases.
6817    } else if (DclT->isIntegralOrEnumerationType()) {
6818      // Check whether the expression is a constant expression.
6819      SourceLocation Loc;
6820      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6821        // In C++11, a non-constexpr const static data member with an
6822        // in-class initializer cannot be volatile.
6823        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6824      else if (Init->isValueDependent())
6825        ; // Nothing to check.
6826      else if (Init->isIntegerConstantExpr(Context, &Loc))
6827        ; // Ok, it's an ICE!
6828      else if (Init->isEvaluatable(Context)) {
6829        // If we can constant fold the initializer through heroics, accept it,
6830        // but report this as a use of an extension for -pedantic.
6831        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6832          << Init->getSourceRange();
6833      } else {
6834        // Otherwise, this is some crazy unknown case.  Report the issue at the
6835        // location provided by the isIntegerConstantExpr failed check.
6836        Diag(Loc, diag::err_in_class_initializer_non_constant)
6837          << Init->getSourceRange();
6838        VDecl->setInvalidDecl();
6839      }
6840
6841    // We allow foldable floating-point constants as an extension.
6842    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6843      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6844        << DclT << Init->getSourceRange();
6845      if (getLangOpts().CPlusPlus0x)
6846        Diag(VDecl->getLocation(),
6847             diag::note_in_class_initializer_float_type_constexpr)
6848          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6849
6850      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6851        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6852          << Init->getSourceRange();
6853        VDecl->setInvalidDecl();
6854      }
6855
6856    // Suggest adding 'constexpr' in C++11 for literal types.
6857    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6858      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6859        << DclT << Init->getSourceRange()
6860        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6861      VDecl->setConstexpr(true);
6862
6863    } else {
6864      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6865        << DclT << Init->getSourceRange();
6866      VDecl->setInvalidDecl();
6867    }
6868  } else if (VDecl->isFileVarDecl()) {
6869    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6870        (!getLangOpts().CPlusPlus ||
6871         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6872      Diag(VDecl->getLocation(), diag::warn_extern_init);
6873
6874    // C99 6.7.8p4. All file scoped initializers need to be constant.
6875    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6876      CheckForConstantInitializer(Init, DclT);
6877  }
6878
6879  // We will represent direct-initialization similarly to copy-initialization:
6880  //    int x(1);  -as-> int x = 1;
6881  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6882  //
6883  // Clients that want to distinguish between the two forms, can check for
6884  // direct initializer using VarDecl::getInitStyle().
6885  // A major benefit is that clients that don't particularly care about which
6886  // exactly form was it (like the CodeGen) can handle both cases without
6887  // special case code.
6888
6889  // C++ 8.5p11:
6890  // The form of initialization (using parentheses or '=') is generally
6891  // insignificant, but does matter when the entity being initialized has a
6892  // class type.
6893  if (CXXDirectInit) {
6894    assert(DirectInit && "Call-style initializer must be direct init.");
6895    VDecl->setInitStyle(VarDecl::CallInit);
6896  } else if (DirectInit) {
6897    // This must be list-initialization. No other way is direct-initialization.
6898    VDecl->setInitStyle(VarDecl::ListInit);
6899  }
6900
6901  CheckCompleteVariableDeclaration(VDecl);
6902}
6903
6904/// ActOnInitializerError - Given that there was an error parsing an
6905/// initializer for the given declaration, try to return to some form
6906/// of sanity.
6907void Sema::ActOnInitializerError(Decl *D) {
6908  // Our main concern here is re-establishing invariants like "a
6909  // variable's type is either dependent or complete".
6910  if (!D || D->isInvalidDecl()) return;
6911
6912  VarDecl *VD = dyn_cast<VarDecl>(D);
6913  if (!VD) return;
6914
6915  // Auto types are meaningless if we can't make sense of the initializer.
6916  if (ParsingInitForAutoVars.count(D)) {
6917    D->setInvalidDecl();
6918    return;
6919  }
6920
6921  QualType Ty = VD->getType();
6922  if (Ty->isDependentType()) return;
6923
6924  // Require a complete type.
6925  if (RequireCompleteType(VD->getLocation(),
6926                          Context.getBaseElementType(Ty),
6927                          diag::err_typecheck_decl_incomplete_type)) {
6928    VD->setInvalidDecl();
6929    return;
6930  }
6931
6932  // Require an abstract type.
6933  if (RequireNonAbstractType(VD->getLocation(), Ty,
6934                             diag::err_abstract_type_in_decl,
6935                             AbstractVariableType)) {
6936    VD->setInvalidDecl();
6937    return;
6938  }
6939
6940  // Don't bother complaining about constructors or destructors,
6941  // though.
6942}
6943
6944void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6945                                  bool TypeMayContainAuto) {
6946  // If there is no declaration, there was an error parsing it. Just ignore it.
6947  if (RealDecl == 0)
6948    return;
6949
6950  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6951    QualType Type = Var->getType();
6952
6953    // C++11 [dcl.spec.auto]p3
6954    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6955      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6956        << Var->getDeclName() << Type;
6957      Var->setInvalidDecl();
6958      return;
6959    }
6960
6961    // C++11 [class.static.data]p3: A static data member can be declared with
6962    // the constexpr specifier; if so, its declaration shall specify
6963    // a brace-or-equal-initializer.
6964    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6965    // the definition of a variable [...] or the declaration of a static data
6966    // member.
6967    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6968      if (Var->isStaticDataMember())
6969        Diag(Var->getLocation(),
6970             diag::err_constexpr_static_mem_var_requires_init)
6971          << Var->getDeclName();
6972      else
6973        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6974      Var->setInvalidDecl();
6975      return;
6976    }
6977
6978    switch (Var->isThisDeclarationADefinition()) {
6979    case VarDecl::Definition:
6980      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6981        break;
6982
6983      // We have an out-of-line definition of a static data member
6984      // that has an in-class initializer, so we type-check this like
6985      // a declaration.
6986      //
6987      // Fall through
6988
6989    case VarDecl::DeclarationOnly:
6990      // It's only a declaration.
6991
6992      // Block scope. C99 6.7p7: If an identifier for an object is
6993      // declared with no linkage (C99 6.2.2p6), the type for the
6994      // object shall be complete.
6995      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6996          !Var->getLinkage() && !Var->isInvalidDecl() &&
6997          RequireCompleteType(Var->getLocation(), Type,
6998                              diag::err_typecheck_decl_incomplete_type))
6999        Var->setInvalidDecl();
7000
7001      // Make sure that the type is not abstract.
7002      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7003          RequireNonAbstractType(Var->getLocation(), Type,
7004                                 diag::err_abstract_type_in_decl,
7005                                 AbstractVariableType))
7006        Var->setInvalidDecl();
7007      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7008          Var->getStorageClass() == SC_PrivateExtern) {
7009        Diag(Var->getLocation(), diag::warn_private_extern);
7010        Diag(Var->getLocation(), diag::note_private_extern);
7011      }
7012
7013      return;
7014
7015    case VarDecl::TentativeDefinition:
7016      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7017      // object that has file scope without an initializer, and without a
7018      // storage-class specifier or with the storage-class specifier "static",
7019      // constitutes a tentative definition. Note: A tentative definition with
7020      // external linkage is valid (C99 6.2.2p5).
7021      if (!Var->isInvalidDecl()) {
7022        if (const IncompleteArrayType *ArrayT
7023                                    = Context.getAsIncompleteArrayType(Type)) {
7024          if (RequireCompleteType(Var->getLocation(),
7025                                  ArrayT->getElementType(),
7026                                  diag::err_illegal_decl_array_incomplete_type))
7027            Var->setInvalidDecl();
7028        } else if (Var->getStorageClass() == SC_Static) {
7029          // C99 6.9.2p3: If the declaration of an identifier for an object is
7030          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7031          // declared type shall not be an incomplete type.
7032          // NOTE: code such as the following
7033          //     static struct s;
7034          //     struct s { int a; };
7035          // is accepted by gcc. Hence here we issue a warning instead of
7036          // an error and we do not invalidate the static declaration.
7037          // NOTE: to avoid multiple warnings, only check the first declaration.
7038          if (Var->getPreviousDecl() == 0)
7039            RequireCompleteType(Var->getLocation(), Type,
7040                                diag::ext_typecheck_decl_incomplete_type);
7041        }
7042      }
7043
7044      // Record the tentative definition; we're done.
7045      if (!Var->isInvalidDecl())
7046        TentativeDefinitions.push_back(Var);
7047      return;
7048    }
7049
7050    // Provide a specific diagnostic for uninitialized variable
7051    // definitions with incomplete array type.
7052    if (Type->isIncompleteArrayType()) {
7053      Diag(Var->getLocation(),
7054           diag::err_typecheck_incomplete_array_needs_initializer);
7055      Var->setInvalidDecl();
7056      return;
7057    }
7058
7059    // Provide a specific diagnostic for uninitialized variable
7060    // definitions with reference type.
7061    if (Type->isReferenceType()) {
7062      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7063        << Var->getDeclName()
7064        << SourceRange(Var->getLocation(), Var->getLocation());
7065      Var->setInvalidDecl();
7066      return;
7067    }
7068
7069    // Do not attempt to type-check the default initializer for a
7070    // variable with dependent type.
7071    if (Type->isDependentType())
7072      return;
7073
7074    if (Var->isInvalidDecl())
7075      return;
7076
7077    if (RequireCompleteType(Var->getLocation(),
7078                            Context.getBaseElementType(Type),
7079                            diag::err_typecheck_decl_incomplete_type)) {
7080      Var->setInvalidDecl();
7081      return;
7082    }
7083
7084    // The variable can not have an abstract class type.
7085    if (RequireNonAbstractType(Var->getLocation(), Type,
7086                               diag::err_abstract_type_in_decl,
7087                               AbstractVariableType)) {
7088      Var->setInvalidDecl();
7089      return;
7090    }
7091
7092    // Check for jumps past the implicit initializer.  C++0x
7093    // clarifies that this applies to a "variable with automatic
7094    // storage duration", not a "local variable".
7095    // C++11 [stmt.dcl]p3
7096    //   A program that jumps from a point where a variable with automatic
7097    //   storage duration is not in scope to a point where it is in scope is
7098    //   ill-formed unless the variable has scalar type, class type with a
7099    //   trivial default constructor and a trivial destructor, a cv-qualified
7100    //   version of one of these types, or an array of one of the preceding
7101    //   types and is declared without an initializer.
7102    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7103      if (const RecordType *Record
7104            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7105        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7106        // Mark the function for further checking even if the looser rules of
7107        // C++11 do not require such checks, so that we can diagnose
7108        // incompatibilities with C++98.
7109        if (!CXXRecord->isPOD())
7110          getCurFunction()->setHasBranchProtectedScope();
7111      }
7112    }
7113
7114    // C++03 [dcl.init]p9:
7115    //   If no initializer is specified for an object, and the
7116    //   object is of (possibly cv-qualified) non-POD class type (or
7117    //   array thereof), the object shall be default-initialized; if
7118    //   the object is of const-qualified type, the underlying class
7119    //   type shall have a user-declared default
7120    //   constructor. Otherwise, if no initializer is specified for
7121    //   a non- static object, the object and its subobjects, if
7122    //   any, have an indeterminate initial value); if the object
7123    //   or any of its subobjects are of const-qualified type, the
7124    //   program is ill-formed.
7125    // C++0x [dcl.init]p11:
7126    //   If no initializer is specified for an object, the object is
7127    //   default-initialized; [...].
7128    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7129    InitializationKind Kind
7130      = InitializationKind::CreateDefault(Var->getLocation());
7131
7132    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7133    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7134    if (Init.isInvalid())
7135      Var->setInvalidDecl();
7136    else if (Init.get()) {
7137      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7138      // This is important for template substitution.
7139      Var->setInitStyle(VarDecl::CallInit);
7140    }
7141
7142    CheckCompleteVariableDeclaration(Var);
7143  }
7144}
7145
7146void Sema::ActOnCXXForRangeDecl(Decl *D) {
7147  VarDecl *VD = dyn_cast<VarDecl>(D);
7148  if (!VD) {
7149    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7150    D->setInvalidDecl();
7151    return;
7152  }
7153
7154  VD->setCXXForRangeDecl(true);
7155
7156  // for-range-declaration cannot be given a storage class specifier.
7157  int Error = -1;
7158  switch (VD->getStorageClassAsWritten()) {
7159  case SC_None:
7160    break;
7161  case SC_Extern:
7162    Error = 0;
7163    break;
7164  case SC_Static:
7165    Error = 1;
7166    break;
7167  case SC_PrivateExtern:
7168    Error = 2;
7169    break;
7170  case SC_Auto:
7171    Error = 3;
7172    break;
7173  case SC_Register:
7174    Error = 4;
7175    break;
7176  case SC_OpenCLWorkGroupLocal:
7177    llvm_unreachable("Unexpected storage class");
7178  }
7179  if (VD->isConstexpr())
7180    Error = 5;
7181  if (Error != -1) {
7182    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7183      << VD->getDeclName() << Error;
7184    D->setInvalidDecl();
7185  }
7186}
7187
7188void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7189  if (var->isInvalidDecl()) return;
7190
7191  // In ARC, don't allow jumps past the implicit initialization of a
7192  // local retaining variable.
7193  if (getLangOpts().ObjCAutoRefCount &&
7194      var->hasLocalStorage()) {
7195    switch (var->getType().getObjCLifetime()) {
7196    case Qualifiers::OCL_None:
7197    case Qualifiers::OCL_ExplicitNone:
7198    case Qualifiers::OCL_Autoreleasing:
7199      break;
7200
7201    case Qualifiers::OCL_Weak:
7202    case Qualifiers::OCL_Strong:
7203      getCurFunction()->setHasBranchProtectedScope();
7204      break;
7205    }
7206  }
7207
7208  if (var->isThisDeclarationADefinition() &&
7209      var->getLinkage() == ExternalLinkage) {
7210    // Find a previous declaration that's not a definition.
7211    VarDecl *prev = var->getPreviousDecl();
7212    while (prev && prev->isThisDeclarationADefinition())
7213      prev = prev->getPreviousDecl();
7214
7215    if (!prev)
7216      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7217  }
7218
7219  // All the following checks are C++ only.
7220  if (!getLangOpts().CPlusPlus) return;
7221
7222  QualType type = var->getType();
7223  if (type->isDependentType()) return;
7224
7225  // __block variables might require us to capture a copy-initializer.
7226  if (var->hasAttr<BlocksAttr>()) {
7227    // It's currently invalid to ever have a __block variable with an
7228    // array type; should we diagnose that here?
7229
7230    // Regardless, we don't want to ignore array nesting when
7231    // constructing this copy.
7232    if (type->isStructureOrClassType()) {
7233      SourceLocation poi = var->getLocation();
7234      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7235      ExprResult result =
7236        PerformCopyInitialization(
7237                        InitializedEntity::InitializeBlock(poi, type, false),
7238                                  poi, Owned(varRef));
7239      if (!result.isInvalid()) {
7240        result = MaybeCreateExprWithCleanups(result);
7241        Expr *init = result.takeAs<Expr>();
7242        Context.setBlockVarCopyInits(var, init);
7243      }
7244    }
7245  }
7246
7247  Expr *Init = var->getInit();
7248  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7249  QualType baseType = Context.getBaseElementType(type);
7250
7251  if (!var->getDeclContext()->isDependentContext() &&
7252      Init && !Init->isValueDependent()) {
7253    if (IsGlobal && !var->isConstexpr() &&
7254        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7255                                            var->getLocation())
7256          != DiagnosticsEngine::Ignored &&
7257        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7258      Diag(var->getLocation(), diag::warn_global_constructor)
7259        << Init->getSourceRange();
7260
7261    if (var->isConstexpr()) {
7262      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7263      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7264        SourceLocation DiagLoc = var->getLocation();
7265        // If the note doesn't add any useful information other than a source
7266        // location, fold it into the primary diagnostic.
7267        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7268              diag::note_invalid_subexpr_in_const_expr) {
7269          DiagLoc = Notes[0].first;
7270          Notes.clear();
7271        }
7272        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7273          << var << Init->getSourceRange();
7274        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7275          Diag(Notes[I].first, Notes[I].second);
7276      }
7277    } else if (var->isUsableInConstantExpressions(Context)) {
7278      // Check whether the initializer of a const variable of integral or
7279      // enumeration type is an ICE now, since we can't tell whether it was
7280      // initialized by a constant expression if we check later.
7281      var->checkInitIsICE();
7282    }
7283  }
7284
7285  // Require the destructor.
7286  if (const RecordType *recordType = baseType->getAs<RecordType>())
7287    FinalizeVarWithDestructor(var, recordType);
7288}
7289
7290/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7291/// any semantic actions necessary after any initializer has been attached.
7292void
7293Sema::FinalizeDeclaration(Decl *ThisDecl) {
7294  // Note that we are no longer parsing the initializer for this declaration.
7295  ParsingInitForAutoVars.erase(ThisDecl);
7296
7297  // Now we have parsed the initializer and can update the table of magic
7298  // tag values.
7299  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7300    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7301    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7302      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7303               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7304               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7305           I != E; ++I) {
7306        const Expr *MagicValueExpr = VD->getInit();
7307        if (!MagicValueExpr) {
7308          continue;
7309        }
7310        llvm::APSInt MagicValueInt;
7311        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7312          Diag(I->getRange().getBegin(),
7313               diag::err_type_tag_for_datatype_not_ice)
7314            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7315          continue;
7316        }
7317        if (MagicValueInt.getActiveBits() > 64) {
7318          Diag(I->getRange().getBegin(),
7319               diag::err_type_tag_for_datatype_too_large)
7320            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7321          continue;
7322        }
7323        uint64_t MagicValue = MagicValueInt.getZExtValue();
7324        RegisterTypeTagForDatatype(I->getArgumentKind(),
7325                                   MagicValue,
7326                                   I->getMatchingCType(),
7327                                   I->getLayoutCompatible(),
7328                                   I->getMustBeNull());
7329      }
7330    }
7331  }
7332}
7333
7334Sema::DeclGroupPtrTy
7335Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7336                              Decl **Group, unsigned NumDecls) {
7337  SmallVector<Decl*, 8> Decls;
7338
7339  if (DS.isTypeSpecOwned())
7340    Decls.push_back(DS.getRepAsDecl());
7341
7342  for (unsigned i = 0; i != NumDecls; ++i)
7343    if (Decl *D = Group[i])
7344      Decls.push_back(D);
7345
7346  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7347                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7348}
7349
7350/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7351/// group, performing any necessary semantic checking.
7352Sema::DeclGroupPtrTy
7353Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7354                           bool TypeMayContainAuto) {
7355  // C++0x [dcl.spec.auto]p7:
7356  //   If the type deduced for the template parameter U is not the same in each
7357  //   deduction, the program is ill-formed.
7358  // FIXME: When initializer-list support is added, a distinction is needed
7359  // between the deduced type U and the deduced type which 'auto' stands for.
7360  //   auto a = 0, b = { 1, 2, 3 };
7361  // is legal because the deduced type U is 'int' in both cases.
7362  if (TypeMayContainAuto && NumDecls > 1) {
7363    QualType Deduced;
7364    CanQualType DeducedCanon;
7365    VarDecl *DeducedDecl = 0;
7366    for (unsigned i = 0; i != NumDecls; ++i) {
7367      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7368        AutoType *AT = D->getType()->getContainedAutoType();
7369        // Don't reissue diagnostics when instantiating a template.
7370        if (AT && D->isInvalidDecl())
7371          break;
7372        if (AT && AT->isDeduced()) {
7373          QualType U = AT->getDeducedType();
7374          CanQualType UCanon = Context.getCanonicalType(U);
7375          if (Deduced.isNull()) {
7376            Deduced = U;
7377            DeducedCanon = UCanon;
7378            DeducedDecl = D;
7379          } else if (DeducedCanon != UCanon) {
7380            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7381                 diag::err_auto_different_deductions)
7382              << Deduced << DeducedDecl->getDeclName()
7383              << U << D->getDeclName()
7384              << DeducedDecl->getInit()->getSourceRange()
7385              << D->getInit()->getSourceRange();
7386            D->setInvalidDecl();
7387            break;
7388          }
7389        }
7390      }
7391    }
7392  }
7393
7394  ActOnDocumentableDecls(Group, NumDecls);
7395
7396  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7397}
7398
7399void Sema::ActOnDocumentableDecl(Decl *D) {
7400  ActOnDocumentableDecls(&D, 1);
7401}
7402
7403void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7404  // Don't parse the comment if Doxygen diagnostics are ignored.
7405  if (NumDecls == 0 || !Group[0])
7406   return;
7407
7408  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7409                               Group[0]->getLocation())
7410        == DiagnosticsEngine::Ignored)
7411    return;
7412
7413  if (NumDecls >= 2) {
7414    // This is a decl group.  Normally it will contain only declarations
7415    // procuded from declarator list.  But in case we have any definitions or
7416    // additional declaration references:
7417    //   'typedef struct S {} S;'
7418    //   'typedef struct S *S;'
7419    //   'struct S *pS;'
7420    // FinalizeDeclaratorGroup adds these as separate declarations.
7421    Decl *MaybeTagDecl = Group[0];
7422    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7423      Group++;
7424      NumDecls--;
7425    }
7426  }
7427
7428  // See if there are any new comments that are not attached to a decl.
7429  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7430  if (!Comments.empty() &&
7431      !Comments.back()->isAttached()) {
7432    // There is at least one comment that not attached to a decl.
7433    // Maybe it should be attached to one of these decls?
7434    //
7435    // Note that this way we pick up not only comments that precede the
7436    // declaration, but also comments that *follow* the declaration -- thanks to
7437    // the lookahead in the lexer: we've consumed the semicolon and looked
7438    // ahead through comments.
7439    for (unsigned i = 0; i != NumDecls; ++i)
7440      Context.getCommentForDecl(Group[i], &PP);
7441  }
7442}
7443
7444/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7445/// to introduce parameters into function prototype scope.
7446Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7447  const DeclSpec &DS = D.getDeclSpec();
7448
7449  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7450  // C++03 [dcl.stc]p2 also permits 'auto'.
7451  VarDecl::StorageClass StorageClass = SC_None;
7452  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7453  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7454    StorageClass = SC_Register;
7455    StorageClassAsWritten = SC_Register;
7456  } else if (getLangOpts().CPlusPlus &&
7457             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7458    StorageClass = SC_Auto;
7459    StorageClassAsWritten = SC_Auto;
7460  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7461    Diag(DS.getStorageClassSpecLoc(),
7462         diag::err_invalid_storage_class_in_func_decl);
7463    D.getMutableDeclSpec().ClearStorageClassSpecs();
7464  }
7465
7466  if (D.getDeclSpec().isThreadSpecified())
7467    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7468  if (D.getDeclSpec().isConstexprSpecified())
7469    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7470      << 0;
7471
7472  DiagnoseFunctionSpecifiers(D);
7473
7474  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7475  QualType parmDeclType = TInfo->getType();
7476
7477  if (getLangOpts().CPlusPlus) {
7478    // Check that there are no default arguments inside the type of this
7479    // parameter.
7480    CheckExtraCXXDefaultArguments(D);
7481
7482    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7483    if (D.getCXXScopeSpec().isSet()) {
7484      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7485        << D.getCXXScopeSpec().getRange();
7486      D.getCXXScopeSpec().clear();
7487    }
7488  }
7489
7490  // Ensure we have a valid name
7491  IdentifierInfo *II = 0;
7492  if (D.hasName()) {
7493    II = D.getIdentifier();
7494    if (!II) {
7495      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7496        << GetNameForDeclarator(D).getName().getAsString();
7497      D.setInvalidType(true);
7498    }
7499  }
7500
7501  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7502  if (II) {
7503    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7504                   ForRedeclaration);
7505    LookupName(R, S);
7506    if (R.isSingleResult()) {
7507      NamedDecl *PrevDecl = R.getFoundDecl();
7508      if (PrevDecl->isTemplateParameter()) {
7509        // Maybe we will complain about the shadowed template parameter.
7510        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7511        // Just pretend that we didn't see the previous declaration.
7512        PrevDecl = 0;
7513      } else if (S->isDeclScope(PrevDecl)) {
7514        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7515        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7516
7517        // Recover by removing the name
7518        II = 0;
7519        D.SetIdentifier(0, D.getIdentifierLoc());
7520        D.setInvalidType(true);
7521      }
7522    }
7523  }
7524
7525  // Temporarily put parameter variables in the translation unit, not
7526  // the enclosing context.  This prevents them from accidentally
7527  // looking like class members in C++.
7528  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7529                                    D.getLocStart(),
7530                                    D.getIdentifierLoc(), II,
7531                                    parmDeclType, TInfo,
7532                                    StorageClass, StorageClassAsWritten);
7533
7534  if (D.isInvalidType())
7535    New->setInvalidDecl();
7536
7537  assert(S->isFunctionPrototypeScope());
7538  assert(S->getFunctionPrototypeDepth() >= 1);
7539  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7540                    S->getNextFunctionPrototypeIndex());
7541
7542  // Add the parameter declaration into this scope.
7543  S->AddDecl(New);
7544  if (II)
7545    IdResolver.AddDecl(New);
7546
7547  ProcessDeclAttributes(S, New, D);
7548
7549  if (D.getDeclSpec().isModulePrivateSpecified())
7550    Diag(New->getLocation(), diag::err_module_private_local)
7551      << 1 << New->getDeclName()
7552      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7553      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7554
7555  if (New->hasAttr<BlocksAttr>()) {
7556    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7557  }
7558  return New;
7559}
7560
7561/// \brief Synthesizes a variable for a parameter arising from a
7562/// typedef.
7563ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7564                                              SourceLocation Loc,
7565                                              QualType T) {
7566  /* FIXME: setting StartLoc == Loc.
7567     Would it be worth to modify callers so as to provide proper source
7568     location for the unnamed parameters, embedding the parameter's type? */
7569  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7570                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7571                                           SC_None, SC_None, 0);
7572  Param->setImplicit();
7573  return Param;
7574}
7575
7576void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7577                                    ParmVarDecl * const *ParamEnd) {
7578  // Don't diagnose unused-parameter errors in template instantiations; we
7579  // will already have done so in the template itself.
7580  if (!ActiveTemplateInstantiations.empty())
7581    return;
7582
7583  for (; Param != ParamEnd; ++Param) {
7584    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7585        !(*Param)->hasAttr<UnusedAttr>()) {
7586      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7587        << (*Param)->getDeclName();
7588    }
7589  }
7590}
7591
7592void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7593                                                  ParmVarDecl * const *ParamEnd,
7594                                                  QualType ReturnTy,
7595                                                  NamedDecl *D) {
7596  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7597    return;
7598
7599  // Warn if the return value is pass-by-value and larger than the specified
7600  // threshold.
7601  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7602    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7603    if (Size > LangOpts.NumLargeByValueCopy)
7604      Diag(D->getLocation(), diag::warn_return_value_size)
7605          << D->getDeclName() << Size;
7606  }
7607
7608  // Warn if any parameter is pass-by-value and larger than the specified
7609  // threshold.
7610  for (; Param != ParamEnd; ++Param) {
7611    QualType T = (*Param)->getType();
7612    if (T->isDependentType() || !T.isPODType(Context))
7613      continue;
7614    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7615    if (Size > LangOpts.NumLargeByValueCopy)
7616      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7617          << (*Param)->getDeclName() << Size;
7618  }
7619}
7620
7621ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7622                                  SourceLocation NameLoc, IdentifierInfo *Name,
7623                                  QualType T, TypeSourceInfo *TSInfo,
7624                                  VarDecl::StorageClass StorageClass,
7625                                  VarDecl::StorageClass StorageClassAsWritten) {
7626  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7627  if (getLangOpts().ObjCAutoRefCount &&
7628      T.getObjCLifetime() == Qualifiers::OCL_None &&
7629      T->isObjCLifetimeType()) {
7630
7631    Qualifiers::ObjCLifetime lifetime;
7632
7633    // Special cases for arrays:
7634    //   - if it's const, use __unsafe_unretained
7635    //   - otherwise, it's an error
7636    if (T->isArrayType()) {
7637      if (!T.isConstQualified()) {
7638        DelayedDiagnostics.add(
7639            sema::DelayedDiagnostic::makeForbiddenType(
7640            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7641      }
7642      lifetime = Qualifiers::OCL_ExplicitNone;
7643    } else {
7644      lifetime = T->getObjCARCImplicitLifetime();
7645    }
7646    T = Context.getLifetimeQualifiedType(T, lifetime);
7647  }
7648
7649  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7650                                         Context.getAdjustedParameterType(T),
7651                                         TSInfo,
7652                                         StorageClass, StorageClassAsWritten,
7653                                         0);
7654
7655  // Parameters can not be abstract class types.
7656  // For record types, this is done by the AbstractClassUsageDiagnoser once
7657  // the class has been completely parsed.
7658  if (!CurContext->isRecord() &&
7659      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7660                             AbstractParamType))
7661    New->setInvalidDecl();
7662
7663  // Parameter declarators cannot be interface types. All ObjC objects are
7664  // passed by reference.
7665  if (T->isObjCObjectType()) {
7666    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7667    Diag(NameLoc,
7668         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7669      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7670    T = Context.getObjCObjectPointerType(T);
7671    New->setType(T);
7672  }
7673
7674  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7675  // duration shall not be qualified by an address-space qualifier."
7676  // Since all parameters have automatic store duration, they can not have
7677  // an address space.
7678  if (T.getAddressSpace() != 0) {
7679    Diag(NameLoc, diag::err_arg_with_address_space);
7680    New->setInvalidDecl();
7681  }
7682
7683  return New;
7684}
7685
7686void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7687                                           SourceLocation LocAfterDecls) {
7688  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7689
7690  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7691  // for a K&R function.
7692  if (!FTI.hasPrototype) {
7693    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7694      --i;
7695      if (FTI.ArgInfo[i].Param == 0) {
7696        SmallString<256> Code;
7697        llvm::raw_svector_ostream(Code) << "  int "
7698                                        << FTI.ArgInfo[i].Ident->getName()
7699                                        << ";\n";
7700        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7701          << FTI.ArgInfo[i].Ident
7702          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7703
7704        // Implicitly declare the argument as type 'int' for lack of a better
7705        // type.
7706        AttributeFactory attrs;
7707        DeclSpec DS(attrs);
7708        const char* PrevSpec; // unused
7709        unsigned DiagID; // unused
7710        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7711                           PrevSpec, DiagID);
7712        // Use the identifier location for the type source range.
7713        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
7714        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
7715        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7716        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7717        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7718      }
7719    }
7720  }
7721}
7722
7723Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7724  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7725  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7726  Scope *ParentScope = FnBodyScope->getParent();
7727
7728  D.setFunctionDefinitionKind(FDK_Definition);
7729  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
7730  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7731}
7732
7733static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7734  // Don't warn about invalid declarations.
7735  if (FD->isInvalidDecl())
7736    return false;
7737
7738  // Or declarations that aren't global.
7739  if (!FD->isGlobal())
7740    return false;
7741
7742  // Don't warn about C++ member functions.
7743  if (isa<CXXMethodDecl>(FD))
7744    return false;
7745
7746  // Don't warn about 'main'.
7747  if (FD->isMain())
7748    return false;
7749
7750  // Don't warn about inline functions.
7751  if (FD->isInlined())
7752    return false;
7753
7754  // Don't warn about function templates.
7755  if (FD->getDescribedFunctionTemplate())
7756    return false;
7757
7758  // Don't warn about function template specializations.
7759  if (FD->isFunctionTemplateSpecialization())
7760    return false;
7761
7762  // Don't warn for OpenCL kernels.
7763  if (FD->hasAttr<OpenCLKernelAttr>())
7764    return false;
7765
7766  bool MissingPrototype = true;
7767  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7768       Prev; Prev = Prev->getPreviousDecl()) {
7769    // Ignore any declarations that occur in function or method
7770    // scope, because they aren't visible from the header.
7771    if (Prev->getDeclContext()->isFunctionOrMethod())
7772      continue;
7773
7774    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7775    break;
7776  }
7777
7778  return MissingPrototype;
7779}
7780
7781void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7782  // Don't complain if we're in GNU89 mode and the previous definition
7783  // was an extern inline function.
7784  const FunctionDecl *Definition;
7785  if (FD->isDefined(Definition) &&
7786      !canRedefineFunction(Definition, getLangOpts())) {
7787    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7788        Definition->getStorageClass() == SC_Extern)
7789      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7790        << FD->getDeclName() << getLangOpts().CPlusPlus;
7791    else
7792      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7793    Diag(Definition->getLocation(), diag::note_previous_definition);
7794    FD->setInvalidDecl();
7795  }
7796}
7797
7798Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7799  // Clear the last template instantiation error context.
7800  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7801
7802  if (!D)
7803    return D;
7804  FunctionDecl *FD = 0;
7805
7806  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7807    FD = FunTmpl->getTemplatedDecl();
7808  else
7809    FD = cast<FunctionDecl>(D);
7810
7811  // Enter a new function scope
7812  PushFunctionScope();
7813
7814  // See if this is a redefinition.
7815  if (!FD->isLateTemplateParsed())
7816    CheckForFunctionRedefinition(FD);
7817
7818  // Builtin functions cannot be defined.
7819  if (unsigned BuiltinID = FD->getBuiltinID()) {
7820    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7821      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7822      FD->setInvalidDecl();
7823    }
7824  }
7825
7826  // The return type of a function definition must be complete
7827  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7828  QualType ResultType = FD->getResultType();
7829  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7830      !FD->isInvalidDecl() &&
7831      RequireCompleteType(FD->getLocation(), ResultType,
7832                          diag::err_func_def_incomplete_result))
7833    FD->setInvalidDecl();
7834
7835  // GNU warning -Wmissing-prototypes:
7836  //   Warn if a global function is defined without a previous
7837  //   prototype declaration. This warning is issued even if the
7838  //   definition itself provides a prototype. The aim is to detect
7839  //   global functions that fail to be declared in header files.
7840  if (ShouldWarnAboutMissingPrototype(FD))
7841    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7842
7843  if (FnBodyScope)
7844    PushDeclContext(FnBodyScope, FD);
7845
7846  // Check the validity of our function parameters
7847  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7848                           /*CheckParameterNames=*/true);
7849
7850  // Introduce our parameters into the function scope
7851  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7852    ParmVarDecl *Param = FD->getParamDecl(p);
7853    Param->setOwningFunction(FD);
7854
7855    // If this has an identifier, add it to the scope stack.
7856    if (Param->getIdentifier() && FnBodyScope) {
7857      CheckShadow(FnBodyScope, Param);
7858
7859      PushOnScopeChains(Param, FnBodyScope);
7860    }
7861  }
7862
7863  // If we had any tags defined in the function prototype,
7864  // introduce them into the function scope.
7865  if (FnBodyScope) {
7866    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7867           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7868      NamedDecl *D = *I;
7869
7870      // Some of these decls (like enums) may have been pinned to the translation unit
7871      // for lack of a real context earlier. If so, remove from the translation unit
7872      // and reattach to the current context.
7873      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7874        // Is the decl actually in the context?
7875        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7876               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7877          if (*DI == D) {
7878            Context.getTranslationUnitDecl()->removeDecl(D);
7879            break;
7880          }
7881        }
7882        // Either way, reassign the lexical decl context to our FunctionDecl.
7883        D->setLexicalDeclContext(CurContext);
7884      }
7885
7886      // If the decl has a non-null name, make accessible in the current scope.
7887      if (!D->getName().empty())
7888        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7889
7890      // Similarly, dive into enums and fish their constants out, making them
7891      // accessible in this scope.
7892      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7893        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7894               EE = ED->enumerator_end(); EI != EE; ++EI)
7895          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7896      }
7897    }
7898  }
7899
7900  // Ensure that the function's exception specification is instantiated.
7901  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7902    ResolveExceptionSpec(D->getLocation(), FPT);
7903
7904  // Checking attributes of current function definition
7905  // dllimport attribute.
7906  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7907  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7908    // dllimport attribute cannot be directly applied to definition.
7909    // Microsoft accepts dllimport for functions defined within class scope.
7910    if (!DA->isInherited() &&
7911        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7912      Diag(FD->getLocation(),
7913           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7914        << "dllimport";
7915      FD->setInvalidDecl();
7916      return FD;
7917    }
7918
7919    // Visual C++ appears to not think this is an issue, so only issue
7920    // a warning when Microsoft extensions are disabled.
7921    if (!LangOpts.MicrosoftExt) {
7922      // If a symbol previously declared dllimport is later defined, the
7923      // attribute is ignored in subsequent references, and a warning is
7924      // emitted.
7925      Diag(FD->getLocation(),
7926           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7927        << FD->getName() << "dllimport";
7928    }
7929  }
7930  // We want to attach documentation to original Decl (which might be
7931  // a function template).
7932  ActOnDocumentableDecl(D);
7933  return FD;
7934}
7935
7936/// \brief Given the set of return statements within a function body,
7937/// compute the variables that are subject to the named return value
7938/// optimization.
7939///
7940/// Each of the variables that is subject to the named return value
7941/// optimization will be marked as NRVO variables in the AST, and any
7942/// return statement that has a marked NRVO variable as its NRVO candidate can
7943/// use the named return value optimization.
7944///
7945/// This function applies a very simplistic algorithm for NRVO: if every return
7946/// statement in the function has the same NRVO candidate, that candidate is
7947/// the NRVO variable.
7948///
7949/// FIXME: Employ a smarter algorithm that accounts for multiple return
7950/// statements and the lifetimes of the NRVO candidates. We should be able to
7951/// find a maximal set of NRVO variables.
7952void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7953  ReturnStmt **Returns = Scope->Returns.data();
7954
7955  const VarDecl *NRVOCandidate = 0;
7956  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7957    if (!Returns[I]->getNRVOCandidate())
7958      return;
7959
7960    if (!NRVOCandidate)
7961      NRVOCandidate = Returns[I]->getNRVOCandidate();
7962    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7963      return;
7964  }
7965
7966  if (NRVOCandidate)
7967    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7968}
7969
7970Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7971  return ActOnFinishFunctionBody(D, BodyArg, false);
7972}
7973
7974Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7975                                    bool IsInstantiation) {
7976  FunctionDecl *FD = 0;
7977  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7978  if (FunTmpl)
7979    FD = FunTmpl->getTemplatedDecl();
7980  else
7981    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7982
7983  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7984  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7985
7986  if (FD) {
7987    FD->setBody(Body);
7988
7989    // If the function implicitly returns zero (like 'main') or is naked,
7990    // don't complain about missing return statements.
7991    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7992      WP.disableCheckFallThrough();
7993
7994    // MSVC permits the use of pure specifier (=0) on function definition,
7995    // defined at class scope, warn about this non standard construct.
7996    if (getLangOpts().MicrosoftExt && FD->isPure())
7997      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7998
7999    if (!FD->isInvalidDecl()) {
8000      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8001      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8002                                             FD->getResultType(), FD);
8003
8004      // If this is a constructor, we need a vtable.
8005      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8006        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8007
8008      // Try to apply the named return value optimization. We have to check
8009      // if we can do this here because lambdas keep return statements around
8010      // to deduce an implicit return type.
8011      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8012          !FD->isDependentContext())
8013        computeNRVO(Body, getCurFunction());
8014    }
8015
8016    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8017           "Function parsing confused");
8018  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8019    assert(MD == getCurMethodDecl() && "Method parsing confused");
8020    MD->setBody(Body);
8021    if (!MD->isInvalidDecl()) {
8022      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8023      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8024                                             MD->getResultType(), MD);
8025
8026      if (Body)
8027        computeNRVO(Body, getCurFunction());
8028    }
8029    if (getCurFunction()->ObjCShouldCallSuper) {
8030      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8031        << MD->getSelector().getAsString();
8032      getCurFunction()->ObjCShouldCallSuper = false;
8033    }
8034  } else {
8035    return 0;
8036  }
8037
8038  assert(!getCurFunction()->ObjCShouldCallSuper &&
8039         "This should only be set for ObjC methods, which should have been "
8040         "handled in the block above.");
8041
8042  // Verify and clean out per-function state.
8043  if (Body) {
8044    // C++ constructors that have function-try-blocks can't have return
8045    // statements in the handlers of that block. (C++ [except.handle]p14)
8046    // Verify this.
8047    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8048      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8049
8050    // Verify that gotos and switch cases don't jump into scopes illegally.
8051    if (getCurFunction()->NeedsScopeChecking() &&
8052        !dcl->isInvalidDecl() &&
8053        !hasAnyUnrecoverableErrorsInThisFunction() &&
8054        !PP.isCodeCompletionEnabled())
8055      DiagnoseInvalidJumps(Body);
8056
8057    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8058      if (!Destructor->getParent()->isDependentType())
8059        CheckDestructor(Destructor);
8060
8061      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8062                                             Destructor->getParent());
8063    }
8064
8065    // If any errors have occurred, clear out any temporaries that may have
8066    // been leftover. This ensures that these temporaries won't be picked up for
8067    // deletion in some later function.
8068    if (PP.getDiagnostics().hasErrorOccurred() ||
8069        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8070      DiscardCleanupsInEvaluationContext();
8071    } else if (!isa<FunctionTemplateDecl>(dcl)) {
8072      // Since the body is valid, issue any analysis-based warnings that are
8073      // enabled.
8074      ActivePolicy = &WP;
8075    }
8076
8077    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8078        (!CheckConstexprFunctionDecl(FD) ||
8079         !CheckConstexprFunctionBody(FD, Body)))
8080      FD->setInvalidDecl();
8081
8082    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8083    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8084    assert(MaybeODRUseExprs.empty() &&
8085           "Leftover expressions for odr-use checking");
8086  }
8087
8088  if (!IsInstantiation)
8089    PopDeclContext();
8090
8091  PopFunctionScopeInfo(ActivePolicy, dcl);
8092
8093  // If any errors have occurred, clear out any temporaries that may have
8094  // been leftover. This ensures that these temporaries won't be picked up for
8095  // deletion in some later function.
8096  if (getDiagnostics().hasErrorOccurred()) {
8097    DiscardCleanupsInEvaluationContext();
8098  }
8099
8100  return dcl;
8101}
8102
8103
8104/// When we finish delayed parsing of an attribute, we must attach it to the
8105/// relevant Decl.
8106void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8107                                       ParsedAttributes &Attrs) {
8108  // Always attach attributes to the underlying decl.
8109  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8110    D = TD->getTemplatedDecl();
8111  ProcessDeclAttributeList(S, D, Attrs.getList());
8112
8113  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8114    if (Method->isStatic())
8115      checkThisInStaticMemberFunctionAttributes(Method);
8116}
8117
8118
8119/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8120/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8121NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8122                                          IdentifierInfo &II, Scope *S) {
8123  // Before we produce a declaration for an implicitly defined
8124  // function, see whether there was a locally-scoped declaration of
8125  // this name as a function or variable. If so, use that
8126  // (non-visible) declaration, and complain about it.
8127  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8128    = findLocallyScopedExternalDecl(&II);
8129  if (Pos != LocallyScopedExternalDecls.end()) {
8130    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8131    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8132    return Pos->second;
8133  }
8134
8135  // Extension in C99.  Legal in C90, but warn about it.
8136  unsigned diag_id;
8137  if (II.getName().startswith("__builtin_"))
8138    diag_id = diag::warn_builtin_unknown;
8139  else if (getLangOpts().C99)
8140    diag_id = diag::ext_implicit_function_decl;
8141  else
8142    diag_id = diag::warn_implicit_function_decl;
8143  Diag(Loc, diag_id) << &II;
8144
8145  // Because typo correction is expensive, only do it if the implicit
8146  // function declaration is going to be treated as an error.
8147  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8148    TypoCorrection Corrected;
8149    DeclFilterCCC<FunctionDecl> Validator;
8150    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8151                                      LookupOrdinaryName, S, 0, Validator))) {
8152      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8153      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8154      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8155
8156      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8157          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8158
8159      if (Func->getLocation().isValid()
8160          && !II.getName().startswith("__builtin_"))
8161        Diag(Func->getLocation(), diag::note_previous_decl)
8162            << CorrectedQuotedStr;
8163    }
8164  }
8165
8166  // Set a Declarator for the implicit definition: int foo();
8167  const char *Dummy;
8168  AttributeFactory attrFactory;
8169  DeclSpec DS(attrFactory);
8170  unsigned DiagID;
8171  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8172  (void)Error; // Silence warning.
8173  assert(!Error && "Error setting up implicit decl!");
8174  SourceLocation NoLoc;
8175  Declarator D(DS, Declarator::BlockContext);
8176  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8177                                             /*IsAmbiguous=*/false,
8178                                             /*RParenLoc=*/NoLoc,
8179                                             /*ArgInfo=*/0,
8180                                             /*NumArgs=*/0,
8181                                             /*EllipsisLoc=*/NoLoc,
8182                                             /*RParenLoc=*/NoLoc,
8183                                             /*TypeQuals=*/0,
8184                                             /*RefQualifierIsLvalueRef=*/true,
8185                                             /*RefQualifierLoc=*/NoLoc,
8186                                             /*ConstQualifierLoc=*/NoLoc,
8187                                             /*VolatileQualifierLoc=*/NoLoc,
8188                                             /*MutableLoc=*/NoLoc,
8189                                             EST_None,
8190                                             /*ESpecLoc=*/NoLoc,
8191                                             /*Exceptions=*/0,
8192                                             /*ExceptionRanges=*/0,
8193                                             /*NumExceptions=*/0,
8194                                             /*NoexceptExpr=*/0,
8195                                             Loc, Loc, D),
8196                DS.getAttributes(),
8197                SourceLocation());
8198  D.SetIdentifier(&II, Loc);
8199
8200  // Insert this function into translation-unit scope.
8201
8202  DeclContext *PrevDC = CurContext;
8203  CurContext = Context.getTranslationUnitDecl();
8204
8205  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8206  FD->setImplicit();
8207
8208  CurContext = PrevDC;
8209
8210  AddKnownFunctionAttributes(FD);
8211
8212  return FD;
8213}
8214
8215/// \brief Adds any function attributes that we know a priori based on
8216/// the declaration of this function.
8217///
8218/// These attributes can apply both to implicitly-declared builtins
8219/// (like __builtin___printf_chk) or to library-declared functions
8220/// like NSLog or printf.
8221///
8222/// We need to check for duplicate attributes both here and where user-written
8223/// attributes are applied to declarations.
8224void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8225  if (FD->isInvalidDecl())
8226    return;
8227
8228  // If this is a built-in function, map its builtin attributes to
8229  // actual attributes.
8230  if (unsigned BuiltinID = FD->getBuiltinID()) {
8231    // Handle printf-formatting attributes.
8232    unsigned FormatIdx;
8233    bool HasVAListArg;
8234    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8235      if (!FD->getAttr<FormatAttr>()) {
8236        const char *fmt = "printf";
8237        unsigned int NumParams = FD->getNumParams();
8238        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8239            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8240          fmt = "NSString";
8241        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8242                                               fmt, FormatIdx+1,
8243                                               HasVAListArg ? 0 : FormatIdx+2));
8244      }
8245    }
8246    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8247                                             HasVAListArg)) {
8248     if (!FD->getAttr<FormatAttr>())
8249       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8250                                              "scanf", FormatIdx+1,
8251                                              HasVAListArg ? 0 : FormatIdx+2));
8252    }
8253
8254    // Mark const if we don't care about errno and that is the only
8255    // thing preventing the function from being const. This allows
8256    // IRgen to use LLVM intrinsics for such functions.
8257    if (!getLangOpts().MathErrno &&
8258        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8259      if (!FD->getAttr<ConstAttr>())
8260        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8261    }
8262
8263    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8264        !FD->getAttr<ReturnsTwiceAttr>())
8265      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8266    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8267      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8268    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8269      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8270  }
8271
8272  IdentifierInfo *Name = FD->getIdentifier();
8273  if (!Name)
8274    return;
8275  if ((!getLangOpts().CPlusPlus &&
8276       FD->getDeclContext()->isTranslationUnit()) ||
8277      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8278       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8279       LinkageSpecDecl::lang_c)) {
8280    // Okay: this could be a libc/libm/Objective-C function we know
8281    // about.
8282  } else
8283    return;
8284
8285  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8286    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8287    // target-specific builtins, perhaps?
8288    if (!FD->getAttr<FormatAttr>())
8289      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8290                                             "printf", 2,
8291                                             Name->isStr("vasprintf") ? 0 : 3));
8292  }
8293
8294  if (Name->isStr("__CFStringMakeConstantString")) {
8295    // We already have a __builtin___CFStringMakeConstantString,
8296    // but builds that use -fno-constant-cfstrings don't go through that.
8297    if (!FD->getAttr<FormatArgAttr>())
8298      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8299  }
8300}
8301
8302TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8303                                    TypeSourceInfo *TInfo) {
8304  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8305  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8306
8307  if (!TInfo) {
8308    assert(D.isInvalidType() && "no declarator info for valid type");
8309    TInfo = Context.getTrivialTypeSourceInfo(T);
8310  }
8311
8312  // Scope manipulation handled by caller.
8313  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8314                                           D.getLocStart(),
8315                                           D.getIdentifierLoc(),
8316                                           D.getIdentifier(),
8317                                           TInfo);
8318
8319  // Bail out immediately if we have an invalid declaration.
8320  if (D.isInvalidType()) {
8321    NewTD->setInvalidDecl();
8322    return NewTD;
8323  }
8324
8325  if (D.getDeclSpec().isModulePrivateSpecified()) {
8326    if (CurContext->isFunctionOrMethod())
8327      Diag(NewTD->getLocation(), diag::err_module_private_local)
8328        << 2 << NewTD->getDeclName()
8329        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8330        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8331    else
8332      NewTD->setModulePrivate();
8333  }
8334
8335  // C++ [dcl.typedef]p8:
8336  //   If the typedef declaration defines an unnamed class (or
8337  //   enum), the first typedef-name declared by the declaration
8338  //   to be that class type (or enum type) is used to denote the
8339  //   class type (or enum type) for linkage purposes only.
8340  // We need to check whether the type was declared in the declaration.
8341  switch (D.getDeclSpec().getTypeSpecType()) {
8342  case TST_enum:
8343  case TST_struct:
8344  case TST_interface:
8345  case TST_union:
8346  case TST_class: {
8347    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8348
8349    // Do nothing if the tag is not anonymous or already has an
8350    // associated typedef (from an earlier typedef in this decl group).
8351    if (tagFromDeclSpec->getIdentifier()) break;
8352    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8353
8354    // A well-formed anonymous tag must always be a TUK_Definition.
8355    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8356
8357    // The type must match the tag exactly;  no qualifiers allowed.
8358    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8359      break;
8360
8361    // Otherwise, set this is the anon-decl typedef for the tag.
8362    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8363    break;
8364  }
8365
8366  default:
8367    break;
8368  }
8369
8370  return NewTD;
8371}
8372
8373
8374/// \brief Check that this is a valid underlying type for an enum declaration.
8375bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8376  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8377  QualType T = TI->getType();
8378
8379  if (T->isDependentType() || T->isIntegralType(Context))
8380    return false;
8381
8382  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8383  return true;
8384}
8385
8386/// Check whether this is a valid redeclaration of a previous enumeration.
8387/// \return true if the redeclaration was invalid.
8388bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8389                                  QualType EnumUnderlyingTy,
8390                                  const EnumDecl *Prev) {
8391  bool IsFixed = !EnumUnderlyingTy.isNull();
8392
8393  if (IsScoped != Prev->isScoped()) {
8394    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8395      << Prev->isScoped();
8396    Diag(Prev->getLocation(), diag::note_previous_use);
8397    return true;
8398  }
8399
8400  if (IsFixed && Prev->isFixed()) {
8401    if (!EnumUnderlyingTy->isDependentType() &&
8402        !Prev->getIntegerType()->isDependentType() &&
8403        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8404                                        Prev->getIntegerType())) {
8405      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8406        << EnumUnderlyingTy << Prev->getIntegerType();
8407      Diag(Prev->getLocation(), diag::note_previous_use);
8408      return true;
8409    }
8410  } else if (IsFixed != Prev->isFixed()) {
8411    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8412      << Prev->isFixed();
8413    Diag(Prev->getLocation(), diag::note_previous_use);
8414    return true;
8415  }
8416
8417  return false;
8418}
8419
8420/// \brief Get diagnostic %select index for tag kind for
8421/// redeclaration diagnostic message.
8422/// WARNING: Indexes apply to particular diagnostics only!
8423///
8424/// \returns diagnostic %select index.
8425static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8426  switch (Tag) {
8427  case TTK_Struct: return 0;
8428  case TTK_Interface: return 1;
8429  case TTK_Class:  return 2;
8430  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8431  }
8432}
8433
8434/// \brief Determine if tag kind is a class-key compatible with
8435/// class for redeclaration (class, struct, or __interface).
8436///
8437/// \returns true iff the tag kind is compatible.
8438static bool isClassCompatTagKind(TagTypeKind Tag)
8439{
8440  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8441}
8442
8443/// \brief Determine whether a tag with a given kind is acceptable
8444/// as a redeclaration of the given tag declaration.
8445///
8446/// \returns true if the new tag kind is acceptable, false otherwise.
8447bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8448                                        TagTypeKind NewTag, bool isDefinition,
8449                                        SourceLocation NewTagLoc,
8450                                        const IdentifierInfo &Name) {
8451  // C++ [dcl.type.elab]p3:
8452  //   The class-key or enum keyword present in the
8453  //   elaborated-type-specifier shall agree in kind with the
8454  //   declaration to which the name in the elaborated-type-specifier
8455  //   refers. This rule also applies to the form of
8456  //   elaborated-type-specifier that declares a class-name or
8457  //   friend class since it can be construed as referring to the
8458  //   definition of the class. Thus, in any
8459  //   elaborated-type-specifier, the enum keyword shall be used to
8460  //   refer to an enumeration (7.2), the union class-key shall be
8461  //   used to refer to a union (clause 9), and either the class or
8462  //   struct class-key shall be used to refer to a class (clause 9)
8463  //   declared using the class or struct class-key.
8464  TagTypeKind OldTag = Previous->getTagKind();
8465  if (!isDefinition || !isClassCompatTagKind(NewTag))
8466    if (OldTag == NewTag)
8467      return true;
8468
8469  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8470    // Warn about the struct/class tag mismatch.
8471    bool isTemplate = false;
8472    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8473      isTemplate = Record->getDescribedClassTemplate();
8474
8475    if (!ActiveTemplateInstantiations.empty()) {
8476      // In a template instantiation, do not offer fix-its for tag mismatches
8477      // since they usually mess up the template instead of fixing the problem.
8478      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8479        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8480        << getRedeclDiagFromTagKind(OldTag);
8481      return true;
8482    }
8483
8484    if (isDefinition) {
8485      // On definitions, check previous tags and issue a fix-it for each
8486      // one that doesn't match the current tag.
8487      if (Previous->getDefinition()) {
8488        // Don't suggest fix-its for redefinitions.
8489        return true;
8490      }
8491
8492      bool previousMismatch = false;
8493      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8494           E(Previous->redecls_end()); I != E; ++I) {
8495        if (I->getTagKind() != NewTag) {
8496          if (!previousMismatch) {
8497            previousMismatch = true;
8498            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8499              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8500              << getRedeclDiagFromTagKind(I->getTagKind());
8501          }
8502          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8503            << getRedeclDiagFromTagKind(NewTag)
8504            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8505                 TypeWithKeyword::getTagTypeKindName(NewTag));
8506        }
8507      }
8508      return true;
8509    }
8510
8511    // Check for a previous definition.  If current tag and definition
8512    // are same type, do nothing.  If no definition, but disagree with
8513    // with previous tag type, give a warning, but no fix-it.
8514    const TagDecl *Redecl = Previous->getDefinition() ?
8515                            Previous->getDefinition() : Previous;
8516    if (Redecl->getTagKind() == NewTag) {
8517      return true;
8518    }
8519
8520    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8521      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8522      << getRedeclDiagFromTagKind(OldTag);
8523    Diag(Redecl->getLocation(), diag::note_previous_use);
8524
8525    // If there is a previous defintion, suggest a fix-it.
8526    if (Previous->getDefinition()) {
8527        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8528          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8529          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8530               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8531    }
8532
8533    return true;
8534  }
8535  return false;
8536}
8537
8538/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8539/// former case, Name will be non-null.  In the later case, Name will be null.
8540/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8541/// reference/declaration/definition of a tag.
8542Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8543                     SourceLocation KWLoc, CXXScopeSpec &SS,
8544                     IdentifierInfo *Name, SourceLocation NameLoc,
8545                     AttributeList *Attr, AccessSpecifier AS,
8546                     SourceLocation ModulePrivateLoc,
8547                     MultiTemplateParamsArg TemplateParameterLists,
8548                     bool &OwnedDecl, bool &IsDependent,
8549                     SourceLocation ScopedEnumKWLoc,
8550                     bool ScopedEnumUsesClassTag,
8551                     TypeResult UnderlyingType) {
8552  // If this is not a definition, it must have a name.
8553  IdentifierInfo *OrigName = Name;
8554  assert((Name != 0 || TUK == TUK_Definition) &&
8555         "Nameless record must be a definition!");
8556  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8557
8558  OwnedDecl = false;
8559  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8560  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8561
8562  // FIXME: Check explicit specializations more carefully.
8563  bool isExplicitSpecialization = false;
8564  bool Invalid = false;
8565
8566  // We only need to do this matching if we have template parameters
8567  // or a scope specifier, which also conveniently avoids this work
8568  // for non-C++ cases.
8569  if (TemplateParameterLists.size() > 0 ||
8570      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8571    if (TemplateParameterList *TemplateParams
8572          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8573                                                TemplateParameterLists.data(),
8574                                                TemplateParameterLists.size(),
8575                                                    TUK == TUK_Friend,
8576                                                    isExplicitSpecialization,
8577                                                    Invalid)) {
8578      if (TemplateParams->size() > 0) {
8579        // This is a declaration or definition of a class template (which may
8580        // be a member of another template).
8581
8582        if (Invalid)
8583          return 0;
8584
8585        OwnedDecl = false;
8586        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8587                                               SS, Name, NameLoc, Attr,
8588                                               TemplateParams, AS,
8589                                               ModulePrivateLoc,
8590                                               TemplateParameterLists.size()-1,
8591                                               TemplateParameterLists.data());
8592        return Result.get();
8593      } else {
8594        // The "template<>" header is extraneous.
8595        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8596          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8597        isExplicitSpecialization = true;
8598      }
8599    }
8600  }
8601
8602  // Figure out the underlying type if this a enum declaration. We need to do
8603  // this early, because it's needed to detect if this is an incompatible
8604  // redeclaration.
8605  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8606
8607  if (Kind == TTK_Enum) {
8608    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8609      // No underlying type explicitly specified, or we failed to parse the
8610      // type, default to int.
8611      EnumUnderlying = Context.IntTy.getTypePtr();
8612    else if (UnderlyingType.get()) {
8613      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8614      // integral type; any cv-qualification is ignored.
8615      TypeSourceInfo *TI = 0;
8616      GetTypeFromParser(UnderlyingType.get(), &TI);
8617      EnumUnderlying = TI;
8618
8619      if (CheckEnumUnderlyingType(TI))
8620        // Recover by falling back to int.
8621        EnumUnderlying = Context.IntTy.getTypePtr();
8622
8623      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8624                                          UPPC_FixedUnderlyingType))
8625        EnumUnderlying = Context.IntTy.getTypePtr();
8626
8627    } else if (getLangOpts().MicrosoftMode)
8628      // Microsoft enums are always of int type.
8629      EnumUnderlying = Context.IntTy.getTypePtr();
8630  }
8631
8632  DeclContext *SearchDC = CurContext;
8633  DeclContext *DC = CurContext;
8634  bool isStdBadAlloc = false;
8635
8636  RedeclarationKind Redecl = ForRedeclaration;
8637  if (TUK == TUK_Friend || TUK == TUK_Reference)
8638    Redecl = NotForRedeclaration;
8639
8640  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8641
8642  if (Name && SS.isNotEmpty()) {
8643    // We have a nested-name tag ('struct foo::bar').
8644
8645    // Check for invalid 'foo::'.
8646    if (SS.isInvalid()) {
8647      Name = 0;
8648      goto CreateNewDecl;
8649    }
8650
8651    // If this is a friend or a reference to a class in a dependent
8652    // context, don't try to make a decl for it.
8653    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8654      DC = computeDeclContext(SS, false);
8655      if (!DC) {
8656        IsDependent = true;
8657        return 0;
8658      }
8659    } else {
8660      DC = computeDeclContext(SS, true);
8661      if (!DC) {
8662        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8663          << SS.getRange();
8664        return 0;
8665      }
8666    }
8667
8668    if (RequireCompleteDeclContext(SS, DC))
8669      return 0;
8670
8671    SearchDC = DC;
8672    // Look-up name inside 'foo::'.
8673    LookupQualifiedName(Previous, DC);
8674
8675    if (Previous.isAmbiguous())
8676      return 0;
8677
8678    if (Previous.empty()) {
8679      // Name lookup did not find anything. However, if the
8680      // nested-name-specifier refers to the current instantiation,
8681      // and that current instantiation has any dependent base
8682      // classes, we might find something at instantiation time: treat
8683      // this as a dependent elaborated-type-specifier.
8684      // But this only makes any sense for reference-like lookups.
8685      if (Previous.wasNotFoundInCurrentInstantiation() &&
8686          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8687        IsDependent = true;
8688        return 0;
8689      }
8690
8691      // A tag 'foo::bar' must already exist.
8692      Diag(NameLoc, diag::err_not_tag_in_scope)
8693        << Kind << Name << DC << SS.getRange();
8694      Name = 0;
8695      Invalid = true;
8696      goto CreateNewDecl;
8697    }
8698  } else if (Name) {
8699    // If this is a named struct, check to see if there was a previous forward
8700    // declaration or definition.
8701    // FIXME: We're looking into outer scopes here, even when we
8702    // shouldn't be. Doing so can result in ambiguities that we
8703    // shouldn't be diagnosing.
8704    LookupName(Previous, S);
8705
8706    if (Previous.isAmbiguous() &&
8707        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8708      LookupResult::Filter F = Previous.makeFilter();
8709      while (F.hasNext()) {
8710        NamedDecl *ND = F.next();
8711        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8712          F.erase();
8713      }
8714      F.done();
8715    }
8716
8717    // Note:  there used to be some attempt at recovery here.
8718    if (Previous.isAmbiguous())
8719      return 0;
8720
8721    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8722      // FIXME: This makes sure that we ignore the contexts associated
8723      // with C structs, unions, and enums when looking for a matching
8724      // tag declaration or definition. See the similar lookup tweak
8725      // in Sema::LookupName; is there a better way to deal with this?
8726      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8727        SearchDC = SearchDC->getParent();
8728    }
8729  } else if (S->isFunctionPrototypeScope()) {
8730    // If this is an enum declaration in function prototype scope, set its
8731    // initial context to the translation unit.
8732    // FIXME: [citation needed]
8733    SearchDC = Context.getTranslationUnitDecl();
8734  }
8735
8736  if (Previous.isSingleResult() &&
8737      Previous.getFoundDecl()->isTemplateParameter()) {
8738    // Maybe we will complain about the shadowed template parameter.
8739    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8740    // Just pretend that we didn't see the previous declaration.
8741    Previous.clear();
8742  }
8743
8744  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8745      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8746    // This is a declaration of or a reference to "std::bad_alloc".
8747    isStdBadAlloc = true;
8748
8749    if (Previous.empty() && StdBadAlloc) {
8750      // std::bad_alloc has been implicitly declared (but made invisible to
8751      // name lookup). Fill in this implicit declaration as the previous
8752      // declaration, so that the declarations get chained appropriately.
8753      Previous.addDecl(getStdBadAlloc());
8754    }
8755  }
8756
8757  // If we didn't find a previous declaration, and this is a reference
8758  // (or friend reference), move to the correct scope.  In C++, we
8759  // also need to do a redeclaration lookup there, just in case
8760  // there's a shadow friend decl.
8761  if (Name && Previous.empty() &&
8762      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8763    if (Invalid) goto CreateNewDecl;
8764    assert(SS.isEmpty());
8765
8766    if (TUK == TUK_Reference) {
8767      // C++ [basic.scope.pdecl]p5:
8768      //   -- for an elaborated-type-specifier of the form
8769      //
8770      //          class-key identifier
8771      //
8772      //      if the elaborated-type-specifier is used in the
8773      //      decl-specifier-seq or parameter-declaration-clause of a
8774      //      function defined in namespace scope, the identifier is
8775      //      declared as a class-name in the namespace that contains
8776      //      the declaration; otherwise, except as a friend
8777      //      declaration, the identifier is declared in the smallest
8778      //      non-class, non-function-prototype scope that contains the
8779      //      declaration.
8780      //
8781      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8782      // C structs and unions.
8783      //
8784      // It is an error in C++ to declare (rather than define) an enum
8785      // type, including via an elaborated type specifier.  We'll
8786      // diagnose that later; for now, declare the enum in the same
8787      // scope as we would have picked for any other tag type.
8788      //
8789      // GNU C also supports this behavior as part of its incomplete
8790      // enum types extension, while GNU C++ does not.
8791      //
8792      // Find the context where we'll be declaring the tag.
8793      // FIXME: We would like to maintain the current DeclContext as the
8794      // lexical context,
8795      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8796        SearchDC = SearchDC->getParent();
8797
8798      // Find the scope where we'll be declaring the tag.
8799      while (S->isClassScope() ||
8800             (getLangOpts().CPlusPlus &&
8801              S->isFunctionPrototypeScope()) ||
8802             ((S->getFlags() & Scope::DeclScope) == 0) ||
8803             (S->getEntity() &&
8804              ((DeclContext *)S->getEntity())->isTransparentContext()))
8805        S = S->getParent();
8806    } else {
8807      assert(TUK == TUK_Friend);
8808      // C++ [namespace.memdef]p3:
8809      //   If a friend declaration in a non-local class first declares a
8810      //   class or function, the friend class or function is a member of
8811      //   the innermost enclosing namespace.
8812      SearchDC = SearchDC->getEnclosingNamespaceContext();
8813    }
8814
8815    // In C++, we need to do a redeclaration lookup to properly
8816    // diagnose some problems.
8817    if (getLangOpts().CPlusPlus) {
8818      Previous.setRedeclarationKind(ForRedeclaration);
8819      LookupQualifiedName(Previous, SearchDC);
8820    }
8821  }
8822
8823  if (!Previous.empty()) {
8824    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8825
8826    // It's okay to have a tag decl in the same scope as a typedef
8827    // which hides a tag decl in the same scope.  Finding this
8828    // insanity with a redeclaration lookup can only actually happen
8829    // in C++.
8830    //
8831    // This is also okay for elaborated-type-specifiers, which is
8832    // technically forbidden by the current standard but which is
8833    // okay according to the likely resolution of an open issue;
8834    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8835    if (getLangOpts().CPlusPlus) {
8836      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8837        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8838          TagDecl *Tag = TT->getDecl();
8839          if (Tag->getDeclName() == Name &&
8840              Tag->getDeclContext()->getRedeclContext()
8841                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8842            PrevDecl = Tag;
8843            Previous.clear();
8844            Previous.addDecl(Tag);
8845            Previous.resolveKind();
8846          }
8847        }
8848      }
8849    }
8850
8851    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8852      // If this is a use of a previous tag, or if the tag is already declared
8853      // in the same scope (so that the definition/declaration completes or
8854      // rementions the tag), reuse the decl.
8855      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8856          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8857        // Make sure that this wasn't declared as an enum and now used as a
8858        // struct or something similar.
8859        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8860                                          TUK == TUK_Definition, KWLoc,
8861                                          *Name)) {
8862          bool SafeToContinue
8863            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8864               Kind != TTK_Enum);
8865          if (SafeToContinue)
8866            Diag(KWLoc, diag::err_use_with_wrong_tag)
8867              << Name
8868              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8869                                              PrevTagDecl->getKindName());
8870          else
8871            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8872          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8873
8874          if (SafeToContinue)
8875            Kind = PrevTagDecl->getTagKind();
8876          else {
8877            // Recover by making this an anonymous redefinition.
8878            Name = 0;
8879            Previous.clear();
8880            Invalid = true;
8881          }
8882        }
8883
8884        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8885          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8886
8887          // If this is an elaborated-type-specifier for a scoped enumeration,
8888          // the 'class' keyword is not necessary and not permitted.
8889          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8890            if (ScopedEnum)
8891              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8892                << PrevEnum->isScoped()
8893                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8894            return PrevTagDecl;
8895          }
8896
8897          QualType EnumUnderlyingTy;
8898          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8899            EnumUnderlyingTy = TI->getType();
8900          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8901            EnumUnderlyingTy = QualType(T, 0);
8902
8903          // All conflicts with previous declarations are recovered by
8904          // returning the previous declaration, unless this is a definition,
8905          // in which case we want the caller to bail out.
8906          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8907                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8908            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8909        }
8910
8911        if (!Invalid) {
8912          // If this is a use, just return the declaration we found.
8913
8914          // FIXME: In the future, return a variant or some other clue
8915          // for the consumer of this Decl to know it doesn't own it.
8916          // For our current ASTs this shouldn't be a problem, but will
8917          // need to be changed with DeclGroups.
8918          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8919               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8920            return PrevTagDecl;
8921
8922          // Diagnose attempts to redefine a tag.
8923          if (TUK == TUK_Definition) {
8924            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8925              // If we're defining a specialization and the previous definition
8926              // is from an implicit instantiation, don't emit an error
8927              // here; we'll catch this in the general case below.
8928              bool IsExplicitSpecializationAfterInstantiation = false;
8929              if (isExplicitSpecialization) {
8930                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8931                  IsExplicitSpecializationAfterInstantiation =
8932                    RD->getTemplateSpecializationKind() !=
8933                    TSK_ExplicitSpecialization;
8934                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8935                  IsExplicitSpecializationAfterInstantiation =
8936                    ED->getTemplateSpecializationKind() !=
8937                    TSK_ExplicitSpecialization;
8938              }
8939
8940              if (!IsExplicitSpecializationAfterInstantiation) {
8941                // A redeclaration in function prototype scope in C isn't
8942                // visible elsewhere, so merely issue a warning.
8943                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8944                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8945                else
8946                  Diag(NameLoc, diag::err_redefinition) << Name;
8947                Diag(Def->getLocation(), diag::note_previous_definition);
8948                // If this is a redefinition, recover by making this
8949                // struct be anonymous, which will make any later
8950                // references get the previous definition.
8951                Name = 0;
8952                Previous.clear();
8953                Invalid = true;
8954              }
8955            } else {
8956              // If the type is currently being defined, complain
8957              // about a nested redefinition.
8958              const TagType *Tag
8959                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8960              if (Tag->isBeingDefined()) {
8961                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8962                Diag(PrevTagDecl->getLocation(),
8963                     diag::note_previous_definition);
8964                Name = 0;
8965                Previous.clear();
8966                Invalid = true;
8967              }
8968            }
8969
8970            // Okay, this is definition of a previously declared or referenced
8971            // tag PrevDecl. We're going to create a new Decl for it.
8972          }
8973        }
8974        // If we get here we have (another) forward declaration or we
8975        // have a definition.  Just create a new decl.
8976
8977      } else {
8978        // If we get here, this is a definition of a new tag type in a nested
8979        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8980        // new decl/type.  We set PrevDecl to NULL so that the entities
8981        // have distinct types.
8982        Previous.clear();
8983      }
8984      // If we get here, we're going to create a new Decl. If PrevDecl
8985      // is non-NULL, it's a definition of the tag declared by
8986      // PrevDecl. If it's NULL, we have a new definition.
8987
8988
8989    // Otherwise, PrevDecl is not a tag, but was found with tag
8990    // lookup.  This is only actually possible in C++, where a few
8991    // things like templates still live in the tag namespace.
8992    } else {
8993      // Use a better diagnostic if an elaborated-type-specifier
8994      // found the wrong kind of type on the first
8995      // (non-redeclaration) lookup.
8996      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8997          !Previous.isForRedeclaration()) {
8998        unsigned Kind = 0;
8999        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9000        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9001        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9002        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9003        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9004        Invalid = true;
9005
9006      // Otherwise, only diagnose if the declaration is in scope.
9007      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9008                                isExplicitSpecialization)) {
9009        // do nothing
9010
9011      // Diagnose implicit declarations introduced by elaborated types.
9012      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9013        unsigned Kind = 0;
9014        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9015        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9016        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9017        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9018        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9019        Invalid = true;
9020
9021      // Otherwise it's a declaration.  Call out a particularly common
9022      // case here.
9023      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9024        unsigned Kind = 0;
9025        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9026        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9027          << Name << Kind << TND->getUnderlyingType();
9028        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9029        Invalid = true;
9030
9031      // Otherwise, diagnose.
9032      } else {
9033        // The tag name clashes with something else in the target scope,
9034        // issue an error and recover by making this tag be anonymous.
9035        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9036        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9037        Name = 0;
9038        Invalid = true;
9039      }
9040
9041      // The existing declaration isn't relevant to us; we're in a
9042      // new scope, so clear out the previous declaration.
9043      Previous.clear();
9044    }
9045  }
9046
9047CreateNewDecl:
9048
9049  TagDecl *PrevDecl = 0;
9050  if (Previous.isSingleResult())
9051    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9052
9053  // If there is an identifier, use the location of the identifier as the
9054  // location of the decl, otherwise use the location of the struct/union
9055  // keyword.
9056  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9057
9058  // Otherwise, create a new declaration. If there is a previous
9059  // declaration of the same entity, the two will be linked via
9060  // PrevDecl.
9061  TagDecl *New;
9062
9063  bool IsForwardReference = false;
9064  if (Kind == TTK_Enum) {
9065    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9066    // enum X { A, B, C } D;    D should chain to X.
9067    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9068                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9069                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9070    // If this is an undefined enum, warn.
9071    if (TUK != TUK_Definition && !Invalid) {
9072      TagDecl *Def;
9073      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
9074        // C++0x: 7.2p2: opaque-enum-declaration.
9075        // Conflicts are diagnosed above. Do nothing.
9076      }
9077      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9078        Diag(Loc, diag::ext_forward_ref_enum_def)
9079          << New;
9080        Diag(Def->getLocation(), diag::note_previous_definition);
9081      } else {
9082        unsigned DiagID = diag::ext_forward_ref_enum;
9083        if (getLangOpts().MicrosoftMode)
9084          DiagID = diag::ext_ms_forward_ref_enum;
9085        else if (getLangOpts().CPlusPlus)
9086          DiagID = diag::err_forward_ref_enum;
9087        Diag(Loc, DiagID);
9088
9089        // If this is a forward-declared reference to an enumeration, make a
9090        // note of it; we won't actually be introducing the declaration into
9091        // the declaration context.
9092        if (TUK == TUK_Reference)
9093          IsForwardReference = true;
9094      }
9095    }
9096
9097    if (EnumUnderlying) {
9098      EnumDecl *ED = cast<EnumDecl>(New);
9099      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9100        ED->setIntegerTypeSourceInfo(TI);
9101      else
9102        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9103      ED->setPromotionType(ED->getIntegerType());
9104    }
9105
9106  } else {
9107    // struct/union/class
9108
9109    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9110    // struct X { int A; } D;    D should chain to X.
9111    if (getLangOpts().CPlusPlus) {
9112      // FIXME: Look for a way to use RecordDecl for simple structs.
9113      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9114                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9115
9116      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9117        StdBadAlloc = cast<CXXRecordDecl>(New);
9118    } else
9119      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9120                               cast_or_null<RecordDecl>(PrevDecl));
9121  }
9122
9123  // Maybe add qualifier info.
9124  if (SS.isNotEmpty()) {
9125    if (SS.isSet()) {
9126      // If this is either a declaration or a definition, check the
9127      // nested-name-specifier against the current context. We don't do this
9128      // for explicit specializations, because they have similar checking
9129      // (with more specific diagnostics) in the call to
9130      // CheckMemberSpecialization, below.
9131      if (!isExplicitSpecialization &&
9132          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9133          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9134        Invalid = true;
9135
9136      New->setQualifierInfo(SS.getWithLocInContext(Context));
9137      if (TemplateParameterLists.size() > 0) {
9138        New->setTemplateParameterListsInfo(Context,
9139                                           TemplateParameterLists.size(),
9140                                           TemplateParameterLists.data());
9141      }
9142    }
9143    else
9144      Invalid = true;
9145  }
9146
9147  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9148    // Add alignment attributes if necessary; these attributes are checked when
9149    // the ASTContext lays out the structure.
9150    //
9151    // It is important for implementing the correct semantics that this
9152    // happen here (in act on tag decl). The #pragma pack stack is
9153    // maintained as a result of parser callbacks which can occur at
9154    // many points during the parsing of a struct declaration (because
9155    // the #pragma tokens are effectively skipped over during the
9156    // parsing of the struct).
9157    if (TUK == TUK_Definition) {
9158      AddAlignmentAttributesForRecord(RD);
9159      AddMsStructLayoutForRecord(RD);
9160    }
9161  }
9162
9163  if (ModulePrivateLoc.isValid()) {
9164    if (isExplicitSpecialization)
9165      Diag(New->getLocation(), diag::err_module_private_specialization)
9166        << 2
9167        << FixItHint::CreateRemoval(ModulePrivateLoc);
9168    // __module_private__ does not apply to local classes. However, we only
9169    // diagnose this as an error when the declaration specifiers are
9170    // freestanding. Here, we just ignore the __module_private__.
9171    else if (!SearchDC->isFunctionOrMethod())
9172      New->setModulePrivate();
9173  }
9174
9175  // If this is a specialization of a member class (of a class template),
9176  // check the specialization.
9177  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9178    Invalid = true;
9179
9180  if (Invalid)
9181    New->setInvalidDecl();
9182
9183  if (Attr)
9184    ProcessDeclAttributeList(S, New, Attr);
9185
9186  // If we're declaring or defining a tag in function prototype scope
9187  // in C, note that this type can only be used within the function.
9188  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9189    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9190
9191  // Set the lexical context. If the tag has a C++ scope specifier, the
9192  // lexical context will be different from the semantic context.
9193  New->setLexicalDeclContext(CurContext);
9194
9195  // Mark this as a friend decl if applicable.
9196  // In Microsoft mode, a friend declaration also acts as a forward
9197  // declaration so we always pass true to setObjectOfFriendDecl to make
9198  // the tag name visible.
9199  if (TUK == TUK_Friend)
9200    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9201                               getLangOpts().MicrosoftExt);
9202
9203  // Set the access specifier.
9204  if (!Invalid && SearchDC->isRecord())
9205    SetMemberAccessSpecifier(New, PrevDecl, AS);
9206
9207  if (TUK == TUK_Definition)
9208    New->startDefinition();
9209
9210  // If this has an identifier, add it to the scope stack.
9211  if (TUK == TUK_Friend) {
9212    // We might be replacing an existing declaration in the lookup tables;
9213    // if so, borrow its access specifier.
9214    if (PrevDecl)
9215      New->setAccess(PrevDecl->getAccess());
9216
9217    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9218    DC->makeDeclVisibleInContext(New);
9219    if (Name) // can be null along some error paths
9220      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9221        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9222  } else if (Name) {
9223    S = getNonFieldDeclScope(S);
9224    PushOnScopeChains(New, S, !IsForwardReference);
9225    if (IsForwardReference)
9226      SearchDC->makeDeclVisibleInContext(New);
9227
9228  } else {
9229    CurContext->addDecl(New);
9230  }
9231
9232  // If this is the C FILE type, notify the AST context.
9233  if (IdentifierInfo *II = New->getIdentifier())
9234    if (!New->isInvalidDecl() &&
9235        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9236        II->isStr("FILE"))
9237      Context.setFILEDecl(New);
9238
9239  // If we were in function prototype scope (and not in C++ mode), add this
9240  // tag to the list of decls to inject into the function definition scope.
9241  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9242      InFunctionDeclarator && Name)
9243    DeclsInPrototypeScope.push_back(New);
9244
9245  if (PrevDecl)
9246    mergeDeclAttributes(New, PrevDecl);
9247
9248  // If there's a #pragma GCC visibility in scope, set the visibility of this
9249  // record.
9250  AddPushedVisibilityAttribute(New);
9251
9252  OwnedDecl = true;
9253  return New;
9254}
9255
9256void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9257  AdjustDeclIfTemplate(TagD);
9258  TagDecl *Tag = cast<TagDecl>(TagD);
9259
9260  // Enter the tag context.
9261  PushDeclContext(S, Tag);
9262
9263  ActOnDocumentableDecl(TagD);
9264
9265  // If there's a #pragma GCC visibility in scope, set the visibility of this
9266  // record.
9267  AddPushedVisibilityAttribute(Tag);
9268}
9269
9270Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9271  assert(isa<ObjCContainerDecl>(IDecl) &&
9272         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9273  DeclContext *OCD = cast<DeclContext>(IDecl);
9274  assert(getContainingDC(OCD) == CurContext &&
9275      "The next DeclContext should be lexically contained in the current one.");
9276  CurContext = OCD;
9277  return IDecl;
9278}
9279
9280void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9281                                           SourceLocation FinalLoc,
9282                                           SourceLocation LBraceLoc) {
9283  AdjustDeclIfTemplate(TagD);
9284  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9285
9286  FieldCollector->StartClass();
9287
9288  if (!Record->getIdentifier())
9289    return;
9290
9291  if (FinalLoc.isValid())
9292    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9293
9294  // C++ [class]p2:
9295  //   [...] The class-name is also inserted into the scope of the
9296  //   class itself; this is known as the injected-class-name. For
9297  //   purposes of access checking, the injected-class-name is treated
9298  //   as if it were a public member name.
9299  CXXRecordDecl *InjectedClassName
9300    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9301                            Record->getLocStart(), Record->getLocation(),
9302                            Record->getIdentifier(),
9303                            /*PrevDecl=*/0,
9304                            /*DelayTypeCreation=*/true);
9305  Context.getTypeDeclType(InjectedClassName, Record);
9306  InjectedClassName->setImplicit();
9307  InjectedClassName->setAccess(AS_public);
9308  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9309      InjectedClassName->setDescribedClassTemplate(Template);
9310  PushOnScopeChains(InjectedClassName, S);
9311  assert(InjectedClassName->isInjectedClassName() &&
9312         "Broken injected-class-name");
9313}
9314
9315void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9316                                    SourceLocation RBraceLoc) {
9317  AdjustDeclIfTemplate(TagD);
9318  TagDecl *Tag = cast<TagDecl>(TagD);
9319  Tag->setRBraceLoc(RBraceLoc);
9320
9321  // Make sure we "complete" the definition even it is invalid.
9322  if (Tag->isBeingDefined()) {
9323    assert(Tag->isInvalidDecl() && "We should already have completed it");
9324    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9325      RD->completeDefinition();
9326  }
9327
9328  if (isa<CXXRecordDecl>(Tag))
9329    FieldCollector->FinishClass();
9330
9331  // Exit this scope of this tag's definition.
9332  PopDeclContext();
9333
9334  // Notify the consumer that we've defined a tag.
9335  Consumer.HandleTagDeclDefinition(Tag);
9336}
9337
9338void Sema::ActOnObjCContainerFinishDefinition() {
9339  // Exit this scope of this interface definition.
9340  PopDeclContext();
9341}
9342
9343void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9344  assert(DC == CurContext && "Mismatch of container contexts");
9345  OriginalLexicalContext = DC;
9346  ActOnObjCContainerFinishDefinition();
9347}
9348
9349void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9350  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9351  OriginalLexicalContext = 0;
9352}
9353
9354void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9355  AdjustDeclIfTemplate(TagD);
9356  TagDecl *Tag = cast<TagDecl>(TagD);
9357  Tag->setInvalidDecl();
9358
9359  // Make sure we "complete" the definition even it is invalid.
9360  if (Tag->isBeingDefined()) {
9361    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9362      RD->completeDefinition();
9363  }
9364
9365  // We're undoing ActOnTagStartDefinition here, not
9366  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9367  // the FieldCollector.
9368
9369  PopDeclContext();
9370}
9371
9372// Note that FieldName may be null for anonymous bitfields.
9373ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9374                                IdentifierInfo *FieldName,
9375                                QualType FieldTy, Expr *BitWidth,
9376                                bool *ZeroWidth) {
9377  // Default to true; that shouldn't confuse checks for emptiness
9378  if (ZeroWidth)
9379    *ZeroWidth = true;
9380
9381  // C99 6.7.2.1p4 - verify the field type.
9382  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9383  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9384    // Handle incomplete types with specific error.
9385    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9386      return ExprError();
9387    if (FieldName)
9388      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9389        << FieldName << FieldTy << BitWidth->getSourceRange();
9390    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9391      << FieldTy << BitWidth->getSourceRange();
9392  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9393                                             UPPC_BitFieldWidth))
9394    return ExprError();
9395
9396  // If the bit-width is type- or value-dependent, don't try to check
9397  // it now.
9398  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9399    return Owned(BitWidth);
9400
9401  llvm::APSInt Value;
9402  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9403  if (ICE.isInvalid())
9404    return ICE;
9405  BitWidth = ICE.take();
9406
9407  if (Value != 0 && ZeroWidth)
9408    *ZeroWidth = false;
9409
9410  // Zero-width bitfield is ok for anonymous field.
9411  if (Value == 0 && FieldName)
9412    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9413
9414  if (Value.isSigned() && Value.isNegative()) {
9415    if (FieldName)
9416      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9417               << FieldName << Value.toString(10);
9418    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9419      << Value.toString(10);
9420  }
9421
9422  if (!FieldTy->isDependentType()) {
9423    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9424    if (Value.getZExtValue() > TypeSize) {
9425      if (!getLangOpts().CPlusPlus) {
9426        if (FieldName)
9427          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9428            << FieldName << (unsigned)Value.getZExtValue()
9429            << (unsigned)TypeSize;
9430
9431        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9432          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9433      }
9434
9435      if (FieldName)
9436        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9437          << FieldName << (unsigned)Value.getZExtValue()
9438          << (unsigned)TypeSize;
9439      else
9440        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9441          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9442    }
9443  }
9444
9445  return Owned(BitWidth);
9446}
9447
9448/// ActOnField - Each field of a C struct/union is passed into this in order
9449/// to create a FieldDecl object for it.
9450Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9451                       Declarator &D, Expr *BitfieldWidth) {
9452  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9453                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9454                               /*InitStyle=*/ICIS_NoInit, AS_public);
9455  return Res;
9456}
9457
9458/// HandleField - Analyze a field of a C struct or a C++ data member.
9459///
9460FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9461                             SourceLocation DeclStart,
9462                             Declarator &D, Expr *BitWidth,
9463                             InClassInitStyle InitStyle,
9464                             AccessSpecifier AS) {
9465  IdentifierInfo *II = D.getIdentifier();
9466  SourceLocation Loc = DeclStart;
9467  if (II) Loc = D.getIdentifierLoc();
9468
9469  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9470  QualType T = TInfo->getType();
9471  if (getLangOpts().CPlusPlus) {
9472    CheckExtraCXXDefaultArguments(D);
9473
9474    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9475                                        UPPC_DataMemberType)) {
9476      D.setInvalidType();
9477      T = Context.IntTy;
9478      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9479    }
9480  }
9481
9482  DiagnoseFunctionSpecifiers(D);
9483
9484  if (D.getDeclSpec().isThreadSpecified())
9485    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9486  if (D.getDeclSpec().isConstexprSpecified())
9487    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9488      << 2;
9489
9490  // Check to see if this name was declared as a member previously
9491  NamedDecl *PrevDecl = 0;
9492  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9493  LookupName(Previous, S);
9494  switch (Previous.getResultKind()) {
9495    case LookupResult::Found:
9496    case LookupResult::FoundUnresolvedValue:
9497      PrevDecl = Previous.getAsSingle<NamedDecl>();
9498      break;
9499
9500    case LookupResult::FoundOverloaded:
9501      PrevDecl = Previous.getRepresentativeDecl();
9502      break;
9503
9504    case LookupResult::NotFound:
9505    case LookupResult::NotFoundInCurrentInstantiation:
9506    case LookupResult::Ambiguous:
9507      break;
9508  }
9509  Previous.suppressDiagnostics();
9510
9511  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9512    // Maybe we will complain about the shadowed template parameter.
9513    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9514    // Just pretend that we didn't see the previous declaration.
9515    PrevDecl = 0;
9516  }
9517
9518  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9519    PrevDecl = 0;
9520
9521  bool Mutable
9522    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9523  SourceLocation TSSL = D.getLocStart();
9524  FieldDecl *NewFD
9525    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9526                     TSSL, AS, PrevDecl, &D);
9527
9528  if (NewFD->isInvalidDecl())
9529    Record->setInvalidDecl();
9530
9531  if (D.getDeclSpec().isModulePrivateSpecified())
9532    NewFD->setModulePrivate();
9533
9534  if (NewFD->isInvalidDecl() && PrevDecl) {
9535    // Don't introduce NewFD into scope; there's already something
9536    // with the same name in the same scope.
9537  } else if (II) {
9538    PushOnScopeChains(NewFD, S);
9539  } else
9540    Record->addDecl(NewFD);
9541
9542  return NewFD;
9543}
9544
9545/// \brief Build a new FieldDecl and check its well-formedness.
9546///
9547/// This routine builds a new FieldDecl given the fields name, type,
9548/// record, etc. \p PrevDecl should refer to any previous declaration
9549/// with the same name and in the same scope as the field to be
9550/// created.
9551///
9552/// \returns a new FieldDecl.
9553///
9554/// \todo The Declarator argument is a hack. It will be removed once
9555FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9556                                TypeSourceInfo *TInfo,
9557                                RecordDecl *Record, SourceLocation Loc,
9558                                bool Mutable, Expr *BitWidth,
9559                                InClassInitStyle InitStyle,
9560                                SourceLocation TSSL,
9561                                AccessSpecifier AS, NamedDecl *PrevDecl,
9562                                Declarator *D) {
9563  IdentifierInfo *II = Name.getAsIdentifierInfo();
9564  bool InvalidDecl = false;
9565  if (D) InvalidDecl = D->isInvalidType();
9566
9567  // If we receive a broken type, recover by assuming 'int' and
9568  // marking this declaration as invalid.
9569  if (T.isNull()) {
9570    InvalidDecl = true;
9571    T = Context.IntTy;
9572  }
9573
9574  QualType EltTy = Context.getBaseElementType(T);
9575  if (!EltTy->isDependentType()) {
9576    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9577      // Fields of incomplete type force their record to be invalid.
9578      Record->setInvalidDecl();
9579      InvalidDecl = true;
9580    } else {
9581      NamedDecl *Def;
9582      EltTy->isIncompleteType(&Def);
9583      if (Def && Def->isInvalidDecl()) {
9584        Record->setInvalidDecl();
9585        InvalidDecl = true;
9586      }
9587    }
9588  }
9589
9590  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9591  // than a variably modified type.
9592  if (!InvalidDecl && T->isVariablyModifiedType()) {
9593    bool SizeIsNegative;
9594    llvm::APSInt Oversized;
9595
9596    TypeSourceInfo *FixedTInfo =
9597      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
9598                                                    SizeIsNegative,
9599                                                    Oversized);
9600    if (FixedTInfo) {
9601      Diag(Loc, diag::warn_illegal_constant_array_size);
9602      TInfo = FixedTInfo;
9603      T = FixedTInfo->getType();
9604    } else {
9605      if (SizeIsNegative)
9606        Diag(Loc, diag::err_typecheck_negative_array_size);
9607      else if (Oversized.getBoolValue())
9608        Diag(Loc, diag::err_array_too_large)
9609          << Oversized.toString(10);
9610      else
9611        Diag(Loc, diag::err_typecheck_field_variable_size);
9612      InvalidDecl = true;
9613    }
9614  }
9615
9616  // Fields can not have abstract class types
9617  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9618                                             diag::err_abstract_type_in_decl,
9619                                             AbstractFieldType))
9620    InvalidDecl = true;
9621
9622  bool ZeroWidth = false;
9623  // If this is declared as a bit-field, check the bit-field.
9624  if (!InvalidDecl && BitWidth) {
9625    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9626    if (!BitWidth) {
9627      InvalidDecl = true;
9628      BitWidth = 0;
9629      ZeroWidth = false;
9630    }
9631  }
9632
9633  // Check that 'mutable' is consistent with the type of the declaration.
9634  if (!InvalidDecl && Mutable) {
9635    unsigned DiagID = 0;
9636    if (T->isReferenceType())
9637      DiagID = diag::err_mutable_reference;
9638    else if (T.isConstQualified())
9639      DiagID = diag::err_mutable_const;
9640
9641    if (DiagID) {
9642      SourceLocation ErrLoc = Loc;
9643      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9644        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9645      Diag(ErrLoc, DiagID);
9646      Mutable = false;
9647      InvalidDecl = true;
9648    }
9649  }
9650
9651  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9652                                       BitWidth, Mutable, InitStyle);
9653  if (InvalidDecl)
9654    NewFD->setInvalidDecl();
9655
9656  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9657    Diag(Loc, diag::err_duplicate_member) << II;
9658    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9659    NewFD->setInvalidDecl();
9660  }
9661
9662  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9663    if (Record->isUnion()) {
9664      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9665        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9666        if (RDecl->getDefinition()) {
9667          // C++ [class.union]p1: An object of a class with a non-trivial
9668          // constructor, a non-trivial copy constructor, a non-trivial
9669          // destructor, or a non-trivial copy assignment operator
9670          // cannot be a member of a union, nor can an array of such
9671          // objects.
9672          if (CheckNontrivialField(NewFD))
9673            NewFD->setInvalidDecl();
9674        }
9675      }
9676
9677      // C++ [class.union]p1: If a union contains a member of reference type,
9678      // the program is ill-formed.
9679      if (EltTy->isReferenceType()) {
9680        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9681          << NewFD->getDeclName() << EltTy;
9682        NewFD->setInvalidDecl();
9683      }
9684    }
9685  }
9686
9687  // FIXME: We need to pass in the attributes given an AST
9688  // representation, not a parser representation.
9689  if (D)
9690    // FIXME: What to pass instead of TUScope?
9691    ProcessDeclAttributes(TUScope, NewFD, *D);
9692
9693  // In auto-retain/release, infer strong retension for fields of
9694  // retainable type.
9695  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9696    NewFD->setInvalidDecl();
9697
9698  if (T.isObjCGCWeak())
9699    Diag(Loc, diag::warn_attribute_weak_on_field);
9700
9701  NewFD->setAccess(AS);
9702  return NewFD;
9703}
9704
9705bool Sema::CheckNontrivialField(FieldDecl *FD) {
9706  assert(FD);
9707  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9708
9709  if (FD->isInvalidDecl())
9710    return true;
9711
9712  QualType EltTy = Context.getBaseElementType(FD->getType());
9713  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9714    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9715    if (RDecl->getDefinition()) {
9716      // We check for copy constructors before constructors
9717      // because otherwise we'll never get complaints about
9718      // copy constructors.
9719
9720      CXXSpecialMember member = CXXInvalid;
9721      if (!RDecl->hasTrivialCopyConstructor())
9722        member = CXXCopyConstructor;
9723      else if (!RDecl->hasTrivialDefaultConstructor())
9724        member = CXXDefaultConstructor;
9725      else if (!RDecl->hasTrivialCopyAssignment())
9726        member = CXXCopyAssignment;
9727      else if (!RDecl->hasTrivialDestructor())
9728        member = CXXDestructor;
9729
9730      if (member != CXXInvalid) {
9731        if (!getLangOpts().CPlusPlus0x &&
9732            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9733          // Objective-C++ ARC: it is an error to have a non-trivial field of
9734          // a union. However, system headers in Objective-C programs
9735          // occasionally have Objective-C lifetime objects within unions,
9736          // and rather than cause the program to fail, we make those
9737          // members unavailable.
9738          SourceLocation Loc = FD->getLocation();
9739          if (getSourceManager().isInSystemHeader(Loc)) {
9740            if (!FD->hasAttr<UnavailableAttr>())
9741              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9742                                  "this system field has retaining ownership"));
9743            return false;
9744          }
9745        }
9746
9747        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9748               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9749               diag::err_illegal_union_or_anon_struct_member)
9750          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9751        DiagnoseNontrivial(RT, member);
9752        return !getLangOpts().CPlusPlus0x;
9753      }
9754    }
9755  }
9756
9757  return false;
9758}
9759
9760/// If the given constructor is user-declared, produce a diagnostic explaining
9761/// that it makes the class non-trivial.
9762static bool diagnoseNonTrivialUserDeclaredCtor(Sema &S, QualType QT,
9763                                               CXXConstructorDecl *CD,
9764                                               Sema::CXXSpecialMember CSM) {
9765  if (CD->isImplicit())
9766    return false;
9767
9768  SourceLocation CtorLoc = CD->getLocation();
9769  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9770  return true;
9771}
9772
9773/// DiagnoseNontrivial - Given that a class has a non-trivial
9774/// special member, figure out why.
9775void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9776  QualType QT(T, 0U);
9777  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9778
9779  // Check whether the member was user-declared.
9780  switch (member) {
9781  case CXXInvalid:
9782    break;
9783
9784  case CXXDefaultConstructor:
9785    if (RD->hasUserDeclaredConstructor()) {
9786      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9787      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9788        if (diagnoseNonTrivialUserDeclaredCtor(*this, QT, *CI, member))
9789          return;
9790
9791      // No user-delcared constructors; look for constructor templates.
9792      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9793          tmpl_iter;
9794      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9795           TI != TE; ++TI) {
9796        CXXConstructorDecl *CD =
9797            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9798        if (CD && diagnoseNonTrivialUserDeclaredCtor(*this, QT, CD, member))
9799          return;
9800      }
9801    }
9802    break;
9803
9804  case CXXCopyConstructor:
9805    if (RD->hasUserDeclaredCopyConstructor()) {
9806      SourceLocation CtorLoc =
9807        RD->getCopyConstructor(0)->getLocation();
9808      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9809      return;
9810    }
9811    break;
9812
9813  case CXXMoveConstructor:
9814    if (RD->hasUserDeclaredMoveConstructor()) {
9815      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9816      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9817      return;
9818    }
9819    break;
9820
9821  case CXXCopyAssignment:
9822    if (RD->hasUserDeclaredCopyAssignment()) {
9823      SourceLocation AssignLoc =
9824        RD->getCopyAssignmentOperator(0)->getLocation();
9825      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9826      return;
9827    }
9828    break;
9829
9830  case CXXMoveAssignment:
9831    if (RD->hasUserDeclaredMoveAssignment()) {
9832      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9833      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9834      return;
9835    }
9836    break;
9837
9838  case CXXDestructor:
9839    if (RD->hasUserDeclaredDestructor()) {
9840      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9841      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9842      return;
9843    }
9844    break;
9845  }
9846
9847  typedef CXXRecordDecl::base_class_iterator base_iter;
9848
9849  // Virtual bases and members inhibit trivial copying/construction,
9850  // but not trivial destruction.
9851  if (member != CXXDestructor) {
9852    // Check for virtual bases.  vbases includes indirect virtual bases,
9853    // so we just iterate through the direct bases.
9854    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9855      if (bi->isVirtual()) {
9856        SourceLocation BaseLoc = bi->getLocStart();
9857        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9858        return;
9859      }
9860
9861    // Check for virtual methods.
9862    typedef CXXRecordDecl::method_iterator meth_iter;
9863    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9864         ++mi) {
9865      if (mi->isVirtual()) {
9866        SourceLocation MLoc = mi->getLocStart();
9867        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9868        return;
9869      }
9870    }
9871  }
9872
9873  bool (CXXRecordDecl::*hasTrivial)() const;
9874  switch (member) {
9875  case CXXDefaultConstructor:
9876    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9877  case CXXCopyConstructor:
9878    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9879  case CXXCopyAssignment:
9880    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9881  case CXXDestructor:
9882    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9883  default:
9884    llvm_unreachable("unexpected special member");
9885  }
9886
9887  // Check for nontrivial bases (and recurse).
9888  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9889    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9890    assert(BaseRT && "Don't know how to handle dependent bases");
9891    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9892    if (!(BaseRecTy->*hasTrivial)()) {
9893      SourceLocation BaseLoc = bi->getLocStart();
9894      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9895      DiagnoseNontrivial(BaseRT, member);
9896      return;
9897    }
9898  }
9899
9900  // Check for nontrivial members (and recurse).
9901  typedef RecordDecl::field_iterator field_iter;
9902  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9903       ++fi) {
9904    QualType EltTy = Context.getBaseElementType(fi->getType());
9905    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9906      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9907
9908      if (!(EltRD->*hasTrivial)()) {
9909        SourceLocation FLoc = fi->getLocation();
9910        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9911        DiagnoseNontrivial(EltRT, member);
9912        return;
9913      }
9914    }
9915
9916    if (EltTy->isObjCLifetimeType()) {
9917      switch (EltTy.getObjCLifetime()) {
9918      case Qualifiers::OCL_None:
9919      case Qualifiers::OCL_ExplicitNone:
9920        break;
9921
9922      case Qualifiers::OCL_Autoreleasing:
9923      case Qualifiers::OCL_Weak:
9924      case Qualifiers::OCL_Strong:
9925        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9926          << QT << EltTy.getObjCLifetime();
9927        return;
9928      }
9929    }
9930  }
9931
9932  llvm_unreachable("found no explanation for non-trivial member");
9933}
9934
9935/// TranslateIvarVisibility - Translate visibility from a token ID to an
9936///  AST enum value.
9937static ObjCIvarDecl::AccessControl
9938TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9939  switch (ivarVisibility) {
9940  default: llvm_unreachable("Unknown visitibility kind");
9941  case tok::objc_private: return ObjCIvarDecl::Private;
9942  case tok::objc_public: return ObjCIvarDecl::Public;
9943  case tok::objc_protected: return ObjCIvarDecl::Protected;
9944  case tok::objc_package: return ObjCIvarDecl::Package;
9945  }
9946}
9947
9948/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9949/// in order to create an IvarDecl object for it.
9950Decl *Sema::ActOnIvar(Scope *S,
9951                                SourceLocation DeclStart,
9952                                Declarator &D, Expr *BitfieldWidth,
9953                                tok::ObjCKeywordKind Visibility) {
9954
9955  IdentifierInfo *II = D.getIdentifier();
9956  Expr *BitWidth = (Expr*)BitfieldWidth;
9957  SourceLocation Loc = DeclStart;
9958  if (II) Loc = D.getIdentifierLoc();
9959
9960  // FIXME: Unnamed fields can be handled in various different ways, for
9961  // example, unnamed unions inject all members into the struct namespace!
9962
9963  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9964  QualType T = TInfo->getType();
9965
9966  if (BitWidth) {
9967    // 6.7.2.1p3, 6.7.2.1p4
9968    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9969    if (!BitWidth)
9970      D.setInvalidType();
9971  } else {
9972    // Not a bitfield.
9973
9974    // validate II.
9975
9976  }
9977  if (T->isReferenceType()) {
9978    Diag(Loc, diag::err_ivar_reference_type);
9979    D.setInvalidType();
9980  }
9981  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9982  // than a variably modified type.
9983  else if (T->isVariablyModifiedType()) {
9984    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9985    D.setInvalidType();
9986  }
9987
9988  // Get the visibility (access control) for this ivar.
9989  ObjCIvarDecl::AccessControl ac =
9990    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9991                                        : ObjCIvarDecl::None;
9992  // Must set ivar's DeclContext to its enclosing interface.
9993  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9994  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9995    return 0;
9996  ObjCContainerDecl *EnclosingContext;
9997  if (ObjCImplementationDecl *IMPDecl =
9998      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9999    if (LangOpts.ObjCRuntime.isFragile()) {
10000    // Case of ivar declared in an implementation. Context is that of its class.
10001      EnclosingContext = IMPDecl->getClassInterface();
10002      assert(EnclosingContext && "Implementation has no class interface!");
10003    }
10004    else
10005      EnclosingContext = EnclosingDecl;
10006  } else {
10007    if (ObjCCategoryDecl *CDecl =
10008        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10009      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10010        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10011        return 0;
10012      }
10013    }
10014    EnclosingContext = EnclosingDecl;
10015  }
10016
10017  // Construct the decl.
10018  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10019                                             DeclStart, Loc, II, T,
10020                                             TInfo, ac, (Expr *)BitfieldWidth);
10021
10022  if (II) {
10023    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10024                                           ForRedeclaration);
10025    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10026        && !isa<TagDecl>(PrevDecl)) {
10027      Diag(Loc, diag::err_duplicate_member) << II;
10028      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10029      NewID->setInvalidDecl();
10030    }
10031  }
10032
10033  // Process attributes attached to the ivar.
10034  ProcessDeclAttributes(S, NewID, D);
10035
10036  if (D.isInvalidType())
10037    NewID->setInvalidDecl();
10038
10039  // In ARC, infer 'retaining' for ivars of retainable type.
10040  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10041    NewID->setInvalidDecl();
10042
10043  if (D.getDeclSpec().isModulePrivateSpecified())
10044    NewID->setModulePrivate();
10045
10046  if (II) {
10047    // FIXME: When interfaces are DeclContexts, we'll need to add
10048    // these to the interface.
10049    S->AddDecl(NewID);
10050    IdResolver.AddDecl(NewID);
10051  }
10052
10053  if (LangOpts.ObjCRuntime.isNonFragile() &&
10054      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10055    Diag(Loc, diag::warn_ivars_in_interface);
10056
10057  return NewID;
10058}
10059
10060/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10061/// class and class extensions. For every class @interface and class
10062/// extension @interface, if the last ivar is a bitfield of any type,
10063/// then add an implicit `char :0` ivar to the end of that interface.
10064void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10065                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10066  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10067    return;
10068
10069  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10070  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10071
10072  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10073    return;
10074  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10075  if (!ID) {
10076    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10077      if (!CD->IsClassExtension())
10078        return;
10079    }
10080    // No need to add this to end of @implementation.
10081    else
10082      return;
10083  }
10084  // All conditions are met. Add a new bitfield to the tail end of ivars.
10085  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10086  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10087
10088  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10089                              DeclLoc, DeclLoc, 0,
10090                              Context.CharTy,
10091                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10092                                                               DeclLoc),
10093                              ObjCIvarDecl::Private, BW,
10094                              true);
10095  AllIvarDecls.push_back(Ivar);
10096}
10097
10098void Sema::ActOnFields(Scope* S,
10099                       SourceLocation RecLoc, Decl *EnclosingDecl,
10100                       llvm::ArrayRef<Decl *> Fields,
10101                       SourceLocation LBrac, SourceLocation RBrac,
10102                       AttributeList *Attr) {
10103  assert(EnclosingDecl && "missing record or interface decl");
10104
10105  // If this is an Objective-C @implementation or category and we have
10106  // new fields here we should reset the layout of the interface since
10107  // it will now change.
10108  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10109    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10110    switch (DC->getKind()) {
10111    default: break;
10112    case Decl::ObjCCategory:
10113      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10114      break;
10115    case Decl::ObjCImplementation:
10116      Context.
10117        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10118      break;
10119    }
10120  }
10121
10122  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10123
10124  // Start counting up the number of named members; make sure to include
10125  // members of anonymous structs and unions in the total.
10126  unsigned NumNamedMembers = 0;
10127  if (Record) {
10128    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10129                                   e = Record->decls_end(); i != e; i++) {
10130      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10131        if (IFD->getDeclName())
10132          ++NumNamedMembers;
10133    }
10134  }
10135
10136  // Verify that all the fields are okay.
10137  SmallVector<FieldDecl*, 32> RecFields;
10138
10139  bool ARCErrReported = false;
10140  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10141       i != end; ++i) {
10142    FieldDecl *FD = cast<FieldDecl>(*i);
10143
10144    // Get the type for the field.
10145    const Type *FDTy = FD->getType().getTypePtr();
10146
10147    if (!FD->isAnonymousStructOrUnion()) {
10148      // Remember all fields written by the user.
10149      RecFields.push_back(FD);
10150    }
10151
10152    // If the field is already invalid for some reason, don't emit more
10153    // diagnostics about it.
10154    if (FD->isInvalidDecl()) {
10155      EnclosingDecl->setInvalidDecl();
10156      continue;
10157    }
10158
10159    // C99 6.7.2.1p2:
10160    //   A structure or union shall not contain a member with
10161    //   incomplete or function type (hence, a structure shall not
10162    //   contain an instance of itself, but may contain a pointer to
10163    //   an instance of itself), except that the last member of a
10164    //   structure with more than one named member may have incomplete
10165    //   array type; such a structure (and any union containing,
10166    //   possibly recursively, a member that is such a structure)
10167    //   shall not be a member of a structure or an element of an
10168    //   array.
10169    if (FDTy->isFunctionType()) {
10170      // Field declared as a function.
10171      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10172        << FD->getDeclName();
10173      FD->setInvalidDecl();
10174      EnclosingDecl->setInvalidDecl();
10175      continue;
10176    } else if (FDTy->isIncompleteArrayType() && Record &&
10177               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10178                ((getLangOpts().MicrosoftExt ||
10179                  getLangOpts().CPlusPlus) &&
10180                 (i + 1 == Fields.end() || Record->isUnion())))) {
10181      // Flexible array member.
10182      // Microsoft and g++ is more permissive regarding flexible array.
10183      // It will accept flexible array in union and also
10184      // as the sole element of a struct/class.
10185      if (getLangOpts().MicrosoftExt) {
10186        if (Record->isUnion())
10187          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10188            << FD->getDeclName();
10189        else if (Fields.size() == 1)
10190          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10191            << FD->getDeclName() << Record->getTagKind();
10192      } else if (getLangOpts().CPlusPlus) {
10193        if (Record->isUnion())
10194          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10195            << FD->getDeclName();
10196        else if (Fields.size() == 1)
10197          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10198            << FD->getDeclName() << Record->getTagKind();
10199      } else if (!getLangOpts().C99) {
10200      if (Record->isUnion())
10201        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10202          << FD->getDeclName();
10203      else
10204        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10205          << FD->getDeclName() << Record->getTagKind();
10206      } else if (NumNamedMembers < 1) {
10207        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10208          << FD->getDeclName();
10209        FD->setInvalidDecl();
10210        EnclosingDecl->setInvalidDecl();
10211        continue;
10212      }
10213      if (!FD->getType()->isDependentType() &&
10214          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10215        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10216          << FD->getDeclName() << FD->getType();
10217        FD->setInvalidDecl();
10218        EnclosingDecl->setInvalidDecl();
10219        continue;
10220      }
10221      // Okay, we have a legal flexible array member at the end of the struct.
10222      if (Record)
10223        Record->setHasFlexibleArrayMember(true);
10224    } else if (!FDTy->isDependentType() &&
10225               RequireCompleteType(FD->getLocation(), FD->getType(),
10226                                   diag::err_field_incomplete)) {
10227      // Incomplete type
10228      FD->setInvalidDecl();
10229      EnclosingDecl->setInvalidDecl();
10230      continue;
10231    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10232      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10233        // If this is a member of a union, then entire union becomes "flexible".
10234        if (Record && Record->isUnion()) {
10235          Record->setHasFlexibleArrayMember(true);
10236        } else {
10237          // If this is a struct/class and this is not the last element, reject
10238          // it.  Note that GCC supports variable sized arrays in the middle of
10239          // structures.
10240          if (i + 1 != Fields.end())
10241            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10242              << FD->getDeclName() << FD->getType();
10243          else {
10244            // We support flexible arrays at the end of structs in
10245            // other structs as an extension.
10246            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10247              << FD->getDeclName();
10248            if (Record)
10249              Record->setHasFlexibleArrayMember(true);
10250          }
10251        }
10252      }
10253      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10254          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10255                                 diag::err_abstract_type_in_decl,
10256                                 AbstractIvarType)) {
10257        // Ivars can not have abstract class types
10258        FD->setInvalidDecl();
10259      }
10260      if (Record && FDTTy->getDecl()->hasObjectMember())
10261        Record->setHasObjectMember(true);
10262    } else if (FDTy->isObjCObjectType()) {
10263      /// A field cannot be an Objective-c object
10264      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10265        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10266      QualType T = Context.getObjCObjectPointerType(FD->getType());
10267      FD->setType(T);
10268    } else if (!getLangOpts().CPlusPlus) {
10269      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
10270        // It's an error in ARC if a field has lifetime.
10271        // We don't want to report this in a system header, though,
10272        // so we just make the field unavailable.
10273        // FIXME: that's really not sufficient; we need to make the type
10274        // itself invalid to, say, initialize or copy.
10275        QualType T = FD->getType();
10276        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10277        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10278          SourceLocation loc = FD->getLocation();
10279          if (getSourceManager().isInSystemHeader(loc)) {
10280            if (!FD->hasAttr<UnavailableAttr>()) {
10281              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10282                                "this system field has retaining ownership"));
10283            }
10284          } else {
10285            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
10286              << T->isBlockPointerType();
10287          }
10288          ARCErrReported = true;
10289        }
10290      }
10291      else if (getLangOpts().ObjC1 &&
10292               getLangOpts().getGC() != LangOptions::NonGC &&
10293               Record && !Record->hasObjectMember()) {
10294        if (FD->getType()->isObjCObjectPointerType() ||
10295            FD->getType().isObjCGCStrong())
10296          Record->setHasObjectMember(true);
10297        else if (Context.getAsArrayType(FD->getType())) {
10298          QualType BaseType = Context.getBaseElementType(FD->getType());
10299          if (BaseType->isRecordType() &&
10300              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10301            Record->setHasObjectMember(true);
10302          else if (BaseType->isObjCObjectPointerType() ||
10303                   BaseType.isObjCGCStrong())
10304                 Record->setHasObjectMember(true);
10305        }
10306      }
10307    }
10308    // Keep track of the number of named members.
10309    if (FD->getIdentifier())
10310      ++NumNamedMembers;
10311  }
10312
10313  // Okay, we successfully defined 'Record'.
10314  if (Record) {
10315    bool Completed = false;
10316    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10317      if (!CXXRecord->isInvalidDecl()) {
10318        // Set access bits correctly on the directly-declared conversions.
10319        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10320        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10321             I != E; ++I)
10322          Convs->setAccess(I, (*I)->getAccess());
10323
10324        if (!CXXRecord->isDependentType()) {
10325          // Adjust user-defined destructor exception spec.
10326          if (getLangOpts().CPlusPlus0x &&
10327              CXXRecord->hasUserDeclaredDestructor())
10328            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10329
10330          // Add any implicitly-declared members to this class.
10331          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10332
10333          // If we have virtual base classes, we may end up finding multiple
10334          // final overriders for a given virtual function. Check for this
10335          // problem now.
10336          if (CXXRecord->getNumVBases()) {
10337            CXXFinalOverriderMap FinalOverriders;
10338            CXXRecord->getFinalOverriders(FinalOverriders);
10339
10340            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10341                                             MEnd = FinalOverriders.end();
10342                 M != MEnd; ++M) {
10343              for (OverridingMethods::iterator SO = M->second.begin(),
10344                                            SOEnd = M->second.end();
10345                   SO != SOEnd; ++SO) {
10346                assert(SO->second.size() > 0 &&
10347                       "Virtual function without overridding functions?");
10348                if (SO->second.size() == 1)
10349                  continue;
10350
10351                // C++ [class.virtual]p2:
10352                //   In a derived class, if a virtual member function of a base
10353                //   class subobject has more than one final overrider the
10354                //   program is ill-formed.
10355                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10356                  << (const NamedDecl *)M->first << Record;
10357                Diag(M->first->getLocation(),
10358                     diag::note_overridden_virtual_function);
10359                for (OverridingMethods::overriding_iterator
10360                          OM = SO->second.begin(),
10361                       OMEnd = SO->second.end();
10362                     OM != OMEnd; ++OM)
10363                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10364                    << (const NamedDecl *)M->first << OM->Method->getParent();
10365
10366                Record->setInvalidDecl();
10367              }
10368            }
10369            CXXRecord->completeDefinition(&FinalOverriders);
10370            Completed = true;
10371          }
10372        }
10373      }
10374    }
10375
10376    if (!Completed)
10377      Record->completeDefinition();
10378
10379  } else {
10380    ObjCIvarDecl **ClsFields =
10381      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10382    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10383      ID->setEndOfDefinitionLoc(RBrac);
10384      // Add ivar's to class's DeclContext.
10385      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10386        ClsFields[i]->setLexicalDeclContext(ID);
10387        ID->addDecl(ClsFields[i]);
10388      }
10389      // Must enforce the rule that ivars in the base classes may not be
10390      // duplicates.
10391      if (ID->getSuperClass())
10392        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10393    } else if (ObjCImplementationDecl *IMPDecl =
10394                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10395      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10396      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10397        // Ivar declared in @implementation never belongs to the implementation.
10398        // Only it is in implementation's lexical context.
10399        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10400      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10401      IMPDecl->setIvarLBraceLoc(LBrac);
10402      IMPDecl->setIvarRBraceLoc(RBrac);
10403    } else if (ObjCCategoryDecl *CDecl =
10404                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10405      // case of ivars in class extension; all other cases have been
10406      // reported as errors elsewhere.
10407      // FIXME. Class extension does not have a LocEnd field.
10408      // CDecl->setLocEnd(RBrac);
10409      // Add ivar's to class extension's DeclContext.
10410      // Diagnose redeclaration of private ivars.
10411      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10412      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10413        if (IDecl) {
10414          if (const ObjCIvarDecl *ClsIvar =
10415              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10416            Diag(ClsFields[i]->getLocation(),
10417                 diag::err_duplicate_ivar_declaration);
10418            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10419            continue;
10420          }
10421          for (const ObjCCategoryDecl *ClsExtDecl =
10422                IDecl->getFirstClassExtension();
10423               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10424            if (const ObjCIvarDecl *ClsExtIvar =
10425                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10426              Diag(ClsFields[i]->getLocation(),
10427                   diag::err_duplicate_ivar_declaration);
10428              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10429              continue;
10430            }
10431          }
10432        }
10433        ClsFields[i]->setLexicalDeclContext(CDecl);
10434        CDecl->addDecl(ClsFields[i]);
10435      }
10436      CDecl->setIvarLBraceLoc(LBrac);
10437      CDecl->setIvarRBraceLoc(RBrac);
10438    }
10439  }
10440
10441  if (Attr)
10442    ProcessDeclAttributeList(S, Record, Attr);
10443}
10444
10445/// \brief Determine whether the given integral value is representable within
10446/// the given type T.
10447static bool isRepresentableIntegerValue(ASTContext &Context,
10448                                        llvm::APSInt &Value,
10449                                        QualType T) {
10450  assert(T->isIntegralType(Context) && "Integral type required!");
10451  unsigned BitWidth = Context.getIntWidth(T);
10452
10453  if (Value.isUnsigned() || Value.isNonNegative()) {
10454    if (T->isSignedIntegerOrEnumerationType())
10455      --BitWidth;
10456    return Value.getActiveBits() <= BitWidth;
10457  }
10458  return Value.getMinSignedBits() <= BitWidth;
10459}
10460
10461// \brief Given an integral type, return the next larger integral type
10462// (or a NULL type of no such type exists).
10463static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10464  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10465  // enum checking below.
10466  assert(T->isIntegralType(Context) && "Integral type required!");
10467  const unsigned NumTypes = 4;
10468  QualType SignedIntegralTypes[NumTypes] = {
10469    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10470  };
10471  QualType UnsignedIntegralTypes[NumTypes] = {
10472    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10473    Context.UnsignedLongLongTy
10474  };
10475
10476  unsigned BitWidth = Context.getTypeSize(T);
10477  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10478                                                        : UnsignedIntegralTypes;
10479  for (unsigned I = 0; I != NumTypes; ++I)
10480    if (Context.getTypeSize(Types[I]) > BitWidth)
10481      return Types[I];
10482
10483  return QualType();
10484}
10485
10486EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10487                                          EnumConstantDecl *LastEnumConst,
10488                                          SourceLocation IdLoc,
10489                                          IdentifierInfo *Id,
10490                                          Expr *Val) {
10491  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10492  llvm::APSInt EnumVal(IntWidth);
10493  QualType EltTy;
10494
10495  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10496    Val = 0;
10497
10498  if (Val)
10499    Val = DefaultLvalueConversion(Val).take();
10500
10501  if (Val) {
10502    if (Enum->isDependentType() || Val->isTypeDependent())
10503      EltTy = Context.DependentTy;
10504    else {
10505      SourceLocation ExpLoc;
10506      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10507          !getLangOpts().MicrosoftMode) {
10508        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10509        // constant-expression in the enumerator-definition shall be a converted
10510        // constant expression of the underlying type.
10511        EltTy = Enum->getIntegerType();
10512        ExprResult Converted =
10513          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10514                                           CCEK_Enumerator);
10515        if (Converted.isInvalid())
10516          Val = 0;
10517        else
10518          Val = Converted.take();
10519      } else if (!Val->isValueDependent() &&
10520                 !(Val = VerifyIntegerConstantExpression(Val,
10521                                                         &EnumVal).take())) {
10522        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10523      } else {
10524        if (Enum->isFixed()) {
10525          EltTy = Enum->getIntegerType();
10526
10527          // In Obj-C and Microsoft mode, require the enumeration value to be
10528          // representable in the underlying type of the enumeration. In C++11,
10529          // we perform a non-narrowing conversion as part of converted constant
10530          // expression checking.
10531          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10532            if (getLangOpts().MicrosoftMode) {
10533              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10534              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10535            } else
10536              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10537          } else
10538            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10539        } else if (getLangOpts().CPlusPlus) {
10540          // C++11 [dcl.enum]p5:
10541          //   If the underlying type is not fixed, the type of each enumerator
10542          //   is the type of its initializing value:
10543          //     - If an initializer is specified for an enumerator, the
10544          //       initializing value has the same type as the expression.
10545          EltTy = Val->getType();
10546        } else {
10547          // C99 6.7.2.2p2:
10548          //   The expression that defines the value of an enumeration constant
10549          //   shall be an integer constant expression that has a value
10550          //   representable as an int.
10551
10552          // Complain if the value is not representable in an int.
10553          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10554            Diag(IdLoc, diag::ext_enum_value_not_int)
10555              << EnumVal.toString(10) << Val->getSourceRange()
10556              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10557          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10558            // Force the type of the expression to 'int'.
10559            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10560          }
10561          EltTy = Val->getType();
10562        }
10563      }
10564    }
10565  }
10566
10567  if (!Val) {
10568    if (Enum->isDependentType())
10569      EltTy = Context.DependentTy;
10570    else if (!LastEnumConst) {
10571      // C++0x [dcl.enum]p5:
10572      //   If the underlying type is not fixed, the type of each enumerator
10573      //   is the type of its initializing value:
10574      //     - If no initializer is specified for the first enumerator, the
10575      //       initializing value has an unspecified integral type.
10576      //
10577      // GCC uses 'int' for its unspecified integral type, as does
10578      // C99 6.7.2.2p3.
10579      if (Enum->isFixed()) {
10580        EltTy = Enum->getIntegerType();
10581      }
10582      else {
10583        EltTy = Context.IntTy;
10584      }
10585    } else {
10586      // Assign the last value + 1.
10587      EnumVal = LastEnumConst->getInitVal();
10588      ++EnumVal;
10589      EltTy = LastEnumConst->getType();
10590
10591      // Check for overflow on increment.
10592      if (EnumVal < LastEnumConst->getInitVal()) {
10593        // C++0x [dcl.enum]p5:
10594        //   If the underlying type is not fixed, the type of each enumerator
10595        //   is the type of its initializing value:
10596        //
10597        //     - Otherwise the type of the initializing value is the same as
10598        //       the type of the initializing value of the preceding enumerator
10599        //       unless the incremented value is not representable in that type,
10600        //       in which case the type is an unspecified integral type
10601        //       sufficient to contain the incremented value. If no such type
10602        //       exists, the program is ill-formed.
10603        QualType T = getNextLargerIntegralType(Context, EltTy);
10604        if (T.isNull() || Enum->isFixed()) {
10605          // There is no integral type larger enough to represent this
10606          // value. Complain, then allow the value to wrap around.
10607          EnumVal = LastEnumConst->getInitVal();
10608          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10609          ++EnumVal;
10610          if (Enum->isFixed())
10611            // When the underlying type is fixed, this is ill-formed.
10612            Diag(IdLoc, diag::err_enumerator_wrapped)
10613              << EnumVal.toString(10)
10614              << EltTy;
10615          else
10616            Diag(IdLoc, diag::warn_enumerator_too_large)
10617              << EnumVal.toString(10);
10618        } else {
10619          EltTy = T;
10620        }
10621
10622        // Retrieve the last enumerator's value, extent that type to the
10623        // type that is supposed to be large enough to represent the incremented
10624        // value, then increment.
10625        EnumVal = LastEnumConst->getInitVal();
10626        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10627        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10628        ++EnumVal;
10629
10630        // If we're not in C++, diagnose the overflow of enumerator values,
10631        // which in C99 means that the enumerator value is not representable in
10632        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10633        // permits enumerator values that are representable in some larger
10634        // integral type.
10635        if (!getLangOpts().CPlusPlus && !T.isNull())
10636          Diag(IdLoc, diag::warn_enum_value_overflow);
10637      } else if (!getLangOpts().CPlusPlus &&
10638                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10639        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10640        Diag(IdLoc, diag::ext_enum_value_not_int)
10641          << EnumVal.toString(10) << 1;
10642      }
10643    }
10644  }
10645
10646  if (!EltTy->isDependentType()) {
10647    // Make the enumerator value match the signedness and size of the
10648    // enumerator's type.
10649    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10650    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10651  }
10652
10653  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10654                                  Val, EnumVal);
10655}
10656
10657
10658Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10659                              SourceLocation IdLoc, IdentifierInfo *Id,
10660                              AttributeList *Attr,
10661                              SourceLocation EqualLoc, Expr *Val) {
10662  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10663  EnumConstantDecl *LastEnumConst =
10664    cast_or_null<EnumConstantDecl>(lastEnumConst);
10665
10666  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10667  // we find one that is.
10668  S = getNonFieldDeclScope(S);
10669
10670  // Verify that there isn't already something declared with this name in this
10671  // scope.
10672  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10673                                         ForRedeclaration);
10674  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10675    // Maybe we will complain about the shadowed template parameter.
10676    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10677    // Just pretend that we didn't see the previous declaration.
10678    PrevDecl = 0;
10679  }
10680
10681  if (PrevDecl) {
10682    // When in C++, we may get a TagDecl with the same name; in this case the
10683    // enum constant will 'hide' the tag.
10684    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10685           "Received TagDecl when not in C++!");
10686    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10687      if (isa<EnumConstantDecl>(PrevDecl))
10688        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10689      else
10690        Diag(IdLoc, diag::err_redefinition) << Id;
10691      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10692      return 0;
10693    }
10694  }
10695
10696  // C++ [class.mem]p15:
10697  // If T is the name of a class, then each of the following shall have a name
10698  // different from T:
10699  // - every enumerator of every member of class T that is an unscoped
10700  // enumerated type
10701  if (CXXRecordDecl *Record
10702                      = dyn_cast<CXXRecordDecl>(
10703                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10704    if (!TheEnumDecl->isScoped() &&
10705        Record->getIdentifier() && Record->getIdentifier() == Id)
10706      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10707
10708  EnumConstantDecl *New =
10709    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10710
10711  if (New) {
10712    // Process attributes.
10713    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10714
10715    // Register this decl in the current scope stack.
10716    New->setAccess(TheEnumDecl->getAccess());
10717    PushOnScopeChains(New, S);
10718  }
10719
10720  ActOnDocumentableDecl(New);
10721
10722  return New;
10723}
10724
10725void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10726                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10727                         Decl **Elements, unsigned NumElements,
10728                         Scope *S, AttributeList *Attr) {
10729  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10730  QualType EnumType = Context.getTypeDeclType(Enum);
10731
10732  if (Attr)
10733    ProcessDeclAttributeList(S, Enum, Attr);
10734
10735  if (Enum->isDependentType()) {
10736    for (unsigned i = 0; i != NumElements; ++i) {
10737      EnumConstantDecl *ECD =
10738        cast_or_null<EnumConstantDecl>(Elements[i]);
10739      if (!ECD) continue;
10740
10741      ECD->setType(EnumType);
10742    }
10743
10744    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10745    return;
10746  }
10747
10748  // TODO: If the result value doesn't fit in an int, it must be a long or long
10749  // long value.  ISO C does not support this, but GCC does as an extension,
10750  // emit a warning.
10751  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10752  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10753  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10754
10755  // Verify that all the values are okay, compute the size of the values, and
10756  // reverse the list.
10757  unsigned NumNegativeBits = 0;
10758  unsigned NumPositiveBits = 0;
10759
10760  // Keep track of whether all elements have type int.
10761  bool AllElementsInt = true;
10762
10763  for (unsigned i = 0; i != NumElements; ++i) {
10764    EnumConstantDecl *ECD =
10765      cast_or_null<EnumConstantDecl>(Elements[i]);
10766    if (!ECD) continue;  // Already issued a diagnostic.
10767
10768    const llvm::APSInt &InitVal = ECD->getInitVal();
10769
10770    // Keep track of the size of positive and negative values.
10771    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10772      NumPositiveBits = std::max(NumPositiveBits,
10773                                 (unsigned)InitVal.getActiveBits());
10774    else
10775      NumNegativeBits = std::max(NumNegativeBits,
10776                                 (unsigned)InitVal.getMinSignedBits());
10777
10778    // Keep track of whether every enum element has type int (very commmon).
10779    if (AllElementsInt)
10780      AllElementsInt = ECD->getType() == Context.IntTy;
10781  }
10782
10783  // Figure out the type that should be used for this enum.
10784  QualType BestType;
10785  unsigned BestWidth;
10786
10787  // C++0x N3000 [conv.prom]p3:
10788  //   An rvalue of an unscoped enumeration type whose underlying
10789  //   type is not fixed can be converted to an rvalue of the first
10790  //   of the following types that can represent all the values of
10791  //   the enumeration: int, unsigned int, long int, unsigned long
10792  //   int, long long int, or unsigned long long int.
10793  // C99 6.4.4.3p2:
10794  //   An identifier declared as an enumeration constant has type int.
10795  // The C99 rule is modified by a gcc extension
10796  QualType BestPromotionType;
10797
10798  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10799  // -fshort-enums is the equivalent to specifying the packed attribute on all
10800  // enum definitions.
10801  if (LangOpts.ShortEnums)
10802    Packed = true;
10803
10804  if (Enum->isFixed()) {
10805    BestType = Enum->getIntegerType();
10806    if (BestType->isPromotableIntegerType())
10807      BestPromotionType = Context.getPromotedIntegerType(BestType);
10808    else
10809      BestPromotionType = BestType;
10810    // We don't need to set BestWidth, because BestType is going to be the type
10811    // of the enumerators, but we do anyway because otherwise some compilers
10812    // warn that it might be used uninitialized.
10813    BestWidth = CharWidth;
10814  }
10815  else if (NumNegativeBits) {
10816    // If there is a negative value, figure out the smallest integer type (of
10817    // int/long/longlong) that fits.
10818    // If it's packed, check also if it fits a char or a short.
10819    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10820      BestType = Context.SignedCharTy;
10821      BestWidth = CharWidth;
10822    } else if (Packed && NumNegativeBits <= ShortWidth &&
10823               NumPositiveBits < ShortWidth) {
10824      BestType = Context.ShortTy;
10825      BestWidth = ShortWidth;
10826    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10827      BestType = Context.IntTy;
10828      BestWidth = IntWidth;
10829    } else {
10830      BestWidth = Context.getTargetInfo().getLongWidth();
10831
10832      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10833        BestType = Context.LongTy;
10834      } else {
10835        BestWidth = Context.getTargetInfo().getLongLongWidth();
10836
10837        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10838          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10839        BestType = Context.LongLongTy;
10840      }
10841    }
10842    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10843  } else {
10844    // If there is no negative value, figure out the smallest type that fits
10845    // all of the enumerator values.
10846    // If it's packed, check also if it fits a char or a short.
10847    if (Packed && NumPositiveBits <= CharWidth) {
10848      BestType = Context.UnsignedCharTy;
10849      BestPromotionType = Context.IntTy;
10850      BestWidth = CharWidth;
10851    } else if (Packed && NumPositiveBits <= ShortWidth) {
10852      BestType = Context.UnsignedShortTy;
10853      BestPromotionType = Context.IntTy;
10854      BestWidth = ShortWidth;
10855    } else if (NumPositiveBits <= IntWidth) {
10856      BestType = Context.UnsignedIntTy;
10857      BestWidth = IntWidth;
10858      BestPromotionType
10859        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10860                           ? Context.UnsignedIntTy : Context.IntTy;
10861    } else if (NumPositiveBits <=
10862               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10863      BestType = Context.UnsignedLongTy;
10864      BestPromotionType
10865        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10866                           ? Context.UnsignedLongTy : Context.LongTy;
10867    } else {
10868      BestWidth = Context.getTargetInfo().getLongLongWidth();
10869      assert(NumPositiveBits <= BestWidth &&
10870             "How could an initializer get larger than ULL?");
10871      BestType = Context.UnsignedLongLongTy;
10872      BestPromotionType
10873        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10874                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10875    }
10876  }
10877
10878  // Loop over all of the enumerator constants, changing their types to match
10879  // the type of the enum if needed.
10880  for (unsigned i = 0; i != NumElements; ++i) {
10881    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10882    if (!ECD) continue;  // Already issued a diagnostic.
10883
10884    // Standard C says the enumerators have int type, but we allow, as an
10885    // extension, the enumerators to be larger than int size.  If each
10886    // enumerator value fits in an int, type it as an int, otherwise type it the
10887    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10888    // that X has type 'int', not 'unsigned'.
10889
10890    // Determine whether the value fits into an int.
10891    llvm::APSInt InitVal = ECD->getInitVal();
10892
10893    // If it fits into an integer type, force it.  Otherwise force it to match
10894    // the enum decl type.
10895    QualType NewTy;
10896    unsigned NewWidth;
10897    bool NewSign;
10898    if (!getLangOpts().CPlusPlus &&
10899        !Enum->isFixed() &&
10900        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10901      NewTy = Context.IntTy;
10902      NewWidth = IntWidth;
10903      NewSign = true;
10904    } else if (ECD->getType() == BestType) {
10905      // Already the right type!
10906      if (getLangOpts().CPlusPlus)
10907        // C++ [dcl.enum]p4: Following the closing brace of an
10908        // enum-specifier, each enumerator has the type of its
10909        // enumeration.
10910        ECD->setType(EnumType);
10911      continue;
10912    } else {
10913      NewTy = BestType;
10914      NewWidth = BestWidth;
10915      NewSign = BestType->isSignedIntegerOrEnumerationType();
10916    }
10917
10918    // Adjust the APSInt value.
10919    InitVal = InitVal.extOrTrunc(NewWidth);
10920    InitVal.setIsSigned(NewSign);
10921    ECD->setInitVal(InitVal);
10922
10923    // Adjust the Expr initializer and type.
10924    if (ECD->getInitExpr() &&
10925        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10926      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10927                                                CK_IntegralCast,
10928                                                ECD->getInitExpr(),
10929                                                /*base paths*/ 0,
10930                                                VK_RValue));
10931    if (getLangOpts().CPlusPlus)
10932      // C++ [dcl.enum]p4: Following the closing brace of an
10933      // enum-specifier, each enumerator has the type of its
10934      // enumeration.
10935      ECD->setType(EnumType);
10936    else
10937      ECD->setType(NewTy);
10938  }
10939
10940  Enum->completeDefinition(BestType, BestPromotionType,
10941                           NumPositiveBits, NumNegativeBits);
10942
10943  // If we're declaring a function, ensure this decl isn't forgotten about -
10944  // it needs to go into the function scope.
10945  if (InFunctionDeclarator)
10946    DeclsInPrototypeScope.push_back(Enum);
10947}
10948
10949Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10950                                  SourceLocation StartLoc,
10951                                  SourceLocation EndLoc) {
10952  StringLiteral *AsmString = cast<StringLiteral>(expr);
10953
10954  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10955                                                   AsmString, StartLoc,
10956                                                   EndLoc);
10957  CurContext->addDecl(New);
10958  return New;
10959}
10960
10961DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10962                                   SourceLocation ImportLoc,
10963                                   ModuleIdPath Path) {
10964  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10965                                                Module::AllVisible,
10966                                                /*IsIncludeDirective=*/false);
10967  if (!Mod)
10968    return true;
10969
10970  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10971  Module *ModCheck = Mod;
10972  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10973    // If we've run out of module parents, just drop the remaining identifiers.
10974    // We need the length to be consistent.
10975    if (!ModCheck)
10976      break;
10977    ModCheck = ModCheck->Parent;
10978
10979    IdentifierLocs.push_back(Path[I].second);
10980  }
10981
10982  ImportDecl *Import = ImportDecl::Create(Context,
10983                                          Context.getTranslationUnitDecl(),
10984                                          AtLoc.isValid()? AtLoc : ImportLoc,
10985                                          Mod, IdentifierLocs);
10986  Context.getTranslationUnitDecl()->addDecl(Import);
10987  return Import;
10988}
10989
10990void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10991                                      IdentifierInfo* AliasName,
10992                                      SourceLocation PragmaLoc,
10993                                      SourceLocation NameLoc,
10994                                      SourceLocation AliasNameLoc) {
10995  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10996                                    LookupOrdinaryName);
10997  AsmLabelAttr *Attr =
10998     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10999
11000  if (PrevDecl)
11001    PrevDecl->addAttr(Attr);
11002  else
11003    (void)ExtnameUndeclaredIdentifiers.insert(
11004      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11005}
11006
11007void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11008                             SourceLocation PragmaLoc,
11009                             SourceLocation NameLoc) {
11010  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11011
11012  if (PrevDecl) {
11013    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11014  } else {
11015    (void)WeakUndeclaredIdentifiers.insert(
11016      std::pair<IdentifierInfo*,WeakInfo>
11017        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11018  }
11019}
11020
11021void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11022                                IdentifierInfo* AliasName,
11023                                SourceLocation PragmaLoc,
11024                                SourceLocation NameLoc,
11025                                SourceLocation AliasNameLoc) {
11026  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11027                                    LookupOrdinaryName);
11028  WeakInfo W = WeakInfo(Name, NameLoc);
11029
11030  if (PrevDecl) {
11031    if (!PrevDecl->hasAttr<AliasAttr>())
11032      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11033        DeclApplyPragmaWeak(TUScope, ND, W);
11034  } else {
11035    (void)WeakUndeclaredIdentifiers.insert(
11036      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11037  }
11038}
11039
11040Decl *Sema::getObjCDeclContext() const {
11041  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11042}
11043
11044AvailabilityResult Sema::getCurContextAvailability() const {
11045  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11046  return D->getAvailability();
11047}
11048