CodeGenModule.cpp revision 206275
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "TargetInfo.h"
21#include "clang/CodeGen/CodeGenOptions.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/Diagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Basic/ConvertUTF.h"
32#include "llvm/CallingConv.h"
33#include "llvm/Module.h"
34#include "llvm/Intrinsics.h"
35#include "llvm/LLVMContext.h"
36#include "llvm/ADT/Triple.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Support/ErrorHandling.h"
39using namespace clang;
40using namespace CodeGen;
41
42
43CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                             llvm::Module &M, const llvm::TargetData &TD,
45                             Diagnostic &diags)
46  : BlockModule(C, M, TD, Types, *this), Context(C),
47    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50    MangleCtx(C), VTables(*this), Runtime(0), CFConstantStringClassRef(0),
51    VMContext(M.getContext()) {
52
53  if (!Features.ObjC1)
54    Runtime = 0;
55  else if (!Features.NeXTRuntime)
56    Runtime = CreateGNUObjCRuntime(*this);
57  else if (Features.ObjCNonFragileABI)
58    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
59  else
60    Runtime = CreateMacObjCRuntime(*this);
61
62  // If debug info generation is enabled, create the CGDebugInfo object.
63  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
64}
65
66CodeGenModule::~CodeGenModule() {
67  delete Runtime;
68  delete DebugInfo;
69}
70
71void CodeGenModule::createObjCRuntime() {
72  if (!Features.NeXTRuntime)
73    Runtime = CreateGNUObjCRuntime(*this);
74  else if (Features.ObjCNonFragileABI)
75    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
76  else
77    Runtime = CreateMacObjCRuntime(*this);
78}
79
80void CodeGenModule::Release() {
81  EmitFundamentalRTTIDescriptors();
82  EmitDeferred();
83  EmitCXXGlobalInitFunc();
84  EmitCXXGlobalDtorFunc();
85  if (Runtime)
86    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
87      AddGlobalCtor(ObjCInitFunction);
88  EmitCtorList(GlobalCtors, "llvm.global_ctors");
89  EmitCtorList(GlobalDtors, "llvm.global_dtors");
90  EmitAnnotations();
91  EmitLLVMUsed();
92}
93
94bool CodeGenModule::isTargetDarwin() const {
95  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
96}
97
98/// ErrorUnsupported - Print out an error that codegen doesn't support the
99/// specified stmt yet.
100void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
101                                     bool OmitOnError) {
102  if (OmitOnError && getDiags().hasErrorOccurred())
103    return;
104  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
105                                               "cannot compile this %0 yet");
106  std::string Msg = Type;
107  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
108    << Msg << S->getSourceRange();
109}
110
111/// ErrorUnsupported - Print out an error that codegen doesn't support the
112/// specified decl yet.
113void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
114                                     bool OmitOnError) {
115  if (OmitOnError && getDiags().hasErrorOccurred())
116    return;
117  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
118                                               "cannot compile this %0 yet");
119  std::string Msg = Type;
120  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
121}
122
123LangOptions::VisibilityMode
124CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
125  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
126    if (VD->getStorageClass() == VarDecl::PrivateExtern)
127      return LangOptions::Hidden;
128
129  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
130    switch (attr->getVisibility()) {
131    default: assert(0 && "Unknown visibility!");
132    case VisibilityAttr::DefaultVisibility:
133      return LangOptions::Default;
134    case VisibilityAttr::HiddenVisibility:
135      return LangOptions::Hidden;
136    case VisibilityAttr::ProtectedVisibility:
137      return LangOptions::Protected;
138    }
139  }
140
141  // This decl should have the same visibility as its parent.
142  if (const DeclContext *DC = D->getDeclContext())
143    return getDeclVisibilityMode(cast<Decl>(DC));
144
145  return getLangOptions().getVisibilityMode();
146}
147
148void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
149                                        const Decl *D) const {
150  // Internal definitions always have default visibility.
151  if (GV->hasLocalLinkage()) {
152    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
153    return;
154  }
155
156  switch (getDeclVisibilityMode(D)) {
157  default: assert(0 && "Unknown visibility!");
158  case LangOptions::Default:
159    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
160  case LangOptions::Hidden:
161    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
162  case LangOptions::Protected:
163    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
164  }
165}
166
167void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
168  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
169
170  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
171    return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
172  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
173    return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
174
175  return getMangledName(Buffer, ND);
176}
177
178/// \brief Retrieves the mangled name for the given declaration.
179///
180/// If the given declaration requires a mangled name, returns an
181/// const char* containing the mangled name.  Otherwise, returns
182/// the unmangled name.
183///
184void CodeGenModule::getMangledName(MangleBuffer &Buffer,
185                                   const NamedDecl *ND) {
186  if (!getMangleContext().shouldMangleDeclName(ND)) {
187    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
188    Buffer.setString(ND->getNameAsCString());
189    return;
190  }
191
192  getMangleContext().mangleName(ND, Buffer.getBuffer());
193}
194
195llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
196  return getModule().getNamedValue(Name);
197}
198
199/// AddGlobalCtor - Add a function to the list that will be called before
200/// main() runs.
201void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
202  // FIXME: Type coercion of void()* types.
203  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
204}
205
206/// AddGlobalDtor - Add a function to the list that will be called
207/// when the module is unloaded.
208void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
209  // FIXME: Type coercion of void()* types.
210  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
211}
212
213void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
214  // Ctor function type is void()*.
215  llvm::FunctionType* CtorFTy =
216    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
217                            std::vector<const llvm::Type*>(),
218                            false);
219  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
220
221  // Get the type of a ctor entry, { i32, void ()* }.
222  llvm::StructType* CtorStructTy =
223    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
224                          llvm::PointerType::getUnqual(CtorFTy), NULL);
225
226  // Construct the constructor and destructor arrays.
227  std::vector<llvm::Constant*> Ctors;
228  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
229    std::vector<llvm::Constant*> S;
230    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
231                I->second, false));
232    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
233    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
234  }
235
236  if (!Ctors.empty()) {
237    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
238    new llvm::GlobalVariable(TheModule, AT, false,
239                             llvm::GlobalValue::AppendingLinkage,
240                             llvm::ConstantArray::get(AT, Ctors),
241                             GlobalName);
242  }
243}
244
245void CodeGenModule::EmitAnnotations() {
246  if (Annotations.empty())
247    return;
248
249  // Create a new global variable for the ConstantStruct in the Module.
250  llvm::Constant *Array =
251  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
252                                                Annotations.size()),
253                           Annotations);
254  llvm::GlobalValue *gv =
255  new llvm::GlobalVariable(TheModule, Array->getType(), false,
256                           llvm::GlobalValue::AppendingLinkage, Array,
257                           "llvm.global.annotations");
258  gv->setSection("llvm.metadata");
259}
260
261static CodeGenModule::GVALinkage
262GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
263                      const LangOptions &Features) {
264  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
265
266  Linkage L = FD->getLinkage();
267  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
268      FD->getType()->getLinkage() == UniqueExternalLinkage)
269    L = UniqueExternalLinkage;
270
271  switch (L) {
272  case NoLinkage:
273  case InternalLinkage:
274  case UniqueExternalLinkage:
275    return CodeGenModule::GVA_Internal;
276
277  case ExternalLinkage:
278    switch (FD->getTemplateSpecializationKind()) {
279    case TSK_Undeclared:
280    case TSK_ExplicitSpecialization:
281      External = CodeGenModule::GVA_StrongExternal;
282      break;
283
284    case TSK_ExplicitInstantiationDefinition:
285      return CodeGenModule::GVA_ExplicitTemplateInstantiation;
286
287    case TSK_ExplicitInstantiationDeclaration:
288    case TSK_ImplicitInstantiation:
289      External = CodeGenModule::GVA_TemplateInstantiation;
290      break;
291    }
292  }
293
294  if (!FD->isInlined())
295    return External;
296
297  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
298    // GNU or C99 inline semantics. Determine whether this symbol should be
299    // externally visible.
300    if (FD->isInlineDefinitionExternallyVisible())
301      return External;
302
303    // C99 inline semantics, where the symbol is not externally visible.
304    return CodeGenModule::GVA_C99Inline;
305  }
306
307  // C++0x [temp.explicit]p9:
308  //   [ Note: The intent is that an inline function that is the subject of
309  //   an explicit instantiation declaration will still be implicitly
310  //   instantiated when used so that the body can be considered for
311  //   inlining, but that no out-of-line copy of the inline function would be
312  //   generated in the translation unit. -- end note ]
313  if (FD->getTemplateSpecializationKind()
314                                       == TSK_ExplicitInstantiationDeclaration)
315    return CodeGenModule::GVA_C99Inline;
316
317  return CodeGenModule::GVA_CXXInline;
318}
319
320llvm::GlobalValue::LinkageTypes
321CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
322  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
323
324  if (Linkage == GVA_Internal) {
325    return llvm::Function::InternalLinkage;
326  } else if (D->hasAttr<DLLExportAttr>()) {
327    return llvm::Function::DLLExportLinkage;
328  } else if (D->hasAttr<WeakAttr>()) {
329    return llvm::Function::WeakAnyLinkage;
330  } else if (Linkage == GVA_C99Inline) {
331    // In C99 mode, 'inline' functions are guaranteed to have a strong
332    // definition somewhere else, so we can use available_externally linkage.
333    return llvm::Function::AvailableExternallyLinkage;
334  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
335    // In C++, the compiler has to emit a definition in every translation unit
336    // that references the function.  We should use linkonce_odr because
337    // a) if all references in this translation unit are optimized away, we
338    // don't need to codegen it.  b) if the function persists, it needs to be
339    // merged with other definitions. c) C++ has the ODR, so we know the
340    // definition is dependable.
341    return llvm::Function::LinkOnceODRLinkage;
342  } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
343    // An explicit instantiation of a template has weak linkage, since
344    // explicit instantiations can occur in multiple translation units
345    // and must all be equivalent. However, we are not allowed to
346    // throw away these explicit instantiations.
347    return llvm::Function::WeakODRLinkage;
348  } else {
349    assert(Linkage == GVA_StrongExternal);
350    // Otherwise, we have strong external linkage.
351    return llvm::Function::ExternalLinkage;
352  }
353}
354
355
356/// SetFunctionDefinitionAttributes - Set attributes for a global.
357///
358/// FIXME: This is currently only done for aliases and functions, but not for
359/// variables (these details are set in EmitGlobalVarDefinition for variables).
360void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
361                                                    llvm::GlobalValue *GV) {
362  GV->setLinkage(getFunctionLinkage(D));
363  SetCommonAttributes(D, GV);
364}
365
366void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
367                                              const CGFunctionInfo &Info,
368                                              llvm::Function *F) {
369  unsigned CallingConv;
370  AttributeListType AttributeList;
371  ConstructAttributeList(Info, D, AttributeList, CallingConv);
372  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
373                                          AttributeList.size()));
374  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
375}
376
377void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
378                                                           llvm::Function *F) {
379  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
380    F->addFnAttr(llvm::Attribute::NoUnwind);
381
382  if (D->hasAttr<AlwaysInlineAttr>())
383    F->addFnAttr(llvm::Attribute::AlwaysInline);
384
385  if (D->hasAttr<NoInlineAttr>())
386    F->addFnAttr(llvm::Attribute::NoInline);
387
388  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
389    F->addFnAttr(llvm::Attribute::StackProtect);
390  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
391    F->addFnAttr(llvm::Attribute::StackProtectReq);
392
393  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
394    unsigned width = Context.Target.getCharWidth();
395    F->setAlignment(AA->getAlignment() / width);
396    while ((AA = AA->getNext<AlignedAttr>()))
397      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
398  }
399  // C++ ABI requires 2-byte alignment for member functions.
400  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
401    F->setAlignment(2);
402}
403
404void CodeGenModule::SetCommonAttributes(const Decl *D,
405                                        llvm::GlobalValue *GV) {
406  setGlobalVisibility(GV, D);
407
408  if (D->hasAttr<UsedAttr>())
409    AddUsedGlobal(GV);
410
411  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
412    GV->setSection(SA->getName());
413
414  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
415}
416
417void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
418                                                  llvm::Function *F,
419                                                  const CGFunctionInfo &FI) {
420  SetLLVMFunctionAttributes(D, FI, F);
421  SetLLVMFunctionAttributesForDefinition(D, F);
422
423  F->setLinkage(llvm::Function::InternalLinkage);
424
425  SetCommonAttributes(D, F);
426}
427
428void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
429                                          llvm::Function *F,
430                                          bool IsIncompleteFunction) {
431  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
432
433  if (!IsIncompleteFunction)
434    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
435
436  // Only a few attributes are set on declarations; these may later be
437  // overridden by a definition.
438
439  if (FD->hasAttr<DLLImportAttr>()) {
440    F->setLinkage(llvm::Function::DLLImportLinkage);
441  } else if (FD->hasAttr<WeakAttr>() ||
442             FD->hasAttr<WeakImportAttr>()) {
443    // "extern_weak" is overloaded in LLVM; we probably should have
444    // separate linkage types for this.
445    F->setLinkage(llvm::Function::ExternalWeakLinkage);
446  } else {
447    F->setLinkage(llvm::Function::ExternalLinkage);
448  }
449
450  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
451    F->setSection(SA->getName());
452}
453
454void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
455  assert(!GV->isDeclaration() &&
456         "Only globals with definition can force usage.");
457  LLVMUsed.push_back(GV);
458}
459
460void CodeGenModule::EmitLLVMUsed() {
461  // Don't create llvm.used if there is no need.
462  if (LLVMUsed.empty())
463    return;
464
465  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
466
467  // Convert LLVMUsed to what ConstantArray needs.
468  std::vector<llvm::Constant*> UsedArray;
469  UsedArray.resize(LLVMUsed.size());
470  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
471    UsedArray[i] =
472     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
473                                      i8PTy);
474  }
475
476  if (UsedArray.empty())
477    return;
478  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
479
480  llvm::GlobalVariable *GV =
481    new llvm::GlobalVariable(getModule(), ATy, false,
482                             llvm::GlobalValue::AppendingLinkage,
483                             llvm::ConstantArray::get(ATy, UsedArray),
484                             "llvm.used");
485
486  GV->setSection("llvm.metadata");
487}
488
489void CodeGenModule::EmitDeferred() {
490  // Emit code for any potentially referenced deferred decls.  Since a
491  // previously unused static decl may become used during the generation of code
492  // for a static function, iterate until no  changes are made.
493
494  while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
495    if (!DeferredVtables.empty()) {
496      const CXXRecordDecl *RD = DeferredVtables.back();
497      DeferredVtables.pop_back();
498      getVTables().GenerateClassData(getVtableLinkage(RD), RD);
499      continue;
500    }
501
502    GlobalDecl D = DeferredDeclsToEmit.back();
503    DeferredDeclsToEmit.pop_back();
504
505    // Look it up to see if it was defined with a stronger definition (e.g. an
506    // extern inline function with a strong function redefinition).  If so,
507    // just ignore the deferred decl.
508    MangleBuffer Name;
509    getMangledName(Name, D);
510    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
511    assert(CGRef && "Deferred decl wasn't referenced?");
512
513    if (!CGRef->isDeclaration())
514      continue;
515
516    // Otherwise, emit the definition and move on to the next one.
517    EmitGlobalDefinition(D);
518  }
519}
520
521/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
522/// annotation information for a given GlobalValue.  The annotation struct is
523/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
524/// GlobalValue being annotated.  The second field is the constant string
525/// created from the AnnotateAttr's annotation.  The third field is a constant
526/// string containing the name of the translation unit.  The fourth field is
527/// the line number in the file of the annotated value declaration.
528///
529/// FIXME: this does not unique the annotation string constants, as llvm-gcc
530///        appears to.
531///
532llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
533                                                const AnnotateAttr *AA,
534                                                unsigned LineNo) {
535  llvm::Module *M = &getModule();
536
537  // get [N x i8] constants for the annotation string, and the filename string
538  // which are the 2nd and 3rd elements of the global annotation structure.
539  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
540  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
541                                                  AA->getAnnotation(), true);
542  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
543                                                  M->getModuleIdentifier(),
544                                                  true);
545
546  // Get the two global values corresponding to the ConstantArrays we just
547  // created to hold the bytes of the strings.
548  llvm::GlobalValue *annoGV =
549    new llvm::GlobalVariable(*M, anno->getType(), false,
550                             llvm::GlobalValue::PrivateLinkage, anno,
551                             GV->getName());
552  // translation unit name string, emitted into the llvm.metadata section.
553  llvm::GlobalValue *unitGV =
554    new llvm::GlobalVariable(*M, unit->getType(), false,
555                             llvm::GlobalValue::PrivateLinkage, unit,
556                             ".str");
557
558  // Create the ConstantStruct for the global annotation.
559  llvm::Constant *Fields[4] = {
560    llvm::ConstantExpr::getBitCast(GV, SBP),
561    llvm::ConstantExpr::getBitCast(annoGV, SBP),
562    llvm::ConstantExpr::getBitCast(unitGV, SBP),
563    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
564  };
565  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
566}
567
568bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
569  // Never defer when EmitAllDecls is specified or the decl has
570  // attribute used.
571  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
572    return false;
573
574  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
575    // Constructors and destructors should never be deferred.
576    if (FD->hasAttr<ConstructorAttr>() ||
577        FD->hasAttr<DestructorAttr>())
578      return false;
579
580    // The key function for a class must never be deferred.
581    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
582      const CXXRecordDecl *RD = MD->getParent();
583      if (MD->isOutOfLine() && RD->isDynamicClass()) {
584        const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
585        if (KeyFunction &&
586            KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
587          return false;
588      }
589    }
590
591    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
592
593    // static, static inline, always_inline, and extern inline functions can
594    // always be deferred.  Normal inline functions can be deferred in C99/C++.
595    // Implicit template instantiations can also be deferred in C++.
596    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
597        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
598      return true;
599    return false;
600  }
601
602  const VarDecl *VD = cast<VarDecl>(Global);
603  assert(VD->isFileVarDecl() && "Invalid decl");
604
605  // We never want to defer structs that have non-trivial constructors or
606  // destructors.
607
608  // FIXME: Handle references.
609  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
610    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
611      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
612        return false;
613    }
614  }
615
616  // Static data may be deferred, but out-of-line static data members
617  // cannot be.
618  Linkage L = VD->getLinkage();
619  if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
620      VD->getType()->getLinkage() == UniqueExternalLinkage)
621    L = UniqueExternalLinkage;
622
623  switch (L) {
624  case NoLinkage:
625  case InternalLinkage:
626  case UniqueExternalLinkage:
627    // Initializer has side effects?
628    if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
629      return false;
630    return !(VD->isStaticDataMember() && VD->isOutOfLine());
631
632  case ExternalLinkage:
633    break;
634  }
635
636  return false;
637}
638
639llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
640  const AliasAttr *AA = VD->getAttr<AliasAttr>();
641  assert(AA && "No alias?");
642
643  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
644
645  // See if there is already something with the target's name in the module.
646  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
647
648  llvm::Constant *Aliasee;
649  if (isa<llvm::FunctionType>(DeclTy))
650    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
651  else
652    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
653                                    llvm::PointerType::getUnqual(DeclTy), 0);
654  if (!Entry) {
655    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
656    F->setLinkage(llvm::Function::ExternalWeakLinkage);
657    WeakRefReferences.insert(F);
658  }
659
660  return Aliasee;
661}
662
663void CodeGenModule::EmitGlobal(GlobalDecl GD) {
664  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
665
666  // Weak references don't produce any output by themselves.
667  if (Global->hasAttr<WeakRefAttr>())
668    return;
669
670  // If this is an alias definition (which otherwise looks like a declaration)
671  // emit it now.
672  if (Global->hasAttr<AliasAttr>())
673    return EmitAliasDefinition(GD);
674
675  // Ignore declarations, they will be emitted on their first use.
676  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
677    // Forward declarations are emitted lazily on first use.
678    if (!FD->isThisDeclarationADefinition())
679      return;
680  } else {
681    const VarDecl *VD = cast<VarDecl>(Global);
682    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
683
684    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
685      return;
686  }
687
688  // Defer code generation when possible if this is a static definition, inline
689  // function etc.  These we only want to emit if they are used.
690  if (MayDeferGeneration(Global)) {
691    // If the value has already been used, add it directly to the
692    // DeferredDeclsToEmit list.
693    MangleBuffer MangledName;
694    getMangledName(MangledName, GD);
695    if (GetGlobalValue(MangledName))
696      DeferredDeclsToEmit.push_back(GD);
697    else {
698      // Otherwise, remember that we saw a deferred decl with this name.  The
699      // first use of the mangled name will cause it to move into
700      // DeferredDeclsToEmit.
701      DeferredDecls[MangledName] = GD;
702    }
703    return;
704  }
705
706  // Otherwise emit the definition.
707  EmitGlobalDefinition(GD);
708}
709
710void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
711  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
712
713  PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
714                                 Context.getSourceManager(),
715                                 "Generating code for declaration");
716
717  if (isa<CXXMethodDecl>(D))
718    getVTables().EmitVTableRelatedData(GD);
719
720  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
721    EmitCXXConstructor(CD, GD.getCtorType());
722  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
723    EmitCXXDestructor(DD, GD.getDtorType());
724  else if (isa<FunctionDecl>(D))
725    EmitGlobalFunctionDefinition(GD);
726  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
727    EmitGlobalVarDefinition(VD);
728  else {
729    assert(0 && "Invalid argument to EmitGlobalDefinition()");
730  }
731}
732
733/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
734/// module, create and return an llvm Function with the specified type. If there
735/// is something in the module with the specified name, return it potentially
736/// bitcasted to the right type.
737///
738/// If D is non-null, it specifies a decl that correspond to this.  This is used
739/// to set the attributes on the function when it is first created.
740llvm::Constant *
741CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
742                                       const llvm::Type *Ty,
743                                       GlobalDecl D) {
744  // Lookup the entry, lazily creating it if necessary.
745  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
746  if (Entry) {
747    if (WeakRefReferences.count(Entry)) {
748      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
749      if (FD && !FD->hasAttr<WeakAttr>())
750        Entry->setLinkage(llvm::Function::ExternalLinkage);
751
752      WeakRefReferences.erase(Entry);
753    }
754
755    if (Entry->getType()->getElementType() == Ty)
756      return Entry;
757
758    // Make sure the result is of the correct type.
759    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
760    return llvm::ConstantExpr::getBitCast(Entry, PTy);
761  }
762
763  // This function doesn't have a complete type (for example, the return
764  // type is an incomplete struct). Use a fake type instead, and make
765  // sure not to try to set attributes.
766  bool IsIncompleteFunction = false;
767  if (!isa<llvm::FunctionType>(Ty)) {
768    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
769                                 std::vector<const llvm::Type*>(), false);
770    IsIncompleteFunction = true;
771  }
772  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
773                                             llvm::Function::ExternalLinkage,
774                                             MangledName, &getModule());
775  assert(F->getName() == MangledName && "name was uniqued!");
776  if (D.getDecl())
777    SetFunctionAttributes(D, F, IsIncompleteFunction);
778
779  // This is the first use or definition of a mangled name.  If there is a
780  // deferred decl with this name, remember that we need to emit it at the end
781  // of the file.
782  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
783  if (DDI != DeferredDecls.end()) {
784    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
785    // list, and remove it from DeferredDecls (since we don't need it anymore).
786    DeferredDeclsToEmit.push_back(DDI->second);
787    DeferredDecls.erase(DDI);
788  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
789    // If this the first reference to a C++ inline function in a class, queue up
790    // the deferred function body for emission.  These are not seen as
791    // top-level declarations.
792    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
793      DeferredDeclsToEmit.push_back(D);
794    // A called constructor which has no definition or declaration need be
795    // synthesized.
796    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
797      if (CD->isImplicit()) {
798        assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
799        DeferredDeclsToEmit.push_back(D);
800      }
801    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
802      if (DD->isImplicit()) {
803        assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
804        DeferredDeclsToEmit.push_back(D);
805      }
806    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
807      if (MD->isCopyAssignment() && MD->isImplicit()) {
808        assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
809        DeferredDeclsToEmit.push_back(D);
810      }
811    }
812  }
813
814  return F;
815}
816
817/// GetAddrOfFunction - Return the address of the given function.  If Ty is
818/// non-null, then this function will use the specified type if it has to
819/// create it (this occurs when we see a definition of the function).
820llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
821                                                 const llvm::Type *Ty) {
822  // If there was no specific requested type, just convert it now.
823  if (!Ty)
824    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
825  MangleBuffer MangledName;
826  getMangledName(MangledName, GD);
827  return GetOrCreateLLVMFunction(MangledName, Ty, GD);
828}
829
830/// CreateRuntimeFunction - Create a new runtime function with the specified
831/// type and name.
832llvm::Constant *
833CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
834                                     llvm::StringRef Name) {
835  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
836}
837
838static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
839  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
840    return false;
841  if (Context.getLangOptions().CPlusPlus &&
842      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
843    // FIXME: We should do something fancier here!
844    return false;
845  }
846  return true;
847}
848
849/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
850/// create and return an llvm GlobalVariable with the specified type.  If there
851/// is something in the module with the specified name, return it potentially
852/// bitcasted to the right type.
853///
854/// If D is non-null, it specifies a decl that correspond to this.  This is used
855/// to set the attributes on the global when it is first created.
856llvm::Constant *
857CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
858                                     const llvm::PointerType *Ty,
859                                     const VarDecl *D) {
860  // Lookup the entry, lazily creating it if necessary.
861  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
862  if (Entry) {
863    if (WeakRefReferences.count(Entry)) {
864      if (D && !D->hasAttr<WeakAttr>())
865        Entry->setLinkage(llvm::Function::ExternalLinkage);
866
867      WeakRefReferences.erase(Entry);
868    }
869
870    if (Entry->getType() == Ty)
871      return Entry;
872
873    // Make sure the result is of the correct type.
874    return llvm::ConstantExpr::getBitCast(Entry, Ty);
875  }
876
877  // This is the first use or definition of a mangled name.  If there is a
878  // deferred decl with this name, remember that we need to emit it at the end
879  // of the file.
880  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
881  if (DDI != DeferredDecls.end()) {
882    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
883    // list, and remove it from DeferredDecls (since we don't need it anymore).
884    DeferredDeclsToEmit.push_back(DDI->second);
885    DeferredDecls.erase(DDI);
886  }
887
888  llvm::GlobalVariable *GV =
889    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
890                             llvm::GlobalValue::ExternalLinkage,
891                             0, MangledName, 0,
892                             false, Ty->getAddressSpace());
893
894  // Handle things which are present even on external declarations.
895  if (D) {
896    // FIXME: This code is overly simple and should be merged with other global
897    // handling.
898    GV->setConstant(DeclIsConstantGlobal(Context, D));
899
900    // FIXME: Merge with other attribute handling code.
901    if (D->getStorageClass() == VarDecl::PrivateExtern)
902      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
903
904    if (D->hasAttr<WeakAttr>() ||
905        D->hasAttr<WeakImportAttr>())
906      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
907
908    GV->setThreadLocal(D->isThreadSpecified());
909  }
910
911  return GV;
912}
913
914
915/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
916/// given global variable.  If Ty is non-null and if the global doesn't exist,
917/// then it will be greated with the specified type instead of whatever the
918/// normal requested type would be.
919llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
920                                                  const llvm::Type *Ty) {
921  assert(D->hasGlobalStorage() && "Not a global variable");
922  QualType ASTTy = D->getType();
923  if (Ty == 0)
924    Ty = getTypes().ConvertTypeForMem(ASTTy);
925
926  const llvm::PointerType *PTy =
927    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
928
929  MangleBuffer MangledName;
930  getMangledName(MangledName, D);
931  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
932}
933
934/// CreateRuntimeVariable - Create a new runtime global variable with the
935/// specified type and name.
936llvm::Constant *
937CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
938                                     llvm::StringRef Name) {
939  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
940}
941
942void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
943  assert(!D->getInit() && "Cannot emit definite definitions here!");
944
945  if (MayDeferGeneration(D)) {
946    // If we have not seen a reference to this variable yet, place it
947    // into the deferred declarations table to be emitted if needed
948    // later.
949    MangleBuffer MangledName;
950    getMangledName(MangledName, D);
951    if (!GetGlobalValue(MangledName)) {
952      DeferredDecls[MangledName] = D;
953      return;
954    }
955  }
956
957  // The tentative definition is the only definition.
958  EmitGlobalVarDefinition(D);
959}
960
961llvm::GlobalVariable::LinkageTypes
962CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
963  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
964    return llvm::GlobalVariable::InternalLinkage;
965
966  if (const CXXMethodDecl *KeyFunction
967                                    = RD->getASTContext().getKeyFunction(RD)) {
968    // If this class has a key function, use that to determine the linkage of
969    // the vtable.
970    const FunctionDecl *Def = 0;
971    if (KeyFunction->getBody(Def))
972      KeyFunction = cast<CXXMethodDecl>(Def);
973
974    switch (KeyFunction->getTemplateSpecializationKind()) {
975      case TSK_Undeclared:
976      case TSK_ExplicitSpecialization:
977        if (KeyFunction->isInlined())
978          return llvm::GlobalVariable::WeakODRLinkage;
979
980        return llvm::GlobalVariable::ExternalLinkage;
981
982      case TSK_ImplicitInstantiation:
983      case TSK_ExplicitInstantiationDefinition:
984        return llvm::GlobalVariable::WeakODRLinkage;
985
986      case TSK_ExplicitInstantiationDeclaration:
987        // FIXME: Use available_externally linkage. However, this currently
988        // breaks LLVM's build due to undefined symbols.
989        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
990        return llvm::GlobalVariable::WeakODRLinkage;
991    }
992  }
993
994  switch (RD->getTemplateSpecializationKind()) {
995  case TSK_Undeclared:
996  case TSK_ExplicitSpecialization:
997  case TSK_ImplicitInstantiation:
998  case TSK_ExplicitInstantiationDefinition:
999    return llvm::GlobalVariable::WeakODRLinkage;
1000
1001  case TSK_ExplicitInstantiationDeclaration:
1002    // FIXME: Use available_externally linkage. However, this currently
1003    // breaks LLVM's build due to undefined symbols.
1004    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1005    return llvm::GlobalVariable::WeakODRLinkage;
1006  }
1007
1008  // Silence GCC warning.
1009  return llvm::GlobalVariable::WeakODRLinkage;
1010}
1011
1012static CodeGenModule::GVALinkage
1013GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1014  // If this is a static data member, compute the kind of template
1015  // specialization. Otherwise, this variable is not part of a
1016  // template.
1017  TemplateSpecializationKind TSK = TSK_Undeclared;
1018  if (VD->isStaticDataMember())
1019    TSK = VD->getTemplateSpecializationKind();
1020
1021  Linkage L = VD->getLinkage();
1022  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1023      VD->getType()->getLinkage() == UniqueExternalLinkage)
1024    L = UniqueExternalLinkage;
1025
1026  switch (L) {
1027  case NoLinkage:
1028  case InternalLinkage:
1029  case UniqueExternalLinkage:
1030    return CodeGenModule::GVA_Internal;
1031
1032  case ExternalLinkage:
1033    switch (TSK) {
1034    case TSK_Undeclared:
1035    case TSK_ExplicitSpecialization:
1036      return CodeGenModule::GVA_StrongExternal;
1037
1038    case TSK_ExplicitInstantiationDeclaration:
1039      llvm_unreachable("Variable should not be instantiated");
1040      // Fall through to treat this like any other instantiation.
1041
1042    case TSK_ExplicitInstantiationDefinition:
1043      return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1044
1045    case TSK_ImplicitInstantiation:
1046      return CodeGenModule::GVA_TemplateInstantiation;
1047    }
1048  }
1049
1050  return CodeGenModule::GVA_StrongExternal;
1051}
1052
1053CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1054    return CharUnits::fromQuantity(
1055      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1056}
1057
1058void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1059  llvm::Constant *Init = 0;
1060  QualType ASTTy = D->getType();
1061  bool NonConstInit = false;
1062
1063  const Expr *InitExpr = D->getAnyInitializer();
1064
1065  if (!InitExpr) {
1066    // This is a tentative definition; tentative definitions are
1067    // implicitly initialized with { 0 }.
1068    //
1069    // Note that tentative definitions are only emitted at the end of
1070    // a translation unit, so they should never have incomplete
1071    // type. In addition, EmitTentativeDefinition makes sure that we
1072    // never attempt to emit a tentative definition if a real one
1073    // exists. A use may still exists, however, so we still may need
1074    // to do a RAUW.
1075    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1076    Init = EmitNullConstant(D->getType());
1077  } else {
1078    Init = EmitConstantExpr(InitExpr, D->getType());
1079
1080    if (!Init) {
1081      QualType T = InitExpr->getType();
1082      if (getLangOptions().CPlusPlus) {
1083        EmitCXXGlobalVarDeclInitFunc(D);
1084        Init = EmitNullConstant(T);
1085        NonConstInit = true;
1086      } else {
1087        ErrorUnsupported(D, "static initializer");
1088        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1089      }
1090    }
1091  }
1092
1093  const llvm::Type* InitType = Init->getType();
1094  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1095
1096  // Strip off a bitcast if we got one back.
1097  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1098    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1099           // all zero index gep.
1100           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1101    Entry = CE->getOperand(0);
1102  }
1103
1104  // Entry is now either a Function or GlobalVariable.
1105  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1106
1107  // We have a definition after a declaration with the wrong type.
1108  // We must make a new GlobalVariable* and update everything that used OldGV
1109  // (a declaration or tentative definition) with the new GlobalVariable*
1110  // (which will be a definition).
1111  //
1112  // This happens if there is a prototype for a global (e.g.
1113  // "extern int x[];") and then a definition of a different type (e.g.
1114  // "int x[10];"). This also happens when an initializer has a different type
1115  // from the type of the global (this happens with unions).
1116  if (GV == 0 ||
1117      GV->getType()->getElementType() != InitType ||
1118      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1119
1120    // Move the old entry aside so that we'll create a new one.
1121    Entry->setName(llvm::StringRef());
1122
1123    // Make a new global with the correct type, this is now guaranteed to work.
1124    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1125
1126    // Replace all uses of the old global with the new global
1127    llvm::Constant *NewPtrForOldDecl =
1128        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1129    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1130
1131    // Erase the old global, since it is no longer used.
1132    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1133  }
1134
1135  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1136    SourceManager &SM = Context.getSourceManager();
1137    AddAnnotation(EmitAnnotateAttr(GV, AA,
1138                              SM.getInstantiationLineNumber(D->getLocation())));
1139  }
1140
1141  GV->setInitializer(Init);
1142
1143  // If it is safe to mark the global 'constant', do so now.
1144  GV->setConstant(false);
1145  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1146    GV->setConstant(true);
1147
1148  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1149
1150  // Set the llvm linkage type as appropriate.
1151  GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1152  if (Linkage == GVA_Internal)
1153    GV->setLinkage(llvm::Function::InternalLinkage);
1154  else if (D->hasAttr<DLLImportAttr>())
1155    GV->setLinkage(llvm::Function::DLLImportLinkage);
1156  else if (D->hasAttr<DLLExportAttr>())
1157    GV->setLinkage(llvm::Function::DLLExportLinkage);
1158  else if (D->hasAttr<WeakAttr>()) {
1159    if (GV->isConstant())
1160      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1161    else
1162      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1163  } else if (Linkage == GVA_TemplateInstantiation ||
1164             Linkage == GVA_ExplicitTemplateInstantiation)
1165    // FIXME: It seems like we can provide more specific linkage here
1166    // (LinkOnceODR, WeakODR).
1167    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1168  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1169           !D->hasExternalStorage() && !D->getInit() &&
1170           !D->getAttr<SectionAttr>()) {
1171    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1172    // common vars aren't constant even if declared const.
1173    GV->setConstant(false);
1174  } else
1175    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1176
1177  SetCommonAttributes(D, GV);
1178
1179  // Emit global variable debug information.
1180  if (CGDebugInfo *DI = getDebugInfo()) {
1181    DI->setLocation(D->getLocation());
1182    DI->EmitGlobalVariable(GV, D);
1183  }
1184}
1185
1186/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1187/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1188/// existing call uses of the old function in the module, this adjusts them to
1189/// call the new function directly.
1190///
1191/// This is not just a cleanup: the always_inline pass requires direct calls to
1192/// functions to be able to inline them.  If there is a bitcast in the way, it
1193/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1194/// run at -O0.
1195static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1196                                                      llvm::Function *NewFn) {
1197  // If we're redefining a global as a function, don't transform it.
1198  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1199  if (OldFn == 0) return;
1200
1201  const llvm::Type *NewRetTy = NewFn->getReturnType();
1202  llvm::SmallVector<llvm::Value*, 4> ArgList;
1203
1204  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1205       UI != E; ) {
1206    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1207    unsigned OpNo = UI.getOperandNo();
1208    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1209    if (!CI || OpNo != 0) continue;
1210
1211    // If the return types don't match exactly, and if the call isn't dead, then
1212    // we can't transform this call.
1213    if (CI->getType() != NewRetTy && !CI->use_empty())
1214      continue;
1215
1216    // If the function was passed too few arguments, don't transform.  If extra
1217    // arguments were passed, we silently drop them.  If any of the types
1218    // mismatch, we don't transform.
1219    unsigned ArgNo = 0;
1220    bool DontTransform = false;
1221    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1222         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1223      if (CI->getNumOperands()-1 == ArgNo ||
1224          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1225        DontTransform = true;
1226        break;
1227      }
1228    }
1229    if (DontTransform)
1230      continue;
1231
1232    // Okay, we can transform this.  Create the new call instruction and copy
1233    // over the required information.
1234    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1235    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1236                                                     ArgList.end(), "", CI);
1237    ArgList.clear();
1238    if (!NewCall->getType()->isVoidTy())
1239      NewCall->takeName(CI);
1240    NewCall->setAttributes(CI->getAttributes());
1241    NewCall->setCallingConv(CI->getCallingConv());
1242
1243    // Finally, remove the old call, replacing any uses with the new one.
1244    if (!CI->use_empty())
1245      CI->replaceAllUsesWith(NewCall);
1246
1247    // Copy debug location attached to CI.
1248    if (!CI->getDebugLoc().isUnknown())
1249      NewCall->setDebugLoc(CI->getDebugLoc());
1250    CI->eraseFromParent();
1251  }
1252}
1253
1254
1255void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1256  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1257  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1258  getMangleContext().mangleInitDiscriminator();
1259  // Get or create the prototype for the function.
1260  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1261
1262  // Strip off a bitcast if we got one back.
1263  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1264    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1265    Entry = CE->getOperand(0);
1266  }
1267
1268
1269  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1270    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1271
1272    // If the types mismatch then we have to rewrite the definition.
1273    assert(OldFn->isDeclaration() &&
1274           "Shouldn't replace non-declaration");
1275
1276    // F is the Function* for the one with the wrong type, we must make a new
1277    // Function* and update everything that used F (a declaration) with the new
1278    // Function* (which will be a definition).
1279    //
1280    // This happens if there is a prototype for a function
1281    // (e.g. "int f()") and then a definition of a different type
1282    // (e.g. "int f(int x)").  Move the old function aside so that it
1283    // doesn't interfere with GetAddrOfFunction.
1284    OldFn->setName(llvm::StringRef());
1285    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1286
1287    // If this is an implementation of a function without a prototype, try to
1288    // replace any existing uses of the function (which may be calls) with uses
1289    // of the new function
1290    if (D->getType()->isFunctionNoProtoType()) {
1291      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1292      OldFn->removeDeadConstantUsers();
1293    }
1294
1295    // Replace uses of F with the Function we will endow with a body.
1296    if (!Entry->use_empty()) {
1297      llvm::Constant *NewPtrForOldDecl =
1298        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1299      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1300    }
1301
1302    // Ok, delete the old function now, which is dead.
1303    OldFn->eraseFromParent();
1304
1305    Entry = NewFn;
1306  }
1307
1308  llvm::Function *Fn = cast<llvm::Function>(Entry);
1309
1310  CodeGenFunction(*this).GenerateCode(D, Fn);
1311
1312  SetFunctionDefinitionAttributes(D, Fn);
1313  SetLLVMFunctionAttributesForDefinition(D, Fn);
1314
1315  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1316    AddGlobalCtor(Fn, CA->getPriority());
1317  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1318    AddGlobalDtor(Fn, DA->getPriority());
1319}
1320
1321void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1322  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1323  const AliasAttr *AA = D->getAttr<AliasAttr>();
1324  assert(AA && "Not an alias?");
1325
1326  MangleBuffer MangledName;
1327  getMangledName(MangledName, GD);
1328
1329  // If there is a definition in the module, then it wins over the alias.
1330  // This is dubious, but allow it to be safe.  Just ignore the alias.
1331  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1332  if (Entry && !Entry->isDeclaration())
1333    return;
1334
1335  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1336
1337  // Create a reference to the named value.  This ensures that it is emitted
1338  // if a deferred decl.
1339  llvm::Constant *Aliasee;
1340  if (isa<llvm::FunctionType>(DeclTy))
1341    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1342  else
1343    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1344                                    llvm::PointerType::getUnqual(DeclTy), 0);
1345
1346  // Create the new alias itself, but don't set a name yet.
1347  llvm::GlobalValue *GA =
1348    new llvm::GlobalAlias(Aliasee->getType(),
1349                          llvm::Function::ExternalLinkage,
1350                          "", Aliasee, &getModule());
1351
1352  if (Entry) {
1353    assert(Entry->isDeclaration());
1354
1355    // If there is a declaration in the module, then we had an extern followed
1356    // by the alias, as in:
1357    //   extern int test6();
1358    //   ...
1359    //   int test6() __attribute__((alias("test7")));
1360    //
1361    // Remove it and replace uses of it with the alias.
1362    GA->takeName(Entry);
1363
1364    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1365                                                          Entry->getType()));
1366    Entry->eraseFromParent();
1367  } else {
1368    GA->setName(MangledName.getString());
1369  }
1370
1371  // Set attributes which are particular to an alias; this is a
1372  // specialization of the attributes which may be set on a global
1373  // variable/function.
1374  if (D->hasAttr<DLLExportAttr>()) {
1375    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1376      // The dllexport attribute is ignored for undefined symbols.
1377      if (FD->getBody())
1378        GA->setLinkage(llvm::Function::DLLExportLinkage);
1379    } else {
1380      GA->setLinkage(llvm::Function::DLLExportLinkage);
1381    }
1382  } else if (D->hasAttr<WeakAttr>() ||
1383             D->hasAttr<WeakRefAttr>() ||
1384             D->hasAttr<WeakImportAttr>()) {
1385    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1386  }
1387
1388  SetCommonAttributes(D, GA);
1389}
1390
1391/// getBuiltinLibFunction - Given a builtin id for a function like
1392/// "__builtin_fabsf", return a Function* for "fabsf".
1393llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1394                                                  unsigned BuiltinID) {
1395  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1396          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1397         "isn't a lib fn");
1398
1399  // Get the name, skip over the __builtin_ prefix (if necessary).
1400  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1401  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1402    Name += 10;
1403
1404  const llvm::FunctionType *Ty =
1405    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1406
1407  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1408}
1409
1410llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1411                                            unsigned NumTys) {
1412  return llvm::Intrinsic::getDeclaration(&getModule(),
1413                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1414}
1415
1416
1417llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1418                                           const llvm::Type *SrcType,
1419                                           const llvm::Type *SizeType) {
1420  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1421  return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1422}
1423
1424llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1425                                            const llvm::Type *SrcType,
1426                                            const llvm::Type *SizeType) {
1427  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1428  return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1429}
1430
1431llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1432                                           const llvm::Type *SizeType) {
1433  const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1434  return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1435}
1436
1437static llvm::StringMapEntry<llvm::Constant*> &
1438GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1439                         const StringLiteral *Literal,
1440                         bool TargetIsLSB,
1441                         bool &IsUTF16,
1442                         unsigned &StringLength) {
1443  unsigned NumBytes = Literal->getByteLength();
1444
1445  // Check for simple case.
1446  if (!Literal->containsNonAsciiOrNull()) {
1447    StringLength = NumBytes;
1448    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1449                                                StringLength));
1450  }
1451
1452  // Otherwise, convert the UTF8 literals into a byte string.
1453  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1454  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1455  UTF16 *ToPtr = &ToBuf[0];
1456
1457  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1458                                               &ToPtr, ToPtr + NumBytes,
1459                                               strictConversion);
1460
1461  // Check for conversion failure.
1462  if (Result != conversionOK) {
1463    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1464    // this duplicate code.
1465    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1466    StringLength = NumBytes;
1467    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1468                                                StringLength));
1469  }
1470
1471  // ConvertUTF8toUTF16 returns the length in ToPtr.
1472  StringLength = ToPtr - &ToBuf[0];
1473
1474  // Render the UTF-16 string into a byte array and convert to the target byte
1475  // order.
1476  //
1477  // FIXME: This isn't something we should need to do here.
1478  llvm::SmallString<128> AsBytes;
1479  AsBytes.reserve(StringLength * 2);
1480  for (unsigned i = 0; i != StringLength; ++i) {
1481    unsigned short Val = ToBuf[i];
1482    if (TargetIsLSB) {
1483      AsBytes.push_back(Val & 0xFF);
1484      AsBytes.push_back(Val >> 8);
1485    } else {
1486      AsBytes.push_back(Val >> 8);
1487      AsBytes.push_back(Val & 0xFF);
1488    }
1489  }
1490  // Append one extra null character, the second is automatically added by our
1491  // caller.
1492  AsBytes.push_back(0);
1493
1494  IsUTF16 = true;
1495  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1496}
1497
1498llvm::Constant *
1499CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1500  unsigned StringLength = 0;
1501  bool isUTF16 = false;
1502  llvm::StringMapEntry<llvm::Constant*> &Entry =
1503    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1504                             getTargetData().isLittleEndian(),
1505                             isUTF16, StringLength);
1506
1507  if (llvm::Constant *C = Entry.getValue())
1508    return C;
1509
1510  llvm::Constant *Zero =
1511      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1512  llvm::Constant *Zeros[] = { Zero, Zero };
1513
1514  // If we don't already have it, get __CFConstantStringClassReference.
1515  if (!CFConstantStringClassRef) {
1516    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1517    Ty = llvm::ArrayType::get(Ty, 0);
1518    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1519                                           "__CFConstantStringClassReference");
1520    // Decay array -> ptr
1521    CFConstantStringClassRef =
1522      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1523  }
1524
1525  QualType CFTy = getContext().getCFConstantStringType();
1526
1527  const llvm::StructType *STy =
1528    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1529
1530  std::vector<llvm::Constant*> Fields(4);
1531
1532  // Class pointer.
1533  Fields[0] = CFConstantStringClassRef;
1534
1535  // Flags.
1536  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1537  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1538    llvm::ConstantInt::get(Ty, 0x07C8);
1539
1540  // String pointer.
1541  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1542
1543  llvm::GlobalValue::LinkageTypes Linkage;
1544  bool isConstant;
1545  if (isUTF16) {
1546    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1547    Linkage = llvm::GlobalValue::InternalLinkage;
1548    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1549    // does make plain ascii ones writable.
1550    isConstant = true;
1551  } else {
1552    Linkage = llvm::GlobalValue::PrivateLinkage;
1553    isConstant = !Features.WritableStrings;
1554  }
1555
1556  llvm::GlobalVariable *GV =
1557    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1558                             ".str");
1559  if (isUTF16) {
1560    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1561    GV->setAlignment(Align.getQuantity());
1562  }
1563  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1564
1565  // String length.
1566  Ty = getTypes().ConvertType(getContext().LongTy);
1567  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1568
1569  // The struct.
1570  C = llvm::ConstantStruct::get(STy, Fields);
1571  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1572                                llvm::GlobalVariable::PrivateLinkage, C,
1573                                "_unnamed_cfstring_");
1574  if (const char *Sect = getContext().Target.getCFStringSection())
1575    GV->setSection(Sect);
1576  Entry.setValue(GV);
1577
1578  return GV;
1579}
1580
1581/// GetStringForStringLiteral - Return the appropriate bytes for a
1582/// string literal, properly padded to match the literal type.
1583std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1584  const char *StrData = E->getStrData();
1585  unsigned Len = E->getByteLength();
1586
1587  const ConstantArrayType *CAT =
1588    getContext().getAsConstantArrayType(E->getType());
1589  assert(CAT && "String isn't pointer or array!");
1590
1591  // Resize the string to the right size.
1592  std::string Str(StrData, StrData+Len);
1593  uint64_t RealLen = CAT->getSize().getZExtValue();
1594
1595  if (E->isWide())
1596    RealLen *= getContext().Target.getWCharWidth()/8;
1597
1598  Str.resize(RealLen, '\0');
1599
1600  return Str;
1601}
1602
1603/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1604/// constant array for the given string literal.
1605llvm::Constant *
1606CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1607  // FIXME: This can be more efficient.
1608  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1609  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1610  if (S->isWide()) {
1611    llvm::Type *DestTy =
1612        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1613    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1614  }
1615  return C;
1616}
1617
1618/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1619/// array for the given ObjCEncodeExpr node.
1620llvm::Constant *
1621CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1622  std::string Str;
1623  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1624
1625  return GetAddrOfConstantCString(Str);
1626}
1627
1628
1629/// GenerateWritableString -- Creates storage for a string literal.
1630static llvm::Constant *GenerateStringLiteral(const std::string &str,
1631                                             bool constant,
1632                                             CodeGenModule &CGM,
1633                                             const char *GlobalName) {
1634  // Create Constant for this string literal. Don't add a '\0'.
1635  llvm::Constant *C =
1636      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1637
1638  // Create a global variable for this string
1639  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1640                                  llvm::GlobalValue::PrivateLinkage,
1641                                  C, GlobalName);
1642}
1643
1644/// GetAddrOfConstantString - Returns a pointer to a character array
1645/// containing the literal. This contents are exactly that of the
1646/// given string, i.e. it will not be null terminated automatically;
1647/// see GetAddrOfConstantCString. Note that whether the result is
1648/// actually a pointer to an LLVM constant depends on
1649/// Feature.WriteableStrings.
1650///
1651/// The result has pointer to array type.
1652llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1653                                                       const char *GlobalName) {
1654  bool IsConstant = !Features.WritableStrings;
1655
1656  // Get the default prefix if a name wasn't specified.
1657  if (!GlobalName)
1658    GlobalName = ".str";
1659
1660  // Don't share any string literals if strings aren't constant.
1661  if (!IsConstant)
1662    return GenerateStringLiteral(str, false, *this, GlobalName);
1663
1664  llvm::StringMapEntry<llvm::Constant *> &Entry =
1665    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1666
1667  if (Entry.getValue())
1668    return Entry.getValue();
1669
1670  // Create a global variable for this.
1671  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1672  Entry.setValue(C);
1673  return C;
1674}
1675
1676/// GetAddrOfConstantCString - Returns a pointer to a character
1677/// array containing the literal and a terminating '\-'
1678/// character. The result has pointer to array type.
1679llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1680                                                        const char *GlobalName){
1681  return GetAddrOfConstantString(str + '\0', GlobalName);
1682}
1683
1684/// EmitObjCPropertyImplementations - Emit information for synthesized
1685/// properties for an implementation.
1686void CodeGenModule::EmitObjCPropertyImplementations(const
1687                                                    ObjCImplementationDecl *D) {
1688  for (ObjCImplementationDecl::propimpl_iterator
1689         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1690    ObjCPropertyImplDecl *PID = *i;
1691
1692    // Dynamic is just for type-checking.
1693    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1694      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1695
1696      // Determine which methods need to be implemented, some may have
1697      // been overridden. Note that ::isSynthesized is not the method
1698      // we want, that just indicates if the decl came from a
1699      // property. What we want to know is if the method is defined in
1700      // this implementation.
1701      if (!D->getInstanceMethod(PD->getGetterName()))
1702        CodeGenFunction(*this).GenerateObjCGetter(
1703                                 const_cast<ObjCImplementationDecl *>(D), PID);
1704      if (!PD->isReadOnly() &&
1705          !D->getInstanceMethod(PD->getSetterName()))
1706        CodeGenFunction(*this).GenerateObjCSetter(
1707                                 const_cast<ObjCImplementationDecl *>(D), PID);
1708    }
1709  }
1710}
1711
1712/// EmitNamespace - Emit all declarations in a namespace.
1713void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1714  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1715       I != E; ++I)
1716    EmitTopLevelDecl(*I);
1717}
1718
1719// EmitLinkageSpec - Emit all declarations in a linkage spec.
1720void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1721  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1722      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1723    ErrorUnsupported(LSD, "linkage spec");
1724    return;
1725  }
1726
1727  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1728       I != E; ++I)
1729    EmitTopLevelDecl(*I);
1730}
1731
1732/// EmitTopLevelDecl - Emit code for a single top level declaration.
1733void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1734  // If an error has occurred, stop code generation, but continue
1735  // parsing and semantic analysis (to ensure all warnings and errors
1736  // are emitted).
1737  if (Diags.hasErrorOccurred())
1738    return;
1739
1740  // Ignore dependent declarations.
1741  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1742    return;
1743
1744  switch (D->getKind()) {
1745  case Decl::CXXConversion:
1746  case Decl::CXXMethod:
1747  case Decl::Function:
1748    // Skip function templates
1749    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1750      return;
1751
1752    EmitGlobal(cast<FunctionDecl>(D));
1753    break;
1754
1755  case Decl::Var:
1756    EmitGlobal(cast<VarDecl>(D));
1757    break;
1758
1759  // C++ Decls
1760  case Decl::Namespace:
1761    EmitNamespace(cast<NamespaceDecl>(D));
1762    break;
1763    // No code generation needed.
1764  case Decl::UsingShadow:
1765  case Decl::Using:
1766  case Decl::UsingDirective:
1767  case Decl::ClassTemplate:
1768  case Decl::FunctionTemplate:
1769  case Decl::NamespaceAlias:
1770    break;
1771  case Decl::CXXConstructor:
1772    // Skip function templates
1773    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1774      return;
1775
1776    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1777    break;
1778  case Decl::CXXDestructor:
1779    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1780    break;
1781
1782  case Decl::StaticAssert:
1783    // Nothing to do.
1784    break;
1785
1786  // Objective-C Decls
1787
1788  // Forward declarations, no (immediate) code generation.
1789  case Decl::ObjCClass:
1790  case Decl::ObjCForwardProtocol:
1791  case Decl::ObjCCategory:
1792  case Decl::ObjCInterface:
1793    break;
1794
1795  case Decl::ObjCProtocol:
1796    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1797    break;
1798
1799  case Decl::ObjCCategoryImpl:
1800    // Categories have properties but don't support synthesize so we
1801    // can ignore them here.
1802    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1803    break;
1804
1805  case Decl::ObjCImplementation: {
1806    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1807    EmitObjCPropertyImplementations(OMD);
1808    Runtime->GenerateClass(OMD);
1809    break;
1810  }
1811  case Decl::ObjCMethod: {
1812    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1813    // If this is not a prototype, emit the body.
1814    if (OMD->getBody())
1815      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1816    break;
1817  }
1818  case Decl::ObjCCompatibleAlias:
1819    // compatibility-alias is a directive and has no code gen.
1820    break;
1821
1822  case Decl::LinkageSpec:
1823    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1824    break;
1825
1826  case Decl::FileScopeAsm: {
1827    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1828    llvm::StringRef AsmString = AD->getAsmString()->getString();
1829
1830    const std::string &S = getModule().getModuleInlineAsm();
1831    if (S.empty())
1832      getModule().setModuleInlineAsm(AsmString);
1833    else
1834      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1835    break;
1836  }
1837
1838  default:
1839    // Make sure we handled everything we should, every other kind is a
1840    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1841    // function. Need to recode Decl::Kind to do that easily.
1842    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1843  }
1844}
1845