TargetInfo.cpp revision 221345
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/Type.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  llvm::raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (const llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " Byal=" << getIndirectByVal()
79       << " Realign=" << getIndirectRealign();
80    break;
81  case Expand:
82    OS << "Expand";
83    break;
84  }
85  OS << ")\n";
86}
87
88TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
89
90static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
91
92/// isEmptyField - Return true iff a the field is "empty", that is it
93/// is an unnamed bit-field or an (array of) empty record(s).
94static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
95                         bool AllowArrays) {
96  if (FD->isUnnamedBitfield())
97    return true;
98
99  QualType FT = FD->getType();
100
101    // Constant arrays of empty records count as empty, strip them off.
102  if (AllowArrays)
103    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
104      FT = AT->getElementType();
105
106  const RecordType *RT = FT->getAs<RecordType>();
107  if (!RT)
108    return false;
109
110  // C++ record fields are never empty, at least in the Itanium ABI.
111  //
112  // FIXME: We should use a predicate for whether this behavior is true in the
113  // current ABI.
114  if (isa<CXXRecordDecl>(RT->getDecl()))
115    return false;
116
117  return isEmptyRecord(Context, FT, AllowArrays);
118}
119
120/// isEmptyRecord - Return true iff a structure contains only empty
121/// fields. Note that a structure with a flexible array member is not
122/// considered empty.
123static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
124  const RecordType *RT = T->getAs<RecordType>();
125  if (!RT)
126    return 0;
127  const RecordDecl *RD = RT->getDecl();
128  if (RD->hasFlexibleArrayMember())
129    return false;
130
131  // If this is a C++ record, check the bases first.
132  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
133    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
134           e = CXXRD->bases_end(); i != e; ++i)
135      if (!isEmptyRecord(Context, i->getType(), true))
136        return false;
137
138  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
139         i != e; ++i)
140    if (!isEmptyField(Context, *i, AllowArrays))
141      return false;
142  return true;
143}
144
145/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
146/// a non-trivial destructor or a non-trivial copy constructor.
147static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
148  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
149  if (!RD)
150    return false;
151
152  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
153}
154
155/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
156/// a record type with either a non-trivial destructor or a non-trivial copy
157/// constructor.
158static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
159  const RecordType *RT = T->getAs<RecordType>();
160  if (!RT)
161    return false;
162
163  return hasNonTrivialDestructorOrCopyConstructor(RT);
164}
165
166/// isSingleElementStruct - Determine if a structure is a "single
167/// element struct", i.e. it has exactly one non-empty field or
168/// exactly one field which is itself a single element
169/// struct. Structures with flexible array members are never
170/// considered single element structs.
171///
172/// \return The field declaration for the single non-empty field, if
173/// it exists.
174static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
175  const RecordType *RT = T->getAsStructureType();
176  if (!RT)
177    return 0;
178
179  const RecordDecl *RD = RT->getDecl();
180  if (RD->hasFlexibleArrayMember())
181    return 0;
182
183  const Type *Found = 0;
184
185  // If this is a C++ record, check the bases first.
186  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
187    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
188           e = CXXRD->bases_end(); i != e; ++i) {
189      // Ignore empty records.
190      if (isEmptyRecord(Context, i->getType(), true))
191        continue;
192
193      // If we already found an element then this isn't a single-element struct.
194      if (Found)
195        return 0;
196
197      // If this is non-empty and not a single element struct, the composite
198      // cannot be a single element struct.
199      Found = isSingleElementStruct(i->getType(), Context);
200      if (!Found)
201        return 0;
202    }
203  }
204
205  // Check for single element.
206  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
207         i != e; ++i) {
208    const FieldDecl *FD = *i;
209    QualType FT = FD->getType();
210
211    // Ignore empty fields.
212    if (isEmptyField(Context, FD, true))
213      continue;
214
215    // If we already found an element then this isn't a single-element
216    // struct.
217    if (Found)
218      return 0;
219
220    // Treat single element arrays as the element.
221    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
222      if (AT->getSize().getZExtValue() != 1)
223        break;
224      FT = AT->getElementType();
225    }
226
227    if (!isAggregateTypeForABI(FT)) {
228      Found = FT.getTypePtr();
229    } else {
230      Found = isSingleElementStruct(FT, Context);
231      if (!Found)
232        return 0;
233    }
234  }
235
236  return Found;
237}
238
239static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
240  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
241      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
242      !Ty->isBlockPointerType())
243    return false;
244
245  uint64_t Size = Context.getTypeSize(Ty);
246  return Size == 32 || Size == 64;
247}
248
249/// canExpandIndirectArgument - Test whether an argument type which is to be
250/// passed indirectly (on the stack) would have the equivalent layout if it was
251/// expanded into separate arguments. If so, we prefer to do the latter to avoid
252/// inhibiting optimizations.
253///
254// FIXME: This predicate is missing many cases, currently it just follows
255// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
256// should probably make this smarter, or better yet make the LLVM backend
257// capable of handling it.
258static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
259  // We can only expand structure types.
260  const RecordType *RT = Ty->getAs<RecordType>();
261  if (!RT)
262    return false;
263
264  // We can only expand (C) structures.
265  //
266  // FIXME: This needs to be generalized to handle classes as well.
267  const RecordDecl *RD = RT->getDecl();
268  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
269    return false;
270
271  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
272         i != e; ++i) {
273    const FieldDecl *FD = *i;
274
275    if (!is32Or64BitBasicType(FD->getType(), Context))
276      return false;
277
278    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
279    // how to expand them yet, and the predicate for telling if a bitfield still
280    // counts as "basic" is more complicated than what we were doing previously.
281    if (FD->isBitField())
282      return false;
283  }
284
285  return true;
286}
287
288namespace {
289/// DefaultABIInfo - The default implementation for ABI specific
290/// details. This implementation provides information which results in
291/// self-consistent and sensible LLVM IR generation, but does not
292/// conform to any particular ABI.
293class DefaultABIInfo : public ABIInfo {
294public:
295  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
296
297  ABIArgInfo classifyReturnType(QualType RetTy) const;
298  ABIArgInfo classifyArgumentType(QualType RetTy) const;
299
300  virtual void computeInfo(CGFunctionInfo &FI) const {
301    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
302    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
303         it != ie; ++it)
304      it->info = classifyArgumentType(it->type);
305  }
306
307  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
308                                 CodeGenFunction &CGF) const;
309};
310
311class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
312public:
313  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
314    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
315};
316
317llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
318                                       CodeGenFunction &CGF) const {
319  return 0;
320}
321
322ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
323  if (isAggregateTypeForABI(Ty))
324    return ABIArgInfo::getIndirect(0);
325
326  // Treat an enum type as its underlying type.
327  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
328    Ty = EnumTy->getDecl()->getIntegerType();
329
330  return (Ty->isPromotableIntegerType() ?
331          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
332}
333
334ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
335  if (RetTy->isVoidType())
336    return ABIArgInfo::getIgnore();
337
338  if (isAggregateTypeForABI(RetTy))
339    return ABIArgInfo::getIndirect(0);
340
341  // Treat an enum type as its underlying type.
342  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
343    RetTy = EnumTy->getDecl()->getIntegerType();
344
345  return (RetTy->isPromotableIntegerType() ?
346          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
347}
348
349/// UseX86_MMXType - Return true if this is an MMX type that should use the special
350/// x86_mmx type.
351bool UseX86_MMXType(const llvm::Type *IRType) {
352  // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
353  // special x86_mmx type.
354  return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
355    cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
356    IRType->getScalarSizeInBits() != 64;
357}
358
359static const llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
360                                                llvm::StringRef Constraint,
361                                                const llvm::Type* Ty) {
362  if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
363    return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
364  return Ty;
365}
366
367//===----------------------------------------------------------------------===//
368// X86-32 ABI Implementation
369//===----------------------------------------------------------------------===//
370
371/// X86_32ABIInfo - The X86-32 ABI information.
372class X86_32ABIInfo : public ABIInfo {
373  static const unsigned MinABIStackAlignInBytes = 4;
374
375  bool IsDarwinVectorABI;
376  bool IsSmallStructInRegABI;
377
378  static bool isRegisterSize(unsigned Size) {
379    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
380  }
381
382  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
383
384  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
385  /// such that the argument will be passed in memory.
386  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
387
388  /// \brief Return the alignment to use for the given type on the stack.
389  unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
390
391public:
392
393  ABIArgInfo classifyReturnType(QualType RetTy) const;
394  ABIArgInfo classifyArgumentType(QualType RetTy) const;
395
396  virtual void computeInfo(CGFunctionInfo &FI) const {
397    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
398    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
399         it != ie; ++it)
400      it->info = classifyArgumentType(it->type);
401  }
402
403  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
404                                 CodeGenFunction &CGF) const;
405
406  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
407    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
408};
409
410class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
411public:
412  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
413    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
414
415  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
416                           CodeGen::CodeGenModule &CGM) const;
417
418  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
419    // Darwin uses different dwarf register numbers for EH.
420    if (CGM.isTargetDarwin()) return 5;
421
422    return 4;
423  }
424
425  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
426                               llvm::Value *Address) const;
427
428  const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
429                                        llvm::StringRef Constraint,
430                                        const llvm::Type* Ty) const {
431    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
432  }
433
434};
435
436}
437
438/// shouldReturnTypeInRegister - Determine if the given type should be
439/// passed in a register (for the Darwin ABI).
440bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
441                                               ASTContext &Context) {
442  uint64_t Size = Context.getTypeSize(Ty);
443
444  // Type must be register sized.
445  if (!isRegisterSize(Size))
446    return false;
447
448  if (Ty->isVectorType()) {
449    // 64- and 128- bit vectors inside structures are not returned in
450    // registers.
451    if (Size == 64 || Size == 128)
452      return false;
453
454    return true;
455  }
456
457  // If this is a builtin, pointer, enum, complex type, member pointer, or
458  // member function pointer it is ok.
459  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
460      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
461      Ty->isBlockPointerType() || Ty->isMemberPointerType())
462    return true;
463
464  // Arrays are treated like records.
465  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
466    return shouldReturnTypeInRegister(AT->getElementType(), Context);
467
468  // Otherwise, it must be a record type.
469  const RecordType *RT = Ty->getAs<RecordType>();
470  if (!RT) return false;
471
472  // FIXME: Traverse bases here too.
473
474  // Structure types are passed in register if all fields would be
475  // passed in a register.
476  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
477         e = RT->getDecl()->field_end(); i != e; ++i) {
478    const FieldDecl *FD = *i;
479
480    // Empty fields are ignored.
481    if (isEmptyField(Context, FD, true))
482      continue;
483
484    // Check fields recursively.
485    if (!shouldReturnTypeInRegister(FD->getType(), Context))
486      return false;
487  }
488
489  return true;
490}
491
492ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
493  if (RetTy->isVoidType())
494    return ABIArgInfo::getIgnore();
495
496  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
497    // On Darwin, some vectors are returned in registers.
498    if (IsDarwinVectorABI) {
499      uint64_t Size = getContext().getTypeSize(RetTy);
500
501      // 128-bit vectors are a special case; they are returned in
502      // registers and we need to make sure to pick a type the LLVM
503      // backend will like.
504      if (Size == 128)
505        return ABIArgInfo::getDirect(llvm::VectorType::get(
506                  llvm::Type::getInt64Ty(getVMContext()), 2));
507
508      // Always return in register if it fits in a general purpose
509      // register, or if it is 64 bits and has a single element.
510      if ((Size == 8 || Size == 16 || Size == 32) ||
511          (Size == 64 && VT->getNumElements() == 1))
512        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
513                                                            Size));
514
515      return ABIArgInfo::getIndirect(0);
516    }
517
518    return ABIArgInfo::getDirect();
519  }
520
521  if (isAggregateTypeForABI(RetTy)) {
522    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
523      // Structures with either a non-trivial destructor or a non-trivial
524      // copy constructor are always indirect.
525      if (hasNonTrivialDestructorOrCopyConstructor(RT))
526        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
527
528      // Structures with flexible arrays are always indirect.
529      if (RT->getDecl()->hasFlexibleArrayMember())
530        return ABIArgInfo::getIndirect(0);
531    }
532
533    // If specified, structs and unions are always indirect.
534    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
535      return ABIArgInfo::getIndirect(0);
536
537    // Classify "single element" structs as their element type.
538    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
539      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
540        if (BT->isIntegerType()) {
541          // We need to use the size of the structure, padding
542          // bit-fields can adjust that to be larger than the single
543          // element type.
544          uint64_t Size = getContext().getTypeSize(RetTy);
545          return ABIArgInfo::getDirect(
546            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
547        }
548
549        if (BT->getKind() == BuiltinType::Float) {
550          assert(getContext().getTypeSize(RetTy) ==
551                 getContext().getTypeSize(SeltTy) &&
552                 "Unexpect single element structure size!");
553          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
554        }
555
556        if (BT->getKind() == BuiltinType::Double) {
557          assert(getContext().getTypeSize(RetTy) ==
558                 getContext().getTypeSize(SeltTy) &&
559                 "Unexpect single element structure size!");
560          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
561        }
562      } else if (SeltTy->isPointerType()) {
563        // FIXME: It would be really nice if this could come out as the proper
564        // pointer type.
565        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
566        return ABIArgInfo::getDirect(PtrTy);
567      } else if (SeltTy->isVectorType()) {
568        // 64- and 128-bit vectors are never returned in a
569        // register when inside a structure.
570        uint64_t Size = getContext().getTypeSize(RetTy);
571        if (Size == 64 || Size == 128)
572          return ABIArgInfo::getIndirect(0);
573
574        return classifyReturnType(QualType(SeltTy, 0));
575      }
576    }
577
578    // Small structures which are register sized are generally returned
579    // in a register.
580    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
581      uint64_t Size = getContext().getTypeSize(RetTy);
582      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
583    }
584
585    return ABIArgInfo::getIndirect(0);
586  }
587
588  // Treat an enum type as its underlying type.
589  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
590    RetTy = EnumTy->getDecl()->getIntegerType();
591
592  return (RetTy->isPromotableIntegerType() ?
593          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
594}
595
596static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
597  const RecordType *RT = Ty->getAs<RecordType>();
598  if (!RT)
599    return 0;
600  const RecordDecl *RD = RT->getDecl();
601
602  // If this is a C++ record, check the bases first.
603  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
604    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
605           e = CXXRD->bases_end(); i != e; ++i)
606      if (!isRecordWithSSEVectorType(Context, i->getType()))
607        return false;
608
609  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
610       i != e; ++i) {
611    QualType FT = i->getType();
612
613    if (FT->getAs<VectorType>() && Context.getTypeSize(Ty) == 128)
614      return true;
615
616    if (isRecordWithSSEVectorType(Context, FT))
617      return true;
618  }
619
620  return false;
621}
622
623unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
624                                                 unsigned Align) const {
625  // Otherwise, if the alignment is less than or equal to the minimum ABI
626  // alignment, just use the default; the backend will handle this.
627  if (Align <= MinABIStackAlignInBytes)
628    return 0; // Use default alignment.
629
630  // On non-Darwin, the stack type alignment is always 4.
631  if (!IsDarwinVectorABI) {
632    // Set explicit alignment, since we may need to realign the top.
633    return MinABIStackAlignInBytes;
634  }
635
636  // Otherwise, if the type contains an SSE vector type, the alignment is 16.
637  if (isRecordWithSSEVectorType(getContext(), Ty))
638    return 16;
639
640  return MinABIStackAlignInBytes;
641}
642
643ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
644  if (!ByVal)
645    return ABIArgInfo::getIndirect(0, false);
646
647  // Compute the byval alignment.
648  unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
649  unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
650  if (StackAlign == 0)
651    return ABIArgInfo::getIndirect(0);
652
653  // If the stack alignment is less than the type alignment, realign the
654  // argument.
655  if (StackAlign < TypeAlign)
656    return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
657                                   /*Realign=*/true);
658
659  return ABIArgInfo::getIndirect(StackAlign);
660}
661
662ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
663  // FIXME: Set alignment on indirect arguments.
664  if (isAggregateTypeForABI(Ty)) {
665    // Structures with flexible arrays are always indirect.
666    if (const RecordType *RT = Ty->getAs<RecordType>()) {
667      // Structures with either a non-trivial destructor or a non-trivial
668      // copy constructor are always indirect.
669      if (hasNonTrivialDestructorOrCopyConstructor(RT))
670        return getIndirectResult(Ty, /*ByVal=*/false);
671
672      if (RT->getDecl()->hasFlexibleArrayMember())
673        return getIndirectResult(Ty);
674    }
675
676    // Ignore empty structs.
677    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
678      return ABIArgInfo::getIgnore();
679
680    // Expand small (<= 128-bit) record types when we know that the stack layout
681    // of those arguments will match the struct. This is important because the
682    // LLVM backend isn't smart enough to remove byval, which inhibits many
683    // optimizations.
684    if (getContext().getTypeSize(Ty) <= 4*32 &&
685        canExpandIndirectArgument(Ty, getContext()))
686      return ABIArgInfo::getExpand();
687
688    return getIndirectResult(Ty);
689  }
690
691  if (const VectorType *VT = Ty->getAs<VectorType>()) {
692    // On Darwin, some vectors are passed in memory, we handle this by passing
693    // it as an i8/i16/i32/i64.
694    if (IsDarwinVectorABI) {
695      uint64_t Size = getContext().getTypeSize(Ty);
696      if ((Size == 8 || Size == 16 || Size == 32) ||
697          (Size == 64 && VT->getNumElements() == 1))
698        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
699                                                            Size));
700    }
701
702    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
703    if (UseX86_MMXType(IRType)) {
704      ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
705      AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
706      return AAI;
707    }
708
709    return ABIArgInfo::getDirect();
710  }
711
712
713  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
714    Ty = EnumTy->getDecl()->getIntegerType();
715
716  return (Ty->isPromotableIntegerType() ?
717          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
718}
719
720llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
721                                      CodeGenFunction &CGF) const {
722  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
723  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
724
725  CGBuilderTy &Builder = CGF.Builder;
726  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
727                                                       "ap");
728  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
729  llvm::Type *PTy =
730    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
731  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
732
733  uint64_t Offset =
734    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
735  llvm::Value *NextAddr =
736    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
737                      "ap.next");
738  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
739
740  return AddrTyped;
741}
742
743void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
744                                                  llvm::GlobalValue *GV,
745                                            CodeGen::CodeGenModule &CGM) const {
746  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
747    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
748      // Get the LLVM function.
749      llvm::Function *Fn = cast<llvm::Function>(GV);
750
751      // Now add the 'alignstack' attribute with a value of 16.
752      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
753    }
754  }
755}
756
757bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
758                                               CodeGen::CodeGenFunction &CGF,
759                                               llvm::Value *Address) const {
760  CodeGen::CGBuilderTy &Builder = CGF.Builder;
761  llvm::LLVMContext &Context = CGF.getLLVMContext();
762
763  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
764  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
765
766  // 0-7 are the eight integer registers;  the order is different
767  //   on Darwin (for EH), but the range is the same.
768  // 8 is %eip.
769  AssignToArrayRange(Builder, Address, Four8, 0, 8);
770
771  if (CGF.CGM.isTargetDarwin()) {
772    // 12-16 are st(0..4).  Not sure why we stop at 4.
773    // These have size 16, which is sizeof(long double) on
774    // platforms with 8-byte alignment for that type.
775    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
776    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
777
778  } else {
779    // 9 is %eflags, which doesn't get a size on Darwin for some
780    // reason.
781    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
782
783    // 11-16 are st(0..5).  Not sure why we stop at 5.
784    // These have size 12, which is sizeof(long double) on
785    // platforms with 4-byte alignment for that type.
786    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
787    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
788  }
789
790  return false;
791}
792
793//===----------------------------------------------------------------------===//
794// X86-64 ABI Implementation
795//===----------------------------------------------------------------------===//
796
797
798namespace {
799/// X86_64ABIInfo - The X86_64 ABI information.
800class X86_64ABIInfo : public ABIInfo {
801  enum Class {
802    Integer = 0,
803    SSE,
804    SSEUp,
805    X87,
806    X87Up,
807    ComplexX87,
808    NoClass,
809    Memory
810  };
811
812  /// merge - Implement the X86_64 ABI merging algorithm.
813  ///
814  /// Merge an accumulating classification \arg Accum with a field
815  /// classification \arg Field.
816  ///
817  /// \param Accum - The accumulating classification. This should
818  /// always be either NoClass or the result of a previous merge
819  /// call. In addition, this should never be Memory (the caller
820  /// should just return Memory for the aggregate).
821  static Class merge(Class Accum, Class Field);
822
823  /// classify - Determine the x86_64 register classes in which the
824  /// given type T should be passed.
825  ///
826  /// \param Lo - The classification for the parts of the type
827  /// residing in the low word of the containing object.
828  ///
829  /// \param Hi - The classification for the parts of the type
830  /// residing in the high word of the containing object.
831  ///
832  /// \param OffsetBase - The bit offset of this type in the
833  /// containing object.  Some parameters are classified different
834  /// depending on whether they straddle an eightbyte boundary.
835  ///
836  /// If a word is unused its result will be NoClass; if a type should
837  /// be passed in Memory then at least the classification of \arg Lo
838  /// will be Memory.
839  ///
840  /// The \arg Lo class will be NoClass iff the argument is ignored.
841  ///
842  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
843  /// also be ComplexX87.
844  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
845
846  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
847  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
848                                       unsigned IROffset, QualType SourceTy,
849                                       unsigned SourceOffset) const;
850  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
851                                           unsigned IROffset, QualType SourceTy,
852                                           unsigned SourceOffset) const;
853
854  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
855  /// such that the argument will be returned in memory.
856  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
857
858  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
859  /// such that the argument will be passed in memory.
860  ABIArgInfo getIndirectResult(QualType Ty) const;
861
862  ABIArgInfo classifyReturnType(QualType RetTy) const;
863
864  ABIArgInfo classifyArgumentType(QualType Ty,
865                                  unsigned &neededInt,
866                                  unsigned &neededSSE) const;
867
868  /// The 0.98 ABI revision clarified a lot of ambiguities,
869  /// unfortunately in ways that were not always consistent with
870  /// certain previous compilers.  In particular, platforms which
871  /// required strict binary compatibility with older versions of GCC
872  /// may need to exempt themselves.
873  bool honorsRevision0_98() const {
874    return !getContext().Target.getTriple().isOSDarwin();
875  }
876
877public:
878  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
879
880  virtual void computeInfo(CGFunctionInfo &FI) const;
881
882  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
883                                 CodeGenFunction &CGF) const;
884};
885
886/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
887class WinX86_64ABIInfo : public ABIInfo {
888
889  ABIArgInfo classify(QualType Ty) const;
890
891public:
892  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
893
894  virtual void computeInfo(CGFunctionInfo &FI) const;
895
896  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
897                                 CodeGenFunction &CGF) const;
898};
899
900class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
901public:
902  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
903    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
904
905  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
906    return 7;
907  }
908
909  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
910                               llvm::Value *Address) const {
911    CodeGen::CGBuilderTy &Builder = CGF.Builder;
912    llvm::LLVMContext &Context = CGF.getLLVMContext();
913
914    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
915    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
916
917    // 0-15 are the 16 integer registers.
918    // 16 is %rip.
919    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
920
921    return false;
922  }
923
924  const llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
925                                        llvm::StringRef Constraint,
926                                        const llvm::Type* Ty) const {
927    return X86AdjustInlineAsmType(CGF, Constraint, Ty);
928  }
929
930};
931
932class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
933public:
934  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
935    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
936
937  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
938    return 7;
939  }
940
941  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
942                               llvm::Value *Address) const {
943    CodeGen::CGBuilderTy &Builder = CGF.Builder;
944    llvm::LLVMContext &Context = CGF.getLLVMContext();
945
946    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
947    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
948
949    // 0-15 are the 16 integer registers.
950    // 16 is %rip.
951    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
952
953    return false;
954  }
955};
956
957}
958
959X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
960  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
961  // classified recursively so that always two fields are
962  // considered. The resulting class is calculated according to
963  // the classes of the fields in the eightbyte:
964  //
965  // (a) If both classes are equal, this is the resulting class.
966  //
967  // (b) If one of the classes is NO_CLASS, the resulting class is
968  // the other class.
969  //
970  // (c) If one of the classes is MEMORY, the result is the MEMORY
971  // class.
972  //
973  // (d) If one of the classes is INTEGER, the result is the
974  // INTEGER.
975  //
976  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
977  // MEMORY is used as class.
978  //
979  // (f) Otherwise class SSE is used.
980
981  // Accum should never be memory (we should have returned) or
982  // ComplexX87 (because this cannot be passed in a structure).
983  assert((Accum != Memory && Accum != ComplexX87) &&
984         "Invalid accumulated classification during merge.");
985  if (Accum == Field || Field == NoClass)
986    return Accum;
987  if (Field == Memory)
988    return Memory;
989  if (Accum == NoClass)
990    return Field;
991  if (Accum == Integer || Field == Integer)
992    return Integer;
993  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
994      Accum == X87 || Accum == X87Up)
995    return Memory;
996  return SSE;
997}
998
999void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
1000                             Class &Lo, Class &Hi) const {
1001  // FIXME: This code can be simplified by introducing a simple value class for
1002  // Class pairs with appropriate constructor methods for the various
1003  // situations.
1004
1005  // FIXME: Some of the split computations are wrong; unaligned vectors
1006  // shouldn't be passed in registers for example, so there is no chance they
1007  // can straddle an eightbyte. Verify & simplify.
1008
1009  Lo = Hi = NoClass;
1010
1011  Class &Current = OffsetBase < 64 ? Lo : Hi;
1012  Current = Memory;
1013
1014  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1015    BuiltinType::Kind k = BT->getKind();
1016
1017    if (k == BuiltinType::Void) {
1018      Current = NoClass;
1019    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1020      Lo = Integer;
1021      Hi = Integer;
1022    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1023      Current = Integer;
1024    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
1025      Current = SSE;
1026    } else if (k == BuiltinType::LongDouble) {
1027      Lo = X87;
1028      Hi = X87Up;
1029    }
1030    // FIXME: _Decimal32 and _Decimal64 are SSE.
1031    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1032    return;
1033  }
1034
1035  if (const EnumType *ET = Ty->getAs<EnumType>()) {
1036    // Classify the underlying integer type.
1037    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
1038    return;
1039  }
1040
1041  if (Ty->hasPointerRepresentation()) {
1042    Current = Integer;
1043    return;
1044  }
1045
1046  if (Ty->isMemberPointerType()) {
1047    if (Ty->isMemberFunctionPointerType())
1048      Lo = Hi = Integer;
1049    else
1050      Current = Integer;
1051    return;
1052  }
1053
1054  if (const VectorType *VT = Ty->getAs<VectorType>()) {
1055    uint64_t Size = getContext().getTypeSize(VT);
1056    if (Size == 32) {
1057      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
1058      // float> as integer.
1059      Current = Integer;
1060
1061      // If this type crosses an eightbyte boundary, it should be
1062      // split.
1063      uint64_t EB_Real = (OffsetBase) / 64;
1064      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
1065      if (EB_Real != EB_Imag)
1066        Hi = Lo;
1067    } else if (Size == 64) {
1068      // gcc passes <1 x double> in memory. :(
1069      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
1070        return;
1071
1072      // gcc passes <1 x long long> as INTEGER.
1073      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
1074          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1075          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
1076          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
1077        Current = Integer;
1078      else
1079        Current = SSE;
1080
1081      // If this type crosses an eightbyte boundary, it should be
1082      // split.
1083      if (OffsetBase && OffsetBase != 64)
1084        Hi = Lo;
1085    } else if (Size == 128) {
1086      Lo = SSE;
1087      Hi = SSEUp;
1088    }
1089    return;
1090  }
1091
1092  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1093    QualType ET = getContext().getCanonicalType(CT->getElementType());
1094
1095    uint64_t Size = getContext().getTypeSize(Ty);
1096    if (ET->isIntegralOrEnumerationType()) {
1097      if (Size <= 64)
1098        Current = Integer;
1099      else if (Size <= 128)
1100        Lo = Hi = Integer;
1101    } else if (ET == getContext().FloatTy)
1102      Current = SSE;
1103    else if (ET == getContext().DoubleTy)
1104      Lo = Hi = SSE;
1105    else if (ET == getContext().LongDoubleTy)
1106      Current = ComplexX87;
1107
1108    // If this complex type crosses an eightbyte boundary then it
1109    // should be split.
1110    uint64_t EB_Real = (OffsetBase) / 64;
1111    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1112    if (Hi == NoClass && EB_Real != EB_Imag)
1113      Hi = Lo;
1114
1115    return;
1116  }
1117
1118  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1119    // Arrays are treated like structures.
1120
1121    uint64_t Size = getContext().getTypeSize(Ty);
1122
1123    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1124    // than two eightbytes, ..., it has class MEMORY.
1125    if (Size > 128)
1126      return;
1127
1128    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1129    // fields, it has class MEMORY.
1130    //
1131    // Only need to check alignment of array base.
1132    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1133      return;
1134
1135    // Otherwise implement simplified merge. We could be smarter about
1136    // this, but it isn't worth it and would be harder to verify.
1137    Current = NoClass;
1138    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1139    uint64_t ArraySize = AT->getSize().getZExtValue();
1140    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1141      Class FieldLo, FieldHi;
1142      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1143      Lo = merge(Lo, FieldLo);
1144      Hi = merge(Hi, FieldHi);
1145      if (Lo == Memory || Hi == Memory)
1146        break;
1147    }
1148
1149    // Do post merger cleanup (see below). Only case we worry about is Memory.
1150    if (Hi == Memory)
1151      Lo = Memory;
1152    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1153    return;
1154  }
1155
1156  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1157    uint64_t Size = getContext().getTypeSize(Ty);
1158
1159    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1160    // than two eightbytes, ..., it has class MEMORY.
1161    if (Size > 128)
1162      return;
1163
1164    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1165    // copy constructor or a non-trivial destructor, it is passed by invisible
1166    // reference.
1167    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1168      return;
1169
1170    const RecordDecl *RD = RT->getDecl();
1171
1172    // Assume variable sized types are passed in memory.
1173    if (RD->hasFlexibleArrayMember())
1174      return;
1175
1176    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1177
1178    // Reset Lo class, this will be recomputed.
1179    Current = NoClass;
1180
1181    // If this is a C++ record, classify the bases first.
1182    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1183      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1184             e = CXXRD->bases_end(); i != e; ++i) {
1185        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1186               "Unexpected base class!");
1187        const CXXRecordDecl *Base =
1188          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1189
1190        // Classify this field.
1191        //
1192        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1193        // single eightbyte, each is classified separately. Each eightbyte gets
1194        // initialized to class NO_CLASS.
1195        Class FieldLo, FieldHi;
1196        uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
1197        classify(i->getType(), Offset, FieldLo, FieldHi);
1198        Lo = merge(Lo, FieldLo);
1199        Hi = merge(Hi, FieldHi);
1200        if (Lo == Memory || Hi == Memory)
1201          break;
1202      }
1203    }
1204
1205    // Classify the fields one at a time, merging the results.
1206    unsigned idx = 0;
1207    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1208           i != e; ++i, ++idx) {
1209      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1210      bool BitField = i->isBitField();
1211
1212      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1213      // fields, it has class MEMORY.
1214      //
1215      // Note, skip this test for bit-fields, see below.
1216      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1217        Lo = Memory;
1218        return;
1219      }
1220
1221      // Classify this field.
1222      //
1223      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1224      // exceeds a single eightbyte, each is classified
1225      // separately. Each eightbyte gets initialized to class
1226      // NO_CLASS.
1227      Class FieldLo, FieldHi;
1228
1229      // Bit-fields require special handling, they do not force the
1230      // structure to be passed in memory even if unaligned, and
1231      // therefore they can straddle an eightbyte.
1232      if (BitField) {
1233        // Ignore padding bit-fields.
1234        if (i->isUnnamedBitfield())
1235          continue;
1236
1237        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1238        uint64_t Size =
1239          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1240
1241        uint64_t EB_Lo = Offset / 64;
1242        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1243        FieldLo = FieldHi = NoClass;
1244        if (EB_Lo) {
1245          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1246          FieldLo = NoClass;
1247          FieldHi = Integer;
1248        } else {
1249          FieldLo = Integer;
1250          FieldHi = EB_Hi ? Integer : NoClass;
1251        }
1252      } else
1253        classify(i->getType(), Offset, FieldLo, FieldHi);
1254      Lo = merge(Lo, FieldLo);
1255      Hi = merge(Hi, FieldHi);
1256      if (Lo == Memory || Hi == Memory)
1257        break;
1258    }
1259
1260    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1261    //
1262    // (a) If one of the classes is MEMORY, the whole argument is
1263    // passed in memory.
1264    //
1265    // (b) If X87UP is not preceded by X87, the whole argument is
1266    // passed in memory.
1267    //
1268    // (c) If the size of the aggregate exceeds two eightbytes and the first
1269    // eight-byte isn���t SSE or any other eightbyte isn���t SSEUP, the whole
1270    // argument is passed in memory.
1271    //
1272    // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1273    //
1274    // Some of these are enforced by the merging logic.  Others can arise
1275    // only with unions; for example:
1276    //   union { _Complex double; unsigned; }
1277    //
1278    // Note that clauses (b) and (c) were added in 0.98.
1279    if (Hi == Memory)
1280      Lo = Memory;
1281    if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1282      Lo = Memory;
1283    if (Hi == SSEUp && Lo != SSE)
1284      Hi = SSE;
1285  }
1286}
1287
1288ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1289  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1290  // place naturally.
1291  if (!isAggregateTypeForABI(Ty)) {
1292    // Treat an enum type as its underlying type.
1293    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1294      Ty = EnumTy->getDecl()->getIntegerType();
1295
1296    return (Ty->isPromotableIntegerType() ?
1297            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1298  }
1299
1300  return ABIArgInfo::getIndirect(0);
1301}
1302
1303ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1304  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1305  // place naturally.
1306  if (!isAggregateTypeForABI(Ty)) {
1307    // Treat an enum type as its underlying type.
1308    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1309      Ty = EnumTy->getDecl()->getIntegerType();
1310
1311    return (Ty->isPromotableIntegerType() ?
1312            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1313  }
1314
1315  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1316    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1317
1318  // Compute the byval alignment. We trust the back-end to honor the
1319  // minimum ABI alignment for byval, to make cleaner IR.
1320  const unsigned MinABIAlign = 8;
1321  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1322  if (Align > MinABIAlign)
1323    return ABIArgInfo::getIndirect(Align);
1324  return ABIArgInfo::getIndirect(0);
1325}
1326
1327/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1328/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1329/// vector register.
1330const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1331  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1332
1333  // Wrapper structs that just contain vectors are passed just like vectors,
1334  // strip them off if present.
1335  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1336  while (STy && STy->getNumElements() == 1) {
1337    IRType = STy->getElementType(0);
1338    STy = dyn_cast<llvm::StructType>(IRType);
1339  }
1340
1341  // If the preferred type is a 16-byte vector, prefer to pass it.
1342  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1343    const llvm::Type *EltTy = VT->getElementType();
1344    if (VT->getBitWidth() == 128 &&
1345        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1346         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1347         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1348         EltTy->isIntegerTy(128)))
1349      return VT;
1350  }
1351
1352  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1353}
1354
1355/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1356/// is known to either be off the end of the specified type or being in
1357/// alignment padding.  The user type specified is known to be at most 128 bits
1358/// in size, and have passed through X86_64ABIInfo::classify with a successful
1359/// classification that put one of the two halves in the INTEGER class.
1360///
1361/// It is conservatively correct to return false.
1362static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1363                                  unsigned EndBit, ASTContext &Context) {
1364  // If the bytes being queried are off the end of the type, there is no user
1365  // data hiding here.  This handles analysis of builtins, vectors and other
1366  // types that don't contain interesting padding.
1367  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1368  if (TySize <= StartBit)
1369    return true;
1370
1371  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1372    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1373    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1374
1375    // Check each element to see if the element overlaps with the queried range.
1376    for (unsigned i = 0; i != NumElts; ++i) {
1377      // If the element is after the span we care about, then we're done..
1378      unsigned EltOffset = i*EltSize;
1379      if (EltOffset >= EndBit) break;
1380
1381      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1382      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1383                                 EndBit-EltOffset, Context))
1384        return false;
1385    }
1386    // If it overlaps no elements, then it is safe to process as padding.
1387    return true;
1388  }
1389
1390  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1391    const RecordDecl *RD = RT->getDecl();
1392    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1393
1394    // If this is a C++ record, check the bases first.
1395    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1396      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1397           e = CXXRD->bases_end(); i != e; ++i) {
1398        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1399               "Unexpected base class!");
1400        const CXXRecordDecl *Base =
1401          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1402
1403        // If the base is after the span we care about, ignore it.
1404        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
1405        if (BaseOffset >= EndBit) continue;
1406
1407        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1408        if (!BitsContainNoUserData(i->getType(), BaseStart,
1409                                   EndBit-BaseOffset, Context))
1410          return false;
1411      }
1412    }
1413
1414    // Verify that no field has data that overlaps the region of interest.  Yes
1415    // this could be sped up a lot by being smarter about queried fields,
1416    // however we're only looking at structs up to 16 bytes, so we don't care
1417    // much.
1418    unsigned idx = 0;
1419    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1420         i != e; ++i, ++idx) {
1421      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1422
1423      // If we found a field after the region we care about, then we're done.
1424      if (FieldOffset >= EndBit) break;
1425
1426      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1427      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1428                                 Context))
1429        return false;
1430    }
1431
1432    // If nothing in this record overlapped the area of interest, then we're
1433    // clean.
1434    return true;
1435  }
1436
1437  return false;
1438}
1439
1440/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1441/// float member at the specified offset.  For example, {int,{float}} has a
1442/// float at offset 4.  It is conservatively correct for this routine to return
1443/// false.
1444static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1445                                  const llvm::TargetData &TD) {
1446  // Base case if we find a float.
1447  if (IROffset == 0 && IRType->isFloatTy())
1448    return true;
1449
1450  // If this is a struct, recurse into the field at the specified offset.
1451  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1452    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1453    unsigned Elt = SL->getElementContainingOffset(IROffset);
1454    IROffset -= SL->getElementOffset(Elt);
1455    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1456  }
1457
1458  // If this is an array, recurse into the field at the specified offset.
1459  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1460    const llvm::Type *EltTy = ATy->getElementType();
1461    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1462    IROffset -= IROffset/EltSize*EltSize;
1463    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1464  }
1465
1466  return false;
1467}
1468
1469
1470/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1471/// low 8 bytes of an XMM register, corresponding to the SSE class.
1472const llvm::Type *X86_64ABIInfo::
1473GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1474                   QualType SourceTy, unsigned SourceOffset) const {
1475  // The only three choices we have are either double, <2 x float>, or float. We
1476  // pass as float if the last 4 bytes is just padding.  This happens for
1477  // structs that contain 3 floats.
1478  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1479                            SourceOffset*8+64, getContext()))
1480    return llvm::Type::getFloatTy(getVMContext());
1481
1482  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1483  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1484  // case.
1485  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1486      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1487    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1488
1489  return llvm::Type::getDoubleTy(getVMContext());
1490}
1491
1492
1493/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1494/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1495/// about the high or low part of an up-to-16-byte struct.  This routine picks
1496/// the best LLVM IR type to represent this, which may be i64 or may be anything
1497/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1498/// etc).
1499///
1500/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1501/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1502/// the 8-byte value references.  PrefType may be null.
1503///
1504/// SourceTy is the source level type for the entire argument.  SourceOffset is
1505/// an offset into this that we're processing (which is always either 0 or 8).
1506///
1507const llvm::Type *X86_64ABIInfo::
1508GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1509                       QualType SourceTy, unsigned SourceOffset) const {
1510  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1511  // returning an 8-byte unit starting with it.  See if we can safely use it.
1512  if (IROffset == 0) {
1513    // Pointers and int64's always fill the 8-byte unit.
1514    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1515      return IRType;
1516
1517    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1518    // goodness in the source type is just tail padding.  This is allowed to
1519    // kick in for struct {double,int} on the int, but not on
1520    // struct{double,int,int} because we wouldn't return the second int.  We
1521    // have to do this analysis on the source type because we can't depend on
1522    // unions being lowered a specific way etc.
1523    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1524        IRType->isIntegerTy(32)) {
1525      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1526
1527      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1528                                SourceOffset*8+64, getContext()))
1529        return IRType;
1530    }
1531  }
1532
1533  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1534    // If this is a struct, recurse into the field at the specified offset.
1535    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1536    if (IROffset < SL->getSizeInBytes()) {
1537      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1538      IROffset -= SL->getElementOffset(FieldIdx);
1539
1540      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1541                                    SourceTy, SourceOffset);
1542    }
1543  }
1544
1545  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1546    const llvm::Type *EltTy = ATy->getElementType();
1547    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1548    unsigned EltOffset = IROffset/EltSize*EltSize;
1549    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1550                                  SourceOffset);
1551  }
1552
1553  // Okay, we don't have any better idea of what to pass, so we pass this in an
1554  // integer register that isn't too big to fit the rest of the struct.
1555  unsigned TySizeInBytes =
1556    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1557
1558  assert(TySizeInBytes != SourceOffset && "Empty field?");
1559
1560  // It is always safe to classify this as an integer type up to i64 that
1561  // isn't larger than the structure.
1562  return llvm::IntegerType::get(getVMContext(),
1563                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1564}
1565
1566
1567/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
1568/// be used as elements of a two register pair to pass or return, return a
1569/// first class aggregate to represent them.  For example, if the low part of
1570/// a by-value argument should be passed as i32* and the high part as float,
1571/// return {i32*, float}.
1572static const llvm::Type *
1573GetX86_64ByValArgumentPair(const llvm::Type *Lo, const llvm::Type *Hi,
1574                           const llvm::TargetData &TD) {
1575  // In order to correctly satisfy the ABI, we need to the high part to start
1576  // at offset 8.  If the high and low parts we inferred are both 4-byte types
1577  // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
1578  // the second element at offset 8.  Check for this:
1579  unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
1580  unsigned HiAlign = TD.getABITypeAlignment(Hi);
1581  unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
1582  assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
1583
1584  // To handle this, we have to increase the size of the low part so that the
1585  // second element will start at an 8 byte offset.  We can't increase the size
1586  // of the second element because it might make us access off the end of the
1587  // struct.
1588  if (HiStart != 8) {
1589    // There are only two sorts of types the ABI generation code can produce for
1590    // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
1591    // Promote these to a larger type.
1592    if (Lo->isFloatTy())
1593      Lo = llvm::Type::getDoubleTy(Lo->getContext());
1594    else {
1595      assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
1596      Lo = llvm::Type::getInt64Ty(Lo->getContext());
1597    }
1598  }
1599
1600  const llvm::StructType *Result =
1601    llvm::StructType::get(Lo->getContext(), Lo, Hi, NULL);
1602
1603
1604  // Verify that the second element is at an 8-byte offset.
1605  assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
1606         "Invalid x86-64 argument pair!");
1607  return Result;
1608}
1609
1610ABIArgInfo X86_64ABIInfo::
1611classifyReturnType(QualType RetTy) const {
1612  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1613  // classification algorithm.
1614  X86_64ABIInfo::Class Lo, Hi;
1615  classify(RetTy, 0, Lo, Hi);
1616
1617  // Check some invariants.
1618  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1619  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1620
1621  const llvm::Type *ResType = 0;
1622  switch (Lo) {
1623  case NoClass:
1624    if (Hi == NoClass)
1625      return ABIArgInfo::getIgnore();
1626    // If the low part is just padding, it takes no register, leave ResType
1627    // null.
1628    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1629           "Unknown missing lo part");
1630    break;
1631
1632  case SSEUp:
1633  case X87Up:
1634    assert(0 && "Invalid classification for lo word.");
1635
1636    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1637    // hidden argument.
1638  case Memory:
1639    return getIndirectReturnResult(RetTy);
1640
1641    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1642    // available register of the sequence %rax, %rdx is used.
1643  case Integer:
1644    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1645                                     RetTy, 0);
1646
1647    // If we have a sign or zero extended integer, make sure to return Extend
1648    // so that the parameter gets the right LLVM IR attributes.
1649    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1650      // Treat an enum type as its underlying type.
1651      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1652        RetTy = EnumTy->getDecl()->getIntegerType();
1653
1654      if (RetTy->isIntegralOrEnumerationType() &&
1655          RetTy->isPromotableIntegerType())
1656        return ABIArgInfo::getExtend();
1657    }
1658    break;
1659
1660    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1661    // available SSE register of the sequence %xmm0, %xmm1 is used.
1662  case SSE:
1663    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1664    break;
1665
1666    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1667    // returned on the X87 stack in %st0 as 80-bit x87 number.
1668  case X87:
1669    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1670    break;
1671
1672    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1673    // part of the value is returned in %st0 and the imaginary part in
1674    // %st1.
1675  case ComplexX87:
1676    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1677    ResType = llvm::StructType::get(getVMContext(),
1678                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1679                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1680                                    NULL);
1681    break;
1682  }
1683
1684  const llvm::Type *HighPart = 0;
1685  switch (Hi) {
1686    // Memory was handled previously and X87 should
1687    // never occur as a hi class.
1688  case Memory:
1689  case X87:
1690    assert(0 && "Invalid classification for hi word.");
1691
1692  case ComplexX87: // Previously handled.
1693  case NoClass:
1694    break;
1695
1696  case Integer:
1697    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1698                                      8, RetTy, 8);
1699    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1700      return ABIArgInfo::getDirect(HighPart, 8);
1701    break;
1702  case SSE:
1703    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1704    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1705      return ABIArgInfo::getDirect(HighPart, 8);
1706    break;
1707
1708    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1709    // is passed in the upper half of the last used SSE register.
1710    //
1711    // SSEUP should always be preceded by SSE, just widen.
1712  case SSEUp:
1713    assert(Lo == SSE && "Unexpected SSEUp classification.");
1714    ResType = Get16ByteVectorType(RetTy);
1715    break;
1716
1717    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1718    // returned together with the previous X87 value in %st0.
1719  case X87Up:
1720    // If X87Up is preceded by X87, we don't need to do
1721    // anything. However, in some cases with unions it may not be
1722    // preceded by X87. In such situations we follow gcc and pass the
1723    // extra bits in an SSE reg.
1724    if (Lo != X87) {
1725      HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1726                                    8, RetTy, 8);
1727      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1728        return ABIArgInfo::getDirect(HighPart, 8);
1729    }
1730    break;
1731  }
1732
1733  // If a high part was specified, merge it together with the low part.  It is
1734  // known to pass in the high eightbyte of the result.  We do this by forming a
1735  // first class struct aggregate with the high and low part: {low, high}
1736  if (HighPart)
1737    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1738
1739  return ABIArgInfo::getDirect(ResType);
1740}
1741
1742ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1743                                               unsigned &neededSSE) const {
1744  X86_64ABIInfo::Class Lo, Hi;
1745  classify(Ty, 0, Lo, Hi);
1746
1747  // Check some invariants.
1748  // FIXME: Enforce these by construction.
1749  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1750  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1751
1752  neededInt = 0;
1753  neededSSE = 0;
1754  const llvm::Type *ResType = 0;
1755  switch (Lo) {
1756  case NoClass:
1757    if (Hi == NoClass)
1758      return ABIArgInfo::getIgnore();
1759    // If the low part is just padding, it takes no register, leave ResType
1760    // null.
1761    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1762           "Unknown missing lo part");
1763    break;
1764
1765    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1766    // on the stack.
1767  case Memory:
1768
1769    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1770    // COMPLEX_X87, it is passed in memory.
1771  case X87:
1772  case ComplexX87:
1773    return getIndirectResult(Ty);
1774
1775  case SSEUp:
1776  case X87Up:
1777    assert(0 && "Invalid classification for lo word.");
1778
1779    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1780    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1781    // and %r9 is used.
1782  case Integer:
1783    ++neededInt;
1784
1785    // Pick an 8-byte type based on the preferred type.
1786    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1787
1788    // If we have a sign or zero extended integer, make sure to return Extend
1789    // so that the parameter gets the right LLVM IR attributes.
1790    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1791      // Treat an enum type as its underlying type.
1792      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1793        Ty = EnumTy->getDecl()->getIntegerType();
1794
1795      if (Ty->isIntegralOrEnumerationType() &&
1796          Ty->isPromotableIntegerType())
1797        return ABIArgInfo::getExtend();
1798    }
1799
1800    break;
1801
1802    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1803    // available SSE register is used, the registers are taken in the
1804    // order from %xmm0 to %xmm7.
1805  case SSE: {
1806    const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1807    if (Hi != NoClass || !UseX86_MMXType(IRType))
1808      ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
1809    else
1810      // This is an MMX type. Treat it as such.
1811      ResType = llvm::Type::getX86_MMXTy(getVMContext());
1812
1813    ++neededSSE;
1814    break;
1815  }
1816  }
1817
1818  const llvm::Type *HighPart = 0;
1819  switch (Hi) {
1820    // Memory was handled previously, ComplexX87 and X87 should
1821    // never occur as hi classes, and X87Up must be preceded by X87,
1822    // which is passed in memory.
1823  case Memory:
1824  case X87:
1825  case ComplexX87:
1826    assert(0 && "Invalid classification for hi word.");
1827    break;
1828
1829  case NoClass: break;
1830
1831  case Integer:
1832    ++neededInt;
1833    // Pick an 8-byte type based on the preferred type.
1834    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1835
1836    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1837      return ABIArgInfo::getDirect(HighPart, 8);
1838    break;
1839
1840    // X87Up generally doesn't occur here (long double is passed in
1841    // memory), except in situations involving unions.
1842  case X87Up:
1843  case SSE:
1844    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1845
1846    if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
1847      return ABIArgInfo::getDirect(HighPart, 8);
1848
1849    ++neededSSE;
1850    break;
1851
1852    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1853    // eightbyte is passed in the upper half of the last used SSE
1854    // register.  This only happens when 128-bit vectors are passed.
1855  case SSEUp:
1856    assert(Lo == SSE && "Unexpected SSEUp classification");
1857    ResType = Get16ByteVectorType(Ty);
1858    break;
1859  }
1860
1861  // If a high part was specified, merge it together with the low part.  It is
1862  // known to pass in the high eightbyte of the result.  We do this by forming a
1863  // first class struct aggregate with the high and low part: {low, high}
1864  if (HighPart)
1865    ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
1866
1867  return ABIArgInfo::getDirect(ResType);
1868}
1869
1870void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1871
1872  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1873
1874  // Keep track of the number of assigned registers.
1875  unsigned freeIntRegs = 6, freeSSERegs = 8;
1876
1877  // If the return value is indirect, then the hidden argument is consuming one
1878  // integer register.
1879  if (FI.getReturnInfo().isIndirect())
1880    --freeIntRegs;
1881
1882  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1883  // get assigned (in left-to-right order) for passing as follows...
1884  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1885       it != ie; ++it) {
1886    unsigned neededInt, neededSSE;
1887    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1888
1889    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1890    // eightbyte of an argument, the whole argument is passed on the
1891    // stack. If registers have already been assigned for some
1892    // eightbytes of such an argument, the assignments get reverted.
1893    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1894      freeIntRegs -= neededInt;
1895      freeSSERegs -= neededSSE;
1896    } else {
1897      it->info = getIndirectResult(it->type);
1898    }
1899  }
1900}
1901
1902static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1903                                        QualType Ty,
1904                                        CodeGenFunction &CGF) {
1905  llvm::Value *overflow_arg_area_p =
1906    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1907  llvm::Value *overflow_arg_area =
1908    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1909
1910  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1911  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1912  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1913  if (Align > 8) {
1914    // Note that we follow the ABI & gcc here, even though the type
1915    // could in theory have an alignment greater than 16. This case
1916    // shouldn't ever matter in practice.
1917
1918    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1919    llvm::Value *Offset =
1920      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1921    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1922    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1923                                                    CGF.Int64Ty);
1924    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1925    overflow_arg_area =
1926      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1927                                 overflow_arg_area->getType(),
1928                                 "overflow_arg_area.align");
1929  }
1930
1931  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1932  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1933  llvm::Value *Res =
1934    CGF.Builder.CreateBitCast(overflow_arg_area,
1935                              llvm::PointerType::getUnqual(LTy));
1936
1937  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1938  // l->overflow_arg_area + sizeof(type).
1939  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1940  // an 8 byte boundary.
1941
1942  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1943  llvm::Value *Offset =
1944      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1945  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1946                                            "overflow_arg_area.next");
1947  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1948
1949  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1950  return Res;
1951}
1952
1953llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1954                                      CodeGenFunction &CGF) const {
1955  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1956
1957  // Assume that va_list type is correct; should be pointer to LLVM type:
1958  // struct {
1959  //   i32 gp_offset;
1960  //   i32 fp_offset;
1961  //   i8* overflow_arg_area;
1962  //   i8* reg_save_area;
1963  // };
1964  unsigned neededInt, neededSSE;
1965
1966  Ty = CGF.getContext().getCanonicalType(Ty);
1967  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1968
1969  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1970  // in the registers. If not go to step 7.
1971  if (!neededInt && !neededSSE)
1972    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1973
1974  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1975  // general purpose registers needed to pass type and num_fp to hold
1976  // the number of floating point registers needed.
1977
1978  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1979  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1980  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1981  //
1982  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1983  // register save space).
1984
1985  llvm::Value *InRegs = 0;
1986  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1987  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1988  if (neededInt) {
1989    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1990    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1991    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1992    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1993  }
1994
1995  if (neededSSE) {
1996    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1997    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1998    llvm::Value *FitsInFP =
1999      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
2000    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
2001    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
2002  }
2003
2004  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
2005  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
2006  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
2007  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
2008
2009  // Emit code to load the value if it was passed in registers.
2010
2011  CGF.EmitBlock(InRegBlock);
2012
2013  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
2014  // an offset of l->gp_offset and/or l->fp_offset. This may require
2015  // copying to a temporary location in case the parameter is passed
2016  // in different register classes or requires an alignment greater
2017  // than 8 for general purpose registers and 16 for XMM registers.
2018  //
2019  // FIXME: This really results in shameful code when we end up needing to
2020  // collect arguments from different places; often what should result in a
2021  // simple assembling of a structure from scattered addresses has many more
2022  // loads than necessary. Can we clean this up?
2023  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2024  llvm::Value *RegAddr =
2025    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
2026                           "reg_save_area");
2027  if (neededInt && neededSSE) {
2028    // FIXME: Cleanup.
2029    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
2030    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
2031    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
2032    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
2033    const llvm::Type *TyLo = ST->getElementType(0);
2034    const llvm::Type *TyHi = ST->getElementType(1);
2035    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
2036           "Unexpected ABI info for mixed regs");
2037    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
2038    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
2039    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2040    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2041    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
2042    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
2043    llvm::Value *V =
2044      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
2045    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2046    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
2047    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2048
2049    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2050                                        llvm::PointerType::getUnqual(LTy));
2051  } else if (neededInt) {
2052    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
2053    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2054                                        llvm::PointerType::getUnqual(LTy));
2055  } else if (neededSSE == 1) {
2056    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2057    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
2058                                        llvm::PointerType::getUnqual(LTy));
2059  } else {
2060    assert(neededSSE == 2 && "Invalid number of needed registers!");
2061    // SSE registers are spaced 16 bytes apart in the register save
2062    // area, we need to collect the two eightbytes together.
2063    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
2064    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
2065    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
2066    const llvm::Type *DblPtrTy =
2067      llvm::PointerType::getUnqual(DoubleTy);
2068    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
2069                                                       DoubleTy, NULL);
2070    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
2071    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
2072                                                         DblPtrTy));
2073    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
2074    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
2075                                                         DblPtrTy));
2076    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
2077    RegAddr = CGF.Builder.CreateBitCast(Tmp,
2078                                        llvm::PointerType::getUnqual(LTy));
2079  }
2080
2081  // AMD64-ABI 3.5.7p5: Step 5. Set:
2082  // l->gp_offset = l->gp_offset + num_gp * 8
2083  // l->fp_offset = l->fp_offset + num_fp * 16.
2084  if (neededInt) {
2085    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
2086    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
2087                            gp_offset_p);
2088  }
2089  if (neededSSE) {
2090    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
2091    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
2092                            fp_offset_p);
2093  }
2094  CGF.EmitBranch(ContBlock);
2095
2096  // Emit code to load the value if it was passed in memory.
2097
2098  CGF.EmitBlock(InMemBlock);
2099  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
2100
2101  // Return the appropriate result.
2102
2103  CGF.EmitBlock(ContBlock);
2104  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
2105                                                 "vaarg.addr");
2106  ResAddr->addIncoming(RegAddr, InRegBlock);
2107  ResAddr->addIncoming(MemAddr, InMemBlock);
2108  return ResAddr;
2109}
2110
2111ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
2112
2113  if (Ty->isVoidType())
2114    return ABIArgInfo::getIgnore();
2115
2116  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2117    Ty = EnumTy->getDecl()->getIntegerType();
2118
2119  uint64_t Size = getContext().getTypeSize(Ty);
2120
2121  if (const RecordType *RT = Ty->getAs<RecordType>()) {
2122    if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
2123        RT->getDecl()->hasFlexibleArrayMember())
2124      return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2125
2126    // FIXME: mingw-w64-gcc emits 128-bit struct as i128
2127    if (Size == 128 &&
2128        getContext().Target.getTriple().getOS() == llvm::Triple::MinGW32)
2129      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2130                                                          Size));
2131
2132    // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
2133    // not 1, 2, 4, or 8 bytes, must be passed by reference."
2134    if (Size <= 64 &&
2135        (Size & (Size - 1)) == 0)
2136      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2137                                                          Size));
2138
2139    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2140  }
2141
2142  if (Ty->isPromotableIntegerType())
2143    return ABIArgInfo::getExtend();
2144
2145  return ABIArgInfo::getDirect();
2146}
2147
2148void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2149
2150  QualType RetTy = FI.getReturnType();
2151  FI.getReturnInfo() = classify(RetTy);
2152
2153  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2154       it != ie; ++it)
2155    it->info = classify(it->type);
2156}
2157
2158llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2159                                      CodeGenFunction &CGF) const {
2160  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2161  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2162
2163  CGBuilderTy &Builder = CGF.Builder;
2164  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2165                                                       "ap");
2166  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2167  llvm::Type *PTy =
2168    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2169  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2170
2171  uint64_t Offset =
2172    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
2173  llvm::Value *NextAddr =
2174    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2175                      "ap.next");
2176  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2177
2178  return AddrTyped;
2179}
2180
2181// PowerPC-32
2182
2183namespace {
2184class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2185public:
2186  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2187
2188  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2189    // This is recovered from gcc output.
2190    return 1; // r1 is the dedicated stack pointer
2191  }
2192
2193  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2194                               llvm::Value *Address) const;
2195};
2196
2197}
2198
2199bool
2200PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2201                                                llvm::Value *Address) const {
2202  // This is calculated from the LLVM and GCC tables and verified
2203  // against gcc output.  AFAIK all ABIs use the same encoding.
2204
2205  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2206  llvm::LLVMContext &Context = CGF.getLLVMContext();
2207
2208  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2209  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2210  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2211  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2212
2213  // 0-31: r0-31, the 4-byte general-purpose registers
2214  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2215
2216  // 32-63: fp0-31, the 8-byte floating-point registers
2217  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2218
2219  // 64-76 are various 4-byte special-purpose registers:
2220  // 64: mq
2221  // 65: lr
2222  // 66: ctr
2223  // 67: ap
2224  // 68-75 cr0-7
2225  // 76: xer
2226  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2227
2228  // 77-108: v0-31, the 16-byte vector registers
2229  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2230
2231  // 109: vrsave
2232  // 110: vscr
2233  // 111: spe_acc
2234  // 112: spefscr
2235  // 113: sfp
2236  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2237
2238  return false;
2239}
2240
2241
2242//===----------------------------------------------------------------------===//
2243// ARM ABI Implementation
2244//===----------------------------------------------------------------------===//
2245
2246namespace {
2247
2248class ARMABIInfo : public ABIInfo {
2249public:
2250  enum ABIKind {
2251    APCS = 0,
2252    AAPCS = 1,
2253    AAPCS_VFP
2254  };
2255
2256private:
2257  ABIKind Kind;
2258
2259public:
2260  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2261
2262private:
2263  ABIKind getABIKind() const { return Kind; }
2264
2265  ABIArgInfo classifyReturnType(QualType RetTy) const;
2266  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2267
2268  virtual void computeInfo(CGFunctionInfo &FI) const;
2269
2270  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2271                                 CodeGenFunction &CGF) const;
2272};
2273
2274class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2275public:
2276  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2277    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2278
2279  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2280    return 13;
2281  }
2282};
2283
2284}
2285
2286void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2287  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2288  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2289       it != ie; ++it)
2290    it->info = classifyArgumentType(it->type);
2291
2292  // Always honor user-specified calling convention.
2293  if (FI.getCallingConvention() != llvm::CallingConv::C)
2294    return;
2295
2296  // Calling convention as default by an ABI.
2297  llvm::CallingConv::ID DefaultCC;
2298  llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
2299  if (Env == "gnueabi" || Env == "eabi")
2300    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2301  else
2302    DefaultCC = llvm::CallingConv::ARM_APCS;
2303
2304  // If user did not ask for specific calling convention explicitly (e.g. via
2305  // pcs attribute), set effective calling convention if it's different than ABI
2306  // default.
2307  switch (getABIKind()) {
2308  case APCS:
2309    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2310      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2311    break;
2312  case AAPCS:
2313    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2314      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2315    break;
2316  case AAPCS_VFP:
2317    if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
2318      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2319    break;
2320  }
2321}
2322
2323ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2324  if (!isAggregateTypeForABI(Ty)) {
2325    // Treat an enum type as its underlying type.
2326    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2327      Ty = EnumTy->getDecl()->getIntegerType();
2328
2329    return (Ty->isPromotableIntegerType() ?
2330            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2331  }
2332
2333  // Ignore empty records.
2334  if (isEmptyRecord(getContext(), Ty, true))
2335    return ABIArgInfo::getIgnore();
2336
2337  // Structures with either a non-trivial destructor or a non-trivial
2338  // copy constructor are always indirect.
2339  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2340    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2341
2342  // Otherwise, pass by coercing to a structure of the appropriate size.
2343  //
2344  // FIXME: This doesn't handle alignment > 64 bits.
2345  const llvm::Type* ElemTy;
2346  unsigned SizeRegs;
2347  if (getContext().getTypeSizeInChars(Ty) <= CharUnits::fromQuantity(64)) {
2348    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2349    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2350  } else if (getABIKind() == ARMABIInfo::APCS) {
2351    // Initial ARM ByVal support is APCS-only.
2352    return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
2353  } else {
2354    // FIXME: This is kind of nasty... but there isn't much choice
2355    // because most of the ARM calling conventions don't yet support
2356    // byval.
2357    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2358    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2359  }
2360
2361  const llvm::Type *STy =
2362    llvm::StructType::get(getVMContext(),
2363                          llvm::ArrayType::get(ElemTy, SizeRegs), NULL, NULL);
2364  return ABIArgInfo::getDirect(STy);
2365}
2366
2367static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2368                              llvm::LLVMContext &VMContext) {
2369  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2370  // is called integer-like if its size is less than or equal to one word, and
2371  // the offset of each of its addressable sub-fields is zero.
2372
2373  uint64_t Size = Context.getTypeSize(Ty);
2374
2375  // Check that the type fits in a word.
2376  if (Size > 32)
2377    return false;
2378
2379  // FIXME: Handle vector types!
2380  if (Ty->isVectorType())
2381    return false;
2382
2383  // Float types are never treated as "integer like".
2384  if (Ty->isRealFloatingType())
2385    return false;
2386
2387  // If this is a builtin or pointer type then it is ok.
2388  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2389    return true;
2390
2391  // Small complex integer types are "integer like".
2392  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2393    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2394
2395  // Single element and zero sized arrays should be allowed, by the definition
2396  // above, but they are not.
2397
2398  // Otherwise, it must be a record type.
2399  const RecordType *RT = Ty->getAs<RecordType>();
2400  if (!RT) return false;
2401
2402  // Ignore records with flexible arrays.
2403  const RecordDecl *RD = RT->getDecl();
2404  if (RD->hasFlexibleArrayMember())
2405    return false;
2406
2407  // Check that all sub-fields are at offset 0, and are themselves "integer
2408  // like".
2409  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2410
2411  bool HadField = false;
2412  unsigned idx = 0;
2413  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2414       i != e; ++i, ++idx) {
2415    const FieldDecl *FD = *i;
2416
2417    // Bit-fields are not addressable, we only need to verify they are "integer
2418    // like". We still have to disallow a subsequent non-bitfield, for example:
2419    //   struct { int : 0; int x }
2420    // is non-integer like according to gcc.
2421    if (FD->isBitField()) {
2422      if (!RD->isUnion())
2423        HadField = true;
2424
2425      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2426        return false;
2427
2428      continue;
2429    }
2430
2431    // Check if this field is at offset 0.
2432    if (Layout.getFieldOffset(idx) != 0)
2433      return false;
2434
2435    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2436      return false;
2437
2438    // Only allow at most one field in a structure. This doesn't match the
2439    // wording above, but follows gcc in situations with a field following an
2440    // empty structure.
2441    if (!RD->isUnion()) {
2442      if (HadField)
2443        return false;
2444
2445      HadField = true;
2446    }
2447  }
2448
2449  return true;
2450}
2451
2452ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2453  if (RetTy->isVoidType())
2454    return ABIArgInfo::getIgnore();
2455
2456  // Large vector types should be returned via memory.
2457  if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
2458    return ABIArgInfo::getIndirect(0);
2459
2460  if (!isAggregateTypeForABI(RetTy)) {
2461    // Treat an enum type as its underlying type.
2462    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2463      RetTy = EnumTy->getDecl()->getIntegerType();
2464
2465    return (RetTy->isPromotableIntegerType() ?
2466            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2467  }
2468
2469  // Structures with either a non-trivial destructor or a non-trivial
2470  // copy constructor are always indirect.
2471  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2472    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2473
2474  // Are we following APCS?
2475  if (getABIKind() == APCS) {
2476    if (isEmptyRecord(getContext(), RetTy, false))
2477      return ABIArgInfo::getIgnore();
2478
2479    // Complex types are all returned as packed integers.
2480    //
2481    // FIXME: Consider using 2 x vector types if the back end handles them
2482    // correctly.
2483    if (RetTy->isAnyComplexType())
2484      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2485                                              getContext().getTypeSize(RetTy)));
2486
2487    // Integer like structures are returned in r0.
2488    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2489      // Return in the smallest viable integer type.
2490      uint64_t Size = getContext().getTypeSize(RetTy);
2491      if (Size <= 8)
2492        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2493      if (Size <= 16)
2494        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2495      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2496    }
2497
2498    // Otherwise return in memory.
2499    return ABIArgInfo::getIndirect(0);
2500  }
2501
2502  // Otherwise this is an AAPCS variant.
2503
2504  if (isEmptyRecord(getContext(), RetTy, true))
2505    return ABIArgInfo::getIgnore();
2506
2507  // Aggregates <= 4 bytes are returned in r0; other aggregates
2508  // are returned indirectly.
2509  uint64_t Size = getContext().getTypeSize(RetTy);
2510  if (Size <= 32) {
2511    // Return in the smallest viable integer type.
2512    if (Size <= 8)
2513      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2514    if (Size <= 16)
2515      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2516    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2517  }
2518
2519  return ABIArgInfo::getIndirect(0);
2520}
2521
2522llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2523                                   CodeGenFunction &CGF) const {
2524  // FIXME: Need to handle alignment
2525  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2526  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2527
2528  CGBuilderTy &Builder = CGF.Builder;
2529  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2530                                                       "ap");
2531  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2532  llvm::Type *PTy =
2533    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2534  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2535
2536  uint64_t Offset =
2537    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2538  llvm::Value *NextAddr =
2539    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2540                      "ap.next");
2541  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2542
2543  return AddrTyped;
2544}
2545
2546//===----------------------------------------------------------------------===//
2547// PTX ABI Implementation
2548//===----------------------------------------------------------------------===//
2549
2550namespace {
2551
2552class PTXABIInfo : public ABIInfo {
2553public:
2554  PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2555
2556  ABIArgInfo classifyReturnType(QualType RetTy) const;
2557  ABIArgInfo classifyArgumentType(QualType Ty) const;
2558
2559  virtual void computeInfo(CGFunctionInfo &FI) const;
2560  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2561                                 CodeGenFunction &CFG) const;
2562};
2563
2564class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
2565public:
2566  PTXTargetCodeGenInfo(CodeGenTypes &CGT)
2567    : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
2568};
2569
2570ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
2571  if (RetTy->isVoidType())
2572    return ABIArgInfo::getIgnore();
2573  if (isAggregateTypeForABI(RetTy))
2574    return ABIArgInfo::getIndirect(0);
2575  return ABIArgInfo::getDirect();
2576}
2577
2578ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
2579  if (isAggregateTypeForABI(Ty))
2580    return ABIArgInfo::getIndirect(0);
2581
2582  return ABIArgInfo::getDirect();
2583}
2584
2585void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
2586  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2587  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2588       it != ie; ++it)
2589    it->info = classifyArgumentType(it->type);
2590
2591  // Always honor user-specified calling convention.
2592  if (FI.getCallingConvention() != llvm::CallingConv::C)
2593    return;
2594
2595  // Calling convention as default by an ABI.
2596  llvm::CallingConv::ID DefaultCC;
2597  llvm::StringRef Env = getContext().Target.getTriple().getEnvironmentName();
2598  if (Env == "device")
2599    DefaultCC = llvm::CallingConv::PTX_Device;
2600  else
2601    DefaultCC = llvm::CallingConv::PTX_Kernel;
2602
2603  FI.setEffectiveCallingConvention(DefaultCC);
2604}
2605
2606llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2607                                   CodeGenFunction &CFG) const {
2608  llvm_unreachable("PTX does not support varargs");
2609  return 0;
2610}
2611
2612}
2613
2614//===----------------------------------------------------------------------===//
2615// SystemZ ABI Implementation
2616//===----------------------------------------------------------------------===//
2617
2618namespace {
2619
2620class SystemZABIInfo : public ABIInfo {
2621public:
2622  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2623
2624  bool isPromotableIntegerType(QualType Ty) const;
2625
2626  ABIArgInfo classifyReturnType(QualType RetTy) const;
2627  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2628
2629  virtual void computeInfo(CGFunctionInfo &FI) const {
2630    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2631    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2632         it != ie; ++it)
2633      it->info = classifyArgumentType(it->type);
2634  }
2635
2636  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2637                                 CodeGenFunction &CGF) const;
2638};
2639
2640class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2641public:
2642  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2643    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2644};
2645
2646}
2647
2648bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2649  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2650  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2651    switch (BT->getKind()) {
2652    case BuiltinType::Bool:
2653    case BuiltinType::Char_S:
2654    case BuiltinType::Char_U:
2655    case BuiltinType::SChar:
2656    case BuiltinType::UChar:
2657    case BuiltinType::Short:
2658    case BuiltinType::UShort:
2659    case BuiltinType::Int:
2660    case BuiltinType::UInt:
2661      return true;
2662    default:
2663      return false;
2664    }
2665  return false;
2666}
2667
2668llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2669                                       CodeGenFunction &CGF) const {
2670  // FIXME: Implement
2671  return 0;
2672}
2673
2674
2675ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2676  if (RetTy->isVoidType())
2677    return ABIArgInfo::getIgnore();
2678  if (isAggregateTypeForABI(RetTy))
2679    return ABIArgInfo::getIndirect(0);
2680
2681  return (isPromotableIntegerType(RetTy) ?
2682          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2683}
2684
2685ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2686  if (isAggregateTypeForABI(Ty))
2687    return ABIArgInfo::getIndirect(0);
2688
2689  return (isPromotableIntegerType(Ty) ?
2690          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2691}
2692
2693//===----------------------------------------------------------------------===//
2694// MBlaze ABI Implementation
2695//===----------------------------------------------------------------------===//
2696
2697namespace {
2698
2699class MBlazeABIInfo : public ABIInfo {
2700public:
2701  MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2702
2703  bool isPromotableIntegerType(QualType Ty) const;
2704
2705  ABIArgInfo classifyReturnType(QualType RetTy) const;
2706  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2707
2708  virtual void computeInfo(CGFunctionInfo &FI) const {
2709    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2710    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2711         it != ie; ++it)
2712      it->info = classifyArgumentType(it->type);
2713  }
2714
2715  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2716                                 CodeGenFunction &CGF) const;
2717};
2718
2719class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
2720public:
2721  MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
2722    : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
2723  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2724                           CodeGen::CodeGenModule &M) const;
2725};
2726
2727}
2728
2729bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
2730  // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
2731  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2732    switch (BT->getKind()) {
2733    case BuiltinType::Bool:
2734    case BuiltinType::Char_S:
2735    case BuiltinType::Char_U:
2736    case BuiltinType::SChar:
2737    case BuiltinType::UChar:
2738    case BuiltinType::Short:
2739    case BuiltinType::UShort:
2740      return true;
2741    default:
2742      return false;
2743    }
2744  return false;
2745}
2746
2747llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2748                                      CodeGenFunction &CGF) const {
2749  // FIXME: Implement
2750  return 0;
2751}
2752
2753
2754ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
2755  if (RetTy->isVoidType())
2756    return ABIArgInfo::getIgnore();
2757  if (isAggregateTypeForABI(RetTy))
2758    return ABIArgInfo::getIndirect(0);
2759
2760  return (isPromotableIntegerType(RetTy) ?
2761          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2762}
2763
2764ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
2765  if (isAggregateTypeForABI(Ty))
2766    return ABIArgInfo::getIndirect(0);
2767
2768  return (isPromotableIntegerType(Ty) ?
2769          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2770}
2771
2772void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2773                                                  llvm::GlobalValue *GV,
2774                                                  CodeGen::CodeGenModule &M)
2775                                                  const {
2776  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
2777  if (!FD) return;
2778
2779  llvm::CallingConv::ID CC = llvm::CallingConv::C;
2780  if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
2781    CC = llvm::CallingConv::MBLAZE_INTR;
2782  else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
2783    CC = llvm::CallingConv::MBLAZE_SVOL;
2784
2785  if (CC != llvm::CallingConv::C) {
2786      // Handle 'interrupt_handler' attribute:
2787      llvm::Function *F = cast<llvm::Function>(GV);
2788
2789      // Step 1: Set ISR calling convention.
2790      F->setCallingConv(CC);
2791
2792      // Step 2: Add attributes goodness.
2793      F->addFnAttr(llvm::Attribute::NoInline);
2794  }
2795
2796  // Step 3: Emit _interrupt_handler alias.
2797  if (CC == llvm::CallingConv::MBLAZE_INTR)
2798    new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2799                          "_interrupt_handler", GV, &M.getModule());
2800}
2801
2802
2803//===----------------------------------------------------------------------===//
2804// MSP430 ABI Implementation
2805//===----------------------------------------------------------------------===//
2806
2807namespace {
2808
2809class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2810public:
2811  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2812    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2813  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2814                           CodeGen::CodeGenModule &M) const;
2815};
2816
2817}
2818
2819void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2820                                                  llvm::GlobalValue *GV,
2821                                             CodeGen::CodeGenModule &M) const {
2822  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2823    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2824      // Handle 'interrupt' attribute:
2825      llvm::Function *F = cast<llvm::Function>(GV);
2826
2827      // Step 1: Set ISR calling convention.
2828      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2829
2830      // Step 2: Add attributes goodness.
2831      F->addFnAttr(llvm::Attribute::NoInline);
2832
2833      // Step 3: Emit ISR vector alias.
2834      unsigned Num = attr->getNumber() + 0xffe0;
2835      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2836                            "vector_" + llvm::Twine::utohexstr(Num),
2837                            GV, &M.getModule());
2838    }
2839  }
2840}
2841
2842//===----------------------------------------------------------------------===//
2843// MIPS ABI Implementation.  This works for both little-endian and
2844// big-endian variants.
2845//===----------------------------------------------------------------------===//
2846
2847namespace {
2848class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2849public:
2850  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2851    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2852
2853  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2854    return 29;
2855  }
2856
2857  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2858                               llvm::Value *Address) const;
2859};
2860}
2861
2862bool
2863MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2864                                               llvm::Value *Address) const {
2865  // This information comes from gcc's implementation, which seems to
2866  // as canonical as it gets.
2867
2868  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2869  llvm::LLVMContext &Context = CGF.getLLVMContext();
2870
2871  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2872  // are aliased to pairs of single-precision FP registers.
2873  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2874  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2875
2876  // 0-31 are the general purpose registers, $0 - $31.
2877  // 32-63 are the floating-point registers, $f0 - $f31.
2878  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2879  // 66 is the (notional, I think) register for signal-handler return.
2880  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2881
2882  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2883  // They are one bit wide and ignored here.
2884
2885  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2886  // (coprocessor 1 is the FP unit)
2887  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2888  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2889  // 176-181 are the DSP accumulator registers.
2890  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2891
2892  return false;
2893}
2894
2895
2896const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2897  if (TheTargetCodeGenInfo)
2898    return *TheTargetCodeGenInfo;
2899
2900  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2901  // free it.
2902
2903  const llvm::Triple &Triple = getContext().Target.getTriple();
2904  switch (Triple.getArch()) {
2905  default:
2906    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2907
2908  case llvm::Triple::mips:
2909  case llvm::Triple::mipsel:
2910    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2911
2912  case llvm::Triple::arm:
2913  case llvm::Triple::thumb:
2914    {
2915      ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
2916
2917      if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2918        Kind = ARMABIInfo::APCS;
2919      else if (CodeGenOpts.FloatABI == "hard")
2920        Kind = ARMABIInfo::AAPCS_VFP;
2921
2922      return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
2923    }
2924
2925  case llvm::Triple::ppc:
2926    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2927
2928  case llvm::Triple::ptx32:
2929  case llvm::Triple::ptx64:
2930    return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
2931
2932  case llvm::Triple::systemz:
2933    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2934
2935  case llvm::Triple::mblaze:
2936    return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
2937
2938  case llvm::Triple::msp430:
2939    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2940
2941  case llvm::Triple::x86:
2942    if (Triple.isOSDarwin())
2943      return *(TheTargetCodeGenInfo =
2944               new X86_32TargetCodeGenInfo(Types, true, true));
2945
2946    switch (Triple.getOS()) {
2947    case llvm::Triple::Cygwin:
2948    case llvm::Triple::MinGW32:
2949    case llvm::Triple::AuroraUX:
2950    case llvm::Triple::DragonFly:
2951    case llvm::Triple::FreeBSD:
2952    case llvm::Triple::OpenBSD:
2953    case llvm::Triple::NetBSD:
2954      return *(TheTargetCodeGenInfo =
2955               new X86_32TargetCodeGenInfo(Types, false, true));
2956
2957    default:
2958      return *(TheTargetCodeGenInfo =
2959               new X86_32TargetCodeGenInfo(Types, false, false));
2960    }
2961
2962  case llvm::Triple::x86_64:
2963    switch (Triple.getOS()) {
2964    case llvm::Triple::Win32:
2965    case llvm::Triple::MinGW32:
2966    case llvm::Triple::Cygwin:
2967      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2968    default:
2969      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2970    }
2971  }
2972}
2973