TargetInfo.cpp revision 208954
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
27                               llvm::Value *Array,
28                               llvm::Value *Value,
29                               unsigned FirstIndex,
30                               unsigned LastIndex) {
31  // Alternatively, we could emit this as a loop in the source.
32  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
33    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
34    Builder.CreateStore(Value, Cell);
35  }
36}
37
38ABIInfo::~ABIInfo() {}
39
40void ABIArgInfo::dump() const {
41  llvm::raw_ostream &OS = llvm::errs();
42  OS << "(ABIArgInfo Kind=";
43  switch (TheKind) {
44  case Direct:
45    OS << "Direct";
46    break;
47  case Extend:
48    OS << "Extend";
49    break;
50  case Ignore:
51    OS << "Ignore";
52    break;
53  case Coerce:
54    OS << "Coerce Type=";
55    getCoerceToType()->print(OS);
56    break;
57  case Indirect:
58    OS << "Indirect Align=" << getIndirectAlign()
59       << " Byal=" << getIndirectByVal();
60    break;
61  case Expand:
62    OS << "Expand";
63    break;
64  }
65  OS << ")\n";
66}
67
68TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
69
70static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
71
72/// isEmptyField - Return true iff a the field is "empty", that is it
73/// is an unnamed bit-field or an (array of) empty record(s).
74static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
75                         bool AllowArrays) {
76  if (FD->isUnnamedBitfield())
77    return true;
78
79  QualType FT = FD->getType();
80
81    // Constant arrays of empty records count as empty, strip them off.
82  if (AllowArrays)
83    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
84      FT = AT->getElementType();
85
86  const RecordType *RT = FT->getAs<RecordType>();
87  if (!RT)
88    return false;
89
90  // C++ record fields are never empty, at least in the Itanium ABI.
91  //
92  // FIXME: We should use a predicate for whether this behavior is true in the
93  // current ABI.
94  if (isa<CXXRecordDecl>(RT->getDecl()))
95    return false;
96
97  return isEmptyRecord(Context, FT, AllowArrays);
98}
99
100/// isEmptyRecord - Return true iff a structure contains only empty
101/// fields. Note that a structure with a flexible array member is not
102/// considered empty.
103static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
104  const RecordType *RT = T->getAs<RecordType>();
105  if (!RT)
106    return 0;
107  const RecordDecl *RD = RT->getDecl();
108  if (RD->hasFlexibleArrayMember())
109    return false;
110
111  // If this is a C++ record, check the bases first.
112  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
113    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
114           e = CXXRD->bases_end(); i != e; ++i)
115      if (!isEmptyRecord(Context, i->getType(), true))
116        return false;
117
118  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
119         i != e; ++i)
120    if (!isEmptyField(Context, *i, AllowArrays))
121      return false;
122  return true;
123}
124
125/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
126/// a non-trivial destructor or a non-trivial copy constructor.
127static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
128  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
129  if (!RD)
130    return false;
131
132  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
133}
134
135/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
136/// a record type with either a non-trivial destructor or a non-trivial copy
137/// constructor.
138static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
139  const RecordType *RT = T->getAs<RecordType>();
140  if (!RT)
141    return false;
142
143  return hasNonTrivialDestructorOrCopyConstructor(RT);
144}
145
146/// isSingleElementStruct - Determine if a structure is a "single
147/// element struct", i.e. it has exactly one non-empty field or
148/// exactly one field which is itself a single element
149/// struct. Structures with flexible array members are never
150/// considered single element structs.
151///
152/// \return The field declaration for the single non-empty field, if
153/// it exists.
154static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
155  const RecordType *RT = T->getAsStructureType();
156  if (!RT)
157    return 0;
158
159  const RecordDecl *RD = RT->getDecl();
160  if (RD->hasFlexibleArrayMember())
161    return 0;
162
163  const Type *Found = 0;
164
165  // If this is a C++ record, check the bases first.
166  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
167    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
168           e = CXXRD->bases_end(); i != e; ++i) {
169      // Ignore empty records.
170      if (isEmptyRecord(Context, i->getType(), true))
171        continue;
172
173      // If we already found an element then this isn't a single-element struct.
174      if (Found)
175        return 0;
176
177      // If this is non-empty and not a single element struct, the composite
178      // cannot be a single element struct.
179      Found = isSingleElementStruct(i->getType(), Context);
180      if (!Found)
181        return 0;
182    }
183  }
184
185  // Check for single element.
186  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
187         i != e; ++i) {
188    const FieldDecl *FD = *i;
189    QualType FT = FD->getType();
190
191    // Ignore empty fields.
192    if (isEmptyField(Context, FD, true))
193      continue;
194
195    // If we already found an element then this isn't a single-element
196    // struct.
197    if (Found)
198      return 0;
199
200    // Treat single element arrays as the element.
201    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
202      if (AT->getSize().getZExtValue() != 1)
203        break;
204      FT = AT->getElementType();
205    }
206
207    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
208      Found = FT.getTypePtr();
209    } else {
210      Found = isSingleElementStruct(FT, Context);
211      if (!Found)
212        return 0;
213    }
214  }
215
216  return Found;
217}
218
219static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
220  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
221      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
222      !Ty->isBlockPointerType())
223    return false;
224
225  uint64_t Size = Context.getTypeSize(Ty);
226  return Size == 32 || Size == 64;
227}
228
229/// canExpandIndirectArgument - Test whether an argument type which is to be
230/// passed indirectly (on the stack) would have the equivalent layout if it was
231/// expanded into separate arguments. If so, we prefer to do the latter to avoid
232/// inhibiting optimizations.
233///
234// FIXME: This predicate is missing many cases, currently it just follows
235// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
236// should probably make this smarter, or better yet make the LLVM backend
237// capable of handling it.
238static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
239  // We can only expand structure types.
240  const RecordType *RT = Ty->getAs<RecordType>();
241  if (!RT)
242    return false;
243
244  // We can only expand (C) structures.
245  //
246  // FIXME: This needs to be generalized to handle classes as well.
247  const RecordDecl *RD = RT->getDecl();
248  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
249    return false;
250
251  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
252         i != e; ++i) {
253    const FieldDecl *FD = *i;
254
255    if (!is32Or64BitBasicType(FD->getType(), Context))
256      return false;
257
258    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
259    // how to expand them yet, and the predicate for telling if a bitfield still
260    // counts as "basic" is more complicated than what we were doing previously.
261    if (FD->isBitField())
262      return false;
263  }
264
265  return true;
266}
267
268namespace {
269/// DefaultABIInfo - The default implementation for ABI specific
270/// details. This implementation provides information which results in
271/// self-consistent and sensible LLVM IR generation, but does not
272/// conform to any particular ABI.
273class DefaultABIInfo : public ABIInfo {
274  ABIArgInfo classifyReturnType(QualType RetTy,
275                                ASTContext &Context,
276                                llvm::LLVMContext &VMContext) const;
277
278  ABIArgInfo classifyArgumentType(QualType RetTy,
279                                  ASTContext &Context,
280                                  llvm::LLVMContext &VMContext) const;
281
282  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
283                           llvm::LLVMContext &VMContext) const {
284    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
285                                            VMContext);
286    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
287         it != ie; ++it)
288      it->info = classifyArgumentType(it->type, Context, VMContext);
289  }
290
291  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
292                                 CodeGenFunction &CGF) const;
293};
294
295class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
296public:
297  DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
298};
299
300llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
301                                       CodeGenFunction &CGF) const {
302  return 0;
303}
304
305ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
306                                                ASTContext &Context,
307                                          llvm::LLVMContext &VMContext) const {
308  if (CodeGenFunction::hasAggregateLLVMType(Ty))
309    return ABIArgInfo::getIndirect(0);
310
311  // Treat an enum type as its underlying type.
312  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
313    Ty = EnumTy->getDecl()->getIntegerType();
314
315  return (Ty->isPromotableIntegerType() ?
316          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
317}
318
319/// X86_32ABIInfo - The X86-32 ABI information.
320class X86_32ABIInfo : public ABIInfo {
321  ASTContext &Context;
322  bool IsDarwinVectorABI;
323  bool IsSmallStructInRegABI;
324
325  static bool isRegisterSize(unsigned Size) {
326    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
327  }
328
329  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
330
331  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
332  /// such that the argument will be passed in memory.
333  ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context,
334                               bool ByVal = true) const;
335
336public:
337  ABIArgInfo classifyReturnType(QualType RetTy,
338                                ASTContext &Context,
339                                llvm::LLVMContext &VMContext) const;
340
341  ABIArgInfo classifyArgumentType(QualType RetTy,
342                                  ASTContext &Context,
343                                  llvm::LLVMContext &VMContext) const;
344
345  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
346                           llvm::LLVMContext &VMContext) const {
347    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
348                                            VMContext);
349    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
350         it != ie; ++it)
351      it->info = classifyArgumentType(it->type, Context, VMContext);
352  }
353
354  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
355                                 CodeGenFunction &CGF) const;
356
357  X86_32ABIInfo(ASTContext &Context, bool d, bool p)
358    : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
359      IsSmallStructInRegABI(p) {}
360};
361
362class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
363public:
364  X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
365    :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
366
367  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
368                           CodeGen::CodeGenModule &CGM) const;
369
370  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
371    // Darwin uses different dwarf register numbers for EH.
372    if (CGM.isTargetDarwin()) return 5;
373
374    return 4;
375  }
376
377  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
378                               llvm::Value *Address) const;
379};
380
381}
382
383/// shouldReturnTypeInRegister - Determine if the given type should be
384/// passed in a register (for the Darwin ABI).
385bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
386                                               ASTContext &Context) {
387  uint64_t Size = Context.getTypeSize(Ty);
388
389  // Type must be register sized.
390  if (!isRegisterSize(Size))
391    return false;
392
393  if (Ty->isVectorType()) {
394    // 64- and 128- bit vectors inside structures are not returned in
395    // registers.
396    if (Size == 64 || Size == 128)
397      return false;
398
399    return true;
400  }
401
402  // If this is a builtin, pointer, enum, complex type, member pointer, or
403  // member function pointer it is ok.
404  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
405      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
406      Ty->isBlockPointerType() || Ty->isMemberPointerType())
407    return true;
408
409  // Arrays are treated like records.
410  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
411    return shouldReturnTypeInRegister(AT->getElementType(), Context);
412
413  // Otherwise, it must be a record type.
414  const RecordType *RT = Ty->getAs<RecordType>();
415  if (!RT) return false;
416
417  // FIXME: Traverse bases here too.
418
419  // Structure types are passed in register if all fields would be
420  // passed in a register.
421  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
422         e = RT->getDecl()->field_end(); i != e; ++i) {
423    const FieldDecl *FD = *i;
424
425    // Empty fields are ignored.
426    if (isEmptyField(Context, FD, true))
427      continue;
428
429    // Check fields recursively.
430    if (!shouldReturnTypeInRegister(FD->getType(), Context))
431      return false;
432  }
433
434  return true;
435}
436
437ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
438                                            ASTContext &Context,
439                                          llvm::LLVMContext &VMContext) const {
440  if (RetTy->isVoidType()) {
441    return ABIArgInfo::getIgnore();
442  } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
443    // On Darwin, some vectors are returned in registers.
444    if (IsDarwinVectorABI) {
445      uint64_t Size = Context.getTypeSize(RetTy);
446
447      // 128-bit vectors are a special case; they are returned in
448      // registers and we need to make sure to pick a type the LLVM
449      // backend will like.
450      if (Size == 128)
451        return ABIArgInfo::getCoerce(llvm::VectorType::get(
452                  llvm::Type::getInt64Ty(VMContext), 2));
453
454      // Always return in register if it fits in a general purpose
455      // register, or if it is 64 bits and has a single element.
456      if ((Size == 8 || Size == 16 || Size == 32) ||
457          (Size == 64 && VT->getNumElements() == 1))
458        return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
459
460      return ABIArgInfo::getIndirect(0);
461    }
462
463    return ABIArgInfo::getDirect();
464  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
465    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
466      // Structures with either a non-trivial destructor or a non-trivial
467      // copy constructor are always indirect.
468      if (hasNonTrivialDestructorOrCopyConstructor(RT))
469        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
470
471      // Structures with flexible arrays are always indirect.
472      if (RT->getDecl()->hasFlexibleArrayMember())
473        return ABIArgInfo::getIndirect(0);
474    }
475
476    // If specified, structs and unions are always indirect.
477    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
478      return ABIArgInfo::getIndirect(0);
479
480    // Classify "single element" structs as their element type.
481    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
482      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
483        if (BT->isIntegerType()) {
484          // We need to use the size of the structure, padding
485          // bit-fields can adjust that to be larger than the single
486          // element type.
487          uint64_t Size = Context.getTypeSize(RetTy);
488          return ABIArgInfo::getCoerce(
489            llvm::IntegerType::get(VMContext, (unsigned) Size));
490        } else if (BT->getKind() == BuiltinType::Float) {
491          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
492                 "Unexpect single element structure size!");
493          return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
494        } else if (BT->getKind() == BuiltinType::Double) {
495          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
496                 "Unexpect single element structure size!");
497          return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
498        }
499      } else if (SeltTy->isPointerType()) {
500        // FIXME: It would be really nice if this could come out as the proper
501        // pointer type.
502        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
503        return ABIArgInfo::getCoerce(PtrTy);
504      } else if (SeltTy->isVectorType()) {
505        // 64- and 128-bit vectors are never returned in a
506        // register when inside a structure.
507        uint64_t Size = Context.getTypeSize(RetTy);
508        if (Size == 64 || Size == 128)
509          return ABIArgInfo::getIndirect(0);
510
511        return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
512      }
513    }
514
515    // Small structures which are register sized are generally returned
516    // in a register.
517    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
518      uint64_t Size = Context.getTypeSize(RetTy);
519      return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
520    }
521
522    return ABIArgInfo::getIndirect(0);
523  } else {
524    // Treat an enum type as its underlying type.
525    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
526      RetTy = EnumTy->getDecl()->getIntegerType();
527
528    return (RetTy->isPromotableIntegerType() ?
529            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
530  }
531}
532
533ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty,
534                                            ASTContext &Context,
535                                            bool ByVal) const {
536  if (!ByVal)
537    return ABIArgInfo::getIndirect(0, false);
538
539  // Compute the byval alignment. We trust the back-end to honor the
540  // minimum ABI alignment for byval, to make cleaner IR.
541  const unsigned MinABIAlign = 4;
542  unsigned Align = Context.getTypeAlign(Ty) / 8;
543  if (Align > MinABIAlign)
544    return ABIArgInfo::getIndirect(Align);
545  return ABIArgInfo::getIndirect(0);
546}
547
548ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
549                                               ASTContext &Context,
550                                           llvm::LLVMContext &VMContext) const {
551  // FIXME: Set alignment on indirect arguments.
552  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
553    // Structures with flexible arrays are always indirect.
554    if (const RecordType *RT = Ty->getAs<RecordType>()) {
555      // Structures with either a non-trivial destructor or a non-trivial
556      // copy constructor are always indirect.
557      if (hasNonTrivialDestructorOrCopyConstructor(RT))
558        return getIndirectResult(Ty, Context, /*ByVal=*/false);
559
560      if (RT->getDecl()->hasFlexibleArrayMember())
561        return getIndirectResult(Ty, Context);
562    }
563
564    // Ignore empty structs.
565    if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
566      return ABIArgInfo::getIgnore();
567
568    // Expand small (<= 128-bit) record types when we know that the stack layout
569    // of those arguments will match the struct. This is important because the
570    // LLVM backend isn't smart enough to remove byval, which inhibits many
571    // optimizations.
572    if (Context.getTypeSize(Ty) <= 4*32 &&
573        canExpandIndirectArgument(Ty, Context))
574      return ABIArgInfo::getExpand();
575
576    return getIndirectResult(Ty, Context);
577  } else {
578    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
579      Ty = EnumTy->getDecl()->getIntegerType();
580
581    return (Ty->isPromotableIntegerType() ?
582            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
583  }
584}
585
586llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
587                                      CodeGenFunction &CGF) const {
588  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
589  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
590
591  CGBuilderTy &Builder = CGF.Builder;
592  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
593                                                       "ap");
594  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
595  llvm::Type *PTy =
596    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
597  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
598
599  uint64_t Offset =
600    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
601  llvm::Value *NextAddr =
602    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
603                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
604                      "ap.next");
605  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
606
607  return AddrTyped;
608}
609
610void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
611                                                  llvm::GlobalValue *GV,
612                                            CodeGen::CodeGenModule &CGM) const {
613  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
614    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
615      // Get the LLVM function.
616      llvm::Function *Fn = cast<llvm::Function>(GV);
617
618      // Now add the 'alignstack' attribute with a value of 16.
619      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
620    }
621  }
622}
623
624bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
625                                               CodeGen::CodeGenFunction &CGF,
626                                               llvm::Value *Address) const {
627  CodeGen::CGBuilderTy &Builder = CGF.Builder;
628  llvm::LLVMContext &Context = CGF.getLLVMContext();
629
630  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
631  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
632
633  // 0-7 are the eight integer registers;  the order is different
634  //   on Darwin (for EH), but the range is the same.
635  // 8 is %eip.
636  AssignToArrayRange(Builder, Address, Four8, 0, 8);
637
638  if (CGF.CGM.isTargetDarwin()) {
639    // 12-16 are st(0..4).  Not sure why we stop at 4.
640    // These have size 16, which is sizeof(long double) on
641    // platforms with 8-byte alignment for that type.
642    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
643    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
644
645  } else {
646    // 9 is %eflags, which doesn't get a size on Darwin for some
647    // reason.
648    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
649
650    // 11-16 are st(0..5).  Not sure why we stop at 5.
651    // These have size 12, which is sizeof(long double) on
652    // platforms with 4-byte alignment for that type.
653    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
654    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
655  }
656
657  return false;
658}
659
660namespace {
661/// X86_64ABIInfo - The X86_64 ABI information.
662class X86_64ABIInfo : public ABIInfo {
663  enum Class {
664    Integer = 0,
665    SSE,
666    SSEUp,
667    X87,
668    X87Up,
669    ComplexX87,
670    NoClass,
671    Memory
672  };
673
674  /// merge - Implement the X86_64 ABI merging algorithm.
675  ///
676  /// Merge an accumulating classification \arg Accum with a field
677  /// classification \arg Field.
678  ///
679  /// \param Accum - The accumulating classification. This should
680  /// always be either NoClass or the result of a previous merge
681  /// call. In addition, this should never be Memory (the caller
682  /// should just return Memory for the aggregate).
683  Class merge(Class Accum, Class Field) const;
684
685  /// classify - Determine the x86_64 register classes in which the
686  /// given type T should be passed.
687  ///
688  /// \param Lo - The classification for the parts of the type
689  /// residing in the low word of the containing object.
690  ///
691  /// \param Hi - The classification for the parts of the type
692  /// residing in the high word of the containing object.
693  ///
694  /// \param OffsetBase - The bit offset of this type in the
695  /// containing object.  Some parameters are classified different
696  /// depending on whether they straddle an eightbyte boundary.
697  ///
698  /// If a word is unused its result will be NoClass; if a type should
699  /// be passed in Memory then at least the classification of \arg Lo
700  /// will be Memory.
701  ///
702  /// The \arg Lo class will be NoClass iff the argument is ignored.
703  ///
704  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
705  /// also be ComplexX87.
706  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
707                Class &Lo, Class &Hi) const;
708
709  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
710  /// to coerce to, chose the best way to pass Ty in the same place
711  /// that \arg CoerceTo would be passed, but while keeping the
712  /// emitted code as simple as possible.
713  ///
714  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
715  /// the ways we might want to pass things, instead of constructing an LLVM
716  /// type. This makes this code more explicit, and it makes it clearer that we
717  /// are also doing this for correctness in the case of passing scalar types.
718  ABIArgInfo getCoerceResult(QualType Ty,
719                             const llvm::Type *CoerceTo,
720                             ASTContext &Context) const;
721
722  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
723  /// such that the argument will be returned in memory.
724  ABIArgInfo getIndirectReturnResult(QualType Ty, ASTContext &Context) const;
725
726  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
727  /// such that the argument will be passed in memory.
728  ABIArgInfo getIndirectResult(QualType Ty, ASTContext &Context) const;
729
730  ABIArgInfo classifyReturnType(QualType RetTy,
731                                ASTContext &Context,
732                                llvm::LLVMContext &VMContext) const;
733
734  ABIArgInfo classifyArgumentType(QualType Ty,
735                                  ASTContext &Context,
736                                  llvm::LLVMContext &VMContext,
737                                  unsigned &neededInt,
738                                  unsigned &neededSSE) const;
739
740public:
741  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
742                           llvm::LLVMContext &VMContext) const;
743
744  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
745                                 CodeGenFunction &CGF) const;
746};
747
748class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
749public:
750  X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
751
752  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
753    return 7;
754  }
755
756  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
757                               llvm::Value *Address) const {
758    CodeGen::CGBuilderTy &Builder = CGF.Builder;
759    llvm::LLVMContext &Context = CGF.getLLVMContext();
760
761    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
762    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
763
764    // 0-15 are the 16 integer registers.
765    // 16 is %rip.
766    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
767
768    return false;
769  }
770};
771
772}
773
774X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
775                                          Class Field) const {
776  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
777  // classified recursively so that always two fields are
778  // considered. The resulting class is calculated according to
779  // the classes of the fields in the eightbyte:
780  //
781  // (a) If both classes are equal, this is the resulting class.
782  //
783  // (b) If one of the classes is NO_CLASS, the resulting class is
784  // the other class.
785  //
786  // (c) If one of the classes is MEMORY, the result is the MEMORY
787  // class.
788  //
789  // (d) If one of the classes is INTEGER, the result is the
790  // INTEGER.
791  //
792  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
793  // MEMORY is used as class.
794  //
795  // (f) Otherwise class SSE is used.
796
797  // Accum should never be memory (we should have returned) or
798  // ComplexX87 (because this cannot be passed in a structure).
799  assert((Accum != Memory && Accum != ComplexX87) &&
800         "Invalid accumulated classification during merge.");
801  if (Accum == Field || Field == NoClass)
802    return Accum;
803  else if (Field == Memory)
804    return Memory;
805  else if (Accum == NoClass)
806    return Field;
807  else if (Accum == Integer || Field == Integer)
808    return Integer;
809  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
810           Accum == X87 || Accum == X87Up)
811    return Memory;
812  else
813    return SSE;
814}
815
816void X86_64ABIInfo::classify(QualType Ty,
817                             ASTContext &Context,
818                             uint64_t OffsetBase,
819                             Class &Lo, Class &Hi) const {
820  // FIXME: This code can be simplified by introducing a simple value class for
821  // Class pairs with appropriate constructor methods for the various
822  // situations.
823
824  // FIXME: Some of the split computations are wrong; unaligned vectors
825  // shouldn't be passed in registers for example, so there is no chance they
826  // can straddle an eightbyte. Verify & simplify.
827
828  Lo = Hi = NoClass;
829
830  Class &Current = OffsetBase < 64 ? Lo : Hi;
831  Current = Memory;
832
833  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
834    BuiltinType::Kind k = BT->getKind();
835
836    if (k == BuiltinType::Void) {
837      Current = NoClass;
838    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
839      Lo = Integer;
840      Hi = Integer;
841    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
842      Current = Integer;
843    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
844      Current = SSE;
845    } else if (k == BuiltinType::LongDouble) {
846      Lo = X87;
847      Hi = X87Up;
848    }
849    // FIXME: _Decimal32 and _Decimal64 are SSE.
850    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
851  } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
852    // Classify the underlying integer type.
853    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
854  } else if (Ty->hasPointerRepresentation()) {
855    Current = Integer;
856  } else if (Ty->isMemberPointerType()) {
857    if (Ty->isMemberFunctionPointerType())
858      Lo = Hi = Integer;
859    else
860      Current = Integer;
861  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
862    uint64_t Size = Context.getTypeSize(VT);
863    if (Size == 32) {
864      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
865      // float> as integer.
866      Current = Integer;
867
868      // If this type crosses an eightbyte boundary, it should be
869      // split.
870      uint64_t EB_Real = (OffsetBase) / 64;
871      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
872      if (EB_Real != EB_Imag)
873        Hi = Lo;
874    } else if (Size == 64) {
875      // gcc passes <1 x double> in memory. :(
876      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
877        return;
878
879      // gcc passes <1 x long long> as INTEGER.
880      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
881        Current = Integer;
882      else
883        Current = SSE;
884
885      // If this type crosses an eightbyte boundary, it should be
886      // split.
887      if (OffsetBase && OffsetBase != 64)
888        Hi = Lo;
889    } else if (Size == 128) {
890      Lo = SSE;
891      Hi = SSEUp;
892    }
893  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
894    QualType ET = Context.getCanonicalType(CT->getElementType());
895
896    uint64_t Size = Context.getTypeSize(Ty);
897    if (ET->isIntegralType()) {
898      if (Size <= 64)
899        Current = Integer;
900      else if (Size <= 128)
901        Lo = Hi = Integer;
902    } else if (ET == Context.FloatTy)
903      Current = SSE;
904    else if (ET == Context.DoubleTy)
905      Lo = Hi = SSE;
906    else if (ET == Context.LongDoubleTy)
907      Current = ComplexX87;
908
909    // If this complex type crosses an eightbyte boundary then it
910    // should be split.
911    uint64_t EB_Real = (OffsetBase) / 64;
912    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
913    if (Hi == NoClass && EB_Real != EB_Imag)
914      Hi = Lo;
915  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
916    // Arrays are treated like structures.
917
918    uint64_t Size = Context.getTypeSize(Ty);
919
920    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
921    // than two eightbytes, ..., it has class MEMORY.
922    if (Size > 128)
923      return;
924
925    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
926    // fields, it has class MEMORY.
927    //
928    // Only need to check alignment of array base.
929    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
930      return;
931
932    // Otherwise implement simplified merge. We could be smarter about
933    // this, but it isn't worth it and would be harder to verify.
934    Current = NoClass;
935    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
936    uint64_t ArraySize = AT->getSize().getZExtValue();
937    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
938      Class FieldLo, FieldHi;
939      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
940      Lo = merge(Lo, FieldLo);
941      Hi = merge(Hi, FieldHi);
942      if (Lo == Memory || Hi == Memory)
943        break;
944    }
945
946    // Do post merger cleanup (see below). Only case we worry about is Memory.
947    if (Hi == Memory)
948      Lo = Memory;
949    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
950  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
951    uint64_t Size = Context.getTypeSize(Ty);
952
953    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
954    // than two eightbytes, ..., it has class MEMORY.
955    if (Size > 128)
956      return;
957
958    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
959    // copy constructor or a non-trivial destructor, it is passed by invisible
960    // reference.
961    if (hasNonTrivialDestructorOrCopyConstructor(RT))
962      return;
963
964    const RecordDecl *RD = RT->getDecl();
965
966    // Assume variable sized types are passed in memory.
967    if (RD->hasFlexibleArrayMember())
968      return;
969
970    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
971
972    // Reset Lo class, this will be recomputed.
973    Current = NoClass;
974
975    // If this is a C++ record, classify the bases first.
976    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
977      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
978             e = CXXRD->bases_end(); i != e; ++i) {
979        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
980               "Unexpected base class!");
981        const CXXRecordDecl *Base =
982          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
983
984        // Classify this field.
985        //
986        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
987        // single eightbyte, each is classified separately. Each eightbyte gets
988        // initialized to class NO_CLASS.
989        Class FieldLo, FieldHi;
990        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
991        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
992        Lo = merge(Lo, FieldLo);
993        Hi = merge(Hi, FieldHi);
994        if (Lo == Memory || Hi == Memory)
995          break;
996      }
997
998      // If this record has no fields but isn't empty, classify as INTEGER.
999      if (RD->field_empty() && Size)
1000        Current = Integer;
1001    }
1002
1003    // Classify the fields one at a time, merging the results.
1004    unsigned idx = 0;
1005    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1006           i != e; ++i, ++idx) {
1007      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1008      bool BitField = i->isBitField();
1009
1010      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1011      // fields, it has class MEMORY.
1012      //
1013      // Note, skip this test for bit-fields, see below.
1014      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
1015        Lo = Memory;
1016        return;
1017      }
1018
1019      // Classify this field.
1020      //
1021      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1022      // exceeds a single eightbyte, each is classified
1023      // separately. Each eightbyte gets initialized to class
1024      // NO_CLASS.
1025      Class FieldLo, FieldHi;
1026
1027      // Bit-fields require special handling, they do not force the
1028      // structure to be passed in memory even if unaligned, and
1029      // therefore they can straddle an eightbyte.
1030      if (BitField) {
1031        // Ignore padding bit-fields.
1032        if (i->isUnnamedBitfield())
1033          continue;
1034
1035        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1036        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
1037
1038        uint64_t EB_Lo = Offset / 64;
1039        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1040        FieldLo = FieldHi = NoClass;
1041        if (EB_Lo) {
1042          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1043          FieldLo = NoClass;
1044          FieldHi = Integer;
1045        } else {
1046          FieldLo = Integer;
1047          FieldHi = EB_Hi ? Integer : NoClass;
1048        }
1049      } else
1050        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
1051      Lo = merge(Lo, FieldLo);
1052      Hi = merge(Hi, FieldHi);
1053      if (Lo == Memory || Hi == Memory)
1054        break;
1055    }
1056
1057    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1058    //
1059    // (a) If one of the classes is MEMORY, the whole argument is
1060    // passed in memory.
1061    //
1062    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1063
1064    // The first of these conditions is guaranteed by how we implement
1065    // the merge (just bail).
1066    //
1067    // The second condition occurs in the case of unions; for example
1068    // union { _Complex double; unsigned; }.
1069    if (Hi == Memory)
1070      Lo = Memory;
1071    if (Hi == SSEUp && Lo != SSE)
1072      Hi = SSE;
1073  }
1074}
1075
1076ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
1077                                          const llvm::Type *CoerceTo,
1078                                          ASTContext &Context) const {
1079  if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
1080    // Integer and pointer types will end up in a general purpose
1081    // register.
1082
1083    // Treat an enum type as its underlying type.
1084    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1085      Ty = EnumTy->getDecl()->getIntegerType();
1086
1087    if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
1088      return (Ty->isPromotableIntegerType() ?
1089              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1090  } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
1091    assert(Ty.isCanonical() && "should always have a canonical type here");
1092    assert(!Ty.hasQualifiers() && "should never have a qualified type here");
1093
1094    // Float and double end up in a single SSE reg.
1095    if (Ty == Context.FloatTy || Ty == Context.DoubleTy)
1096      return ABIArgInfo::getDirect();
1097
1098  }
1099
1100  return ABIArgInfo::getCoerce(CoerceTo);
1101}
1102
1103ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty,
1104                                                  ASTContext &Context) const {
1105  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1106  // place naturally.
1107  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1108    // Treat an enum type as its underlying type.
1109    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1110      Ty = EnumTy->getDecl()->getIntegerType();
1111
1112    return (Ty->isPromotableIntegerType() ?
1113            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1114  }
1115
1116  return ABIArgInfo::getIndirect(0);
1117}
1118
1119ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1120                                            ASTContext &Context) const {
1121  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1122  // place naturally.
1123  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1124    // Treat an enum type as its underlying type.
1125    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1126      Ty = EnumTy->getDecl()->getIntegerType();
1127
1128    return (Ty->isPromotableIntegerType() ?
1129            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1130  }
1131
1132  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1133    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1134
1135  // Compute the byval alignment. We trust the back-end to honor the
1136  // minimum ABI alignment for byval, to make cleaner IR.
1137  const unsigned MinABIAlign = 8;
1138  unsigned Align = Context.getTypeAlign(Ty) / 8;
1139  if (Align > MinABIAlign)
1140    return ABIArgInfo::getIndirect(Align);
1141  return ABIArgInfo::getIndirect(0);
1142}
1143
1144ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
1145                                            ASTContext &Context,
1146                                          llvm::LLVMContext &VMContext) const {
1147  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1148  // classification algorithm.
1149  X86_64ABIInfo::Class Lo, Hi;
1150  classify(RetTy, Context, 0, Lo, Hi);
1151
1152  // Check some invariants.
1153  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1154  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1155  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1156
1157  const llvm::Type *ResType = 0;
1158  switch (Lo) {
1159  case NoClass:
1160    return ABIArgInfo::getIgnore();
1161
1162  case SSEUp:
1163  case X87Up:
1164    assert(0 && "Invalid classification for lo word.");
1165
1166    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1167    // hidden argument.
1168  case Memory:
1169    return getIndirectReturnResult(RetTy, Context);
1170
1171    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1172    // available register of the sequence %rax, %rdx is used.
1173  case Integer:
1174    ResType = llvm::Type::getInt64Ty(VMContext); break;
1175
1176    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1177    // available SSE register of the sequence %xmm0, %xmm1 is used.
1178  case SSE:
1179    ResType = llvm::Type::getDoubleTy(VMContext); break;
1180
1181    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1182    // returned on the X87 stack in %st0 as 80-bit x87 number.
1183  case X87:
1184    ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
1185
1186    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1187    // part of the value is returned in %st0 and the imaginary part in
1188    // %st1.
1189  case ComplexX87:
1190    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1191    ResType = llvm::StructType::get(VMContext,
1192                                    llvm::Type::getX86_FP80Ty(VMContext),
1193                                    llvm::Type::getX86_FP80Ty(VMContext),
1194                                    NULL);
1195    break;
1196  }
1197
1198  switch (Hi) {
1199    // Memory was handled previously and X87 should
1200    // never occur as a hi class.
1201  case Memory:
1202  case X87:
1203    assert(0 && "Invalid classification for hi word.");
1204
1205  case ComplexX87: // Previously handled.
1206  case NoClass: break;
1207
1208  case Integer:
1209    ResType = llvm::StructType::get(VMContext, ResType,
1210                                    llvm::Type::getInt64Ty(VMContext), NULL);
1211    break;
1212  case SSE:
1213    ResType = llvm::StructType::get(VMContext, ResType,
1214                                    llvm::Type::getDoubleTy(VMContext), NULL);
1215    break;
1216
1217    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1218    // is passed in the upper half of the last used SSE register.
1219    //
1220    // SSEUP should always be preceeded by SSE, just widen.
1221  case SSEUp:
1222    assert(Lo == SSE && "Unexpected SSEUp classification.");
1223    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1224    break;
1225
1226    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1227    // returned together with the previous X87 value in %st0.
1228  case X87Up:
1229    // If X87Up is preceeded by X87, we don't need to do
1230    // anything. However, in some cases with unions it may not be
1231    // preceeded by X87. In such situations we follow gcc and pass the
1232    // extra bits in an SSE reg.
1233    if (Lo != X87)
1234      ResType = llvm::StructType::get(VMContext, ResType,
1235                                      llvm::Type::getDoubleTy(VMContext), NULL);
1236    break;
1237  }
1238
1239  return getCoerceResult(RetTy, ResType, Context);
1240}
1241
1242ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
1243                                               llvm::LLVMContext &VMContext,
1244                                               unsigned &neededInt,
1245                                               unsigned &neededSSE) const {
1246  X86_64ABIInfo::Class Lo, Hi;
1247  classify(Ty, Context, 0, Lo, Hi);
1248
1249  // Check some invariants.
1250  // FIXME: Enforce these by construction.
1251  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1252  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1253  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1254
1255  neededInt = 0;
1256  neededSSE = 0;
1257  const llvm::Type *ResType = 0;
1258  switch (Lo) {
1259  case NoClass:
1260    return ABIArgInfo::getIgnore();
1261
1262    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1263    // on the stack.
1264  case Memory:
1265
1266    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1267    // COMPLEX_X87, it is passed in memory.
1268  case X87:
1269  case ComplexX87:
1270    return getIndirectResult(Ty, Context);
1271
1272  case SSEUp:
1273  case X87Up:
1274    assert(0 && "Invalid classification for lo word.");
1275
1276    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1277    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1278    // and %r9 is used.
1279  case Integer:
1280    ++neededInt;
1281    ResType = llvm::Type::getInt64Ty(VMContext);
1282    break;
1283
1284    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1285    // available SSE register is used, the registers are taken in the
1286    // order from %xmm0 to %xmm7.
1287  case SSE:
1288    ++neededSSE;
1289    ResType = llvm::Type::getDoubleTy(VMContext);
1290    break;
1291  }
1292
1293  switch (Hi) {
1294    // Memory was handled previously, ComplexX87 and X87 should
1295    // never occur as hi classes, and X87Up must be preceed by X87,
1296    // which is passed in memory.
1297  case Memory:
1298  case X87:
1299  case ComplexX87:
1300    assert(0 && "Invalid classification for hi word.");
1301    break;
1302
1303  case NoClass: break;
1304  case Integer:
1305    ResType = llvm::StructType::get(VMContext, ResType,
1306                                    llvm::Type::getInt64Ty(VMContext), NULL);
1307    ++neededInt;
1308    break;
1309
1310    // X87Up generally doesn't occur here (long double is passed in
1311    // memory), except in situations involving unions.
1312  case X87Up:
1313  case SSE:
1314    ResType = llvm::StructType::get(VMContext, ResType,
1315                                    llvm::Type::getDoubleTy(VMContext), NULL);
1316    ++neededSSE;
1317    break;
1318
1319    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1320    // eightbyte is passed in the upper half of the last used SSE
1321    // register.
1322  case SSEUp:
1323    assert(Lo == SSE && "Unexpected SSEUp classification.");
1324    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1325    break;
1326  }
1327
1328  return getCoerceResult(Ty, ResType, Context);
1329}
1330
1331void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1332                                llvm::LLVMContext &VMContext) const {
1333  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1334                                          Context, VMContext);
1335
1336  // Keep track of the number of assigned registers.
1337  unsigned freeIntRegs = 6, freeSSERegs = 8;
1338
1339  // If the return value is indirect, then the hidden argument is consuming one
1340  // integer register.
1341  if (FI.getReturnInfo().isIndirect())
1342    --freeIntRegs;
1343
1344  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1345  // get assigned (in left-to-right order) for passing as follows...
1346  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1347       it != ie; ++it) {
1348    unsigned neededInt, neededSSE;
1349    it->info = classifyArgumentType(it->type, Context, VMContext,
1350                                    neededInt, neededSSE);
1351
1352    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1353    // eightbyte of an argument, the whole argument is passed on the
1354    // stack. If registers have already been assigned for some
1355    // eightbytes of such an argument, the assignments get reverted.
1356    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1357      freeIntRegs -= neededInt;
1358      freeSSERegs -= neededSSE;
1359    } else {
1360      it->info = getIndirectResult(it->type, Context);
1361    }
1362  }
1363}
1364
1365static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1366                                        QualType Ty,
1367                                        CodeGenFunction &CGF) {
1368  llvm::Value *overflow_arg_area_p =
1369    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1370  llvm::Value *overflow_arg_area =
1371    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1372
1373  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1374  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1375  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1376  if (Align > 8) {
1377    // Note that we follow the ABI & gcc here, even though the type
1378    // could in theory have an alignment greater than 16. This case
1379    // shouldn't ever matter in practice.
1380
1381    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1382    llvm::Value *Offset =
1383      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
1384    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1385    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1386                                 llvm::Type::getInt64Ty(CGF.getLLVMContext()));
1387    llvm::Value *Mask = llvm::ConstantInt::get(
1388        llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
1389    overflow_arg_area =
1390      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1391                                 overflow_arg_area->getType(),
1392                                 "overflow_arg_area.align");
1393  }
1394
1395  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1396  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1397  llvm::Value *Res =
1398    CGF.Builder.CreateBitCast(overflow_arg_area,
1399                              llvm::PointerType::getUnqual(LTy));
1400
1401  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1402  // l->overflow_arg_area + sizeof(type).
1403  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1404  // an 8 byte boundary.
1405
1406  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1407  llvm::Value *Offset =
1408      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
1409                                               (SizeInBytes + 7)  & ~7);
1410  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1411                                            "overflow_arg_area.next");
1412  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1413
1414  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1415  return Res;
1416}
1417
1418llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1419                                      CodeGenFunction &CGF) const {
1420  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1421  const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
1422  const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1423
1424  // Assume that va_list type is correct; should be pointer to LLVM type:
1425  // struct {
1426  //   i32 gp_offset;
1427  //   i32 fp_offset;
1428  //   i8* overflow_arg_area;
1429  //   i8* reg_save_area;
1430  // };
1431  unsigned neededInt, neededSSE;
1432
1433  Ty = CGF.getContext().getCanonicalType(Ty);
1434  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
1435                                       neededInt, neededSSE);
1436
1437  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1438  // in the registers. If not go to step 7.
1439  if (!neededInt && !neededSSE)
1440    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1441
1442  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1443  // general purpose registers needed to pass type and num_fp to hold
1444  // the number of floating point registers needed.
1445
1446  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1447  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1448  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1449  //
1450  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1451  // register save space).
1452
1453  llvm::Value *InRegs = 0;
1454  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1455  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1456  if (neededInt) {
1457    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1458    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1459    InRegs =
1460      CGF.Builder.CreateICmpULE(gp_offset,
1461                                llvm::ConstantInt::get(i32Ty,
1462                                                       48 - neededInt * 8),
1463                                "fits_in_gp");
1464  }
1465
1466  if (neededSSE) {
1467    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1468    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1469    llvm::Value *FitsInFP =
1470      CGF.Builder.CreateICmpULE(fp_offset,
1471                                llvm::ConstantInt::get(i32Ty,
1472                                                       176 - neededSSE * 16),
1473                                "fits_in_fp");
1474    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1475  }
1476
1477  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1478  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1479  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1480  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1481
1482  // Emit code to load the value if it was passed in registers.
1483
1484  CGF.EmitBlock(InRegBlock);
1485
1486  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1487  // an offset of l->gp_offset and/or l->fp_offset. This may require
1488  // copying to a temporary location in case the parameter is passed
1489  // in different register classes or requires an alignment greater
1490  // than 8 for general purpose registers and 16 for XMM registers.
1491  //
1492  // FIXME: This really results in shameful code when we end up needing to
1493  // collect arguments from different places; often what should result in a
1494  // simple assembling of a structure from scattered addresses has many more
1495  // loads than necessary. Can we clean this up?
1496  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1497  llvm::Value *RegAddr =
1498    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1499                           "reg_save_area");
1500  if (neededInt && neededSSE) {
1501    // FIXME: Cleanup.
1502    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1503    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1504    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1505    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1506    const llvm::Type *TyLo = ST->getElementType(0);
1507    const llvm::Type *TyHi = ST->getElementType(1);
1508    assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
1509           "Unexpected ABI info for mixed regs");
1510    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1511    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1512    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1513    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1514    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1515    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1516    llvm::Value *V =
1517      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1518    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1519    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1520    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1521
1522    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1523                                        llvm::PointerType::getUnqual(LTy));
1524  } else if (neededInt) {
1525    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1526    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1527                                        llvm::PointerType::getUnqual(LTy));
1528  } else {
1529    if (neededSSE == 1) {
1530      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1531      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1532                                          llvm::PointerType::getUnqual(LTy));
1533    } else {
1534      assert(neededSSE == 2 && "Invalid number of needed registers!");
1535      // SSE registers are spaced 16 bytes apart in the register save
1536      // area, we need to collect the two eightbytes together.
1537      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1538      llvm::Value *RegAddrHi =
1539        CGF.Builder.CreateGEP(RegAddrLo,
1540                            llvm::ConstantInt::get(i32Ty, 16));
1541      const llvm::Type *DblPtrTy =
1542        llvm::PointerType::getUnqual(DoubleTy);
1543      const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1544                                                         DoubleTy, NULL);
1545      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1546      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1547                                                           DblPtrTy));
1548      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1549      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1550                                                           DblPtrTy));
1551      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1552      RegAddr = CGF.Builder.CreateBitCast(Tmp,
1553                                          llvm::PointerType::getUnqual(LTy));
1554    }
1555  }
1556
1557  // AMD64-ABI 3.5.7p5: Step 5. Set:
1558  // l->gp_offset = l->gp_offset + num_gp * 8
1559  // l->fp_offset = l->fp_offset + num_fp * 16.
1560  if (neededInt) {
1561    llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
1562    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1563                            gp_offset_p);
1564  }
1565  if (neededSSE) {
1566    llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
1567    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1568                            fp_offset_p);
1569  }
1570  CGF.EmitBranch(ContBlock);
1571
1572  // Emit code to load the value if it was passed in memory.
1573
1574  CGF.EmitBlock(InMemBlock);
1575  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1576
1577  // Return the appropriate result.
1578
1579  CGF.EmitBlock(ContBlock);
1580  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1581                                                 "vaarg.addr");
1582  ResAddr->reserveOperandSpace(2);
1583  ResAddr->addIncoming(RegAddr, InRegBlock);
1584  ResAddr->addIncoming(MemAddr, InMemBlock);
1585
1586  return ResAddr;
1587}
1588
1589// PIC16 ABI Implementation
1590
1591namespace {
1592
1593class PIC16ABIInfo : public ABIInfo {
1594  ABIArgInfo classifyReturnType(QualType RetTy,
1595                                ASTContext &Context,
1596                                llvm::LLVMContext &VMContext) const;
1597
1598  ABIArgInfo classifyArgumentType(QualType RetTy,
1599                                  ASTContext &Context,
1600                                  llvm::LLVMContext &VMContext) const;
1601
1602  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1603                           llvm::LLVMContext &VMContext) const {
1604    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1605                                            VMContext);
1606    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1607         it != ie; ++it)
1608      it->info = classifyArgumentType(it->type, Context, VMContext);
1609  }
1610
1611  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1612                                 CodeGenFunction &CGF) const;
1613};
1614
1615class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1616public:
1617  PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
1618};
1619
1620}
1621
1622ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1623                                            ASTContext &Context,
1624                                          llvm::LLVMContext &VMContext) const {
1625  if (RetTy->isVoidType()) {
1626    return ABIArgInfo::getIgnore();
1627  } else {
1628    return ABIArgInfo::getDirect();
1629  }
1630}
1631
1632ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1633                                              ASTContext &Context,
1634                                          llvm::LLVMContext &VMContext) const {
1635  return ABIArgInfo::getDirect();
1636}
1637
1638llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1639                                       CodeGenFunction &CGF) const {
1640  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1641  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1642
1643  CGBuilderTy &Builder = CGF.Builder;
1644  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1645                                                       "ap");
1646  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1647  llvm::Type *PTy =
1648    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1649  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1650
1651  uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1652
1653  llvm::Value *NextAddr =
1654    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1655                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1656                      "ap.next");
1657  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1658
1659  return AddrTyped;
1660}
1661
1662
1663// PowerPC-32
1664
1665namespace {
1666class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1667public:
1668  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1669    // This is recovered from gcc output.
1670    return 1; // r1 is the dedicated stack pointer
1671  }
1672
1673  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1674                               llvm::Value *Address) const;
1675};
1676
1677}
1678
1679bool
1680PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1681                                                llvm::Value *Address) const {
1682  // This is calculated from the LLVM and GCC tables and verified
1683  // against gcc output.  AFAIK all ABIs use the same encoding.
1684
1685  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1686  llvm::LLVMContext &Context = CGF.getLLVMContext();
1687
1688  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1689  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1690  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1691  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1692
1693  // 0-31: r0-31, the 4-byte general-purpose registers
1694  AssignToArrayRange(Builder, Address, Four8, 0, 31);
1695
1696  // 32-63: fp0-31, the 8-byte floating-point registers
1697  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
1698
1699  // 64-76 are various 4-byte special-purpose registers:
1700  // 64: mq
1701  // 65: lr
1702  // 66: ctr
1703  // 67: ap
1704  // 68-75 cr0-7
1705  // 76: xer
1706  AssignToArrayRange(Builder, Address, Four8, 64, 76);
1707
1708  // 77-108: v0-31, the 16-byte vector registers
1709  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
1710
1711  // 109: vrsave
1712  // 110: vscr
1713  // 111: spe_acc
1714  // 112: spefscr
1715  // 113: sfp
1716  AssignToArrayRange(Builder, Address, Four8, 109, 113);
1717
1718  return false;
1719}
1720
1721
1722// ARM ABI Implementation
1723
1724namespace {
1725
1726class ARMABIInfo : public ABIInfo {
1727public:
1728  enum ABIKind {
1729    APCS = 0,
1730    AAPCS = 1,
1731    AAPCS_VFP
1732  };
1733
1734private:
1735  ABIKind Kind;
1736
1737public:
1738  ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
1739
1740private:
1741  ABIKind getABIKind() const { return Kind; }
1742
1743  ABIArgInfo classifyReturnType(QualType RetTy,
1744                                ASTContext &Context,
1745                                llvm::LLVMContext &VMCOntext) const;
1746
1747  ABIArgInfo classifyArgumentType(QualType RetTy,
1748                                  ASTContext &Context,
1749                                  llvm::LLVMContext &VMContext) const;
1750
1751  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1752                           llvm::LLVMContext &VMContext) const;
1753
1754  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1755                                 CodeGenFunction &CGF) const;
1756};
1757
1758class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
1759public:
1760  ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
1761    :TargetCodeGenInfo(new ARMABIInfo(K)) {}
1762
1763  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1764    return 13;
1765  }
1766};
1767
1768}
1769
1770void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1771                             llvm::LLVMContext &VMContext) const {
1772  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1773                                          VMContext);
1774  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1775       it != ie; ++it) {
1776    it->info = classifyArgumentType(it->type, Context, VMContext);
1777  }
1778
1779  // ARM always overrides the calling convention.
1780  switch (getABIKind()) {
1781  case APCS:
1782    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
1783    break;
1784
1785  case AAPCS:
1786    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
1787    break;
1788
1789  case AAPCS_VFP:
1790    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
1791    break;
1792  }
1793}
1794
1795ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1796                                            ASTContext &Context,
1797                                          llvm::LLVMContext &VMContext) const {
1798  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1799    // Treat an enum type as its underlying type.
1800    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1801      Ty = EnumTy->getDecl()->getIntegerType();
1802
1803    return (Ty->isPromotableIntegerType() ?
1804            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1805  }
1806
1807  // Ignore empty records.
1808  if (isEmptyRecord(Context, Ty, true))
1809    return ABIArgInfo::getIgnore();
1810
1811  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1812  // backend doesn't support byval.
1813  // FIXME: This doesn't handle alignment > 64 bits.
1814  const llvm::Type* ElemTy;
1815  unsigned SizeRegs;
1816  if (Context.getTypeAlign(Ty) > 32) {
1817    ElemTy = llvm::Type::getInt64Ty(VMContext);
1818    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1819  } else {
1820    ElemTy = llvm::Type::getInt32Ty(VMContext);
1821    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1822  }
1823  std::vector<const llvm::Type*> LLVMFields;
1824  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1825  const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
1826  return ABIArgInfo::getCoerce(STy);
1827}
1828
1829static bool isIntegerLikeType(QualType Ty,
1830                              ASTContext &Context,
1831                              llvm::LLVMContext &VMContext) {
1832  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
1833  // is called integer-like if its size is less than or equal to one word, and
1834  // the offset of each of its addressable sub-fields is zero.
1835
1836  uint64_t Size = Context.getTypeSize(Ty);
1837
1838  // Check that the type fits in a word.
1839  if (Size > 32)
1840    return false;
1841
1842  // FIXME: Handle vector types!
1843  if (Ty->isVectorType())
1844    return false;
1845
1846  // Float types are never treated as "integer like".
1847  if (Ty->isRealFloatingType())
1848    return false;
1849
1850  // If this is a builtin or pointer type then it is ok.
1851  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
1852    return true;
1853
1854  // Small complex integer types are "integer like".
1855  if (const ComplexType *CT = Ty->getAs<ComplexType>())
1856    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
1857
1858  // Single element and zero sized arrays should be allowed, by the definition
1859  // above, but they are not.
1860
1861  // Otherwise, it must be a record type.
1862  const RecordType *RT = Ty->getAs<RecordType>();
1863  if (!RT) return false;
1864
1865  // Ignore records with flexible arrays.
1866  const RecordDecl *RD = RT->getDecl();
1867  if (RD->hasFlexibleArrayMember())
1868    return false;
1869
1870  // Check that all sub-fields are at offset 0, and are themselves "integer
1871  // like".
1872  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1873
1874  bool HadField = false;
1875  unsigned idx = 0;
1876  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1877       i != e; ++i, ++idx) {
1878    const FieldDecl *FD = *i;
1879
1880    // Bit-fields are not addressable, we only need to verify they are "integer
1881    // like". We still have to disallow a subsequent non-bitfield, for example:
1882    //   struct { int : 0; int x }
1883    // is non-integer like according to gcc.
1884    if (FD->isBitField()) {
1885      if (!RD->isUnion())
1886        HadField = true;
1887
1888      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1889        return false;
1890
1891      continue;
1892    }
1893
1894    // Check if this field is at offset 0.
1895    if (Layout.getFieldOffset(idx) != 0)
1896      return false;
1897
1898    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1899      return false;
1900
1901    // Only allow at most one field in a structure. This doesn't match the
1902    // wording above, but follows gcc in situations with a field following an
1903    // empty structure.
1904    if (!RD->isUnion()) {
1905      if (HadField)
1906        return false;
1907
1908      HadField = true;
1909    }
1910  }
1911
1912  return true;
1913}
1914
1915ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1916                                          ASTContext &Context,
1917                                          llvm::LLVMContext &VMContext) const {
1918  if (RetTy->isVoidType())
1919    return ABIArgInfo::getIgnore();
1920
1921  if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1922    // Treat an enum type as its underlying type.
1923    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1924      RetTy = EnumTy->getDecl()->getIntegerType();
1925
1926    return (RetTy->isPromotableIntegerType() ?
1927            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1928  }
1929
1930  // Are we following APCS?
1931  if (getABIKind() == APCS) {
1932    if (isEmptyRecord(Context, RetTy, false))
1933      return ABIArgInfo::getIgnore();
1934
1935    // Complex types are all returned as packed integers.
1936    //
1937    // FIXME: Consider using 2 x vector types if the back end handles them
1938    // correctly.
1939    if (RetTy->isAnyComplexType())
1940      return ABIArgInfo::getCoerce(llvm::IntegerType::get(
1941                                     VMContext, Context.getTypeSize(RetTy)));
1942
1943    // Integer like structures are returned in r0.
1944    if (isIntegerLikeType(RetTy, Context, VMContext)) {
1945      // Return in the smallest viable integer type.
1946      uint64_t Size = Context.getTypeSize(RetTy);
1947      if (Size <= 8)
1948        return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1949      if (Size <= 16)
1950        return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1951      return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1952    }
1953
1954    // Otherwise return in memory.
1955    return ABIArgInfo::getIndirect(0);
1956  }
1957
1958  // Otherwise this is an AAPCS variant.
1959
1960  if (isEmptyRecord(Context, RetTy, true))
1961    return ABIArgInfo::getIgnore();
1962
1963  // Aggregates <= 4 bytes are returned in r0; other aggregates
1964  // are returned indirectly.
1965  uint64_t Size = Context.getTypeSize(RetTy);
1966  if (Size <= 32) {
1967    // Return in the smallest viable integer type.
1968    if (Size <= 8)
1969      return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1970    if (Size <= 16)
1971      return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1972    return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1973  }
1974
1975  return ABIArgInfo::getIndirect(0);
1976}
1977
1978llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1979                                      CodeGenFunction &CGF) const {
1980  // FIXME: Need to handle alignment
1981  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1982  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1983
1984  CGBuilderTy &Builder = CGF.Builder;
1985  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1986                                                       "ap");
1987  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1988  llvm::Type *PTy =
1989    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1990  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1991
1992  uint64_t Offset =
1993    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
1994  llvm::Value *NextAddr =
1995    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1996                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1997                      "ap.next");
1998  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1999
2000  return AddrTyped;
2001}
2002
2003ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
2004                                              ASTContext &Context,
2005                                          llvm::LLVMContext &VMContext) const {
2006  if (RetTy->isVoidType()) {
2007    return ABIArgInfo::getIgnore();
2008  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2009    return ABIArgInfo::getIndirect(0);
2010  } else {
2011    // Treat an enum type as its underlying type.
2012    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2013      RetTy = EnumTy->getDecl()->getIntegerType();
2014
2015    return (RetTy->isPromotableIntegerType() ?
2016            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2017  }
2018}
2019
2020// SystemZ ABI Implementation
2021
2022namespace {
2023
2024class SystemZABIInfo : public ABIInfo {
2025  bool isPromotableIntegerType(QualType Ty) const;
2026
2027  ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
2028                                llvm::LLVMContext &VMContext) const;
2029
2030  ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
2031                                  llvm::LLVMContext &VMContext) const;
2032
2033  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
2034                          llvm::LLVMContext &VMContext) const {
2035    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
2036                                            Context, VMContext);
2037    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2038         it != ie; ++it)
2039      it->info = classifyArgumentType(it->type, Context, VMContext);
2040  }
2041
2042  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2043                                 CodeGenFunction &CGF) const;
2044};
2045
2046class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2047public:
2048  SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
2049};
2050
2051}
2052
2053bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2054  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2055  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2056    switch (BT->getKind()) {
2057    case BuiltinType::Bool:
2058    case BuiltinType::Char_S:
2059    case BuiltinType::Char_U:
2060    case BuiltinType::SChar:
2061    case BuiltinType::UChar:
2062    case BuiltinType::Short:
2063    case BuiltinType::UShort:
2064    case BuiltinType::Int:
2065    case BuiltinType::UInt:
2066      return true;
2067    default:
2068      return false;
2069    }
2070  return false;
2071}
2072
2073llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2074                                       CodeGenFunction &CGF) const {
2075  // FIXME: Implement
2076  return 0;
2077}
2078
2079
2080ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
2081                                              ASTContext &Context,
2082                                           llvm::LLVMContext &VMContext) const {
2083  if (RetTy->isVoidType()) {
2084    return ABIArgInfo::getIgnore();
2085  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2086    return ABIArgInfo::getIndirect(0);
2087  } else {
2088    return (isPromotableIntegerType(RetTy) ?
2089            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2090  }
2091}
2092
2093ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
2094                                                ASTContext &Context,
2095                                           llvm::LLVMContext &VMContext) const {
2096  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
2097    return ABIArgInfo::getIndirect(0);
2098  } else {
2099    return (isPromotableIntegerType(Ty) ?
2100            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2101  }
2102}
2103
2104// MSP430 ABI Implementation
2105
2106namespace {
2107
2108class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2109public:
2110  MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
2111  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2112                           CodeGen::CodeGenModule &M) const;
2113};
2114
2115}
2116
2117void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2118                                                  llvm::GlobalValue *GV,
2119                                             CodeGen::CodeGenModule &M) const {
2120  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2121    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2122      // Handle 'interrupt' attribute:
2123      llvm::Function *F = cast<llvm::Function>(GV);
2124
2125      // Step 1: Set ISR calling convention.
2126      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2127
2128      // Step 2: Add attributes goodness.
2129      F->addFnAttr(llvm::Attribute::NoInline);
2130
2131      // Step 3: Emit ISR vector alias.
2132      unsigned Num = attr->getNumber() + 0xffe0;
2133      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2134                            "vector_" +
2135                            llvm::LowercaseString(llvm::utohexstr(Num)),
2136                            GV, &M.getModule());
2137    }
2138  }
2139}
2140
2141// MIPS ABI Implementation.  This works for both little-endian and
2142// big-endian variants.
2143namespace {
2144class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2145public:
2146  MIPSTargetCodeGenInfo(): TargetCodeGenInfo(new DefaultABIInfo()) {}
2147
2148  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2149    return 29;
2150  }
2151
2152  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2153                               llvm::Value *Address) const;
2154};
2155}
2156
2157bool
2158MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2159                                               llvm::Value *Address) const {
2160  // This information comes from gcc's implementation, which seems to
2161  // as canonical as it gets.
2162
2163  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2164  llvm::LLVMContext &Context = CGF.getLLVMContext();
2165
2166  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2167  // are aliased to pairs of single-precision FP registers.
2168  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2169  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2170
2171  // 0-31 are the general purpose registers, $0 - $31.
2172  // 32-63 are the floating-point registers, $f0 - $f31.
2173  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2174  // 66 is the (notional, I think) register for signal-handler return.
2175  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2176
2177  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2178  // They are one bit wide and ignored here.
2179
2180  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2181  // (coprocessor 1 is the FP unit)
2182  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2183  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2184  // 176-181 are the DSP accumulator registers.
2185  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2186
2187  return false;
2188}
2189
2190
2191const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
2192  if (TheTargetCodeGenInfo)
2193    return *TheTargetCodeGenInfo;
2194
2195  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2196  // free it.
2197
2198  const llvm::Triple &Triple(getContext().Target.getTriple());
2199  switch (Triple.getArch()) {
2200  default:
2201    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
2202
2203  case llvm::Triple::mips:
2204  case llvm::Triple::mipsel:
2205    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo());
2206
2207  case llvm::Triple::arm:
2208  case llvm::Triple::thumb:
2209    // FIXME: We want to know the float calling convention as well.
2210    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2211      return *(TheTargetCodeGenInfo =
2212               new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
2213
2214    return *(TheTargetCodeGenInfo =
2215             new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
2216
2217  case llvm::Triple::pic16:
2218    return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
2219
2220  case llvm::Triple::ppc:
2221    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo());
2222
2223  case llvm::Triple::systemz:
2224    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
2225
2226  case llvm::Triple::msp430:
2227    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
2228
2229  case llvm::Triple::x86:
2230    switch (Triple.getOS()) {
2231    case llvm::Triple::Darwin:
2232      return *(TheTargetCodeGenInfo =
2233               new X86_32TargetCodeGenInfo(Context, true, true));
2234    case llvm::Triple::Cygwin:
2235    case llvm::Triple::MinGW32:
2236    case llvm::Triple::MinGW64:
2237    case llvm::Triple::AuroraUX:
2238    case llvm::Triple::DragonFly:
2239    case llvm::Triple::FreeBSD:
2240    case llvm::Triple::OpenBSD:
2241      return *(TheTargetCodeGenInfo =
2242               new X86_32TargetCodeGenInfo(Context, false, true));
2243
2244    default:
2245      return *(TheTargetCodeGenInfo =
2246               new X86_32TargetCodeGenInfo(Context, false, false));
2247    }
2248
2249  case llvm::Triple::x86_64:
2250    return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
2251  }
2252}
2253