TargetInfo.cpp revision 204793
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Support/raw_ostream.h"
23using namespace clang;
24using namespace CodeGen;
25
26ABIInfo::~ABIInfo() {}
27
28void ABIArgInfo::dump() const {
29  llvm::raw_ostream &OS = llvm::errs();
30  OS << "(ABIArgInfo Kind=";
31  switch (TheKind) {
32  case Direct:
33    OS << "Direct";
34    break;
35  case Extend:
36    OS << "Extend";
37    break;
38  case Ignore:
39    OS << "Ignore";
40    break;
41  case Coerce:
42    OS << "Coerce Type=";
43    getCoerceToType()->print(OS);
44    break;
45  case Indirect:
46    OS << "Indirect Align=" << getIndirectAlign();
47    break;
48  case Expand:
49    OS << "Expand";
50    break;
51  }
52  OS << ")\n";
53}
54
55TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
56
57static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
58
59/// isEmptyField - Return true iff a the field is "empty", that is it
60/// is an unnamed bit-field or an (array of) empty record(s).
61static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
62                         bool AllowArrays) {
63  if (FD->isUnnamedBitfield())
64    return true;
65
66  QualType FT = FD->getType();
67
68    // Constant arrays of empty records count as empty, strip them off.
69  if (AllowArrays)
70    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
71      FT = AT->getElementType();
72
73  return isEmptyRecord(Context, FT, AllowArrays);
74}
75
76/// isEmptyRecord - Return true iff a structure contains only empty
77/// fields. Note that a structure with a flexible array member is not
78/// considered empty.
79static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
80  const RecordType *RT = T->getAs<RecordType>();
81  if (!RT)
82    return 0;
83  const RecordDecl *RD = RT->getDecl();
84  if (RD->hasFlexibleArrayMember())
85    return false;
86  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
87         i != e; ++i)
88    if (!isEmptyField(Context, *i, AllowArrays))
89      return false;
90  return true;
91}
92
93/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
94/// a non-trivial destructor or a non-trivial copy constructor.
95static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
96  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
97  if (!RD)
98    return false;
99
100  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
101}
102
103/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
104/// a record type with either a non-trivial destructor or a non-trivial copy
105/// constructor.
106static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
107  const RecordType *RT = T->getAs<RecordType>();
108  if (!RT)
109    return false;
110
111  return hasNonTrivialDestructorOrCopyConstructor(RT);
112}
113
114/// isSingleElementStruct - Determine if a structure is a "single
115/// element struct", i.e. it has exactly one non-empty field or
116/// exactly one field which is itself a single element
117/// struct. Structures with flexible array members are never
118/// considered single element structs.
119///
120/// \return The field declaration for the single non-empty field, if
121/// it exists.
122static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
123  const RecordType *RT = T->getAsStructureType();
124  if (!RT)
125    return 0;
126
127  const RecordDecl *RD = RT->getDecl();
128  if (RD->hasFlexibleArrayMember())
129    return 0;
130
131  const Type *Found = 0;
132  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
133         i != e; ++i) {
134    const FieldDecl *FD = *i;
135    QualType FT = FD->getType();
136
137    // Ignore empty fields.
138    if (isEmptyField(Context, FD, true))
139      continue;
140
141    // If we already found an element then this isn't a single-element
142    // struct.
143    if (Found)
144      return 0;
145
146    // Treat single element arrays as the element.
147    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
148      if (AT->getSize().getZExtValue() != 1)
149        break;
150      FT = AT->getElementType();
151    }
152
153    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
154      Found = FT.getTypePtr();
155    } else {
156      Found = isSingleElementStruct(FT, Context);
157      if (!Found)
158        return 0;
159    }
160  }
161
162  return Found;
163}
164
165static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
166  if (!Ty->getAs<BuiltinType>() && !Ty->isAnyPointerType() &&
167      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
168      !Ty->isBlockPointerType())
169    return false;
170
171  uint64_t Size = Context.getTypeSize(Ty);
172  return Size == 32 || Size == 64;
173}
174
175/// canExpandIndirectArgument - Test whether an argument type which is to be
176/// passed indirectly (on the stack) would have the equivalent layout if it was
177/// expanded into separate arguments. If so, we prefer to do the latter to avoid
178/// inhibiting optimizations.
179///
180// FIXME: This predicate is missing many cases, currently it just follows
181// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
182// should probably make this smarter, or better yet make the LLVM backend
183// capable of handling it.
184static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
185  // We can only expand structure types.
186  const RecordType *RT = Ty->getAs<RecordType>();
187  if (!RT)
188    return false;
189
190  // We can only expand (C) structures.
191  //
192  // FIXME: This needs to be generalized to handle classes as well.
193  const RecordDecl *RD = RT->getDecl();
194  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
195    return false;
196
197  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
198         i != e; ++i) {
199    const FieldDecl *FD = *i;
200
201    if (!is32Or64BitBasicType(FD->getType(), Context))
202      return false;
203
204    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
205    // how to expand them yet, and the predicate for telling if a bitfield still
206    // counts as "basic" is more complicated than what we were doing previously.
207    if (FD->isBitField())
208      return false;
209  }
210
211  return true;
212}
213
214static bool typeContainsSSEVector(const RecordDecl *RD, ASTContext &Context) {
215  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
216         i != e; ++i) {
217    const FieldDecl *FD = *i;
218
219    if (FD->getType()->isVectorType() &&
220        Context.getTypeSize(FD->getType()) >= 128)
221      return true;
222
223    if (const RecordType* RT = FD->getType()->getAs<RecordType>())
224      if (typeContainsSSEVector(RT->getDecl(), Context))
225        return true;
226  }
227
228  return false;
229}
230
231namespace {
232/// DefaultABIInfo - The default implementation for ABI specific
233/// details. This implementation provides information which results in
234/// self-consistent and sensible LLVM IR generation, but does not
235/// conform to any particular ABI.
236class DefaultABIInfo : public ABIInfo {
237  ABIArgInfo classifyReturnType(QualType RetTy,
238                                ASTContext &Context,
239                                llvm::LLVMContext &VMContext) const;
240
241  ABIArgInfo classifyArgumentType(QualType RetTy,
242                                  ASTContext &Context,
243                                  llvm::LLVMContext &VMContext) const;
244
245  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
246                           llvm::LLVMContext &VMContext) const {
247    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
248                                            VMContext);
249    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
250         it != ie; ++it)
251      it->info = classifyArgumentType(it->type, Context, VMContext);
252  }
253
254  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
255                                 CodeGenFunction &CGF) const;
256};
257
258class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
259public:
260  DefaultTargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
261};
262
263llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
264                                       CodeGenFunction &CGF) const {
265  return 0;
266}
267
268ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
269                                                ASTContext &Context,
270                                          llvm::LLVMContext &VMContext) const {
271  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
272    return ABIArgInfo::getIndirect(0);
273  } else {
274    // Treat an enum type as its underlying type.
275    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
276      Ty = EnumTy->getDecl()->getIntegerType();
277
278    return (Ty->isPromotableIntegerType() ?
279            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
280  }
281}
282
283/// X86_32ABIInfo - The X86-32 ABI information.
284class X86_32ABIInfo : public ABIInfo {
285  ASTContext &Context;
286  bool IsDarwinVectorABI;
287  bool IsSmallStructInRegABI;
288
289  static bool isRegisterSize(unsigned Size) {
290    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
291  }
292
293  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
294
295  static unsigned getIndirectArgumentAlignment(QualType Ty,
296                                               ASTContext &Context);
297
298public:
299  ABIArgInfo classifyReturnType(QualType RetTy,
300                                ASTContext &Context,
301                                llvm::LLVMContext &VMContext) const;
302
303  ABIArgInfo classifyArgumentType(QualType RetTy,
304                                  ASTContext &Context,
305                                  llvm::LLVMContext &VMContext) const;
306
307  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
308                           llvm::LLVMContext &VMContext) const {
309    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
310                                            VMContext);
311    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
312         it != ie; ++it)
313      it->info = classifyArgumentType(it->type, Context, VMContext);
314  }
315
316  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317                                 CodeGenFunction &CGF) const;
318
319  X86_32ABIInfo(ASTContext &Context, bool d, bool p)
320    : ABIInfo(), Context(Context), IsDarwinVectorABI(d),
321      IsSmallStructInRegABI(p) {}
322};
323
324class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
325public:
326  X86_32TargetCodeGenInfo(ASTContext &Context, bool d, bool p)
327    :TargetCodeGenInfo(new X86_32ABIInfo(Context, d, p)) {}
328
329  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
330                           CodeGen::CodeGenModule &CGM) const;
331
332  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
333    // Darwin uses different dwarf register numbers for EH.
334    if (CGM.isTargetDarwin()) return 5;
335
336    return 4;
337  }
338
339  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
340                               llvm::Value *Address) const;
341};
342
343}
344
345/// shouldReturnTypeInRegister - Determine if the given type should be
346/// passed in a register (for the Darwin ABI).
347bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
348                                               ASTContext &Context) {
349  uint64_t Size = Context.getTypeSize(Ty);
350
351  // Type must be register sized.
352  if (!isRegisterSize(Size))
353    return false;
354
355  if (Ty->isVectorType()) {
356    // 64- and 128- bit vectors inside structures are not returned in
357    // registers.
358    if (Size == 64 || Size == 128)
359      return false;
360
361    return true;
362  }
363
364  // If this is a builtin, pointer, enum, or complex type, it is ok.
365  if (Ty->getAs<BuiltinType>() || Ty->isAnyPointerType() ||
366      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
367      Ty->isBlockPointerType())
368    return true;
369
370  // Arrays are treated like records.
371  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
372    return shouldReturnTypeInRegister(AT->getElementType(), Context);
373
374  // Otherwise, it must be a record type.
375  const RecordType *RT = Ty->getAs<RecordType>();
376  if (!RT) return false;
377
378  // FIXME: Traverse bases here too.
379
380  // Structure types are passed in register if all fields would be
381  // passed in a register.
382  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
383         e = RT->getDecl()->field_end(); i != e; ++i) {
384    const FieldDecl *FD = *i;
385
386    // Empty fields are ignored.
387    if (isEmptyField(Context, FD, true))
388      continue;
389
390    // Check fields recursively.
391    if (!shouldReturnTypeInRegister(FD->getType(), Context))
392      return false;
393  }
394
395  return true;
396}
397
398ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
399                                            ASTContext &Context,
400                                          llvm::LLVMContext &VMContext) const {
401  if (RetTy->isVoidType()) {
402    return ABIArgInfo::getIgnore();
403  } else if (const VectorType *VT = RetTy->getAs<VectorType>()) {
404    // On Darwin, some vectors are returned in registers.
405    if (IsDarwinVectorABI) {
406      uint64_t Size = Context.getTypeSize(RetTy);
407
408      // 128-bit vectors are a special case; they are returned in
409      // registers and we need to make sure to pick a type the LLVM
410      // backend will like.
411      if (Size == 128)
412        return ABIArgInfo::getCoerce(llvm::VectorType::get(
413                  llvm::Type::getInt64Ty(VMContext), 2));
414
415      // Always return in register if it fits in a general purpose
416      // register, or if it is 64 bits and has a single element.
417      if ((Size == 8 || Size == 16 || Size == 32) ||
418          (Size == 64 && VT->getNumElements() == 1))
419        return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
420
421      return ABIArgInfo::getIndirect(0);
422    }
423
424    return ABIArgInfo::getDirect();
425  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
426    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
427      // Structures with either a non-trivial destructor or a non-trivial
428      // copy constructor are always indirect.
429      if (hasNonTrivialDestructorOrCopyConstructor(RT))
430        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
431
432      // Structures with flexible arrays are always indirect.
433      if (RT->getDecl()->hasFlexibleArrayMember())
434        return ABIArgInfo::getIndirect(0);
435    }
436
437    // If specified, structs and unions are always indirect.
438    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
439      return ABIArgInfo::getIndirect(0);
440
441    // Classify "single element" structs as their element type.
442    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
443      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
444        if (BT->isIntegerType()) {
445          // We need to use the size of the structure, padding
446          // bit-fields can adjust that to be larger than the single
447          // element type.
448          uint64_t Size = Context.getTypeSize(RetTy);
449          return ABIArgInfo::getCoerce(
450            llvm::IntegerType::get(VMContext, (unsigned) Size));
451        } else if (BT->getKind() == BuiltinType::Float) {
452          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
453                 "Unexpect single element structure size!");
454          return ABIArgInfo::getCoerce(llvm::Type::getFloatTy(VMContext));
455        } else if (BT->getKind() == BuiltinType::Double) {
456          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
457                 "Unexpect single element structure size!");
458          return ABIArgInfo::getCoerce(llvm::Type::getDoubleTy(VMContext));
459        }
460      } else if (SeltTy->isPointerType()) {
461        // FIXME: It would be really nice if this could come out as the proper
462        // pointer type.
463        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(VMContext);
464        return ABIArgInfo::getCoerce(PtrTy);
465      } else if (SeltTy->isVectorType()) {
466        // 64- and 128-bit vectors are never returned in a
467        // register when inside a structure.
468        uint64_t Size = Context.getTypeSize(RetTy);
469        if (Size == 64 || Size == 128)
470          return ABIArgInfo::getIndirect(0);
471
472        return classifyReturnType(QualType(SeltTy, 0), Context, VMContext);
473      }
474    }
475
476    // Small structures which are register sized are generally returned
477    // in a register.
478    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
479      uint64_t Size = Context.getTypeSize(RetTy);
480      return ABIArgInfo::getCoerce(llvm::IntegerType::get(VMContext, Size));
481    }
482
483    return ABIArgInfo::getIndirect(0);
484  } else {
485    // Treat an enum type as its underlying type.
486    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
487      RetTy = EnumTy->getDecl()->getIntegerType();
488
489    return (RetTy->isPromotableIntegerType() ?
490            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
491  }
492}
493
494unsigned X86_32ABIInfo::getIndirectArgumentAlignment(QualType Ty,
495                                                     ASTContext &Context) {
496  unsigned Align = Context.getTypeAlign(Ty);
497  if (Align < 128) return 0;
498  if (const RecordType* RT = Ty->getAs<RecordType>())
499    if (typeContainsSSEVector(RT->getDecl(), Context))
500      return 16;
501  return 0;
502}
503
504ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
505                                               ASTContext &Context,
506                                           llvm::LLVMContext &VMContext) const {
507  // FIXME: Set alignment on indirect arguments.
508  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
509    // Structures with flexible arrays are always indirect.
510    if (const RecordType *RT = Ty->getAs<RecordType>()) {
511      // Structures with either a non-trivial destructor or a non-trivial
512      // copy constructor are always indirect.
513      if (hasNonTrivialDestructorOrCopyConstructor(RT))
514        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
515
516      if (RT->getDecl()->hasFlexibleArrayMember())
517        return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty,
518                                                                    Context));
519    }
520
521    // Ignore empty structs.
522    if (Ty->isStructureType() && Context.getTypeSize(Ty) == 0)
523      return ABIArgInfo::getIgnore();
524
525    // Expand small (<= 128-bit) record types when we know that the stack layout
526    // of those arguments will match the struct. This is important because the
527    // LLVM backend isn't smart enough to remove byval, which inhibits many
528    // optimizations.
529    if (Context.getTypeSize(Ty) <= 4*32 &&
530        canExpandIndirectArgument(Ty, Context))
531      return ABIArgInfo::getExpand();
532
533    return ABIArgInfo::getIndirect(getIndirectArgumentAlignment(Ty, Context));
534  } else {
535    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
536      Ty = EnumTy->getDecl()->getIntegerType();
537
538    return (Ty->isPromotableIntegerType() ?
539            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
540  }
541}
542
543llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
544                                      CodeGenFunction &CGF) const {
545  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
546  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
547
548  CGBuilderTy &Builder = CGF.Builder;
549  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
550                                                       "ap");
551  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
552  llvm::Type *PTy =
553    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
554  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
555
556  uint64_t Offset =
557    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
558  llvm::Value *NextAddr =
559    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
560                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
561                      "ap.next");
562  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
563
564  return AddrTyped;
565}
566
567void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
568                                                  llvm::GlobalValue *GV,
569                                            CodeGen::CodeGenModule &CGM) const {
570  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
571    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
572      // Get the LLVM function.
573      llvm::Function *Fn = cast<llvm::Function>(GV);
574
575      // Now add the 'alignstack' attribute with a value of 16.
576      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
577    }
578  }
579}
580
581bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
582                                               CodeGen::CodeGenFunction &CGF,
583                                               llvm::Value *Address) const {
584  CodeGen::CGBuilderTy &Builder = CGF.Builder;
585  llvm::LLVMContext &Context = CGF.getLLVMContext();
586
587  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
588  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
589
590  // 0-7 are the eight integer registers;  the order is different
591  //   on Darwin (for EH), but the range is the same.
592  // 8 is %eip.
593  for (unsigned I = 0, E = 9; I != E; ++I) {
594    llvm::Value *Slot = Builder.CreateConstInBoundsGEP1_32(Address, I);
595    Builder.CreateStore(Four8, Slot);
596  }
597
598  if (CGF.CGM.isTargetDarwin()) {
599    // 12-16 are st(0..4).  Not sure why we stop at 4.
600    // These have size 16, which is sizeof(long double) on
601    // platforms with 8-byte alignment for that type.
602    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
603    for (unsigned I = 12, E = 17; I != E; ++I) {
604      llvm::Value *Slot = Builder.CreateConstInBoundsGEP1_32(Address, I);
605      Builder.CreateStore(Sixteen8, Slot);
606    }
607
608  } else {
609    // 9 is %eflags, which doesn't get a size on Darwin for some
610    // reason.
611    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
612
613    // 11-16 are st(0..5).  Not sure why we stop at 5.
614    // These have size 12, which is sizeof(long double) on
615    // platforms with 4-byte alignment for that type.
616    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
617    for (unsigned I = 11, E = 17; I != E; ++I) {
618      llvm::Value *Slot = Builder.CreateConstInBoundsGEP1_32(Address, I);
619      Builder.CreateStore(Twelve8, Slot);
620    }
621  }
622
623  return false;
624}
625
626namespace {
627/// X86_64ABIInfo - The X86_64 ABI information.
628class X86_64ABIInfo : public ABIInfo {
629  enum Class {
630    Integer = 0,
631    SSE,
632    SSEUp,
633    X87,
634    X87Up,
635    ComplexX87,
636    NoClass,
637    Memory
638  };
639
640  /// merge - Implement the X86_64 ABI merging algorithm.
641  ///
642  /// Merge an accumulating classification \arg Accum with a field
643  /// classification \arg Field.
644  ///
645  /// \param Accum - The accumulating classification. This should
646  /// always be either NoClass or the result of a previous merge
647  /// call. In addition, this should never be Memory (the caller
648  /// should just return Memory for the aggregate).
649  Class merge(Class Accum, Class Field) const;
650
651  /// classify - Determine the x86_64 register classes in which the
652  /// given type T should be passed.
653  ///
654  /// \param Lo - The classification for the parts of the type
655  /// residing in the low word of the containing object.
656  ///
657  /// \param Hi - The classification for the parts of the type
658  /// residing in the high word of the containing object.
659  ///
660  /// \param OffsetBase - The bit offset of this type in the
661  /// containing object.  Some parameters are classified different
662  /// depending on whether they straddle an eightbyte boundary.
663  ///
664  /// If a word is unused its result will be NoClass; if a type should
665  /// be passed in Memory then at least the classification of \arg Lo
666  /// will be Memory.
667  ///
668  /// The \arg Lo class will be NoClass iff the argument is ignored.
669  ///
670  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
671  /// also be ComplexX87.
672  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
673                Class &Lo, Class &Hi) const;
674
675  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
676  /// to coerce to, chose the best way to pass Ty in the same place
677  /// that \arg CoerceTo would be passed, but while keeping the
678  /// emitted code as simple as possible.
679  ///
680  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
681  /// the ways we might want to pass things, instead of constructing an LLVM
682  /// type. This makes this code more explicit, and it makes it clearer that we
683  /// are also doing this for correctness in the case of passing scalar types.
684  ABIArgInfo getCoerceResult(QualType Ty,
685                             const llvm::Type *CoerceTo,
686                             ASTContext &Context) const;
687
688  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
689  /// such that the argument will be passed in memory.
690  ABIArgInfo getIndirectResult(QualType Ty,
691                               ASTContext &Context) const;
692
693  ABIArgInfo classifyReturnType(QualType RetTy,
694                                ASTContext &Context,
695                                llvm::LLVMContext &VMContext) const;
696
697  ABIArgInfo classifyArgumentType(QualType Ty,
698                                  ASTContext &Context,
699                                  llvm::LLVMContext &VMContext,
700                                  unsigned &neededInt,
701                                  unsigned &neededSSE) const;
702
703public:
704  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
705                           llvm::LLVMContext &VMContext) const;
706
707  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
708                                 CodeGenFunction &CGF) const;
709};
710
711class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
712public:
713  X86_64TargetCodeGenInfo():TargetCodeGenInfo(new X86_64ABIInfo()) {}
714
715  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
716    return 7;
717  }
718
719  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
720                               llvm::Value *Address) const {
721    CodeGen::CGBuilderTy &Builder = CGF.Builder;
722    llvm::LLVMContext &Context = CGF.getLLVMContext();
723
724    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
725    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
726
727    // 0-16 are the 16 integer registers.
728    // 17 is %rip.
729    for (unsigned I = 0, E = 17; I != E; ++I) {
730      llvm::Value *Slot = Builder.CreateConstInBoundsGEP1_32(Address, I);
731      Builder.CreateStore(Eight8, Slot);
732    }
733
734    return false;
735  }
736};
737
738}
739
740X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
741                                          Class Field) const {
742  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
743  // classified recursively so that always two fields are
744  // considered. The resulting class is calculated according to
745  // the classes of the fields in the eightbyte:
746  //
747  // (a) If both classes are equal, this is the resulting class.
748  //
749  // (b) If one of the classes is NO_CLASS, the resulting class is
750  // the other class.
751  //
752  // (c) If one of the classes is MEMORY, the result is the MEMORY
753  // class.
754  //
755  // (d) If one of the classes is INTEGER, the result is the
756  // INTEGER.
757  //
758  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
759  // MEMORY is used as class.
760  //
761  // (f) Otherwise class SSE is used.
762
763  // Accum should never be memory (we should have returned) or
764  // ComplexX87 (because this cannot be passed in a structure).
765  assert((Accum != Memory && Accum != ComplexX87) &&
766         "Invalid accumulated classification during merge.");
767  if (Accum == Field || Field == NoClass)
768    return Accum;
769  else if (Field == Memory)
770    return Memory;
771  else if (Accum == NoClass)
772    return Field;
773  else if (Accum == Integer || Field == Integer)
774    return Integer;
775  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
776           Accum == X87 || Accum == X87Up)
777    return Memory;
778  else
779    return SSE;
780}
781
782void X86_64ABIInfo::classify(QualType Ty,
783                             ASTContext &Context,
784                             uint64_t OffsetBase,
785                             Class &Lo, Class &Hi) const {
786  // FIXME: This code can be simplified by introducing a simple value class for
787  // Class pairs with appropriate constructor methods for the various
788  // situations.
789
790  // FIXME: Some of the split computations are wrong; unaligned vectors
791  // shouldn't be passed in registers for example, so there is no chance they
792  // can straddle an eightbyte. Verify & simplify.
793
794  Lo = Hi = NoClass;
795
796  Class &Current = OffsetBase < 64 ? Lo : Hi;
797  Current = Memory;
798
799  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
800    BuiltinType::Kind k = BT->getKind();
801
802    if (k == BuiltinType::Void) {
803      Current = NoClass;
804    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
805      Lo = Integer;
806      Hi = Integer;
807    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
808      Current = Integer;
809    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
810      Current = SSE;
811    } else if (k == BuiltinType::LongDouble) {
812      Lo = X87;
813      Hi = X87Up;
814    }
815    // FIXME: _Decimal32 and _Decimal64 are SSE.
816    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
817  } else if (const EnumType *ET = Ty->getAs<EnumType>()) {
818    // Classify the underlying integer type.
819    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
820  } else if (Ty->hasPointerRepresentation()) {
821    Current = Integer;
822  } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
823    uint64_t Size = Context.getTypeSize(VT);
824    if (Size == 32) {
825      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
826      // float> as integer.
827      Current = Integer;
828
829      // If this type crosses an eightbyte boundary, it should be
830      // split.
831      uint64_t EB_Real = (OffsetBase) / 64;
832      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
833      if (EB_Real != EB_Imag)
834        Hi = Lo;
835    } else if (Size == 64) {
836      // gcc passes <1 x double> in memory. :(
837      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
838        return;
839
840      // gcc passes <1 x long long> as INTEGER.
841      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
842        Current = Integer;
843      else
844        Current = SSE;
845
846      // If this type crosses an eightbyte boundary, it should be
847      // split.
848      if (OffsetBase && OffsetBase != 64)
849        Hi = Lo;
850    } else if (Size == 128) {
851      Lo = SSE;
852      Hi = SSEUp;
853    }
854  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
855    QualType ET = Context.getCanonicalType(CT->getElementType());
856
857    uint64_t Size = Context.getTypeSize(Ty);
858    if (ET->isIntegralType()) {
859      if (Size <= 64)
860        Current = Integer;
861      else if (Size <= 128)
862        Lo = Hi = Integer;
863    } else if (ET == Context.FloatTy)
864      Current = SSE;
865    else if (ET == Context.DoubleTy)
866      Lo = Hi = SSE;
867    else if (ET == Context.LongDoubleTy)
868      Current = ComplexX87;
869
870    // If this complex type crosses an eightbyte boundary then it
871    // should be split.
872    uint64_t EB_Real = (OffsetBase) / 64;
873    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
874    if (Hi == NoClass && EB_Real != EB_Imag)
875      Hi = Lo;
876  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
877    // Arrays are treated like structures.
878
879    uint64_t Size = Context.getTypeSize(Ty);
880
881    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
882    // than two eightbytes, ..., it has class MEMORY.
883    if (Size > 128)
884      return;
885
886    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
887    // fields, it has class MEMORY.
888    //
889    // Only need to check alignment of array base.
890    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
891      return;
892
893    // Otherwise implement simplified merge. We could be smarter about
894    // this, but it isn't worth it and would be harder to verify.
895    Current = NoClass;
896    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
897    uint64_t ArraySize = AT->getSize().getZExtValue();
898    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
899      Class FieldLo, FieldHi;
900      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
901      Lo = merge(Lo, FieldLo);
902      Hi = merge(Hi, FieldHi);
903      if (Lo == Memory || Hi == Memory)
904        break;
905    }
906
907    // Do post merger cleanup (see below). Only case we worry about is Memory.
908    if (Hi == Memory)
909      Lo = Memory;
910    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
911  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
912    uint64_t Size = Context.getTypeSize(Ty);
913
914    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
915    // than two eightbytes, ..., it has class MEMORY.
916    if (Size > 128)
917      return;
918
919    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
920    // copy constructor or a non-trivial destructor, it is passed by invisible
921    // reference.
922    if (hasNonTrivialDestructorOrCopyConstructor(RT))
923      return;
924
925    const RecordDecl *RD = RT->getDecl();
926
927    // Assume variable sized types are passed in memory.
928    if (RD->hasFlexibleArrayMember())
929      return;
930
931    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
932
933    // Reset Lo class, this will be recomputed.
934    Current = NoClass;
935
936    // If this is a C++ record, classify the bases first.
937    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
938      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
939             e = CXXRD->bases_end(); i != e; ++i) {
940        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
941               "Unexpected base class!");
942        const CXXRecordDecl *Base =
943          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
944
945        // Classify this field.
946        //
947        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
948        // single eightbyte, each is classified separately. Each eightbyte gets
949        // initialized to class NO_CLASS.
950        Class FieldLo, FieldHi;
951        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
952        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
953        Lo = merge(Lo, FieldLo);
954        Hi = merge(Hi, FieldHi);
955        if (Lo == Memory || Hi == Memory)
956          break;
957      }
958
959      // If this record has no fields but isn't empty, classify as INTEGER.
960      if (RD->field_empty() && Size)
961        Current = Integer;
962    }
963
964    // Classify the fields one at a time, merging the results.
965    unsigned idx = 0;
966    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
967           i != e; ++i, ++idx) {
968      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
969      bool BitField = i->isBitField();
970
971      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
972      // fields, it has class MEMORY.
973      //
974      // Note, skip this test for bit-fields, see below.
975      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
976        Lo = Memory;
977        return;
978      }
979
980      // Classify this field.
981      //
982      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
983      // exceeds a single eightbyte, each is classified
984      // separately. Each eightbyte gets initialized to class
985      // NO_CLASS.
986      Class FieldLo, FieldHi;
987
988      // Bit-fields require special handling, they do not force the
989      // structure to be passed in memory even if unaligned, and
990      // therefore they can straddle an eightbyte.
991      if (BitField) {
992        // Ignore padding bit-fields.
993        if (i->isUnnamedBitfield())
994          continue;
995
996        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
997        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
998
999        uint64_t EB_Lo = Offset / 64;
1000        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1001        FieldLo = FieldHi = NoClass;
1002        if (EB_Lo) {
1003          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1004          FieldLo = NoClass;
1005          FieldHi = Integer;
1006        } else {
1007          FieldLo = Integer;
1008          FieldHi = EB_Hi ? Integer : NoClass;
1009        }
1010      } else
1011        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
1012      Lo = merge(Lo, FieldLo);
1013      Hi = merge(Hi, FieldHi);
1014      if (Lo == Memory || Hi == Memory)
1015        break;
1016    }
1017
1018    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1019    //
1020    // (a) If one of the classes is MEMORY, the whole argument is
1021    // passed in memory.
1022    //
1023    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1024
1025    // The first of these conditions is guaranteed by how we implement
1026    // the merge (just bail).
1027    //
1028    // The second condition occurs in the case of unions; for example
1029    // union { _Complex double; unsigned; }.
1030    if (Hi == Memory)
1031      Lo = Memory;
1032    if (Hi == SSEUp && Lo != SSE)
1033      Hi = SSE;
1034  }
1035}
1036
1037ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
1038                                          const llvm::Type *CoerceTo,
1039                                          ASTContext &Context) const {
1040  if (CoerceTo == llvm::Type::getInt64Ty(CoerceTo->getContext())) {
1041    // Integer and pointer types will end up in a general purpose
1042    // register.
1043
1044    // Treat an enum type as its underlying type.
1045    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1046      Ty = EnumTy->getDecl()->getIntegerType();
1047
1048    if (Ty->isIntegralType() || Ty->hasPointerRepresentation())
1049      return (Ty->isPromotableIntegerType() ?
1050              ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1051  } else if (CoerceTo == llvm::Type::getDoubleTy(CoerceTo->getContext())) {
1052    assert(Ty.isCanonical() && "should always have a canonical type here");
1053    assert(!Ty.hasQualifiers() && "should never have a qualified type here");
1054
1055    // Float and double end up in a single SSE reg.
1056    if (Ty == Context.FloatTy || Ty == Context.DoubleTy)
1057      return ABIArgInfo::getDirect();
1058
1059  }
1060
1061  return ABIArgInfo::getCoerce(CoerceTo);
1062}
1063
1064ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
1065                                            ASTContext &Context) const {
1066  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1067  // place naturally.
1068  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1069    // Treat an enum type as its underlying type.
1070    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1071      Ty = EnumTy->getDecl()->getIntegerType();
1072
1073    return (Ty->isPromotableIntegerType() ?
1074            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1075  }
1076
1077  bool ByVal = !isRecordWithNonTrivialDestructorOrCopyConstructor(Ty);
1078
1079  // FIXME: Set alignment correctly.
1080  return ABIArgInfo::getIndirect(0, ByVal);
1081}
1082
1083ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
1084                                            ASTContext &Context,
1085                                          llvm::LLVMContext &VMContext) const {
1086  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1087  // classification algorithm.
1088  X86_64ABIInfo::Class Lo, Hi;
1089  classify(RetTy, Context, 0, Lo, Hi);
1090
1091  // Check some invariants.
1092  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1093  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1094  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1095
1096  const llvm::Type *ResType = 0;
1097  switch (Lo) {
1098  case NoClass:
1099    return ABIArgInfo::getIgnore();
1100
1101  case SSEUp:
1102  case X87Up:
1103    assert(0 && "Invalid classification for lo word.");
1104
1105    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1106    // hidden argument.
1107  case Memory:
1108    return getIndirectResult(RetTy, Context);
1109
1110    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1111    // available register of the sequence %rax, %rdx is used.
1112  case Integer:
1113    ResType = llvm::Type::getInt64Ty(VMContext); break;
1114
1115    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1116    // available SSE register of the sequence %xmm0, %xmm1 is used.
1117  case SSE:
1118    ResType = llvm::Type::getDoubleTy(VMContext); break;
1119
1120    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1121    // returned on the X87 stack in %st0 as 80-bit x87 number.
1122  case X87:
1123    ResType = llvm::Type::getX86_FP80Ty(VMContext); break;
1124
1125    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1126    // part of the value is returned in %st0 and the imaginary part in
1127    // %st1.
1128  case ComplexX87:
1129    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1130    ResType = llvm::StructType::get(VMContext, llvm::Type::getX86_FP80Ty(VMContext),
1131                                    llvm::Type::getX86_FP80Ty(VMContext),
1132                                    NULL);
1133    break;
1134  }
1135
1136  switch (Hi) {
1137    // Memory was handled previously and X87 should
1138    // never occur as a hi class.
1139  case Memory:
1140  case X87:
1141    assert(0 && "Invalid classification for hi word.");
1142
1143  case ComplexX87: // Previously handled.
1144  case NoClass: break;
1145
1146  case Integer:
1147    ResType = llvm::StructType::get(VMContext, ResType,
1148                                    llvm::Type::getInt64Ty(VMContext), NULL);
1149    break;
1150  case SSE:
1151    ResType = llvm::StructType::get(VMContext, ResType,
1152                                    llvm::Type::getDoubleTy(VMContext), NULL);
1153    break;
1154
1155    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1156    // is passed in the upper half of the last used SSE register.
1157    //
1158    // SSEUP should always be preceeded by SSE, just widen.
1159  case SSEUp:
1160    assert(Lo == SSE && "Unexpected SSEUp classification.");
1161    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1162    break;
1163
1164    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1165    // returned together with the previous X87 value in %st0.
1166  case X87Up:
1167    // If X87Up is preceeded by X87, we don't need to do
1168    // anything. However, in some cases with unions it may not be
1169    // preceeded by X87. In such situations we follow gcc and pass the
1170    // extra bits in an SSE reg.
1171    if (Lo != X87)
1172      ResType = llvm::StructType::get(VMContext, ResType,
1173                                      llvm::Type::getDoubleTy(VMContext), NULL);
1174    break;
1175  }
1176
1177  return getCoerceResult(RetTy, ResType, Context);
1178}
1179
1180ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
1181                                               llvm::LLVMContext &VMContext,
1182                                               unsigned &neededInt,
1183                                               unsigned &neededSSE) const {
1184  X86_64ABIInfo::Class Lo, Hi;
1185  classify(Ty, Context, 0, Lo, Hi);
1186
1187  // Check some invariants.
1188  // FIXME: Enforce these by construction.
1189  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1190  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
1191  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1192
1193  neededInt = 0;
1194  neededSSE = 0;
1195  const llvm::Type *ResType = 0;
1196  switch (Lo) {
1197  case NoClass:
1198    return ABIArgInfo::getIgnore();
1199
1200    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1201    // on the stack.
1202  case Memory:
1203
1204    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1205    // COMPLEX_X87, it is passed in memory.
1206  case X87:
1207  case ComplexX87:
1208    return getIndirectResult(Ty, Context);
1209
1210  case SSEUp:
1211  case X87Up:
1212    assert(0 && "Invalid classification for lo word.");
1213
1214    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1215    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1216    // and %r9 is used.
1217  case Integer:
1218    ++neededInt;
1219    ResType = llvm::Type::getInt64Ty(VMContext);
1220    break;
1221
1222    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1223    // available SSE register is used, the registers are taken in the
1224    // order from %xmm0 to %xmm7.
1225  case SSE:
1226    ++neededSSE;
1227    ResType = llvm::Type::getDoubleTy(VMContext);
1228    break;
1229  }
1230
1231  switch (Hi) {
1232    // Memory was handled previously, ComplexX87 and X87 should
1233    // never occur as hi classes, and X87Up must be preceed by X87,
1234    // which is passed in memory.
1235  case Memory:
1236  case X87:
1237  case ComplexX87:
1238    assert(0 && "Invalid classification for hi word.");
1239    break;
1240
1241  case NoClass: break;
1242  case Integer:
1243    ResType = llvm::StructType::get(VMContext, ResType,
1244                                    llvm::Type::getInt64Ty(VMContext), NULL);
1245    ++neededInt;
1246    break;
1247
1248    // X87Up generally doesn't occur here (long double is passed in
1249    // memory), except in situations involving unions.
1250  case X87Up:
1251  case SSE:
1252    ResType = llvm::StructType::get(VMContext, ResType,
1253                                    llvm::Type::getDoubleTy(VMContext), NULL);
1254    ++neededSSE;
1255    break;
1256
1257    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1258    // eightbyte is passed in the upper half of the last used SSE
1259    // register.
1260  case SSEUp:
1261    assert(Lo == SSE && "Unexpected SSEUp classification.");
1262    ResType = llvm::VectorType::get(llvm::Type::getDoubleTy(VMContext), 2);
1263    break;
1264  }
1265
1266  return getCoerceResult(Ty, ResType, Context);
1267}
1268
1269void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1270                                llvm::LLVMContext &VMContext) const {
1271  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1272                                          Context, VMContext);
1273
1274  // Keep track of the number of assigned registers.
1275  unsigned freeIntRegs = 6, freeSSERegs = 8;
1276
1277  // If the return value is indirect, then the hidden argument is consuming one
1278  // integer register.
1279  if (FI.getReturnInfo().isIndirect())
1280    --freeIntRegs;
1281
1282  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1283  // get assigned (in left-to-right order) for passing as follows...
1284  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1285       it != ie; ++it) {
1286    unsigned neededInt, neededSSE;
1287    it->info = classifyArgumentType(it->type, Context, VMContext,
1288                                    neededInt, neededSSE);
1289
1290    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1291    // eightbyte of an argument, the whole argument is passed on the
1292    // stack. If registers have already been assigned for some
1293    // eightbytes of such an argument, the assignments get reverted.
1294    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1295      freeIntRegs -= neededInt;
1296      freeSSERegs -= neededSSE;
1297    } else {
1298      it->info = getIndirectResult(it->type, Context);
1299    }
1300  }
1301}
1302
1303static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1304                                        QualType Ty,
1305                                        CodeGenFunction &CGF) {
1306  llvm::Value *overflow_arg_area_p =
1307    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1308  llvm::Value *overflow_arg_area =
1309    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1310
1311  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1312  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1313  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1314  if (Align > 8) {
1315    // Note that we follow the ABI & gcc here, even though the type
1316    // could in theory have an alignment greater than 16. This case
1317    // shouldn't ever matter in practice.
1318
1319    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1320    llvm::Value *Offset =
1321      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()), 15);
1322    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1323    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1324                                 llvm::Type::getInt64Ty(CGF.getLLVMContext()));
1325    llvm::Value *Mask = llvm::ConstantInt::get(
1326        llvm::Type::getInt64Ty(CGF.getLLVMContext()), ~15LL);
1327    overflow_arg_area =
1328      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1329                                 overflow_arg_area->getType(),
1330                                 "overflow_arg_area.align");
1331  }
1332
1333  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1334  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1335  llvm::Value *Res =
1336    CGF.Builder.CreateBitCast(overflow_arg_area,
1337                              llvm::PointerType::getUnqual(LTy));
1338
1339  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1340  // l->overflow_arg_area + sizeof(type).
1341  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1342  // an 8 byte boundary.
1343
1344  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1345  llvm::Value *Offset =
1346      llvm::ConstantInt::get(llvm::Type::getInt32Ty(CGF.getLLVMContext()),
1347                                               (SizeInBytes + 7)  & ~7);
1348  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1349                                            "overflow_arg_area.next");
1350  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1351
1352  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1353  return Res;
1354}
1355
1356llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1357                                      CodeGenFunction &CGF) const {
1358  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1359  const llvm::Type *i32Ty = llvm::Type::getInt32Ty(VMContext);
1360  const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1361
1362  // Assume that va_list type is correct; should be pointer to LLVM type:
1363  // struct {
1364  //   i32 gp_offset;
1365  //   i32 fp_offset;
1366  //   i8* overflow_arg_area;
1367  //   i8* reg_save_area;
1368  // };
1369  unsigned neededInt, neededSSE;
1370  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), VMContext,
1371                                       neededInt, neededSSE);
1372
1373  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1374  // in the registers. If not go to step 7.
1375  if (!neededInt && !neededSSE)
1376    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1377
1378  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1379  // general purpose registers needed to pass type and num_fp to hold
1380  // the number of floating point registers needed.
1381
1382  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1383  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1384  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1385  //
1386  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1387  // register save space).
1388
1389  llvm::Value *InRegs = 0;
1390  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1391  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1392  if (neededInt) {
1393    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1394    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1395    InRegs =
1396      CGF.Builder.CreateICmpULE(gp_offset,
1397                                llvm::ConstantInt::get(i32Ty,
1398                                                       48 - neededInt * 8),
1399                                "fits_in_gp");
1400  }
1401
1402  if (neededSSE) {
1403    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1404    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1405    llvm::Value *FitsInFP =
1406      CGF.Builder.CreateICmpULE(fp_offset,
1407                                llvm::ConstantInt::get(i32Ty,
1408                                                       176 - neededSSE * 16),
1409                                "fits_in_fp");
1410    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1411  }
1412
1413  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1414  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1415  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1416  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1417
1418  // Emit code to load the value if it was passed in registers.
1419
1420  CGF.EmitBlock(InRegBlock);
1421
1422  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1423  // an offset of l->gp_offset and/or l->fp_offset. This may require
1424  // copying to a temporary location in case the parameter is passed
1425  // in different register classes or requires an alignment greater
1426  // than 8 for general purpose registers and 16 for XMM registers.
1427  //
1428  // FIXME: This really results in shameful code when we end up needing to
1429  // collect arguments from different places; often what should result in a
1430  // simple assembling of a structure from scattered addresses has many more
1431  // loads than necessary. Can we clean this up?
1432  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1433  llvm::Value *RegAddr =
1434    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1435                           "reg_save_area");
1436  if (neededInt && neededSSE) {
1437    // FIXME: Cleanup.
1438    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1439    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1440    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1441    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1442    const llvm::Type *TyLo = ST->getElementType(0);
1443    const llvm::Type *TyHi = ST->getElementType(1);
1444    assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
1445           "Unexpected ABI info for mixed regs");
1446    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1447    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1448    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1449    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1450    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1451    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1452    llvm::Value *V =
1453      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1454    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1455    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1456    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1457
1458    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1459                                        llvm::PointerType::getUnqual(LTy));
1460  } else if (neededInt) {
1461    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1462    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1463                                        llvm::PointerType::getUnqual(LTy));
1464  } else {
1465    if (neededSSE == 1) {
1466      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1467      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1468                                          llvm::PointerType::getUnqual(LTy));
1469    } else {
1470      assert(neededSSE == 2 && "Invalid number of needed registers!");
1471      // SSE registers are spaced 16 bytes apart in the register save
1472      // area, we need to collect the two eightbytes together.
1473      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1474      llvm::Value *RegAddrHi =
1475        CGF.Builder.CreateGEP(RegAddrLo,
1476                            llvm::ConstantInt::get(i32Ty, 16));
1477      const llvm::Type *DblPtrTy =
1478        llvm::PointerType::getUnqual(DoubleTy);
1479      const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1480                                                         DoubleTy, NULL);
1481      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1482      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1483                                                           DblPtrTy));
1484      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1485      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1486                                                           DblPtrTy));
1487      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1488      RegAddr = CGF.Builder.CreateBitCast(Tmp,
1489                                          llvm::PointerType::getUnqual(LTy));
1490    }
1491  }
1492
1493  // AMD64-ABI 3.5.7p5: Step 5. Set:
1494  // l->gp_offset = l->gp_offset + num_gp * 8
1495  // l->fp_offset = l->fp_offset + num_fp * 16.
1496  if (neededInt) {
1497    llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededInt * 8);
1498    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1499                            gp_offset_p);
1500  }
1501  if (neededSSE) {
1502    llvm::Value *Offset = llvm::ConstantInt::get(i32Ty, neededSSE * 16);
1503    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1504                            fp_offset_p);
1505  }
1506  CGF.EmitBranch(ContBlock);
1507
1508  // Emit code to load the value if it was passed in memory.
1509
1510  CGF.EmitBlock(InMemBlock);
1511  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1512
1513  // Return the appropriate result.
1514
1515  CGF.EmitBlock(ContBlock);
1516  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1517                                                 "vaarg.addr");
1518  ResAddr->reserveOperandSpace(2);
1519  ResAddr->addIncoming(RegAddr, InRegBlock);
1520  ResAddr->addIncoming(MemAddr, InMemBlock);
1521
1522  return ResAddr;
1523}
1524
1525// PIC16 ABI Implementation
1526
1527namespace {
1528
1529class PIC16ABIInfo : public ABIInfo {
1530  ABIArgInfo classifyReturnType(QualType RetTy,
1531                                ASTContext &Context,
1532                                llvm::LLVMContext &VMContext) const;
1533
1534  ABIArgInfo classifyArgumentType(QualType RetTy,
1535                                  ASTContext &Context,
1536                                  llvm::LLVMContext &VMContext) const;
1537
1538  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1539                           llvm::LLVMContext &VMContext) const {
1540    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1541                                            VMContext);
1542    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1543         it != ie; ++it)
1544      it->info = classifyArgumentType(it->type, Context, VMContext);
1545  }
1546
1547  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1548                                 CodeGenFunction &CGF) const;
1549};
1550
1551class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1552public:
1553  PIC16TargetCodeGenInfo():TargetCodeGenInfo(new PIC16ABIInfo()) {}
1554};
1555
1556}
1557
1558ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
1559                                            ASTContext &Context,
1560                                          llvm::LLVMContext &VMContext) const {
1561  if (RetTy->isVoidType()) {
1562    return ABIArgInfo::getIgnore();
1563  } else {
1564    return ABIArgInfo::getDirect();
1565  }
1566}
1567
1568ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
1569                                              ASTContext &Context,
1570                                          llvm::LLVMContext &VMContext) const {
1571  return ABIArgInfo::getDirect();
1572}
1573
1574llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1575                                       CodeGenFunction &CGF) const {
1576  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(CGF.getLLVMContext()));
1577  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1578
1579  CGBuilderTy &Builder = CGF.Builder;
1580  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1581                                                       "ap");
1582  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1583  llvm::Type *PTy =
1584    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1585  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1586
1587  uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1588
1589  llvm::Value *NextAddr =
1590    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1591                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1592                      "ap.next");
1593  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1594
1595  return AddrTyped;
1596}
1597
1598
1599// ARM ABI Implementation
1600
1601namespace {
1602
1603class ARMABIInfo : public ABIInfo {
1604public:
1605  enum ABIKind {
1606    APCS = 0,
1607    AAPCS = 1,
1608    AAPCS_VFP
1609  };
1610
1611private:
1612  ABIKind Kind;
1613
1614public:
1615  ARMABIInfo(ABIKind _Kind) : Kind(_Kind) {}
1616
1617private:
1618  ABIKind getABIKind() const { return Kind; }
1619
1620  ABIArgInfo classifyReturnType(QualType RetTy,
1621                                ASTContext &Context,
1622                                llvm::LLVMContext &VMCOntext) const;
1623
1624  ABIArgInfo classifyArgumentType(QualType RetTy,
1625                                  ASTContext &Context,
1626                                  llvm::LLVMContext &VMContext) const;
1627
1628  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1629                           llvm::LLVMContext &VMContext) const;
1630
1631  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1632                                 CodeGenFunction &CGF) const;
1633};
1634
1635class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
1636public:
1637  ARMTargetCodeGenInfo(ARMABIInfo::ABIKind K)
1638    :TargetCodeGenInfo(new ARMABIInfo(K)) {}
1639
1640  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1641    return 13;
1642  }
1643};
1644
1645}
1646
1647void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1648                             llvm::LLVMContext &VMContext) const {
1649  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context,
1650                                          VMContext);
1651  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1652       it != ie; ++it) {
1653    it->info = classifyArgumentType(it->type, Context, VMContext);
1654  }
1655
1656  // ARM always overrides the calling convention.
1657  switch (getABIKind()) {
1658  case APCS:
1659    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
1660    break;
1661
1662  case AAPCS:
1663    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
1664    break;
1665
1666  case AAPCS_VFP:
1667    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
1668    break;
1669  }
1670}
1671
1672ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1673                                            ASTContext &Context,
1674                                          llvm::LLVMContext &VMContext) const {
1675  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1676    // Treat an enum type as its underlying type.
1677    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1678      Ty = EnumTy->getDecl()->getIntegerType();
1679
1680    return (Ty->isPromotableIntegerType() ?
1681            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1682  }
1683
1684  // Ignore empty records.
1685  if (isEmptyRecord(Context, Ty, true))
1686    return ABIArgInfo::getIgnore();
1687
1688  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
1689  // backend doesn't support byval.
1690  // FIXME: This doesn't handle alignment > 64 bits.
1691  const llvm::Type* ElemTy;
1692  unsigned SizeRegs;
1693  if (Context.getTypeAlign(Ty) > 32) {
1694    ElemTy = llvm::Type::getInt64Ty(VMContext);
1695    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1696  } else {
1697    ElemTy = llvm::Type::getInt32Ty(VMContext);
1698    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1699  }
1700  std::vector<const llvm::Type*> LLVMFields;
1701  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1702  const llvm::Type* STy = llvm::StructType::get(VMContext, LLVMFields, true);
1703  return ABIArgInfo::getCoerce(STy);
1704}
1705
1706static bool isIntegerLikeType(QualType Ty,
1707                              ASTContext &Context,
1708                              llvm::LLVMContext &VMContext) {
1709  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
1710  // is called integer-like if its size is less than or equal to one word, and
1711  // the offset of each of its addressable sub-fields is zero.
1712
1713  uint64_t Size = Context.getTypeSize(Ty);
1714
1715  // Check that the type fits in a word.
1716  if (Size > 32)
1717    return false;
1718
1719  // FIXME: Handle vector types!
1720  if (Ty->isVectorType())
1721    return false;
1722
1723  // Float types are never treated as "integer like".
1724  if (Ty->isRealFloatingType())
1725    return false;
1726
1727  // If this is a builtin or pointer type then it is ok.
1728  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
1729    return true;
1730
1731  // Small complex integer types are "integer like".
1732  if (const ComplexType *CT = Ty->getAs<ComplexType>())
1733    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
1734
1735  // Single element and zero sized arrays should be allowed, by the definition
1736  // above, but they are not.
1737
1738  // Otherwise, it must be a record type.
1739  const RecordType *RT = Ty->getAs<RecordType>();
1740  if (!RT) return false;
1741
1742  // Ignore records with flexible arrays.
1743  const RecordDecl *RD = RT->getDecl();
1744  if (RD->hasFlexibleArrayMember())
1745    return false;
1746
1747  // Check that all sub-fields are at offset 0, and are themselves "integer
1748  // like".
1749  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1750
1751  bool HadField = false;
1752  unsigned idx = 0;
1753  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1754       i != e; ++i, ++idx) {
1755    const FieldDecl *FD = *i;
1756
1757    // Bit-fields are not addressable, we only need to verify they are "integer
1758    // like". We still have to disallow a subsequent non-bitfield, for example:
1759    //   struct { int : 0; int x }
1760    // is non-integer like according to gcc.
1761    if (FD->isBitField()) {
1762      if (!RD->isUnion())
1763        HadField = true;
1764
1765      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1766        return false;
1767
1768      continue;
1769    }
1770
1771    // Check if this field is at offset 0.
1772    if (Layout.getFieldOffset(idx) != 0)
1773      return false;
1774
1775    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
1776      return false;
1777
1778    // Only allow at most one field in a structure. This doesn't match the
1779    // wording above, but follows gcc in situations with a field following an
1780    // empty structure.
1781    if (!RD->isUnion()) {
1782      if (HadField)
1783        return false;
1784
1785      HadField = true;
1786    }
1787  }
1788
1789  return true;
1790}
1791
1792ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1793                                          ASTContext &Context,
1794                                          llvm::LLVMContext &VMContext) const {
1795  if (RetTy->isVoidType())
1796    return ABIArgInfo::getIgnore();
1797
1798  if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1799    // Treat an enum type as its underlying type.
1800    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1801      RetTy = EnumTy->getDecl()->getIntegerType();
1802
1803    return (RetTy->isPromotableIntegerType() ?
1804            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1805  }
1806
1807  // Are we following APCS?
1808  if (getABIKind() == APCS) {
1809    if (isEmptyRecord(Context, RetTy, false))
1810      return ABIArgInfo::getIgnore();
1811
1812    // Complex types are all returned as packed integers.
1813    //
1814    // FIXME: Consider using 2 x vector types if the back end handles them
1815    // correctly.
1816    if (RetTy->isAnyComplexType())
1817      return ABIArgInfo::getCoerce(llvm::IntegerType::get(
1818                                     VMContext, Context.getTypeSize(RetTy)));
1819
1820    // Integer like structures are returned in r0.
1821    if (isIntegerLikeType(RetTy, Context, VMContext)) {
1822      // Return in the smallest viable integer type.
1823      uint64_t Size = Context.getTypeSize(RetTy);
1824      if (Size <= 8)
1825        return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1826      if (Size <= 16)
1827        return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1828      return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1829    }
1830
1831    // Otherwise return in memory.
1832    return ABIArgInfo::getIndirect(0);
1833  }
1834
1835  // Otherwise this is an AAPCS variant.
1836
1837  if (isEmptyRecord(Context, RetTy, true))
1838    return ABIArgInfo::getIgnore();
1839
1840  // Aggregates <= 4 bytes are returned in r0; other aggregates
1841  // are returned indirectly.
1842  uint64_t Size = Context.getTypeSize(RetTy);
1843  if (Size <= 32) {
1844    // Return in the smallest viable integer type.
1845    if (Size <= 8)
1846      return ABIArgInfo::getCoerce(llvm::Type::getInt8Ty(VMContext));
1847    if (Size <= 16)
1848      return ABIArgInfo::getCoerce(llvm::Type::getInt16Ty(VMContext));
1849    return ABIArgInfo::getCoerce(llvm::Type::getInt32Ty(VMContext));
1850  }
1851
1852  return ABIArgInfo::getIndirect(0);
1853}
1854
1855llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1856                                      CodeGenFunction &CGF) const {
1857  // FIXME: Need to handle alignment
1858  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1859  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1860
1861  CGBuilderTy &Builder = CGF.Builder;
1862  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1863                                                       "ap");
1864  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1865  llvm::Type *PTy =
1866    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1867  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1868
1869  uint64_t Offset =
1870    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
1871  llvm::Value *NextAddr =
1872    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1873                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1874                      "ap.next");
1875  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1876
1877  return AddrTyped;
1878}
1879
1880ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
1881                                              ASTContext &Context,
1882                                          llvm::LLVMContext &VMContext) const {
1883  if (RetTy->isVoidType()) {
1884    return ABIArgInfo::getIgnore();
1885  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1886    return ABIArgInfo::getIndirect(0);
1887  } else {
1888    // Treat an enum type as its underlying type.
1889    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1890      RetTy = EnumTy->getDecl()->getIntegerType();
1891
1892    return (RetTy->isPromotableIntegerType() ?
1893            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1894  }
1895}
1896
1897// SystemZ ABI Implementation
1898
1899namespace {
1900
1901class SystemZABIInfo : public ABIInfo {
1902  bool isPromotableIntegerType(QualType Ty) const;
1903
1904  ABIArgInfo classifyReturnType(QualType RetTy, ASTContext &Context,
1905                                llvm::LLVMContext &VMContext) const;
1906
1907  ABIArgInfo classifyArgumentType(QualType RetTy, ASTContext &Context,
1908                                  llvm::LLVMContext &VMContext) const;
1909
1910  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context,
1911                          llvm::LLVMContext &VMContext) const {
1912    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(),
1913                                            Context, VMContext);
1914    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1915         it != ie; ++it)
1916      it->info = classifyArgumentType(it->type, Context, VMContext);
1917  }
1918
1919  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1920                                 CodeGenFunction &CGF) const;
1921};
1922
1923class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
1924public:
1925  SystemZTargetCodeGenInfo():TargetCodeGenInfo(new SystemZABIInfo()) {}
1926};
1927
1928}
1929
1930bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
1931  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
1932  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
1933    switch (BT->getKind()) {
1934    case BuiltinType::Bool:
1935    case BuiltinType::Char_S:
1936    case BuiltinType::Char_U:
1937    case BuiltinType::SChar:
1938    case BuiltinType::UChar:
1939    case BuiltinType::Short:
1940    case BuiltinType::UShort:
1941    case BuiltinType::Int:
1942    case BuiltinType::UInt:
1943      return true;
1944    default:
1945      return false;
1946    }
1947  return false;
1948}
1949
1950llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1951                                       CodeGenFunction &CGF) const {
1952  // FIXME: Implement
1953  return 0;
1954}
1955
1956
1957ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy,
1958                                              ASTContext &Context,
1959                                           llvm::LLVMContext &VMContext) const {
1960  if (RetTy->isVoidType()) {
1961    return ABIArgInfo::getIgnore();
1962  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1963    return ABIArgInfo::getIndirect(0);
1964  } else {
1965    return (isPromotableIntegerType(RetTy) ?
1966            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1967  }
1968}
1969
1970ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty,
1971                                                ASTContext &Context,
1972                                           llvm::LLVMContext &VMContext) const {
1973  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
1974    return ABIArgInfo::getIndirect(0);
1975  } else {
1976    return (isPromotableIntegerType(Ty) ?
1977            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1978  }
1979}
1980
1981// MSP430 ABI Implementation
1982
1983namespace {
1984
1985class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
1986public:
1987  MSP430TargetCodeGenInfo():TargetCodeGenInfo(new DefaultABIInfo()) {}
1988  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1989                           CodeGen::CodeGenModule &M) const;
1990};
1991
1992}
1993
1994void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
1995                                                  llvm::GlobalValue *GV,
1996                                             CodeGen::CodeGenModule &M) const {
1997  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1998    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
1999      // Handle 'interrupt' attribute:
2000      llvm::Function *F = cast<llvm::Function>(GV);
2001
2002      // Step 1: Set ISR calling convention.
2003      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2004
2005      // Step 2: Add attributes goodness.
2006      F->addFnAttr(llvm::Attribute::NoInline);
2007
2008      // Step 3: Emit ISR vector alias.
2009      unsigned Num = attr->getNumber() + 0xffe0;
2010      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2011                            "vector_" +
2012                            llvm::LowercaseString(llvm::utohexstr(Num)),
2013                            GV, &M.getModule());
2014    }
2015  }
2016}
2017
2018const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() const {
2019  if (TheTargetCodeGenInfo)
2020    return *TheTargetCodeGenInfo;
2021
2022  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2023  // free it.
2024
2025  const llvm::Triple &Triple(getContext().Target.getTriple());
2026  switch (Triple.getArch()) {
2027  default:
2028    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo);
2029
2030  case llvm::Triple::arm:
2031  case llvm::Triple::thumb:
2032    // FIXME: We want to know the float calling convention as well.
2033    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2034      return *(TheTargetCodeGenInfo =
2035               new ARMTargetCodeGenInfo(ARMABIInfo::APCS));
2036
2037    return *(TheTargetCodeGenInfo =
2038             new ARMTargetCodeGenInfo(ARMABIInfo::AAPCS));
2039
2040  case llvm::Triple::pic16:
2041    return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo());
2042
2043  case llvm::Triple::systemz:
2044    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo());
2045
2046  case llvm::Triple::msp430:
2047    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo());
2048
2049  case llvm::Triple::x86:
2050    switch (Triple.getOS()) {
2051    case llvm::Triple::Darwin:
2052      return *(TheTargetCodeGenInfo =
2053               new X86_32TargetCodeGenInfo(Context, true, true));
2054    case llvm::Triple::Cygwin:
2055    case llvm::Triple::MinGW32:
2056    case llvm::Triple::MinGW64:
2057    case llvm::Triple::AuroraUX:
2058    case llvm::Triple::DragonFly:
2059    case llvm::Triple::FreeBSD:
2060    case llvm::Triple::OpenBSD:
2061      return *(TheTargetCodeGenInfo =
2062               new X86_32TargetCodeGenInfo(Context, false, true));
2063
2064    default:
2065      return *(TheTargetCodeGenInfo =
2066               new X86_32TargetCodeGenInfo(Context, false, false));
2067    }
2068
2069  case llvm::Triple::x86_64:
2070    return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo());
2071  }
2072}
2073