CodeGenModule.cpp revision 228379
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Diagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36#include "clang/Basic/ConvertUTF.h"
37#include "llvm/CallingConv.h"
38#include "llvm/Module.h"
39#include "llvm/Intrinsics.h"
40#include "llvm/LLVMContext.h"
41#include "llvm/ADT/Triple.h"
42#include "llvm/Target/Mangler.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Support/CallSite.h"
45#include "llvm/Support/ErrorHandling.h"
46using namespace clang;
47using namespace CodeGen;
48
49static const char AnnotationSection[] = "llvm.metadata";
50
51static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
52  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
53  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
54  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
55  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
56  }
57
58  llvm_unreachable("invalid C++ ABI kind");
59  return *CreateItaniumCXXABI(CGM);
60}
61
62
63CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                             llvm::Module &M, const llvm::TargetData &TD,
65                             DiagnosticsEngine &diags)
66  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68    ABI(createCXXABI(*this)),
69    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
70    TBAA(0),
71    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72    DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
73    ConstantStringClassRef(0), NSConstantStringType(0),
74    VMContext(M.getContext()),
75    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
76    BlockObjectAssign(0), BlockObjectDispose(0),
77    BlockDescriptorType(0), GenericBlockLiteralType(0) {
78  if (Features.ObjC1)
79    createObjCRuntime();
80  if (Features.OpenCL)
81    createOpenCLRuntime();
82  if (Features.CUDA)
83    createCUDARuntime();
84
85  // Enable TBAA unless it's suppressed.
86  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
87    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
88                           ABI.getMangleContext());
89
90  // If debug info or coverage generation is enabled, create the CGDebugInfo
91  // object.
92  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
93      CodeGenOpts.EmitGcovNotes)
94    DebugInfo = new CGDebugInfo(*this);
95
96  Block.GlobalUniqueCount = 0;
97
98  if (C.getLangOptions().ObjCAutoRefCount)
99    ARCData = new ARCEntrypoints();
100  RRData = new RREntrypoints();
101
102  // Initialize the type cache.
103  llvm::LLVMContext &LLVMContext = M.getContext();
104  VoidTy = llvm::Type::getVoidTy(LLVMContext);
105  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109  PointerAlignInBytes =
110    C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
112  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
113  Int8PtrTy = Int8Ty->getPointerTo(0);
114  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115}
116
117CodeGenModule::~CodeGenModule() {
118  delete ObjCRuntime;
119  delete OpenCLRuntime;
120  delete CUDARuntime;
121  delete TheTargetCodeGenInfo;
122  delete &ABI;
123  delete TBAA;
124  delete DebugInfo;
125  delete ARCData;
126  delete RRData;
127}
128
129void CodeGenModule::createObjCRuntime() {
130  if (!Features.NeXTRuntime)
131    ObjCRuntime = CreateGNUObjCRuntime(*this);
132  else
133    ObjCRuntime = CreateMacObjCRuntime(*this);
134}
135
136void CodeGenModule::createOpenCLRuntime() {
137  OpenCLRuntime = new CGOpenCLRuntime(*this);
138}
139
140void CodeGenModule::createCUDARuntime() {
141  CUDARuntime = CreateNVCUDARuntime(*this);
142}
143
144void CodeGenModule::Release() {
145  EmitDeferred();
146  EmitCXXGlobalInitFunc();
147  EmitCXXGlobalDtorFunc();
148  if (ObjCRuntime)
149    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
150      AddGlobalCtor(ObjCInitFunction);
151  EmitCtorList(GlobalCtors, "llvm.global_ctors");
152  EmitCtorList(GlobalDtors, "llvm.global_dtors");
153  EmitGlobalAnnotations();
154  EmitLLVMUsed();
155
156  SimplifyPersonality();
157
158  if (getCodeGenOpts().EmitDeclMetadata)
159    EmitDeclMetadata();
160
161  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
162    EmitCoverageFile();
163
164  if (DebugInfo)
165    DebugInfo->finalize();
166}
167
168void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
169  // Make sure that this type is translated.
170  Types.UpdateCompletedType(TD);
171  if (DebugInfo)
172    DebugInfo->UpdateCompletedType(TD);
173}
174
175llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
176  if (!TBAA)
177    return 0;
178  return TBAA->getTBAAInfo(QTy);
179}
180
181void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
182                                        llvm::MDNode *TBAAInfo) {
183  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
184}
185
186bool CodeGenModule::isTargetDarwin() const {
187  return getContext().getTargetInfo().getTriple().isOSDarwin();
188}
189
190void CodeGenModule::Error(SourceLocation loc, StringRef error) {
191  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
192  getDiags().Report(Context.getFullLoc(loc), diagID);
193}
194
195/// ErrorUnsupported - Print out an error that codegen doesn't support the
196/// specified stmt yet.
197void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
198                                     bool OmitOnError) {
199  if (OmitOnError && getDiags().hasErrorOccurred())
200    return;
201  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
202                                               "cannot compile this %0 yet");
203  std::string Msg = Type;
204  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
205    << Msg << S->getSourceRange();
206}
207
208/// ErrorUnsupported - Print out an error that codegen doesn't support the
209/// specified decl yet.
210void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
211                                     bool OmitOnError) {
212  if (OmitOnError && getDiags().hasErrorOccurred())
213    return;
214  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
215                                               "cannot compile this %0 yet");
216  std::string Msg = Type;
217  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
218}
219
220llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
221  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
222}
223
224void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
225                                        const NamedDecl *D) const {
226  // Internal definitions always have default visibility.
227  if (GV->hasLocalLinkage()) {
228    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
229    return;
230  }
231
232  // Set visibility for definitions.
233  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
234  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
235    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
236}
237
238/// Set the symbol visibility of type information (vtable and RTTI)
239/// associated with the given type.
240void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
241                                      const CXXRecordDecl *RD,
242                                      TypeVisibilityKind TVK) const {
243  setGlobalVisibility(GV, RD);
244
245  if (!CodeGenOpts.HiddenWeakVTables)
246    return;
247
248  // We never want to drop the visibility for RTTI names.
249  if (TVK == TVK_ForRTTIName)
250    return;
251
252  // We want to drop the visibility to hidden for weak type symbols.
253  // This isn't possible if there might be unresolved references
254  // elsewhere that rely on this symbol being visible.
255
256  // This should be kept roughly in sync with setThunkVisibility
257  // in CGVTables.cpp.
258
259  // Preconditions.
260  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
261      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
262    return;
263
264  // Don't override an explicit visibility attribute.
265  if (RD->getExplicitVisibility())
266    return;
267
268  switch (RD->getTemplateSpecializationKind()) {
269  // We have to disable the optimization if this is an EI definition
270  // because there might be EI declarations in other shared objects.
271  case TSK_ExplicitInstantiationDefinition:
272  case TSK_ExplicitInstantiationDeclaration:
273    return;
274
275  // Every use of a non-template class's type information has to emit it.
276  case TSK_Undeclared:
277    break;
278
279  // In theory, implicit instantiations can ignore the possibility of
280  // an explicit instantiation declaration because there necessarily
281  // must be an EI definition somewhere with default visibility.  In
282  // practice, it's possible to have an explicit instantiation for
283  // an arbitrary template class, and linkers aren't necessarily able
284  // to deal with mixed-visibility symbols.
285  case TSK_ExplicitSpecialization:
286  case TSK_ImplicitInstantiation:
287    if (!CodeGenOpts.HiddenWeakTemplateVTables)
288      return;
289    break;
290  }
291
292  // If there's a key function, there may be translation units
293  // that don't have the key function's definition.  But ignore
294  // this if we're emitting RTTI under -fno-rtti.
295  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
296    if (Context.getKeyFunction(RD))
297      return;
298  }
299
300  // Otherwise, drop the visibility to hidden.
301  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
302  GV->setUnnamedAddr(true);
303}
304
305StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
306  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
307
308  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
309  if (!Str.empty())
310    return Str;
311
312  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
313    IdentifierInfo *II = ND->getIdentifier();
314    assert(II && "Attempt to mangle unnamed decl.");
315
316    Str = II->getName();
317    return Str;
318  }
319
320  llvm::SmallString<256> Buffer;
321  llvm::raw_svector_ostream Out(Buffer);
322  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
323    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
324  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
325    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
326  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
327    getCXXABI().getMangleContext().mangleBlock(BD, Out);
328  else
329    getCXXABI().getMangleContext().mangleName(ND, Out);
330
331  // Allocate space for the mangled name.
332  Out.flush();
333  size_t Length = Buffer.size();
334  char *Name = MangledNamesAllocator.Allocate<char>(Length);
335  std::copy(Buffer.begin(), Buffer.end(), Name);
336
337  Str = StringRef(Name, Length);
338
339  return Str;
340}
341
342void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
343                                        const BlockDecl *BD) {
344  MangleContext &MangleCtx = getCXXABI().getMangleContext();
345  const Decl *D = GD.getDecl();
346  llvm::raw_svector_ostream Out(Buffer.getBuffer());
347  if (D == 0)
348    MangleCtx.mangleGlobalBlock(BD, Out);
349  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
350    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
351  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
352    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
353  else
354    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
355}
356
357llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
358  return getModule().getNamedValue(Name);
359}
360
361/// AddGlobalCtor - Add a function to the list that will be called before
362/// main() runs.
363void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
364  // FIXME: Type coercion of void()* types.
365  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
366}
367
368/// AddGlobalDtor - Add a function to the list that will be called
369/// when the module is unloaded.
370void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
371  // FIXME: Type coercion of void()* types.
372  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
373}
374
375void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
376  // Ctor function type is void()*.
377  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
378  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
379
380  // Get the type of a ctor entry, { i32, void ()* }.
381  llvm::StructType *CtorStructTy =
382    llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
383                          llvm::PointerType::getUnqual(CtorFTy), NULL);
384
385  // Construct the constructor and destructor arrays.
386  std::vector<llvm::Constant*> Ctors;
387  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
388    std::vector<llvm::Constant*> S;
389    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
390                I->second, false));
391    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
392    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
393  }
394
395  if (!Ctors.empty()) {
396    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
397    new llvm::GlobalVariable(TheModule, AT, false,
398                             llvm::GlobalValue::AppendingLinkage,
399                             llvm::ConstantArray::get(AT, Ctors),
400                             GlobalName);
401  }
402}
403
404llvm::GlobalValue::LinkageTypes
405CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
406  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
407
408  if (Linkage == GVA_Internal)
409    return llvm::Function::InternalLinkage;
410
411  if (D->hasAttr<DLLExportAttr>())
412    return llvm::Function::DLLExportLinkage;
413
414  if (D->hasAttr<WeakAttr>())
415    return llvm::Function::WeakAnyLinkage;
416
417  // In C99 mode, 'inline' functions are guaranteed to have a strong
418  // definition somewhere else, so we can use available_externally linkage.
419  if (Linkage == GVA_C99Inline)
420    return llvm::Function::AvailableExternallyLinkage;
421
422  // Note that Apple's kernel linker doesn't support symbol
423  // coalescing, so we need to avoid linkonce and weak linkages there.
424  // Normally, this means we just map to internal, but for explicit
425  // instantiations we'll map to external.
426
427  // In C++, the compiler has to emit a definition in every translation unit
428  // that references the function.  We should use linkonce_odr because
429  // a) if all references in this translation unit are optimized away, we
430  // don't need to codegen it.  b) if the function persists, it needs to be
431  // merged with other definitions. c) C++ has the ODR, so we know the
432  // definition is dependable.
433  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
434    return !Context.getLangOptions().AppleKext
435             ? llvm::Function::LinkOnceODRLinkage
436             : llvm::Function::InternalLinkage;
437
438  // An explicit instantiation of a template has weak linkage, since
439  // explicit instantiations can occur in multiple translation units
440  // and must all be equivalent. However, we are not allowed to
441  // throw away these explicit instantiations.
442  if (Linkage == GVA_ExplicitTemplateInstantiation)
443    return !Context.getLangOptions().AppleKext
444             ? llvm::Function::WeakODRLinkage
445             : llvm::Function::ExternalLinkage;
446
447  // Otherwise, we have strong external linkage.
448  assert(Linkage == GVA_StrongExternal);
449  return llvm::Function::ExternalLinkage;
450}
451
452
453/// SetFunctionDefinitionAttributes - Set attributes for a global.
454///
455/// FIXME: This is currently only done for aliases and functions, but not for
456/// variables (these details are set in EmitGlobalVarDefinition for variables).
457void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
458                                                    llvm::GlobalValue *GV) {
459  SetCommonAttributes(D, GV);
460}
461
462void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
463                                              const CGFunctionInfo &Info,
464                                              llvm::Function *F) {
465  unsigned CallingConv;
466  AttributeListType AttributeList;
467  ConstructAttributeList(Info, D, AttributeList, CallingConv);
468  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
469                                          AttributeList.size()));
470  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
471}
472
473/// Determines whether the language options require us to model
474/// unwind exceptions.  We treat -fexceptions as mandating this
475/// except under the fragile ObjC ABI with only ObjC exceptions
476/// enabled.  This means, for example, that C with -fexceptions
477/// enables this.
478static bool hasUnwindExceptions(const LangOptions &Features) {
479  // If exceptions are completely disabled, obviously this is false.
480  if (!Features.Exceptions) return false;
481
482  // If C++ exceptions are enabled, this is true.
483  if (Features.CXXExceptions) return true;
484
485  // If ObjC exceptions are enabled, this depends on the ABI.
486  if (Features.ObjCExceptions) {
487    if (!Features.ObjCNonFragileABI) return false;
488  }
489
490  return true;
491}
492
493void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
494                                                           llvm::Function *F) {
495  if (CodeGenOpts.UnwindTables)
496    F->setHasUWTable();
497
498  if (!hasUnwindExceptions(Features))
499    F->addFnAttr(llvm::Attribute::NoUnwind);
500
501  if (D->hasAttr<NakedAttr>()) {
502    // Naked implies noinline: we should not be inlining such functions.
503    F->addFnAttr(llvm::Attribute::Naked);
504    F->addFnAttr(llvm::Attribute::NoInline);
505  }
506
507  if (D->hasAttr<NoInlineAttr>())
508    F->addFnAttr(llvm::Attribute::NoInline);
509
510  // (noinline wins over always_inline, and we can't specify both in IR)
511  if (D->hasAttr<AlwaysInlineAttr>() &&
512      !F->hasFnAttr(llvm::Attribute::NoInline))
513    F->addFnAttr(llvm::Attribute::AlwaysInline);
514
515  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
516    F->setUnnamedAddr(true);
517
518  if (Features.getStackProtector() == LangOptions::SSPOn)
519    F->addFnAttr(llvm::Attribute::StackProtect);
520  else if (Features.getStackProtector() == LangOptions::SSPReq)
521    F->addFnAttr(llvm::Attribute::StackProtectReq);
522
523  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
524  if (alignment)
525    F->setAlignment(alignment);
526
527  // C++ ABI requires 2-byte alignment for member functions.
528  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
529    F->setAlignment(2);
530}
531
532void CodeGenModule::SetCommonAttributes(const Decl *D,
533                                        llvm::GlobalValue *GV) {
534  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
535    setGlobalVisibility(GV, ND);
536  else
537    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
538
539  if (D->hasAttr<UsedAttr>())
540    AddUsedGlobal(GV);
541
542  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
543    GV->setSection(SA->getName());
544
545  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
546}
547
548void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
549                                                  llvm::Function *F,
550                                                  const CGFunctionInfo &FI) {
551  SetLLVMFunctionAttributes(D, FI, F);
552  SetLLVMFunctionAttributesForDefinition(D, F);
553
554  F->setLinkage(llvm::Function::InternalLinkage);
555
556  SetCommonAttributes(D, F);
557}
558
559void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
560                                          llvm::Function *F,
561                                          bool IsIncompleteFunction) {
562  if (unsigned IID = F->getIntrinsicID()) {
563    // If this is an intrinsic function, set the function's attributes
564    // to the intrinsic's attributes.
565    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
566    return;
567  }
568
569  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
570
571  if (!IsIncompleteFunction)
572    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
573
574  // Only a few attributes are set on declarations; these may later be
575  // overridden by a definition.
576
577  if (FD->hasAttr<DLLImportAttr>()) {
578    F->setLinkage(llvm::Function::DLLImportLinkage);
579  } else if (FD->hasAttr<WeakAttr>() ||
580             FD->isWeakImported()) {
581    // "extern_weak" is overloaded in LLVM; we probably should have
582    // separate linkage types for this.
583    F->setLinkage(llvm::Function::ExternalWeakLinkage);
584  } else {
585    F->setLinkage(llvm::Function::ExternalLinkage);
586
587    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
588    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
589      F->setVisibility(GetLLVMVisibility(LV.visibility()));
590    }
591  }
592
593  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
594    F->setSection(SA->getName());
595}
596
597void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
598  assert(!GV->isDeclaration() &&
599         "Only globals with definition can force usage.");
600  LLVMUsed.push_back(GV);
601}
602
603void CodeGenModule::EmitLLVMUsed() {
604  // Don't create llvm.used if there is no need.
605  if (LLVMUsed.empty())
606    return;
607
608  llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
609
610  // Convert LLVMUsed to what ConstantArray needs.
611  std::vector<llvm::Constant*> UsedArray;
612  UsedArray.resize(LLVMUsed.size());
613  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
614    UsedArray[i] =
615     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
616                                      i8PTy);
617  }
618
619  if (UsedArray.empty())
620    return;
621  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
622
623  llvm::GlobalVariable *GV =
624    new llvm::GlobalVariable(getModule(), ATy, false,
625                             llvm::GlobalValue::AppendingLinkage,
626                             llvm::ConstantArray::get(ATy, UsedArray),
627                             "llvm.used");
628
629  GV->setSection("llvm.metadata");
630}
631
632void CodeGenModule::EmitDeferred() {
633  // Emit code for any potentially referenced deferred decls.  Since a
634  // previously unused static decl may become used during the generation of code
635  // for a static function, iterate until no changes are made.
636
637  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
638    if (!DeferredVTables.empty()) {
639      const CXXRecordDecl *RD = DeferredVTables.back();
640      DeferredVTables.pop_back();
641      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
642      continue;
643    }
644
645    GlobalDecl D = DeferredDeclsToEmit.back();
646    DeferredDeclsToEmit.pop_back();
647
648    // Check to see if we've already emitted this.  This is necessary
649    // for a couple of reasons: first, decls can end up in the
650    // deferred-decls queue multiple times, and second, decls can end
651    // up with definitions in unusual ways (e.g. by an extern inline
652    // function acquiring a strong function redefinition).  Just
653    // ignore these cases.
654    //
655    // TODO: That said, looking this up multiple times is very wasteful.
656    StringRef Name = getMangledName(D);
657    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
658    assert(CGRef && "Deferred decl wasn't referenced?");
659
660    if (!CGRef->isDeclaration())
661      continue;
662
663    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
664    // purposes an alias counts as a definition.
665    if (isa<llvm::GlobalAlias>(CGRef))
666      continue;
667
668    // Otherwise, emit the definition and move on to the next one.
669    EmitGlobalDefinition(D);
670  }
671}
672
673void CodeGenModule::EmitGlobalAnnotations() {
674  if (Annotations.empty())
675    return;
676
677  // Create a new global variable for the ConstantStruct in the Module.
678  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
679    Annotations[0]->getType(), Annotations.size()), Annotations);
680  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
681    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
682    "llvm.global.annotations");
683  gv->setSection(AnnotationSection);
684}
685
686llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
687  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
688  if (i != AnnotationStrings.end())
689    return i->second;
690
691  // Not found yet, create a new global.
692  llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
693  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
694    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
695  gv->setSection(AnnotationSection);
696  gv->setUnnamedAddr(true);
697  AnnotationStrings[Str] = gv;
698  return gv;
699}
700
701llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
702  SourceManager &SM = getContext().getSourceManager();
703  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
704  if (PLoc.isValid())
705    return EmitAnnotationString(PLoc.getFilename());
706  return EmitAnnotationString(SM.getBufferName(Loc));
707}
708
709llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
710  SourceManager &SM = getContext().getSourceManager();
711  PresumedLoc PLoc = SM.getPresumedLoc(L);
712  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
713    SM.getExpansionLineNumber(L);
714  return llvm::ConstantInt::get(Int32Ty, LineNo);
715}
716
717llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
718                                                const AnnotateAttr *AA,
719                                                SourceLocation L) {
720  // Get the globals for file name, annotation, and the line number.
721  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
722                 *UnitGV = EmitAnnotationUnit(L),
723                 *LineNoCst = EmitAnnotationLineNo(L);
724
725  // Create the ConstantStruct for the global annotation.
726  llvm::Constant *Fields[4] = {
727    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
728    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
729    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
730    LineNoCst
731  };
732  return llvm::ConstantStruct::getAnon(Fields);
733}
734
735void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
736                                         llvm::GlobalValue *GV) {
737  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
738  // Get the struct elements for these annotations.
739  for (specific_attr_iterator<AnnotateAttr>
740       ai = D->specific_attr_begin<AnnotateAttr>(),
741       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
742    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
743}
744
745bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
746  // Never defer when EmitAllDecls is specified.
747  if (Features.EmitAllDecls)
748    return false;
749
750  return !getContext().DeclMustBeEmitted(Global);
751}
752
753llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
754  const AliasAttr *AA = VD->getAttr<AliasAttr>();
755  assert(AA && "No alias?");
756
757  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
758
759  // See if there is already something with the target's name in the module.
760  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
761
762  llvm::Constant *Aliasee;
763  if (isa<llvm::FunctionType>(DeclTy))
764    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
765                                      /*ForVTable=*/false);
766  else
767    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
768                                    llvm::PointerType::getUnqual(DeclTy), 0);
769  if (!Entry) {
770    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
771    F->setLinkage(llvm::Function::ExternalWeakLinkage);
772    WeakRefReferences.insert(F);
773  }
774
775  return Aliasee;
776}
777
778void CodeGenModule::EmitGlobal(GlobalDecl GD) {
779  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
780
781  // Weak references don't produce any output by themselves.
782  if (Global->hasAttr<WeakRefAttr>())
783    return;
784
785  // If this is an alias definition (which otherwise looks like a declaration)
786  // emit it now.
787  if (Global->hasAttr<AliasAttr>())
788    return EmitAliasDefinition(GD);
789
790  // If this is CUDA, be selective about which declarations we emit.
791  if (Features.CUDA) {
792    if (CodeGenOpts.CUDAIsDevice) {
793      if (!Global->hasAttr<CUDADeviceAttr>() &&
794          !Global->hasAttr<CUDAGlobalAttr>() &&
795          !Global->hasAttr<CUDAConstantAttr>() &&
796          !Global->hasAttr<CUDASharedAttr>())
797        return;
798    } else {
799      if (!Global->hasAttr<CUDAHostAttr>() && (
800            Global->hasAttr<CUDADeviceAttr>() ||
801            Global->hasAttr<CUDAConstantAttr>() ||
802            Global->hasAttr<CUDASharedAttr>()))
803        return;
804    }
805  }
806
807  // Ignore declarations, they will be emitted on their first use.
808  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
809    // Forward declarations are emitted lazily on first use.
810    if (!FD->doesThisDeclarationHaveABody()) {
811      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
812        return;
813
814      const FunctionDecl *InlineDefinition = 0;
815      FD->getBody(InlineDefinition);
816
817      StringRef MangledName = getMangledName(GD);
818      llvm::StringMap<GlobalDecl>::iterator DDI =
819          DeferredDecls.find(MangledName);
820      if (DDI != DeferredDecls.end())
821        DeferredDecls.erase(DDI);
822      EmitGlobalDefinition(InlineDefinition);
823      return;
824    }
825  } else {
826    const VarDecl *VD = cast<VarDecl>(Global);
827    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
828
829    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
830      return;
831  }
832
833  // Defer code generation when possible if this is a static definition, inline
834  // function etc.  These we only want to emit if they are used.
835  if (!MayDeferGeneration(Global)) {
836    // Emit the definition if it can't be deferred.
837    EmitGlobalDefinition(GD);
838    return;
839  }
840
841  // If we're deferring emission of a C++ variable with an
842  // initializer, remember the order in which it appeared in the file.
843  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
844      cast<VarDecl>(Global)->hasInit()) {
845    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
846    CXXGlobalInits.push_back(0);
847  }
848
849  // If the value has already been used, add it directly to the
850  // DeferredDeclsToEmit list.
851  StringRef MangledName = getMangledName(GD);
852  if (GetGlobalValue(MangledName))
853    DeferredDeclsToEmit.push_back(GD);
854  else {
855    // Otherwise, remember that we saw a deferred decl with this name.  The
856    // first use of the mangled name will cause it to move into
857    // DeferredDeclsToEmit.
858    DeferredDecls[MangledName] = GD;
859  }
860}
861
862namespace {
863  struct FunctionIsDirectlyRecursive :
864    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
865    const StringRef Name;
866    bool Result;
867    FunctionIsDirectlyRecursive(const FunctionDecl *F) :
868      Name(F->getName()), Result(false) {
869    }
870    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
871
872    bool TraverseCallExpr(CallExpr *E) {
873      const Decl *D = E->getCalleeDecl();
874      if (!D)
875        return true;
876      AsmLabelAttr *Attr = D->getAttr<AsmLabelAttr>();
877      if (!Attr)
878        return true;
879      if (Name == Attr->getLabel()) {
880        Result = true;
881        return false;
882      }
883      return true;
884    }
885  };
886}
887
888// isTriviallyRecursiveViaAsm - Check if this function calls another
889// decl that, because of the asm attribute, ends up pointing to itself.
890bool
891CodeGenModule::isTriviallyRecursiveViaAsm(const FunctionDecl *F) {
892  if (getCXXABI().getMangleContext().shouldMangleDeclName(F))
893    return false;
894
895  FunctionIsDirectlyRecursive Walker(F);
896  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
897  return Walker.Result;
898}
899
900bool
901CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
902  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
903    return true;
904  if (CodeGenOpts.OptimizationLevel == 0 &&
905      !F->hasAttr<AlwaysInlineAttr>())
906    return false;
907  // PR9614. Avoid cases where the source code is lying to us. An available
908  // externally function should have an equivalent function somewhere else,
909  // but a function that calls itself is clearly not equivalent to the real
910  // implementation.
911  // This happens in glibc's btowc and in some configure checks.
912  return !isTriviallyRecursiveViaAsm(F);
913}
914
915void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
916  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
917
918  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
919                                 Context.getSourceManager(),
920                                 "Generating code for declaration");
921
922  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
923    // At -O0, don't generate IR for functions with available_externally
924    // linkage.
925    if (!shouldEmitFunction(Function))
926      return;
927
928    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
929      // Make sure to emit the definition(s) before we emit the thunks.
930      // This is necessary for the generation of certain thunks.
931      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
932        EmitCXXConstructor(CD, GD.getCtorType());
933      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
934        EmitCXXDestructor(DD, GD.getDtorType());
935      else
936        EmitGlobalFunctionDefinition(GD);
937
938      if (Method->isVirtual())
939        getVTables().EmitThunks(GD);
940
941      return;
942    }
943
944    return EmitGlobalFunctionDefinition(GD);
945  }
946
947  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
948    return EmitGlobalVarDefinition(VD);
949
950  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
951}
952
953/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
954/// module, create and return an llvm Function with the specified type. If there
955/// is something in the module with the specified name, return it potentially
956/// bitcasted to the right type.
957///
958/// If D is non-null, it specifies a decl that correspond to this.  This is used
959/// to set the attributes on the function when it is first created.
960llvm::Constant *
961CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
962                                       llvm::Type *Ty,
963                                       GlobalDecl D, bool ForVTable,
964                                       llvm::Attributes ExtraAttrs) {
965  // Lookup the entry, lazily creating it if necessary.
966  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
967  if (Entry) {
968    if (WeakRefReferences.count(Entry)) {
969      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
970      if (FD && !FD->hasAttr<WeakAttr>())
971        Entry->setLinkage(llvm::Function::ExternalLinkage);
972
973      WeakRefReferences.erase(Entry);
974    }
975
976    if (Entry->getType()->getElementType() == Ty)
977      return Entry;
978
979    // Make sure the result is of the correct type.
980    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
981  }
982
983  // This function doesn't have a complete type (for example, the return
984  // type is an incomplete struct). Use a fake type instead, and make
985  // sure not to try to set attributes.
986  bool IsIncompleteFunction = false;
987
988  llvm::FunctionType *FTy;
989  if (isa<llvm::FunctionType>(Ty)) {
990    FTy = cast<llvm::FunctionType>(Ty);
991  } else {
992    FTy = llvm::FunctionType::get(VoidTy, false);
993    IsIncompleteFunction = true;
994  }
995
996  llvm::Function *F = llvm::Function::Create(FTy,
997                                             llvm::Function::ExternalLinkage,
998                                             MangledName, &getModule());
999  assert(F->getName() == MangledName && "name was uniqued!");
1000  if (D.getDecl())
1001    SetFunctionAttributes(D, F, IsIncompleteFunction);
1002  if (ExtraAttrs != llvm::Attribute::None)
1003    F->addFnAttr(ExtraAttrs);
1004
1005  // This is the first use or definition of a mangled name.  If there is a
1006  // deferred decl with this name, remember that we need to emit it at the end
1007  // of the file.
1008  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1009  if (DDI != DeferredDecls.end()) {
1010    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1011    // list, and remove it from DeferredDecls (since we don't need it anymore).
1012    DeferredDeclsToEmit.push_back(DDI->second);
1013    DeferredDecls.erase(DDI);
1014
1015  // Otherwise, there are cases we have to worry about where we're
1016  // using a declaration for which we must emit a definition but where
1017  // we might not find a top-level definition:
1018  //   - member functions defined inline in their classes
1019  //   - friend functions defined inline in some class
1020  //   - special member functions with implicit definitions
1021  // If we ever change our AST traversal to walk into class methods,
1022  // this will be unnecessary.
1023  //
1024  // We also don't emit a definition for a function if it's going to be an entry
1025  // in a vtable, unless it's already marked as used.
1026  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1027    // Look for a declaration that's lexically in a record.
1028    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1029    do {
1030      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1031        if (FD->isImplicit() && !ForVTable) {
1032          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1033          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1034          break;
1035        } else if (FD->doesThisDeclarationHaveABody()) {
1036          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1037          break;
1038        }
1039      }
1040      FD = FD->getPreviousDeclaration();
1041    } while (FD);
1042  }
1043
1044  // Make sure the result is of the requested type.
1045  if (!IsIncompleteFunction) {
1046    assert(F->getType()->getElementType() == Ty);
1047    return F;
1048  }
1049
1050  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1051  return llvm::ConstantExpr::getBitCast(F, PTy);
1052}
1053
1054/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1055/// non-null, then this function will use the specified type if it has to
1056/// create it (this occurs when we see a definition of the function).
1057llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1058                                                 llvm::Type *Ty,
1059                                                 bool ForVTable) {
1060  // If there was no specific requested type, just convert it now.
1061  if (!Ty)
1062    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1063
1064  StringRef MangledName = getMangledName(GD);
1065  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1066}
1067
1068/// CreateRuntimeFunction - Create a new runtime function with the specified
1069/// type and name.
1070llvm::Constant *
1071CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1072                                     StringRef Name,
1073                                     llvm::Attributes ExtraAttrs) {
1074  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1075                                 ExtraAttrs);
1076}
1077
1078static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1079                                 bool ConstantInit) {
1080  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1081    return false;
1082
1083  if (Context.getLangOptions().CPlusPlus) {
1084    if (const RecordType *Record
1085          = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1086      return ConstantInit &&
1087             cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1088             !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1089  }
1090
1091  return true;
1092}
1093
1094/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1095/// create and return an llvm GlobalVariable with the specified type.  If there
1096/// is something in the module with the specified name, return it potentially
1097/// bitcasted to the right type.
1098///
1099/// If D is non-null, it specifies a decl that correspond to this.  This is used
1100/// to set the attributes on the global when it is first created.
1101llvm::Constant *
1102CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1103                                     llvm::PointerType *Ty,
1104                                     const VarDecl *D,
1105                                     bool UnnamedAddr) {
1106  // Lookup the entry, lazily creating it if necessary.
1107  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1108  if (Entry) {
1109    if (WeakRefReferences.count(Entry)) {
1110      if (D && !D->hasAttr<WeakAttr>())
1111        Entry->setLinkage(llvm::Function::ExternalLinkage);
1112
1113      WeakRefReferences.erase(Entry);
1114    }
1115
1116    if (UnnamedAddr)
1117      Entry->setUnnamedAddr(true);
1118
1119    if (Entry->getType() == Ty)
1120      return Entry;
1121
1122    // Make sure the result is of the correct type.
1123    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1124  }
1125
1126  // This is the first use or definition of a mangled name.  If there is a
1127  // deferred decl with this name, remember that we need to emit it at the end
1128  // of the file.
1129  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1130  if (DDI != DeferredDecls.end()) {
1131    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1132    // list, and remove it from DeferredDecls (since we don't need it anymore).
1133    DeferredDeclsToEmit.push_back(DDI->second);
1134    DeferredDecls.erase(DDI);
1135  }
1136
1137  llvm::GlobalVariable *GV =
1138    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1139                             llvm::GlobalValue::ExternalLinkage,
1140                             0, MangledName, 0,
1141                             false, Ty->getAddressSpace());
1142
1143  // Handle things which are present even on external declarations.
1144  if (D) {
1145    // FIXME: This code is overly simple and should be merged with other global
1146    // handling.
1147    GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1148
1149    // Set linkage and visibility in case we never see a definition.
1150    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1151    if (LV.linkage() != ExternalLinkage) {
1152      // Don't set internal linkage on declarations.
1153    } else {
1154      if (D->hasAttr<DLLImportAttr>())
1155        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1156      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1157        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1158
1159      // Set visibility on a declaration only if it's explicit.
1160      if (LV.visibilityExplicit())
1161        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1162    }
1163
1164    GV->setThreadLocal(D->isThreadSpecified());
1165  }
1166
1167  return GV;
1168}
1169
1170
1171llvm::GlobalVariable *
1172CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1173                                      llvm::Type *Ty,
1174                                      llvm::GlobalValue::LinkageTypes Linkage) {
1175  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1176  llvm::GlobalVariable *OldGV = 0;
1177
1178
1179  if (GV) {
1180    // Check if the variable has the right type.
1181    if (GV->getType()->getElementType() == Ty)
1182      return GV;
1183
1184    // Because C++ name mangling, the only way we can end up with an already
1185    // existing global with the same name is if it has been declared extern "C".
1186      assert(GV->isDeclaration() && "Declaration has wrong type!");
1187    OldGV = GV;
1188  }
1189
1190  // Create a new variable.
1191  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1192                                Linkage, 0, Name);
1193
1194  if (OldGV) {
1195    // Replace occurrences of the old variable if needed.
1196    GV->takeName(OldGV);
1197
1198    if (!OldGV->use_empty()) {
1199      llvm::Constant *NewPtrForOldDecl =
1200      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1201      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1202    }
1203
1204    OldGV->eraseFromParent();
1205  }
1206
1207  return GV;
1208}
1209
1210/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1211/// given global variable.  If Ty is non-null and if the global doesn't exist,
1212/// then it will be greated with the specified type instead of whatever the
1213/// normal requested type would be.
1214llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1215                                                  llvm::Type *Ty) {
1216  assert(D->hasGlobalStorage() && "Not a global variable");
1217  QualType ASTTy = D->getType();
1218  if (Ty == 0)
1219    Ty = getTypes().ConvertTypeForMem(ASTTy);
1220
1221  llvm::PointerType *PTy =
1222    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1223
1224  StringRef MangledName = getMangledName(D);
1225  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1226}
1227
1228/// CreateRuntimeVariable - Create a new runtime global variable with the
1229/// specified type and name.
1230llvm::Constant *
1231CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1232                                     StringRef Name) {
1233  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1234                               true);
1235}
1236
1237void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1238  assert(!D->getInit() && "Cannot emit definite definitions here!");
1239
1240  if (MayDeferGeneration(D)) {
1241    // If we have not seen a reference to this variable yet, place it
1242    // into the deferred declarations table to be emitted if needed
1243    // later.
1244    StringRef MangledName = getMangledName(D);
1245    if (!GetGlobalValue(MangledName)) {
1246      DeferredDecls[MangledName] = D;
1247      return;
1248    }
1249  }
1250
1251  // The tentative definition is the only definition.
1252  EmitGlobalVarDefinition(D);
1253}
1254
1255void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1256  if (DefinitionRequired)
1257    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1258}
1259
1260llvm::GlobalVariable::LinkageTypes
1261CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1262  if (RD->getLinkage() != ExternalLinkage)
1263    return llvm::GlobalVariable::InternalLinkage;
1264
1265  if (const CXXMethodDecl *KeyFunction
1266                                    = RD->getASTContext().getKeyFunction(RD)) {
1267    // If this class has a key function, use that to determine the linkage of
1268    // the vtable.
1269    const FunctionDecl *Def = 0;
1270    if (KeyFunction->hasBody(Def))
1271      KeyFunction = cast<CXXMethodDecl>(Def);
1272
1273    switch (KeyFunction->getTemplateSpecializationKind()) {
1274      case TSK_Undeclared:
1275      case TSK_ExplicitSpecialization:
1276        // When compiling with optimizations turned on, we emit all vtables,
1277        // even if the key function is not defined in the current translation
1278        // unit. If this is the case, use available_externally linkage.
1279        if (!Def && CodeGenOpts.OptimizationLevel)
1280          return llvm::GlobalVariable::AvailableExternallyLinkage;
1281
1282        if (KeyFunction->isInlined())
1283          return !Context.getLangOptions().AppleKext ?
1284                   llvm::GlobalVariable::LinkOnceODRLinkage :
1285                   llvm::Function::InternalLinkage;
1286
1287        return llvm::GlobalVariable::ExternalLinkage;
1288
1289      case TSK_ImplicitInstantiation:
1290        return !Context.getLangOptions().AppleKext ?
1291                 llvm::GlobalVariable::LinkOnceODRLinkage :
1292                 llvm::Function::InternalLinkage;
1293
1294      case TSK_ExplicitInstantiationDefinition:
1295        return !Context.getLangOptions().AppleKext ?
1296                 llvm::GlobalVariable::WeakODRLinkage :
1297                 llvm::Function::InternalLinkage;
1298
1299      case TSK_ExplicitInstantiationDeclaration:
1300        // FIXME: Use available_externally linkage. However, this currently
1301        // breaks LLVM's build due to undefined symbols.
1302        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1303        return !Context.getLangOptions().AppleKext ?
1304                 llvm::GlobalVariable::LinkOnceODRLinkage :
1305                 llvm::Function::InternalLinkage;
1306    }
1307  }
1308
1309  if (Context.getLangOptions().AppleKext)
1310    return llvm::Function::InternalLinkage;
1311
1312  switch (RD->getTemplateSpecializationKind()) {
1313  case TSK_Undeclared:
1314  case TSK_ExplicitSpecialization:
1315  case TSK_ImplicitInstantiation:
1316    // FIXME: Use available_externally linkage. However, this currently
1317    // breaks LLVM's build due to undefined symbols.
1318    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1319  case TSK_ExplicitInstantiationDeclaration:
1320    return llvm::GlobalVariable::LinkOnceODRLinkage;
1321
1322  case TSK_ExplicitInstantiationDefinition:
1323      return llvm::GlobalVariable::WeakODRLinkage;
1324  }
1325
1326  // Silence GCC warning.
1327  return llvm::GlobalVariable::LinkOnceODRLinkage;
1328}
1329
1330CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1331    return Context.toCharUnitsFromBits(
1332      TheTargetData.getTypeStoreSizeInBits(Ty));
1333}
1334
1335void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1336  llvm::Constant *Init = 0;
1337  QualType ASTTy = D->getType();
1338  bool NonConstInit = false;
1339
1340  const Expr *InitExpr = D->getAnyInitializer();
1341
1342  if (!InitExpr) {
1343    // This is a tentative definition; tentative definitions are
1344    // implicitly initialized with { 0 }.
1345    //
1346    // Note that tentative definitions are only emitted at the end of
1347    // a translation unit, so they should never have incomplete
1348    // type. In addition, EmitTentativeDefinition makes sure that we
1349    // never attempt to emit a tentative definition if a real one
1350    // exists. A use may still exists, however, so we still may need
1351    // to do a RAUW.
1352    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1353    Init = EmitNullConstant(D->getType());
1354  } else {
1355    Init = EmitConstantExpr(InitExpr, D->getType());
1356    if (!Init) {
1357      QualType T = InitExpr->getType();
1358      if (D->getType()->isReferenceType())
1359        T = D->getType();
1360
1361      if (getLangOptions().CPlusPlus) {
1362        Init = EmitNullConstant(T);
1363        NonConstInit = true;
1364      } else {
1365        ErrorUnsupported(D, "static initializer");
1366        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1367      }
1368    } else {
1369      // We don't need an initializer, so remove the entry for the delayed
1370      // initializer position (just in case this entry was delayed).
1371      if (getLangOptions().CPlusPlus)
1372        DelayedCXXInitPosition.erase(D);
1373    }
1374  }
1375
1376  llvm::Type* InitType = Init->getType();
1377  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1378
1379  // Strip off a bitcast if we got one back.
1380  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1381    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1382           // all zero index gep.
1383           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1384    Entry = CE->getOperand(0);
1385  }
1386
1387  // Entry is now either a Function or GlobalVariable.
1388  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1389
1390  // We have a definition after a declaration with the wrong type.
1391  // We must make a new GlobalVariable* and update everything that used OldGV
1392  // (a declaration or tentative definition) with the new GlobalVariable*
1393  // (which will be a definition).
1394  //
1395  // This happens if there is a prototype for a global (e.g.
1396  // "extern int x[];") and then a definition of a different type (e.g.
1397  // "int x[10];"). This also happens when an initializer has a different type
1398  // from the type of the global (this happens with unions).
1399  if (GV == 0 ||
1400      GV->getType()->getElementType() != InitType ||
1401      GV->getType()->getAddressSpace() !=
1402        getContext().getTargetAddressSpace(ASTTy)) {
1403
1404    // Move the old entry aside so that we'll create a new one.
1405    Entry->setName(StringRef());
1406
1407    // Make a new global with the correct type, this is now guaranteed to work.
1408    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1409
1410    // Replace all uses of the old global with the new global
1411    llvm::Constant *NewPtrForOldDecl =
1412        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1413    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1414
1415    // Erase the old global, since it is no longer used.
1416    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1417  }
1418
1419  if (D->hasAttr<AnnotateAttr>())
1420    AddGlobalAnnotations(D, GV);
1421
1422  GV->setInitializer(Init);
1423
1424  // If it is safe to mark the global 'constant', do so now.
1425  GV->setConstant(false);
1426  if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1427    GV->setConstant(true);
1428
1429  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1430
1431  // Set the llvm linkage type as appropriate.
1432  llvm::GlobalValue::LinkageTypes Linkage =
1433    GetLLVMLinkageVarDefinition(D, GV);
1434  GV->setLinkage(Linkage);
1435  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1436    // common vars aren't constant even if declared const.
1437    GV->setConstant(false);
1438
1439  SetCommonAttributes(D, GV);
1440
1441  // Emit the initializer function if necessary.
1442  if (NonConstInit)
1443    EmitCXXGlobalVarDeclInitFunc(D, GV);
1444
1445  // Emit global variable debug information.
1446  if (CGDebugInfo *DI = getModuleDebugInfo())
1447    DI->EmitGlobalVariable(GV, D);
1448}
1449
1450llvm::GlobalValue::LinkageTypes
1451CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1452                                           llvm::GlobalVariable *GV) {
1453  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1454  if (Linkage == GVA_Internal)
1455    return llvm::Function::InternalLinkage;
1456  else if (D->hasAttr<DLLImportAttr>())
1457    return llvm::Function::DLLImportLinkage;
1458  else if (D->hasAttr<DLLExportAttr>())
1459    return llvm::Function::DLLExportLinkage;
1460  else if (D->hasAttr<WeakAttr>()) {
1461    if (GV->isConstant())
1462      return llvm::GlobalVariable::WeakODRLinkage;
1463    else
1464      return llvm::GlobalVariable::WeakAnyLinkage;
1465  } else if (Linkage == GVA_TemplateInstantiation ||
1466             Linkage == GVA_ExplicitTemplateInstantiation)
1467    return llvm::GlobalVariable::WeakODRLinkage;
1468  else if (!getLangOptions().CPlusPlus &&
1469           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1470             D->getAttr<CommonAttr>()) &&
1471           !D->hasExternalStorage() && !D->getInit() &&
1472           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1473           !D->getAttr<WeakImportAttr>()) {
1474    // Thread local vars aren't considered common linkage.
1475    return llvm::GlobalVariable::CommonLinkage;
1476  }
1477  return llvm::GlobalVariable::ExternalLinkage;
1478}
1479
1480/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1481/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1482/// existing call uses of the old function in the module, this adjusts them to
1483/// call the new function directly.
1484///
1485/// This is not just a cleanup: the always_inline pass requires direct calls to
1486/// functions to be able to inline them.  If there is a bitcast in the way, it
1487/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1488/// run at -O0.
1489static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1490                                                      llvm::Function *NewFn) {
1491  // If we're redefining a global as a function, don't transform it.
1492  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1493  if (OldFn == 0) return;
1494
1495  llvm::Type *NewRetTy = NewFn->getReturnType();
1496  SmallVector<llvm::Value*, 4> ArgList;
1497
1498  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1499       UI != E; ) {
1500    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1501    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1502    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1503    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1504    llvm::CallSite CS(CI);
1505    if (!CI || !CS.isCallee(I)) continue;
1506
1507    // If the return types don't match exactly, and if the call isn't dead, then
1508    // we can't transform this call.
1509    if (CI->getType() != NewRetTy && !CI->use_empty())
1510      continue;
1511
1512    // Get the attribute list.
1513    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1514    llvm::AttrListPtr AttrList = CI->getAttributes();
1515
1516    // Get any return attributes.
1517    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1518
1519    // Add the return attributes.
1520    if (RAttrs)
1521      AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1522
1523    // If the function was passed too few arguments, don't transform.  If extra
1524    // arguments were passed, we silently drop them.  If any of the types
1525    // mismatch, we don't transform.
1526    unsigned ArgNo = 0;
1527    bool DontTransform = false;
1528    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1529         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1530      if (CS.arg_size() == ArgNo ||
1531          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1532        DontTransform = true;
1533        break;
1534      }
1535
1536      // Add any parameter attributes.
1537      if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1538        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1539    }
1540    if (DontTransform)
1541      continue;
1542
1543    if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1544      AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1545
1546    // Okay, we can transform this.  Create the new call instruction and copy
1547    // over the required information.
1548    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1549    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1550    ArgList.clear();
1551    if (!NewCall->getType()->isVoidTy())
1552      NewCall->takeName(CI);
1553    NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1554                                                  AttrVec.end()));
1555    NewCall->setCallingConv(CI->getCallingConv());
1556
1557    // Finally, remove the old call, replacing any uses with the new one.
1558    if (!CI->use_empty())
1559      CI->replaceAllUsesWith(NewCall);
1560
1561    // Copy debug location attached to CI.
1562    if (!CI->getDebugLoc().isUnknown())
1563      NewCall->setDebugLoc(CI->getDebugLoc());
1564    CI->eraseFromParent();
1565  }
1566}
1567
1568
1569void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1570  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1571
1572  // Compute the function info and LLVM type.
1573  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1574  bool variadic = false;
1575  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1576    variadic = fpt->isVariadic();
1577  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1578
1579  // Get or create the prototype for the function.
1580  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1581
1582  // Strip off a bitcast if we got one back.
1583  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1584    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1585    Entry = CE->getOperand(0);
1586  }
1587
1588
1589  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1590    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1591
1592    // If the types mismatch then we have to rewrite the definition.
1593    assert(OldFn->isDeclaration() &&
1594           "Shouldn't replace non-declaration");
1595
1596    // F is the Function* for the one with the wrong type, we must make a new
1597    // Function* and update everything that used F (a declaration) with the new
1598    // Function* (which will be a definition).
1599    //
1600    // This happens if there is a prototype for a function
1601    // (e.g. "int f()") and then a definition of a different type
1602    // (e.g. "int f(int x)").  Move the old function aside so that it
1603    // doesn't interfere with GetAddrOfFunction.
1604    OldFn->setName(StringRef());
1605    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1606
1607    // If this is an implementation of a function without a prototype, try to
1608    // replace any existing uses of the function (which may be calls) with uses
1609    // of the new function
1610    if (D->getType()->isFunctionNoProtoType()) {
1611      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1612      OldFn->removeDeadConstantUsers();
1613    }
1614
1615    // Replace uses of F with the Function we will endow with a body.
1616    if (!Entry->use_empty()) {
1617      llvm::Constant *NewPtrForOldDecl =
1618        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1619      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1620    }
1621
1622    // Ok, delete the old function now, which is dead.
1623    OldFn->eraseFromParent();
1624
1625    Entry = NewFn;
1626  }
1627
1628  // We need to set linkage and visibility on the function before
1629  // generating code for it because various parts of IR generation
1630  // want to propagate this information down (e.g. to local static
1631  // declarations).
1632  llvm::Function *Fn = cast<llvm::Function>(Entry);
1633  setFunctionLinkage(D, Fn);
1634
1635  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1636  setGlobalVisibility(Fn, D);
1637
1638  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1639
1640  SetFunctionDefinitionAttributes(D, Fn);
1641  SetLLVMFunctionAttributesForDefinition(D, Fn);
1642
1643  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1644    AddGlobalCtor(Fn, CA->getPriority());
1645  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1646    AddGlobalDtor(Fn, DA->getPriority());
1647  if (D->hasAttr<AnnotateAttr>())
1648    AddGlobalAnnotations(D, Fn);
1649}
1650
1651void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1652  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1653  const AliasAttr *AA = D->getAttr<AliasAttr>();
1654  assert(AA && "Not an alias?");
1655
1656  StringRef MangledName = getMangledName(GD);
1657
1658  // If there is a definition in the module, then it wins over the alias.
1659  // This is dubious, but allow it to be safe.  Just ignore the alias.
1660  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1661  if (Entry && !Entry->isDeclaration())
1662    return;
1663
1664  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1665
1666  // Create a reference to the named value.  This ensures that it is emitted
1667  // if a deferred decl.
1668  llvm::Constant *Aliasee;
1669  if (isa<llvm::FunctionType>(DeclTy))
1670    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1671                                      /*ForVTable=*/false);
1672  else
1673    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1674                                    llvm::PointerType::getUnqual(DeclTy), 0);
1675
1676  // Create the new alias itself, but don't set a name yet.
1677  llvm::GlobalValue *GA =
1678    new llvm::GlobalAlias(Aliasee->getType(),
1679                          llvm::Function::ExternalLinkage,
1680                          "", Aliasee, &getModule());
1681
1682  if (Entry) {
1683    assert(Entry->isDeclaration());
1684
1685    // If there is a declaration in the module, then we had an extern followed
1686    // by the alias, as in:
1687    //   extern int test6();
1688    //   ...
1689    //   int test6() __attribute__((alias("test7")));
1690    //
1691    // Remove it and replace uses of it with the alias.
1692    GA->takeName(Entry);
1693
1694    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1695                                                          Entry->getType()));
1696    Entry->eraseFromParent();
1697  } else {
1698    GA->setName(MangledName);
1699  }
1700
1701  // Set attributes which are particular to an alias; this is a
1702  // specialization of the attributes which may be set on a global
1703  // variable/function.
1704  if (D->hasAttr<DLLExportAttr>()) {
1705    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1706      // The dllexport attribute is ignored for undefined symbols.
1707      if (FD->hasBody())
1708        GA->setLinkage(llvm::Function::DLLExportLinkage);
1709    } else {
1710      GA->setLinkage(llvm::Function::DLLExportLinkage);
1711    }
1712  } else if (D->hasAttr<WeakAttr>() ||
1713             D->hasAttr<WeakRefAttr>() ||
1714             D->isWeakImported()) {
1715    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1716  }
1717
1718  SetCommonAttributes(D, GA);
1719}
1720
1721llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1722                                            ArrayRef<llvm::Type*> Tys) {
1723  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1724                                         Tys);
1725}
1726
1727static llvm::StringMapEntry<llvm::Constant*> &
1728GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1729                         const StringLiteral *Literal,
1730                         bool TargetIsLSB,
1731                         bool &IsUTF16,
1732                         unsigned &StringLength) {
1733  StringRef String = Literal->getString();
1734  unsigned NumBytes = String.size();
1735
1736  // Check for simple case.
1737  if (!Literal->containsNonAsciiOrNull()) {
1738    StringLength = NumBytes;
1739    return Map.GetOrCreateValue(String);
1740  }
1741
1742  // Otherwise, convert the UTF8 literals into a byte string.
1743  SmallVector<UTF16, 128> ToBuf(NumBytes);
1744  const UTF8 *FromPtr = (UTF8 *)String.data();
1745  UTF16 *ToPtr = &ToBuf[0];
1746
1747  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1748                           &ToPtr, ToPtr + NumBytes,
1749                           strictConversion);
1750
1751  // ConvertUTF8toUTF16 returns the length in ToPtr.
1752  StringLength = ToPtr - &ToBuf[0];
1753
1754  // Render the UTF-16 string into a byte array and convert to the target byte
1755  // order.
1756  //
1757  // FIXME: This isn't something we should need to do here.
1758  llvm::SmallString<128> AsBytes;
1759  AsBytes.reserve(StringLength * 2);
1760  for (unsigned i = 0; i != StringLength; ++i) {
1761    unsigned short Val = ToBuf[i];
1762    if (TargetIsLSB) {
1763      AsBytes.push_back(Val & 0xFF);
1764      AsBytes.push_back(Val >> 8);
1765    } else {
1766      AsBytes.push_back(Val >> 8);
1767      AsBytes.push_back(Val & 0xFF);
1768    }
1769  }
1770  // Append one extra null character, the second is automatically added by our
1771  // caller.
1772  AsBytes.push_back(0);
1773
1774  IsUTF16 = true;
1775  return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1776}
1777
1778static llvm::StringMapEntry<llvm::Constant*> &
1779GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1780		       const StringLiteral *Literal,
1781		       unsigned &StringLength)
1782{
1783	StringRef String = Literal->getString();
1784	StringLength = String.size();
1785	return Map.GetOrCreateValue(String);
1786}
1787
1788llvm::Constant *
1789CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1790  unsigned StringLength = 0;
1791  bool isUTF16 = false;
1792  llvm::StringMapEntry<llvm::Constant*> &Entry =
1793    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1794                             getTargetData().isLittleEndian(),
1795                             isUTF16, StringLength);
1796
1797  if (llvm::Constant *C = Entry.getValue())
1798    return C;
1799
1800  llvm::Constant *Zero =
1801      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1802  llvm::Constant *Zeros[] = { Zero, Zero };
1803
1804  // If we don't already have it, get __CFConstantStringClassReference.
1805  if (!CFConstantStringClassRef) {
1806    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1807    Ty = llvm::ArrayType::get(Ty, 0);
1808    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1809                                           "__CFConstantStringClassReference");
1810    // Decay array -> ptr
1811    CFConstantStringClassRef =
1812      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1813  }
1814
1815  QualType CFTy = getContext().getCFConstantStringType();
1816
1817  llvm::StructType *STy =
1818    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1819
1820  std::vector<llvm::Constant*> Fields(4);
1821
1822  // Class pointer.
1823  Fields[0] = CFConstantStringClassRef;
1824
1825  // Flags.
1826  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1827  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1828    llvm::ConstantInt::get(Ty, 0x07C8);
1829
1830  // String pointer.
1831  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1832
1833  llvm::GlobalValue::LinkageTypes Linkage;
1834  bool isConstant;
1835  if (isUTF16) {
1836    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1837    Linkage = llvm::GlobalValue::InternalLinkage;
1838    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1839    // does make plain ascii ones writable.
1840    isConstant = true;
1841  } else {
1842    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1843    // when using private linkage. It is not clear if this is a bug in ld
1844    // or a reasonable new restriction.
1845    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1846    isConstant = !Features.WritableStrings;
1847  }
1848
1849  llvm::GlobalVariable *GV =
1850    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1851                             ".str");
1852  GV->setUnnamedAddr(true);
1853  if (isUTF16) {
1854    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1855    GV->setAlignment(Align.getQuantity());
1856  } else {
1857    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1858    GV->setAlignment(Align.getQuantity());
1859  }
1860  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1861
1862  // String length.
1863  Ty = getTypes().ConvertType(getContext().LongTy);
1864  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1865
1866  // The struct.
1867  C = llvm::ConstantStruct::get(STy, Fields);
1868  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1869                                llvm::GlobalVariable::PrivateLinkage, C,
1870                                "_unnamed_cfstring_");
1871  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1872    GV->setSection(Sect);
1873  Entry.setValue(GV);
1874
1875  return GV;
1876}
1877
1878static RecordDecl *
1879CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1880                 DeclContext *DC, IdentifierInfo *Id) {
1881  SourceLocation Loc;
1882  if (Ctx.getLangOptions().CPlusPlus)
1883    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1884  else
1885    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1886}
1887
1888llvm::Constant *
1889CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1890  unsigned StringLength = 0;
1891  llvm::StringMapEntry<llvm::Constant*> &Entry =
1892    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1893
1894  if (llvm::Constant *C = Entry.getValue())
1895    return C;
1896
1897  llvm::Constant *Zero =
1898  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1899  llvm::Constant *Zeros[] = { Zero, Zero };
1900
1901  // If we don't already have it, get _NSConstantStringClassReference.
1902  if (!ConstantStringClassRef) {
1903    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1904    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1905    llvm::Constant *GV;
1906    if (Features.ObjCNonFragileABI) {
1907      std::string str =
1908        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1909                            : "OBJC_CLASS_$_" + StringClass;
1910      GV = getObjCRuntime().GetClassGlobal(str);
1911      // Make sure the result is of the correct type.
1912      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1913      ConstantStringClassRef =
1914        llvm::ConstantExpr::getBitCast(GV, PTy);
1915    } else {
1916      std::string str =
1917        StringClass.empty() ? "_NSConstantStringClassReference"
1918                            : "_" + StringClass + "ClassReference";
1919      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1920      GV = CreateRuntimeVariable(PTy, str);
1921      // Decay array -> ptr
1922      ConstantStringClassRef =
1923        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1924    }
1925  }
1926
1927  if (!NSConstantStringType) {
1928    // Construct the type for a constant NSString.
1929    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1930                                     Context.getTranslationUnitDecl(),
1931                                   &Context.Idents.get("__builtin_NSString"));
1932    D->startDefinition();
1933
1934    QualType FieldTypes[3];
1935
1936    // const int *isa;
1937    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1938    // const char *str;
1939    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1940    // unsigned int length;
1941    FieldTypes[2] = Context.UnsignedIntTy;
1942
1943    // Create fields
1944    for (unsigned i = 0; i < 3; ++i) {
1945      FieldDecl *Field = FieldDecl::Create(Context, D,
1946                                           SourceLocation(),
1947                                           SourceLocation(), 0,
1948                                           FieldTypes[i], /*TInfo=*/0,
1949                                           /*BitWidth=*/0,
1950                                           /*Mutable=*/false,
1951                                           /*HasInit=*/false);
1952      Field->setAccess(AS_public);
1953      D->addDecl(Field);
1954    }
1955
1956    D->completeDefinition();
1957    QualType NSTy = Context.getTagDeclType(D);
1958    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1959  }
1960
1961  std::vector<llvm::Constant*> Fields(3);
1962
1963  // Class pointer.
1964  Fields[0] = ConstantStringClassRef;
1965
1966  // String pointer.
1967  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1968
1969  llvm::GlobalValue::LinkageTypes Linkage;
1970  bool isConstant;
1971  Linkage = llvm::GlobalValue::PrivateLinkage;
1972  isConstant = !Features.WritableStrings;
1973
1974  llvm::GlobalVariable *GV =
1975  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1976                           ".str");
1977  GV->setUnnamedAddr(true);
1978  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1979  GV->setAlignment(Align.getQuantity());
1980  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1981
1982  // String length.
1983  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1984  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1985
1986  // The struct.
1987  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
1988  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1989                                llvm::GlobalVariable::PrivateLinkage, C,
1990                                "_unnamed_nsstring_");
1991  // FIXME. Fix section.
1992  if (const char *Sect =
1993        Features.ObjCNonFragileABI
1994          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
1995          : getContext().getTargetInfo().getNSStringSection())
1996    GV->setSection(Sect);
1997  Entry.setValue(GV);
1998
1999  return GV;
2000}
2001
2002QualType CodeGenModule::getObjCFastEnumerationStateType() {
2003  if (ObjCFastEnumerationStateType.isNull()) {
2004    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2005                                     Context.getTranslationUnitDecl(),
2006                      &Context.Idents.get("__objcFastEnumerationState"));
2007    D->startDefinition();
2008
2009    QualType FieldTypes[] = {
2010      Context.UnsignedLongTy,
2011      Context.getPointerType(Context.getObjCIdType()),
2012      Context.getPointerType(Context.UnsignedLongTy),
2013      Context.getConstantArrayType(Context.UnsignedLongTy,
2014                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2015    };
2016
2017    for (size_t i = 0; i < 4; ++i) {
2018      FieldDecl *Field = FieldDecl::Create(Context,
2019                                           D,
2020                                           SourceLocation(),
2021                                           SourceLocation(), 0,
2022                                           FieldTypes[i], /*TInfo=*/0,
2023                                           /*BitWidth=*/0,
2024                                           /*Mutable=*/false,
2025                                           /*HasInit=*/false);
2026      Field->setAccess(AS_public);
2027      D->addDecl(Field);
2028    }
2029
2030    D->completeDefinition();
2031    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2032  }
2033
2034  return ObjCFastEnumerationStateType;
2035}
2036
2037/// GetStringForStringLiteral - Return the appropriate bytes for a
2038/// string literal, properly padded to match the literal type.
2039std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
2040  const ASTContext &Context = getContext();
2041  const ConstantArrayType *CAT =
2042    Context.getAsConstantArrayType(E->getType());
2043  assert(CAT && "String isn't pointer or array!");
2044
2045  // Resize the string to the right size.
2046  uint64_t RealLen = CAT->getSize().getZExtValue();
2047
2048  switch (E->getKind()) {
2049  case StringLiteral::Ascii:
2050  case StringLiteral::UTF8:
2051    break;
2052  case StringLiteral::Wide:
2053    RealLen *= Context.getTargetInfo().getWCharWidth() / Context.getCharWidth();
2054    break;
2055  case StringLiteral::UTF16:
2056    RealLen *= Context.getTargetInfo().getChar16Width() / Context.getCharWidth();
2057    break;
2058  case StringLiteral::UTF32:
2059    RealLen *= Context.getTargetInfo().getChar32Width() / Context.getCharWidth();
2060    break;
2061  }
2062
2063  std::string Str = E->getString().str();
2064  Str.resize(RealLen, '\0');
2065
2066  return Str;
2067}
2068
2069/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2070/// constant array for the given string literal.
2071llvm::Constant *
2072CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2073  // FIXME: This can be more efficient.
2074  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
2075  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2076  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S),
2077                                              /* GlobalName */ 0,
2078                                              Align.getQuantity());
2079  if (S->isWide() || S->isUTF16() || S->isUTF32()) {
2080    llvm::Type *DestTy =
2081        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
2082    C = llvm::ConstantExpr::getBitCast(C, DestTy);
2083  }
2084  return C;
2085}
2086
2087/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2088/// array for the given ObjCEncodeExpr node.
2089llvm::Constant *
2090CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2091  std::string Str;
2092  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2093
2094  return GetAddrOfConstantCString(Str);
2095}
2096
2097
2098/// GenerateWritableString -- Creates storage for a string literal.
2099static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2100                                             bool constant,
2101                                             CodeGenModule &CGM,
2102                                             const char *GlobalName,
2103                                             unsigned Alignment) {
2104  // Create Constant for this string literal. Don't add a '\0'.
2105  llvm::Constant *C =
2106      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
2107
2108  // Create a global variable for this string
2109  llvm::GlobalVariable *GV =
2110    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2111                             llvm::GlobalValue::PrivateLinkage,
2112                             C, GlobalName);
2113  GV->setAlignment(Alignment);
2114  GV->setUnnamedAddr(true);
2115  return GV;
2116}
2117
2118/// GetAddrOfConstantString - Returns a pointer to a character array
2119/// containing the literal. This contents are exactly that of the
2120/// given string, i.e. it will not be null terminated automatically;
2121/// see GetAddrOfConstantCString. Note that whether the result is
2122/// actually a pointer to an LLVM constant depends on
2123/// Feature.WriteableStrings.
2124///
2125/// The result has pointer to array type.
2126llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2127                                                       const char *GlobalName,
2128                                                       unsigned Alignment) {
2129  bool IsConstant = !Features.WritableStrings;
2130
2131  // Get the default prefix if a name wasn't specified.
2132  if (!GlobalName)
2133    GlobalName = ".str";
2134
2135  // Don't share any string literals if strings aren't constant.
2136  if (!IsConstant)
2137    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2138
2139  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2140    ConstantStringMap.GetOrCreateValue(Str);
2141
2142  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2143    if (Alignment > GV->getAlignment()) {
2144      GV->setAlignment(Alignment);
2145    }
2146    return GV;
2147  }
2148
2149  // Create a global variable for this.
2150  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
2151  Entry.setValue(GV);
2152  return GV;
2153}
2154
2155/// GetAddrOfConstantCString - Returns a pointer to a character
2156/// array containing the literal and a terminating '\0'
2157/// character. The result has pointer to array type.
2158llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2159                                                        const char *GlobalName,
2160                                                        unsigned Alignment) {
2161  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2162  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2163}
2164
2165/// EmitObjCPropertyImplementations - Emit information for synthesized
2166/// properties for an implementation.
2167void CodeGenModule::EmitObjCPropertyImplementations(const
2168                                                    ObjCImplementationDecl *D) {
2169  for (ObjCImplementationDecl::propimpl_iterator
2170         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2171    ObjCPropertyImplDecl *PID = *i;
2172
2173    // Dynamic is just for type-checking.
2174    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2175      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2176
2177      // Determine which methods need to be implemented, some may have
2178      // been overridden. Note that ::isSynthesized is not the method
2179      // we want, that just indicates if the decl came from a
2180      // property. What we want to know is if the method is defined in
2181      // this implementation.
2182      if (!D->getInstanceMethod(PD->getGetterName()))
2183        CodeGenFunction(*this).GenerateObjCGetter(
2184                                 const_cast<ObjCImplementationDecl *>(D), PID);
2185      if (!PD->isReadOnly() &&
2186          !D->getInstanceMethod(PD->getSetterName()))
2187        CodeGenFunction(*this).GenerateObjCSetter(
2188                                 const_cast<ObjCImplementationDecl *>(D), PID);
2189    }
2190  }
2191}
2192
2193static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2194  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2195  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2196       ivar; ivar = ivar->getNextIvar())
2197    if (ivar->getType().isDestructedType())
2198      return true;
2199
2200  return false;
2201}
2202
2203/// EmitObjCIvarInitializations - Emit information for ivar initialization
2204/// for an implementation.
2205void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2206  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2207  if (needsDestructMethod(D)) {
2208    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2209    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2210    ObjCMethodDecl *DTORMethod =
2211      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2212                             cxxSelector, getContext().VoidTy, 0, D,
2213                             /*isInstance=*/true, /*isVariadic=*/false,
2214                          /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2215                             /*isDefined=*/false, ObjCMethodDecl::Required);
2216    D->addInstanceMethod(DTORMethod);
2217    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2218    D->setHasCXXStructors(true);
2219  }
2220
2221  // If the implementation doesn't have any ivar initializers, we don't need
2222  // a .cxx_construct.
2223  if (D->getNumIvarInitializers() == 0)
2224    return;
2225
2226  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2227  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2228  // The constructor returns 'self'.
2229  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2230                                                D->getLocation(),
2231                                                D->getLocation(),
2232                                                cxxSelector,
2233                                                getContext().getObjCIdType(), 0,
2234                                                D, /*isInstance=*/true,
2235                                                /*isVariadic=*/false,
2236                                                /*isSynthesized=*/true,
2237                                                /*isImplicitlyDeclared=*/true,
2238                                                /*isDefined=*/false,
2239                                                ObjCMethodDecl::Required);
2240  D->addInstanceMethod(CTORMethod);
2241  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2242  D->setHasCXXStructors(true);
2243}
2244
2245/// EmitNamespace - Emit all declarations in a namespace.
2246void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2247  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2248       I != E; ++I)
2249    EmitTopLevelDecl(*I);
2250}
2251
2252// EmitLinkageSpec - Emit all declarations in a linkage spec.
2253void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2254  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2255      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2256    ErrorUnsupported(LSD, "linkage spec");
2257    return;
2258  }
2259
2260  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2261       I != E; ++I)
2262    EmitTopLevelDecl(*I);
2263}
2264
2265/// EmitTopLevelDecl - Emit code for a single top level declaration.
2266void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2267  // If an error has occurred, stop code generation, but continue
2268  // parsing and semantic analysis (to ensure all warnings and errors
2269  // are emitted).
2270  if (Diags.hasErrorOccurred())
2271    return;
2272
2273  // Ignore dependent declarations.
2274  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2275    return;
2276
2277  switch (D->getKind()) {
2278  case Decl::CXXConversion:
2279  case Decl::CXXMethod:
2280  case Decl::Function:
2281    // Skip function templates
2282    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2283        cast<FunctionDecl>(D)->isLateTemplateParsed())
2284      return;
2285
2286    EmitGlobal(cast<FunctionDecl>(D));
2287    break;
2288
2289  case Decl::Var:
2290    EmitGlobal(cast<VarDecl>(D));
2291    break;
2292
2293  // Indirect fields from global anonymous structs and unions can be
2294  // ignored; only the actual variable requires IR gen support.
2295  case Decl::IndirectField:
2296    break;
2297
2298  // C++ Decls
2299  case Decl::Namespace:
2300    EmitNamespace(cast<NamespaceDecl>(D));
2301    break;
2302    // No code generation needed.
2303  case Decl::UsingShadow:
2304  case Decl::Using:
2305  case Decl::UsingDirective:
2306  case Decl::ClassTemplate:
2307  case Decl::FunctionTemplate:
2308  case Decl::TypeAliasTemplate:
2309  case Decl::NamespaceAlias:
2310  case Decl::Block:
2311    break;
2312  case Decl::CXXConstructor:
2313    // Skip function templates
2314    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2315        cast<FunctionDecl>(D)->isLateTemplateParsed())
2316      return;
2317
2318    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2319    break;
2320  case Decl::CXXDestructor:
2321    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2322      return;
2323    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2324    break;
2325
2326  case Decl::StaticAssert:
2327    // Nothing to do.
2328    break;
2329
2330  // Objective-C Decls
2331
2332  // Forward declarations, no (immediate) code generation.
2333  case Decl::ObjCClass:
2334  case Decl::ObjCForwardProtocol:
2335  case Decl::ObjCInterface:
2336    break;
2337
2338  case Decl::ObjCCategory: {
2339    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2340    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2341      Context.ResetObjCLayout(CD->getClassInterface());
2342    break;
2343  }
2344
2345  case Decl::ObjCProtocol:
2346    ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2347    break;
2348
2349  case Decl::ObjCCategoryImpl:
2350    // Categories have properties but don't support synthesize so we
2351    // can ignore them here.
2352    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2353    break;
2354
2355  case Decl::ObjCImplementation: {
2356    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2357    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2358      Context.ResetObjCLayout(OMD->getClassInterface());
2359    EmitObjCPropertyImplementations(OMD);
2360    EmitObjCIvarInitializations(OMD);
2361    ObjCRuntime->GenerateClass(OMD);
2362    break;
2363  }
2364  case Decl::ObjCMethod: {
2365    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2366    // If this is not a prototype, emit the body.
2367    if (OMD->getBody())
2368      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2369    break;
2370  }
2371  case Decl::ObjCCompatibleAlias:
2372    // compatibility-alias is a directive and has no code gen.
2373    break;
2374
2375  case Decl::LinkageSpec:
2376    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2377    break;
2378
2379  case Decl::FileScopeAsm: {
2380    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2381    StringRef AsmString = AD->getAsmString()->getString();
2382
2383    const std::string &S = getModule().getModuleInlineAsm();
2384    if (S.empty())
2385      getModule().setModuleInlineAsm(AsmString);
2386    else if (*--S.end() == '\n')
2387      getModule().setModuleInlineAsm(S + AsmString.str());
2388    else
2389      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2390    break;
2391  }
2392
2393  default:
2394    // Make sure we handled everything we should, every other kind is a
2395    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2396    // function. Need to recode Decl::Kind to do that easily.
2397    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2398  }
2399}
2400
2401/// Turns the given pointer into a constant.
2402static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2403                                          const void *Ptr) {
2404  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2405  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2406  return llvm::ConstantInt::get(i64, PtrInt);
2407}
2408
2409static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2410                                   llvm::NamedMDNode *&GlobalMetadata,
2411                                   GlobalDecl D,
2412                                   llvm::GlobalValue *Addr) {
2413  if (!GlobalMetadata)
2414    GlobalMetadata =
2415      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2416
2417  // TODO: should we report variant information for ctors/dtors?
2418  llvm::Value *Ops[] = {
2419    Addr,
2420    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2421  };
2422  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2423}
2424
2425/// Emits metadata nodes associating all the global values in the
2426/// current module with the Decls they came from.  This is useful for
2427/// projects using IR gen as a subroutine.
2428///
2429/// Since there's currently no way to associate an MDNode directly
2430/// with an llvm::GlobalValue, we create a global named metadata
2431/// with the name 'clang.global.decl.ptrs'.
2432void CodeGenModule::EmitDeclMetadata() {
2433  llvm::NamedMDNode *GlobalMetadata = 0;
2434
2435  // StaticLocalDeclMap
2436  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2437         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2438       I != E; ++I) {
2439    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2440    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2441  }
2442}
2443
2444/// Emits metadata nodes for all the local variables in the current
2445/// function.
2446void CodeGenFunction::EmitDeclMetadata() {
2447  if (LocalDeclMap.empty()) return;
2448
2449  llvm::LLVMContext &Context = getLLVMContext();
2450
2451  // Find the unique metadata ID for this name.
2452  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2453
2454  llvm::NamedMDNode *GlobalMetadata = 0;
2455
2456  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2457         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2458    const Decl *D = I->first;
2459    llvm::Value *Addr = I->second;
2460
2461    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2462      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2463      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2464    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2465      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2466      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2467    }
2468  }
2469}
2470
2471void CodeGenModule::EmitCoverageFile() {
2472  if (!getCodeGenOpts().CoverageFile.empty()) {
2473    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2474      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2475      llvm::LLVMContext &Ctx = TheModule.getContext();
2476      llvm::MDString *CoverageFile =
2477          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2478      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2479        llvm::MDNode *CU = CUNode->getOperand(i);
2480        llvm::Value *node[] = { CoverageFile, CU };
2481        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2482        GCov->addOperand(N);
2483      }
2484    }
2485  }
2486}
2487