CGDecl.cpp revision 249423
1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Decl nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGDebugInfo.h"
16#include "CGOpenCLRuntime.h"
17#include "CodeGenModule.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Type.h"
29using namespace clang;
30using namespace CodeGen;
31
32
33void CodeGenFunction::EmitDecl(const Decl &D) {
34  switch (D.getKind()) {
35  case Decl::TranslationUnit:
36  case Decl::Namespace:
37  case Decl::UnresolvedUsingTypename:
38  case Decl::ClassTemplateSpecialization:
39  case Decl::ClassTemplatePartialSpecialization:
40  case Decl::TemplateTypeParm:
41  case Decl::UnresolvedUsingValue:
42  case Decl::NonTypeTemplateParm:
43  case Decl::CXXMethod:
44  case Decl::CXXConstructor:
45  case Decl::CXXDestructor:
46  case Decl::CXXConversion:
47  case Decl::Field:
48  case Decl::IndirectField:
49  case Decl::ObjCIvar:
50  case Decl::ObjCAtDefsField:
51  case Decl::ParmVar:
52  case Decl::ImplicitParam:
53  case Decl::ClassTemplate:
54  case Decl::FunctionTemplate:
55  case Decl::TypeAliasTemplate:
56  case Decl::TemplateTemplateParm:
57  case Decl::ObjCMethod:
58  case Decl::ObjCCategory:
59  case Decl::ObjCProtocol:
60  case Decl::ObjCInterface:
61  case Decl::ObjCCategoryImpl:
62  case Decl::ObjCImplementation:
63  case Decl::ObjCProperty:
64  case Decl::ObjCCompatibleAlias:
65  case Decl::AccessSpec:
66  case Decl::LinkageSpec:
67  case Decl::ObjCPropertyImpl:
68  case Decl::FileScopeAsm:
69  case Decl::Friend:
70  case Decl::FriendTemplate:
71  case Decl::Block:
72  case Decl::ClassScopeFunctionSpecialization:
73    llvm_unreachable("Declaration should not be in declstmts!");
74  case Decl::Function:  // void X();
75  case Decl::Record:    // struct/union/class X;
76  case Decl::Enum:      // enum X;
77  case Decl::EnumConstant: // enum ? { X = ? }
78  case Decl::CXXRecord: // struct/union/class X; [C++]
79  case Decl::Using:          // using X; [C++]
80  case Decl::UsingShadow:
81  case Decl::UsingDirective: // using namespace X; [C++]
82  case Decl::NamespaceAlias:
83  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
84  case Decl::Label:        // __label__ x;
85  case Decl::Import:
86  case Decl::OMPThreadPrivate:
87  case Decl::Empty:
88    // None of these decls require codegen support.
89    return;
90
91  case Decl::Var: {
92    const VarDecl &VD = cast<VarDecl>(D);
93    assert(VD.isLocalVarDecl() &&
94           "Should not see file-scope variables inside a function!");
95    return EmitVarDecl(VD);
96  }
97
98  case Decl::Typedef:      // typedef int X;
99  case Decl::TypeAlias: {  // using X = int; [C++0x]
100    const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
101    QualType Ty = TD.getUnderlyingType();
102
103    if (Ty->isVariablyModifiedType())
104      EmitVariablyModifiedType(Ty);
105  }
106  }
107}
108
109/// EmitVarDecl - This method handles emission of any variable declaration
110/// inside a function, including static vars etc.
111void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
112  switch (D.getStorageClass()) {
113  case SC_None:
114  case SC_Auto:
115  case SC_Register:
116    return EmitAutoVarDecl(D);
117  case SC_Static: {
118    llvm::GlobalValue::LinkageTypes Linkage =
119      llvm::GlobalValue::InternalLinkage;
120
121    // If the function definition has some sort of weak linkage, its
122    // static variables should also be weak so that they get properly
123    // uniqued.  We can't do this in C, though, because there's no
124    // standard way to agree on which variables are the same (i.e.
125    // there's no mangling).
126    if (getLangOpts().CPlusPlus)
127      if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage()))
128        Linkage = CurFn->getLinkage();
129
130    return EmitStaticVarDecl(D, Linkage);
131  }
132  case SC_Extern:
133  case SC_PrivateExtern:
134    // Don't emit it now, allow it to be emitted lazily on its first use.
135    return;
136  case SC_OpenCLWorkGroupLocal:
137    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
138  }
139
140  llvm_unreachable("Unknown storage class");
141}
142
143static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
144                                     const char *Separator) {
145  CodeGenModule &CGM = CGF.CGM;
146  if (CGF.getLangOpts().CPlusPlus) {
147    StringRef Name = CGM.getMangledName(&D);
148    return Name.str();
149  }
150
151  std::string ContextName;
152  if (!CGF.CurFuncDecl) {
153    // Better be in a block declared in global scope.
154    const NamedDecl *ND = cast<NamedDecl>(&D);
155    const DeclContext *DC = ND->getDeclContext();
156    if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
157      MangleBuffer Name;
158      CGM.getBlockMangledName(GlobalDecl(), Name, BD);
159      ContextName = Name.getString();
160    }
161    else
162      llvm_unreachable("Unknown context for block static var decl");
163  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
164    StringRef Name = CGM.getMangledName(FD);
165    ContextName = Name.str();
166  } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
167    ContextName = CGF.CurFn->getName();
168  else
169    llvm_unreachable("Unknown context for static var decl");
170
171  return ContextName + Separator + D.getNameAsString();
172}
173
174llvm::GlobalVariable *
175CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
176                                     const char *Separator,
177                                     llvm::GlobalValue::LinkageTypes Linkage) {
178  QualType Ty = D.getType();
179  assert(Ty->isConstantSizeType() && "VLAs can't be static");
180
181  // Use the label if the variable is renamed with the asm-label extension.
182  std::string Name;
183  if (D.hasAttr<AsmLabelAttr>())
184    Name = CGM.getMangledName(&D);
185  else
186    Name = GetStaticDeclName(*this, D, Separator);
187
188  llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
189  unsigned AddrSpace =
190   CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
191  llvm::GlobalVariable *GV =
192    new llvm::GlobalVariable(CGM.getModule(), LTy,
193                             Ty.isConstant(getContext()), Linkage,
194                             CGM.EmitNullConstant(D.getType()), Name, 0,
195                             llvm::GlobalVariable::NotThreadLocal,
196                             AddrSpace);
197  GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
198  if (Linkage != llvm::GlobalValue::InternalLinkage)
199    GV->setVisibility(CurFn->getVisibility());
200
201  if (D.isThreadSpecified())
202    CGM.setTLSMode(GV, D);
203
204  return GV;
205}
206
207/// hasNontrivialDestruction - Determine whether a type's destruction is
208/// non-trivial. If so, and the variable uses static initialization, we must
209/// register its destructor to run on exit.
210static bool hasNontrivialDestruction(QualType T) {
211  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
212  return RD && !RD->hasTrivialDestructor();
213}
214
215/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
216/// global variable that has already been created for it.  If the initializer
217/// has a different type than GV does, this may free GV and return a different
218/// one.  Otherwise it just returns GV.
219llvm::GlobalVariable *
220CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
221                                               llvm::GlobalVariable *GV) {
222  llvm::Constant *Init = CGM.EmitConstantInit(D, this);
223
224  // If constant emission failed, then this should be a C++ static
225  // initializer.
226  if (!Init) {
227    if (!getLangOpts().CPlusPlus)
228      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
229    else if (Builder.GetInsertBlock()) {
230      // Since we have a static initializer, this global variable can't
231      // be constant.
232      GV->setConstant(false);
233
234      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
235    }
236    return GV;
237  }
238
239  // The initializer may differ in type from the global. Rewrite
240  // the global to match the initializer.  (We have to do this
241  // because some types, like unions, can't be completely represented
242  // in the LLVM type system.)
243  if (GV->getType()->getElementType() != Init->getType()) {
244    llvm::GlobalVariable *OldGV = GV;
245
246    GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
247                                  OldGV->isConstant(),
248                                  OldGV->getLinkage(), Init, "",
249                                  /*InsertBefore*/ OldGV,
250                                  OldGV->getThreadLocalMode(),
251                           CGM.getContext().getTargetAddressSpace(D.getType()));
252    GV->setVisibility(OldGV->getVisibility());
253
254    // Steal the name of the old global
255    GV->takeName(OldGV);
256
257    // Replace all uses of the old global with the new global
258    llvm::Constant *NewPtrForOldDecl =
259    llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
260    OldGV->replaceAllUsesWith(NewPtrForOldDecl);
261
262    // Erase the old global, since it is no longer used.
263    OldGV->eraseFromParent();
264  }
265
266  GV->setConstant(CGM.isTypeConstant(D.getType(), true));
267  GV->setInitializer(Init);
268
269  if (hasNontrivialDestruction(D.getType())) {
270    // We have a constant initializer, but a nontrivial destructor. We still
271    // need to perform a guarded "initialization" in order to register the
272    // destructor.
273    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
274  }
275
276  return GV;
277}
278
279void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
280                                      llvm::GlobalValue::LinkageTypes Linkage) {
281  llvm::Value *&DMEntry = LocalDeclMap[&D];
282  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
283
284  // Check to see if we already have a global variable for this
285  // declaration.  This can happen when double-emitting function
286  // bodies, e.g. with complete and base constructors.
287  llvm::Constant *addr =
288    CGM.getStaticLocalDeclAddress(&D);
289
290  llvm::GlobalVariable *var;
291  if (addr) {
292    var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
293  } else {
294    addr = var = CreateStaticVarDecl(D, ".", Linkage);
295  }
296
297  // Store into LocalDeclMap before generating initializer to handle
298  // circular references.
299  DMEntry = addr;
300  CGM.setStaticLocalDeclAddress(&D, addr);
301
302  // We can't have a VLA here, but we can have a pointer to a VLA,
303  // even though that doesn't really make any sense.
304  // Make sure to evaluate VLA bounds now so that we have them for later.
305  if (D.getType()->isVariablyModifiedType())
306    EmitVariablyModifiedType(D.getType());
307
308  // Save the type in case adding the initializer forces a type change.
309  llvm::Type *expectedType = addr->getType();
310
311  // If this value has an initializer, emit it.
312  if (D.getInit())
313    var = AddInitializerToStaticVarDecl(D, var);
314
315  var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
316
317  if (D.hasAttr<AnnotateAttr>())
318    CGM.AddGlobalAnnotations(&D, var);
319
320  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
321    var->setSection(SA->getName());
322
323  if (D.hasAttr<UsedAttr>())
324    CGM.AddUsedGlobal(var);
325
326  // We may have to cast the constant because of the initializer
327  // mismatch above.
328  //
329  // FIXME: It is really dangerous to store this in the map; if anyone
330  // RAUW's the GV uses of this constant will be invalid.
331  llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
332  DMEntry = castedAddr;
333  CGM.setStaticLocalDeclAddress(&D, castedAddr);
334
335  // Emit global variable debug descriptor for static vars.
336  CGDebugInfo *DI = getDebugInfo();
337  if (DI &&
338      CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
339    DI->setLocation(D.getLocation());
340    DI->EmitGlobalVariable(var, &D);
341  }
342}
343
344namespace {
345  struct DestroyObject : EHScopeStack::Cleanup {
346    DestroyObject(llvm::Value *addr, QualType type,
347                  CodeGenFunction::Destroyer *destroyer,
348                  bool useEHCleanupForArray)
349      : addr(addr), type(type), destroyer(destroyer),
350        useEHCleanupForArray(useEHCleanupForArray) {}
351
352    llvm::Value *addr;
353    QualType type;
354    CodeGenFunction::Destroyer *destroyer;
355    bool useEHCleanupForArray;
356
357    void Emit(CodeGenFunction &CGF, Flags flags) {
358      // Don't use an EH cleanup recursively from an EH cleanup.
359      bool useEHCleanupForArray =
360        flags.isForNormalCleanup() && this->useEHCleanupForArray;
361
362      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
363    }
364  };
365
366  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
367    DestroyNRVOVariable(llvm::Value *addr,
368                        const CXXDestructorDecl *Dtor,
369                        llvm::Value *NRVOFlag)
370      : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
371
372    const CXXDestructorDecl *Dtor;
373    llvm::Value *NRVOFlag;
374    llvm::Value *Loc;
375
376    void Emit(CodeGenFunction &CGF, Flags flags) {
377      // Along the exceptions path we always execute the dtor.
378      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
379
380      llvm::BasicBlock *SkipDtorBB = 0;
381      if (NRVO) {
382        // If we exited via NRVO, we skip the destructor call.
383        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
384        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
385        llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
386        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
387        CGF.EmitBlock(RunDtorBB);
388      }
389
390      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
391                                /*ForVirtualBase=*/false,
392                                /*Delegating=*/false,
393                                Loc);
394
395      if (NRVO) CGF.EmitBlock(SkipDtorBB);
396    }
397  };
398
399  struct CallStackRestore : EHScopeStack::Cleanup {
400    llvm::Value *Stack;
401    CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
402    void Emit(CodeGenFunction &CGF, Flags flags) {
403      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
404      llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
405      CGF.Builder.CreateCall(F, V);
406    }
407  };
408
409  struct ExtendGCLifetime : EHScopeStack::Cleanup {
410    const VarDecl &Var;
411    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
412
413    void Emit(CodeGenFunction &CGF, Flags flags) {
414      // Compute the address of the local variable, in case it's a
415      // byref or something.
416      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
417                      Var.getType(), VK_LValue, SourceLocation());
418      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
419      CGF.EmitExtendGCLifetime(value);
420    }
421  };
422
423  struct CallCleanupFunction : EHScopeStack::Cleanup {
424    llvm::Constant *CleanupFn;
425    const CGFunctionInfo &FnInfo;
426    const VarDecl &Var;
427
428    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
429                        const VarDecl *Var)
430      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
431
432    void Emit(CodeGenFunction &CGF, Flags flags) {
433      DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
434                      Var.getType(), VK_LValue, SourceLocation());
435      // Compute the address of the local variable, in case it's a byref
436      // or something.
437      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
438
439      // In some cases, the type of the function argument will be different from
440      // the type of the pointer. An example of this is
441      // void f(void* arg);
442      // __attribute__((cleanup(f))) void *g;
443      //
444      // To fix this we insert a bitcast here.
445      QualType ArgTy = FnInfo.arg_begin()->type;
446      llvm::Value *Arg =
447        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
448
449      CallArgList Args;
450      Args.add(RValue::get(Arg),
451               CGF.getContext().getPointerType(Var.getType()));
452      CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
453    }
454  };
455
456  /// A cleanup to call @llvm.lifetime.end.
457  class CallLifetimeEnd : public EHScopeStack::Cleanup {
458    llvm::Value *Addr;
459    llvm::Value *Size;
460  public:
461    CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
462      : Addr(addr), Size(size) {}
463
464    void Emit(CodeGenFunction &CGF, Flags flags) {
465      llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
466      CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
467                              Size, castAddr)
468        ->setDoesNotThrow();
469    }
470  };
471}
472
473/// EmitAutoVarWithLifetime - Does the setup required for an automatic
474/// variable with lifetime.
475static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
476                                    llvm::Value *addr,
477                                    Qualifiers::ObjCLifetime lifetime) {
478  switch (lifetime) {
479  case Qualifiers::OCL_None:
480    llvm_unreachable("present but none");
481
482  case Qualifiers::OCL_ExplicitNone:
483    // nothing to do
484    break;
485
486  case Qualifiers::OCL_Strong: {
487    CodeGenFunction::Destroyer *destroyer =
488      (var.hasAttr<ObjCPreciseLifetimeAttr>()
489       ? CodeGenFunction::destroyARCStrongPrecise
490       : CodeGenFunction::destroyARCStrongImprecise);
491
492    CleanupKind cleanupKind = CGF.getARCCleanupKind();
493    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
494                    cleanupKind & EHCleanup);
495    break;
496  }
497  case Qualifiers::OCL_Autoreleasing:
498    // nothing to do
499    break;
500
501  case Qualifiers::OCL_Weak:
502    // __weak objects always get EH cleanups; otherwise, exceptions
503    // could cause really nasty crashes instead of mere leaks.
504    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
505                    CodeGenFunction::destroyARCWeak,
506                    /*useEHCleanup*/ true);
507    break;
508  }
509}
510
511static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
512  if (const Expr *e = dyn_cast<Expr>(s)) {
513    // Skip the most common kinds of expressions that make
514    // hierarchy-walking expensive.
515    s = e = e->IgnoreParenCasts();
516
517    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
518      return (ref->getDecl() == &var);
519    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
520      const BlockDecl *block = be->getBlockDecl();
521      for (BlockDecl::capture_const_iterator i = block->capture_begin(),
522           e = block->capture_end(); i != e; ++i) {
523        if (i->getVariable() == &var)
524          return true;
525      }
526    }
527  }
528
529  for (Stmt::const_child_range children = s->children(); children; ++children)
530    // children might be null; as in missing decl or conditional of an if-stmt.
531    if ((*children) && isAccessedBy(var, *children))
532      return true;
533
534  return false;
535}
536
537static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
538  if (!decl) return false;
539  if (!isa<VarDecl>(decl)) return false;
540  const VarDecl *var = cast<VarDecl>(decl);
541  return isAccessedBy(*var, e);
542}
543
544static void drillIntoBlockVariable(CodeGenFunction &CGF,
545                                   LValue &lvalue,
546                                   const VarDecl *var) {
547  lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
548}
549
550void CodeGenFunction::EmitScalarInit(const Expr *init,
551                                     const ValueDecl *D,
552                                     LValue lvalue,
553                                     bool capturedByInit) {
554  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
555  if (!lifetime) {
556    llvm::Value *value = EmitScalarExpr(init);
557    if (capturedByInit)
558      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
559    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
560    return;
561  }
562
563  // If we're emitting a value with lifetime, we have to do the
564  // initialization *before* we leave the cleanup scopes.
565  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
566    enterFullExpression(ewc);
567    init = ewc->getSubExpr();
568  }
569  CodeGenFunction::RunCleanupsScope Scope(*this);
570
571  // We have to maintain the illusion that the variable is
572  // zero-initialized.  If the variable might be accessed in its
573  // initializer, zero-initialize before running the initializer, then
574  // actually perform the initialization with an assign.
575  bool accessedByInit = false;
576  if (lifetime != Qualifiers::OCL_ExplicitNone)
577    accessedByInit = (capturedByInit || isAccessedBy(D, init));
578  if (accessedByInit) {
579    LValue tempLV = lvalue;
580    // Drill down to the __block object if necessary.
581    if (capturedByInit) {
582      // We can use a simple GEP for this because it can't have been
583      // moved yet.
584      tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
585                                   getByRefValueLLVMField(cast<VarDecl>(D))));
586    }
587
588    llvm::PointerType *ty
589      = cast<llvm::PointerType>(tempLV.getAddress()->getType());
590    ty = cast<llvm::PointerType>(ty->getElementType());
591
592    llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
593
594    // If __weak, we want to use a barrier under certain conditions.
595    if (lifetime == Qualifiers::OCL_Weak)
596      EmitARCInitWeak(tempLV.getAddress(), zero);
597
598    // Otherwise just do a simple store.
599    else
600      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
601  }
602
603  // Emit the initializer.
604  llvm::Value *value = 0;
605
606  switch (lifetime) {
607  case Qualifiers::OCL_None:
608    llvm_unreachable("present but none");
609
610  case Qualifiers::OCL_ExplicitNone:
611    // nothing to do
612    value = EmitScalarExpr(init);
613    break;
614
615  case Qualifiers::OCL_Strong: {
616    value = EmitARCRetainScalarExpr(init);
617    break;
618  }
619
620  case Qualifiers::OCL_Weak: {
621    // No way to optimize a producing initializer into this.  It's not
622    // worth optimizing for, because the value will immediately
623    // disappear in the common case.
624    value = EmitScalarExpr(init);
625
626    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
627    if (accessedByInit)
628      EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
629    else
630      EmitARCInitWeak(lvalue.getAddress(), value);
631    return;
632  }
633
634  case Qualifiers::OCL_Autoreleasing:
635    value = EmitARCRetainAutoreleaseScalarExpr(init);
636    break;
637  }
638
639  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
640
641  // If the variable might have been accessed by its initializer, we
642  // might have to initialize with a barrier.  We have to do this for
643  // both __weak and __strong, but __weak got filtered out above.
644  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
645    llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
646    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
647    EmitARCRelease(oldValue, ARCImpreciseLifetime);
648    return;
649  }
650
651  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
652}
653
654/// EmitScalarInit - Initialize the given lvalue with the given object.
655void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
656  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
657  if (!lifetime)
658    return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
659
660  switch (lifetime) {
661  case Qualifiers::OCL_None:
662    llvm_unreachable("present but none");
663
664  case Qualifiers::OCL_ExplicitNone:
665    // nothing to do
666    break;
667
668  case Qualifiers::OCL_Strong:
669    init = EmitARCRetain(lvalue.getType(), init);
670    break;
671
672  case Qualifiers::OCL_Weak:
673    // Initialize and then skip the primitive store.
674    EmitARCInitWeak(lvalue.getAddress(), init);
675    return;
676
677  case Qualifiers::OCL_Autoreleasing:
678    init = EmitARCRetainAutorelease(lvalue.getType(), init);
679    break;
680  }
681
682  EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
683}
684
685/// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
686/// non-zero parts of the specified initializer with equal or fewer than
687/// NumStores scalar stores.
688static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
689                                                unsigned &NumStores) {
690  // Zero and Undef never requires any extra stores.
691  if (isa<llvm::ConstantAggregateZero>(Init) ||
692      isa<llvm::ConstantPointerNull>(Init) ||
693      isa<llvm::UndefValue>(Init))
694    return true;
695  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
696      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
697      isa<llvm::ConstantExpr>(Init))
698    return Init->isNullValue() || NumStores--;
699
700  // See if we can emit each element.
701  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
702    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
703      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
704      if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
705        return false;
706    }
707    return true;
708  }
709
710  if (llvm::ConstantDataSequential *CDS =
711        dyn_cast<llvm::ConstantDataSequential>(Init)) {
712    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
713      llvm::Constant *Elt = CDS->getElementAsConstant(i);
714      if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
715        return false;
716    }
717    return true;
718  }
719
720  // Anything else is hard and scary.
721  return false;
722}
723
724/// emitStoresForInitAfterMemset - For inits that
725/// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
726/// stores that would be required.
727static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
728                                         bool isVolatile, CGBuilderTy &Builder) {
729  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
730         "called emitStoresForInitAfterMemset for zero or undef value.");
731
732  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
733      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
734      isa<llvm::ConstantExpr>(Init)) {
735    Builder.CreateStore(Init, Loc, isVolatile);
736    return;
737  }
738
739  if (llvm::ConstantDataSequential *CDS =
740        dyn_cast<llvm::ConstantDataSequential>(Init)) {
741    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
742      llvm::Constant *Elt = CDS->getElementAsConstant(i);
743
744      // If necessary, get a pointer to the element and emit it.
745      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
746        emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
747                                     isVolatile, Builder);
748    }
749    return;
750  }
751
752  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
753         "Unknown value type!");
754
755  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
756    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
757
758    // If necessary, get a pointer to the element and emit it.
759    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
760      emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
761                                   isVolatile, Builder);
762  }
763}
764
765
766/// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
767/// plus some stores to initialize a local variable instead of using a memcpy
768/// from a constant global.  It is beneficial to use memset if the global is all
769/// zeros, or mostly zeros and large.
770static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
771                                                  uint64_t GlobalSize) {
772  // If a global is all zeros, always use a memset.
773  if (isa<llvm::ConstantAggregateZero>(Init)) return true;
774
775  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
776  // do it if it will require 6 or fewer scalar stores.
777  // TODO: Should budget depends on the size?  Avoiding a large global warrants
778  // plopping in more stores.
779  unsigned StoreBudget = 6;
780  uint64_t SizeLimit = 32;
781
782  return GlobalSize > SizeLimit &&
783         canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
784}
785
786/// Should we use the LLVM lifetime intrinsics for the given local variable?
787static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
788                                     unsigned Size) {
789  // Always emit lifetime markers in -fsanitize=use-after-scope mode.
790  if (CGF.getLangOpts().Sanitize.UseAfterScope)
791    return true;
792  // For now, only in optimized builds.
793  if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
794    return false;
795
796  // Limit the size of marked objects to 32 bytes. We don't want to increase
797  // compile time by marking tiny objects.
798  unsigned SizeThreshold = 32;
799
800  return Size > SizeThreshold;
801}
802
803
804/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
805/// variable declaration with auto, register, or no storage class specifier.
806/// These turn into simple stack objects, or GlobalValues depending on target.
807void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
808  AutoVarEmission emission = EmitAutoVarAlloca(D);
809  EmitAutoVarInit(emission);
810  EmitAutoVarCleanups(emission);
811}
812
813/// EmitAutoVarAlloca - Emit the alloca and debug information for a
814/// local variable.  Does not emit initalization or destruction.
815CodeGenFunction::AutoVarEmission
816CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
817  QualType Ty = D.getType();
818
819  AutoVarEmission emission(D);
820
821  bool isByRef = D.hasAttr<BlocksAttr>();
822  emission.IsByRef = isByRef;
823
824  CharUnits alignment = getContext().getDeclAlign(&D);
825  emission.Alignment = alignment;
826
827  // If the type is variably-modified, emit all the VLA sizes for it.
828  if (Ty->isVariablyModifiedType())
829    EmitVariablyModifiedType(Ty);
830
831  llvm::Value *DeclPtr;
832  if (Ty->isConstantSizeType()) {
833    bool NRVO = getLangOpts().ElideConstructors &&
834      D.isNRVOVariable();
835
836    // If this value is a POD array or struct with a statically
837    // determinable constant initializer, there are optimizations we can do.
838    //
839    // TODO: We should constant-evaluate the initializer of any variable,
840    // as long as it is initialized by a constant expression. Currently,
841    // isConstantInitializer produces wrong answers for structs with
842    // reference or bitfield members, and a few other cases, and checking
843    // for POD-ness protects us from some of these.
844    if (D.getInit() &&
845        (Ty->isArrayType() || Ty->isRecordType()) &&
846        (Ty.isPODType(getContext()) ||
847         getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
848        D.getInit()->isConstantInitializer(getContext(), false)) {
849
850      // If the variable's a const type, and it's neither an NRVO
851      // candidate nor a __block variable and has no mutable members,
852      // emit it as a global instead.
853      if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
854          CGM.isTypeConstant(Ty, true)) {
855        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
856
857        emission.Address = 0; // signal this condition to later callbacks
858        assert(emission.wasEmittedAsGlobal());
859        return emission;
860      }
861
862      // Otherwise, tell the initialization code that we're in this case.
863      emission.IsConstantAggregate = true;
864    }
865
866    // A normal fixed sized variable becomes an alloca in the entry block,
867    // unless it's an NRVO variable.
868    llvm::Type *LTy = ConvertTypeForMem(Ty);
869
870    if (NRVO) {
871      // The named return value optimization: allocate this variable in the
872      // return slot, so that we can elide the copy when returning this
873      // variable (C++0x [class.copy]p34).
874      DeclPtr = ReturnValue;
875
876      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
877        if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
878          // Create a flag that is used to indicate when the NRVO was applied
879          // to this variable. Set it to zero to indicate that NRVO was not
880          // applied.
881          llvm::Value *Zero = Builder.getFalse();
882          llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
883          EnsureInsertPoint();
884          Builder.CreateStore(Zero, NRVOFlag);
885
886          // Record the NRVO flag for this variable.
887          NRVOFlags[&D] = NRVOFlag;
888          emission.NRVOFlag = NRVOFlag;
889        }
890      }
891    } else {
892      if (isByRef)
893        LTy = BuildByRefType(&D);
894
895      llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
896      Alloc->setName(D.getName());
897
898      CharUnits allocaAlignment = alignment;
899      if (isByRef)
900        allocaAlignment = std::max(allocaAlignment,
901            getContext().toCharUnitsFromBits(Target.getPointerAlign(0)));
902      Alloc->setAlignment(allocaAlignment.getQuantity());
903      DeclPtr = Alloc;
904
905      // Emit a lifetime intrinsic if meaningful.  There's no point
906      // in doing this if we don't have a valid insertion point (?).
907      uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
908      if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
909        llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
910
911        emission.SizeForLifetimeMarkers = sizeV;
912        llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
913        Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
914          ->setDoesNotThrow();
915      } else {
916        assert(!emission.useLifetimeMarkers());
917      }
918    }
919  } else {
920    EnsureInsertPoint();
921
922    if (!DidCallStackSave) {
923      // Save the stack.
924      llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
925
926      llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
927      llvm::Value *V = Builder.CreateCall(F);
928
929      Builder.CreateStore(V, Stack);
930
931      DidCallStackSave = true;
932
933      // Push a cleanup block and restore the stack there.
934      // FIXME: in general circumstances, this should be an EH cleanup.
935      EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
936    }
937
938    llvm::Value *elementCount;
939    QualType elementType;
940    llvm::tie(elementCount, elementType) = getVLASize(Ty);
941
942    llvm::Type *llvmTy = ConvertTypeForMem(elementType);
943
944    // Allocate memory for the array.
945    llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
946    vla->setAlignment(alignment.getQuantity());
947
948    DeclPtr = vla;
949  }
950
951  llvm::Value *&DMEntry = LocalDeclMap[&D];
952  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
953  DMEntry = DeclPtr;
954  emission.Address = DeclPtr;
955
956  // Emit debug info for local var declaration.
957  if (HaveInsertPoint())
958    if (CGDebugInfo *DI = getDebugInfo()) {
959      if (CGM.getCodeGenOpts().getDebugInfo()
960            >= CodeGenOptions::LimitedDebugInfo) {
961        DI->setLocation(D.getLocation());
962        DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
963      }
964    }
965
966  if (D.hasAttr<AnnotateAttr>())
967      EmitVarAnnotations(&D, emission.Address);
968
969  return emission;
970}
971
972/// Determines whether the given __block variable is potentially
973/// captured by the given expression.
974static bool isCapturedBy(const VarDecl &var, const Expr *e) {
975  // Skip the most common kinds of expressions that make
976  // hierarchy-walking expensive.
977  e = e->IgnoreParenCasts();
978
979  if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
980    const BlockDecl *block = be->getBlockDecl();
981    for (BlockDecl::capture_const_iterator i = block->capture_begin(),
982           e = block->capture_end(); i != e; ++i) {
983      if (i->getVariable() == &var)
984        return true;
985    }
986
987    // No need to walk into the subexpressions.
988    return false;
989  }
990
991  if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
992    const CompoundStmt *CS = SE->getSubStmt();
993    for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
994	   BE = CS->body_end(); BI != BE; ++BI)
995      if (Expr *E = dyn_cast<Expr>((*BI))) {
996        if (isCapturedBy(var, E))
997            return true;
998      }
999      else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
1000          // special case declarations
1001          for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1002               I != E; ++I) {
1003              if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
1004                Expr *Init = VD->getInit();
1005                if (Init && isCapturedBy(var, Init))
1006                  return true;
1007              }
1008          }
1009      }
1010      else
1011        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1012        // Later, provide code to poke into statements for capture analysis.
1013        return true;
1014    return false;
1015  }
1016
1017  for (Stmt::const_child_range children = e->children(); children; ++children)
1018    if (isCapturedBy(var, cast<Expr>(*children)))
1019      return true;
1020
1021  return false;
1022}
1023
1024/// \brief Determine whether the given initializer is trivial in the sense
1025/// that it requires no code to be generated.
1026static bool isTrivialInitializer(const Expr *Init) {
1027  if (!Init)
1028    return true;
1029
1030  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1031    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1032      if (Constructor->isTrivial() &&
1033          Constructor->isDefaultConstructor() &&
1034          !Construct->requiresZeroInitialization())
1035        return true;
1036
1037  return false;
1038}
1039void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1040  assert(emission.Variable && "emission was not valid!");
1041
1042  // If this was emitted as a global constant, we're done.
1043  if (emission.wasEmittedAsGlobal()) return;
1044
1045  const VarDecl &D = *emission.Variable;
1046  QualType type = D.getType();
1047
1048  // If this local has an initializer, emit it now.
1049  const Expr *Init = D.getInit();
1050
1051  // If we are at an unreachable point, we don't need to emit the initializer
1052  // unless it contains a label.
1053  if (!HaveInsertPoint()) {
1054    if (!Init || !ContainsLabel(Init)) return;
1055    EnsureInsertPoint();
1056  }
1057
1058  // Initialize the structure of a __block variable.
1059  if (emission.IsByRef)
1060    emitByrefStructureInit(emission);
1061
1062  if (isTrivialInitializer(Init))
1063    return;
1064
1065  CharUnits alignment = emission.Alignment;
1066
1067  // Check whether this is a byref variable that's potentially
1068  // captured and moved by its own initializer.  If so, we'll need to
1069  // emit the initializer first, then copy into the variable.
1070  bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1071
1072  llvm::Value *Loc =
1073    capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1074
1075  llvm::Constant *constant = 0;
1076  if (emission.IsConstantAggregate) {
1077    assert(!capturedByInit && "constant init contains a capturing block?");
1078    constant = CGM.EmitConstantInit(D, this);
1079  }
1080
1081  if (!constant) {
1082    LValue lv = MakeAddrLValue(Loc, type, alignment);
1083    lv.setNonGC(true);
1084    return EmitExprAsInit(Init, &D, lv, capturedByInit);
1085  }
1086
1087  // If this is a simple aggregate initialization, we can optimize it
1088  // in various ways.
1089  bool isVolatile = type.isVolatileQualified();
1090
1091  llvm::Value *SizeVal =
1092    llvm::ConstantInt::get(IntPtrTy,
1093                           getContext().getTypeSizeInChars(type).getQuantity());
1094
1095  llvm::Type *BP = Int8PtrTy;
1096  if (Loc->getType() != BP)
1097    Loc = Builder.CreateBitCast(Loc, BP);
1098
1099  // If the initializer is all or mostly zeros, codegen with memset then do
1100  // a few stores afterward.
1101  if (shouldUseMemSetPlusStoresToInitialize(constant,
1102                CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1103    Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1104                         alignment.getQuantity(), isVolatile);
1105    // Zero and undef don't require a stores.
1106    if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1107      Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1108      emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1109    }
1110  } else {
1111    // Otherwise, create a temporary global with the initializer then
1112    // memcpy from the global to the alloca.
1113    std::string Name = GetStaticDeclName(*this, D, ".");
1114    llvm::GlobalVariable *GV =
1115      new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1116                               llvm::GlobalValue::PrivateLinkage,
1117                               constant, Name);
1118    GV->setAlignment(alignment.getQuantity());
1119    GV->setUnnamedAddr(true);
1120
1121    llvm::Value *SrcPtr = GV;
1122    if (SrcPtr->getType() != BP)
1123      SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1124
1125    Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1126                         isVolatile);
1127  }
1128}
1129
1130/// Emit an expression as an initializer for a variable at the given
1131/// location.  The expression is not necessarily the normal
1132/// initializer for the variable, and the address is not necessarily
1133/// its normal location.
1134///
1135/// \param init the initializing expression
1136/// \param var the variable to act as if we're initializing
1137/// \param loc the address to initialize; its type is a pointer
1138///   to the LLVM mapping of the variable's type
1139/// \param alignment the alignment of the address
1140/// \param capturedByInit true if the variable is a __block variable
1141///   whose address is potentially changed by the initializer
1142void CodeGenFunction::EmitExprAsInit(const Expr *init,
1143                                     const ValueDecl *D,
1144                                     LValue lvalue,
1145                                     bool capturedByInit) {
1146  QualType type = D->getType();
1147
1148  if (type->isReferenceType()) {
1149    RValue rvalue = EmitReferenceBindingToExpr(init, D);
1150    if (capturedByInit)
1151      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1152    EmitStoreThroughLValue(rvalue, lvalue, true);
1153    return;
1154  }
1155  switch (getEvaluationKind(type)) {
1156  case TEK_Scalar:
1157    EmitScalarInit(init, D, lvalue, capturedByInit);
1158    return;
1159  case TEK_Complex: {
1160    ComplexPairTy complex = EmitComplexExpr(init);
1161    if (capturedByInit)
1162      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1163    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1164    return;
1165  }
1166  case TEK_Aggregate:
1167    if (type->isAtomicType()) {
1168      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1169    } else {
1170      // TODO: how can we delay here if D is captured by its initializer?
1171      EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1172                                              AggValueSlot::IsDestructed,
1173                                         AggValueSlot::DoesNotNeedGCBarriers,
1174                                              AggValueSlot::IsNotAliased));
1175    }
1176    MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init);
1177    return;
1178  }
1179  llvm_unreachable("bad evaluation kind");
1180}
1181
1182/// Enter a destroy cleanup for the given local variable.
1183void CodeGenFunction::emitAutoVarTypeCleanup(
1184                            const CodeGenFunction::AutoVarEmission &emission,
1185                            QualType::DestructionKind dtorKind) {
1186  assert(dtorKind != QualType::DK_none);
1187
1188  // Note that for __block variables, we want to destroy the
1189  // original stack object, not the possibly forwarded object.
1190  llvm::Value *addr = emission.getObjectAddress(*this);
1191
1192  const VarDecl *var = emission.Variable;
1193  QualType type = var->getType();
1194
1195  CleanupKind cleanupKind = NormalAndEHCleanup;
1196  CodeGenFunction::Destroyer *destroyer = 0;
1197
1198  switch (dtorKind) {
1199  case QualType::DK_none:
1200    llvm_unreachable("no cleanup for trivially-destructible variable");
1201
1202  case QualType::DK_cxx_destructor:
1203    // If there's an NRVO flag on the emission, we need a different
1204    // cleanup.
1205    if (emission.NRVOFlag) {
1206      assert(!type->isArrayType());
1207      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1208      EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1209                                               emission.NRVOFlag);
1210      return;
1211    }
1212    break;
1213
1214  case QualType::DK_objc_strong_lifetime:
1215    // Suppress cleanups for pseudo-strong variables.
1216    if (var->isARCPseudoStrong()) return;
1217
1218    // Otherwise, consider whether to use an EH cleanup or not.
1219    cleanupKind = getARCCleanupKind();
1220
1221    // Use the imprecise destroyer by default.
1222    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1223      destroyer = CodeGenFunction::destroyARCStrongImprecise;
1224    break;
1225
1226  case QualType::DK_objc_weak_lifetime:
1227    break;
1228  }
1229
1230  // If we haven't chosen a more specific destroyer, use the default.
1231  if (!destroyer) destroyer = getDestroyer(dtorKind);
1232
1233  // Use an EH cleanup in array destructors iff the destructor itself
1234  // is being pushed as an EH cleanup.
1235  bool useEHCleanup = (cleanupKind & EHCleanup);
1236  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1237                                     useEHCleanup);
1238}
1239
1240void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1241  assert(emission.Variable && "emission was not valid!");
1242
1243  // If this was emitted as a global constant, we're done.
1244  if (emission.wasEmittedAsGlobal()) return;
1245
1246  // If we don't have an insertion point, we're done.  Sema prevents
1247  // us from jumping into any of these scopes anyway.
1248  if (!HaveInsertPoint()) return;
1249
1250  const VarDecl &D = *emission.Variable;
1251
1252  // Make sure we call @llvm.lifetime.end.  This needs to happen
1253  // *last*, so the cleanup needs to be pushed *first*.
1254  if (emission.useLifetimeMarkers()) {
1255    EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1256                                         emission.getAllocatedAddress(),
1257                                         emission.getSizeForLifetimeMarkers());
1258  }
1259
1260  // Check the type for a cleanup.
1261  if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1262    emitAutoVarTypeCleanup(emission, dtorKind);
1263
1264  // In GC mode, honor objc_precise_lifetime.
1265  if (getLangOpts().getGC() != LangOptions::NonGC &&
1266      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1267    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1268  }
1269
1270  // Handle the cleanup attribute.
1271  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1272    const FunctionDecl *FD = CA->getFunctionDecl();
1273
1274    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1275    assert(F && "Could not find function!");
1276
1277    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1278    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1279  }
1280
1281  // If this is a block variable, call _Block_object_destroy
1282  // (on the unforwarded address).
1283  if (emission.IsByRef)
1284    enterByrefCleanup(emission);
1285}
1286
1287CodeGenFunction::Destroyer *
1288CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1289  switch (kind) {
1290  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1291  case QualType::DK_cxx_destructor:
1292    return destroyCXXObject;
1293  case QualType::DK_objc_strong_lifetime:
1294    return destroyARCStrongPrecise;
1295  case QualType::DK_objc_weak_lifetime:
1296    return destroyARCWeak;
1297  }
1298  llvm_unreachable("Unknown DestructionKind");
1299}
1300
1301/// pushEHDestroy - Push the standard destructor for the given type as
1302/// an EH-only cleanup.
1303void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1304                                  llvm::Value *addr, QualType type) {
1305  assert(dtorKind && "cannot push destructor for trivial type");
1306  assert(needsEHCleanup(dtorKind));
1307
1308  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1309}
1310
1311/// pushDestroy - Push the standard destructor for the given type as
1312/// at least a normal cleanup.
1313void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1314                                  llvm::Value *addr, QualType type) {
1315  assert(dtorKind && "cannot push destructor for trivial type");
1316
1317  CleanupKind cleanupKind = getCleanupKind(dtorKind);
1318  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1319              cleanupKind & EHCleanup);
1320}
1321
1322void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1323                                  QualType type, Destroyer *destroyer,
1324                                  bool useEHCleanupForArray) {
1325  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1326                                     destroyer, useEHCleanupForArray);
1327}
1328
1329/// emitDestroy - Immediately perform the destruction of the given
1330/// object.
1331///
1332/// \param addr - the address of the object; a type*
1333/// \param type - the type of the object; if an array type, all
1334///   objects are destroyed in reverse order
1335/// \param destroyer - the function to call to destroy individual
1336///   elements
1337/// \param useEHCleanupForArray - whether an EH cleanup should be
1338///   used when destroying array elements, in case one of the
1339///   destructions throws an exception
1340void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1341                                  Destroyer *destroyer,
1342                                  bool useEHCleanupForArray) {
1343  const ArrayType *arrayType = getContext().getAsArrayType(type);
1344  if (!arrayType)
1345    return destroyer(*this, addr, type);
1346
1347  llvm::Value *begin = addr;
1348  llvm::Value *length = emitArrayLength(arrayType, type, begin);
1349
1350  // Normally we have to check whether the array is zero-length.
1351  bool checkZeroLength = true;
1352
1353  // But if the array length is constant, we can suppress that.
1354  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1355    // ...and if it's constant zero, we can just skip the entire thing.
1356    if (constLength->isZero()) return;
1357    checkZeroLength = false;
1358  }
1359
1360  llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1361  emitArrayDestroy(begin, end, type, destroyer,
1362                   checkZeroLength, useEHCleanupForArray);
1363}
1364
1365/// emitArrayDestroy - Destroys all the elements of the given array,
1366/// beginning from last to first.  The array cannot be zero-length.
1367///
1368/// \param begin - a type* denoting the first element of the array
1369/// \param end - a type* denoting one past the end of the array
1370/// \param type - the element type of the array
1371/// \param destroyer - the function to call to destroy elements
1372/// \param useEHCleanup - whether to push an EH cleanup to destroy
1373///   the remaining elements in case the destruction of a single
1374///   element throws
1375void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1376                                       llvm::Value *end,
1377                                       QualType type,
1378                                       Destroyer *destroyer,
1379                                       bool checkZeroLength,
1380                                       bool useEHCleanup) {
1381  assert(!type->isArrayType());
1382
1383  // The basic structure here is a do-while loop, because we don't
1384  // need to check for the zero-element case.
1385  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1386  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1387
1388  if (checkZeroLength) {
1389    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1390                                                "arraydestroy.isempty");
1391    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1392  }
1393
1394  // Enter the loop body, making that address the current address.
1395  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1396  EmitBlock(bodyBB);
1397  llvm::PHINode *elementPast =
1398    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1399  elementPast->addIncoming(end, entryBB);
1400
1401  // Shift the address back by one element.
1402  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1403  llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1404                                                   "arraydestroy.element");
1405
1406  if (useEHCleanup)
1407    pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1408
1409  // Perform the actual destruction there.
1410  destroyer(*this, element, type);
1411
1412  if (useEHCleanup)
1413    PopCleanupBlock();
1414
1415  // Check whether we've reached the end.
1416  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1417  Builder.CreateCondBr(done, doneBB, bodyBB);
1418  elementPast->addIncoming(element, Builder.GetInsertBlock());
1419
1420  // Done.
1421  EmitBlock(doneBB);
1422}
1423
1424/// Perform partial array destruction as if in an EH cleanup.  Unlike
1425/// emitArrayDestroy, the element type here may still be an array type.
1426static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1427                                    llvm::Value *begin, llvm::Value *end,
1428                                    QualType type,
1429                                    CodeGenFunction::Destroyer *destroyer) {
1430  // If the element type is itself an array, drill down.
1431  unsigned arrayDepth = 0;
1432  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1433    // VLAs don't require a GEP index to walk into.
1434    if (!isa<VariableArrayType>(arrayType))
1435      arrayDepth++;
1436    type = arrayType->getElementType();
1437  }
1438
1439  if (arrayDepth) {
1440    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1441
1442    SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1443    begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1444    end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1445  }
1446
1447  // Destroy the array.  We don't ever need an EH cleanup because we
1448  // assume that we're in an EH cleanup ourselves, so a throwing
1449  // destructor causes an immediate terminate.
1450  CGF.emitArrayDestroy(begin, end, type, destroyer,
1451                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1452}
1453
1454namespace {
1455  /// RegularPartialArrayDestroy - a cleanup which performs a partial
1456  /// array destroy where the end pointer is regularly determined and
1457  /// does not need to be loaded from a local.
1458  class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1459    llvm::Value *ArrayBegin;
1460    llvm::Value *ArrayEnd;
1461    QualType ElementType;
1462    CodeGenFunction::Destroyer *Destroyer;
1463  public:
1464    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1465                               QualType elementType,
1466                               CodeGenFunction::Destroyer *destroyer)
1467      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1468        ElementType(elementType), Destroyer(destroyer) {}
1469
1470    void Emit(CodeGenFunction &CGF, Flags flags) {
1471      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1472                              ElementType, Destroyer);
1473    }
1474  };
1475
1476  /// IrregularPartialArrayDestroy - a cleanup which performs a
1477  /// partial array destroy where the end pointer is irregularly
1478  /// determined and must be loaded from a local.
1479  class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1480    llvm::Value *ArrayBegin;
1481    llvm::Value *ArrayEndPointer;
1482    QualType ElementType;
1483    CodeGenFunction::Destroyer *Destroyer;
1484  public:
1485    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1486                                 llvm::Value *arrayEndPointer,
1487                                 QualType elementType,
1488                                 CodeGenFunction::Destroyer *destroyer)
1489      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1490        ElementType(elementType), Destroyer(destroyer) {}
1491
1492    void Emit(CodeGenFunction &CGF, Flags flags) {
1493      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1494      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1495                              ElementType, Destroyer);
1496    }
1497  };
1498}
1499
1500/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1501/// already-constructed elements of the given array.  The cleanup
1502/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1503///
1504/// \param elementType - the immediate element type of the array;
1505///   possibly still an array type
1506void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1507                                                 llvm::Value *arrayEndPointer,
1508                                                       QualType elementType,
1509                                                       Destroyer *destroyer) {
1510  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1511                                                    arrayBegin, arrayEndPointer,
1512                                                    elementType, destroyer);
1513}
1514
1515/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1516/// already-constructed elements of the given array.  The cleanup
1517/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1518///
1519/// \param elementType - the immediate element type of the array;
1520///   possibly still an array type
1521void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1522                                                     llvm::Value *arrayEnd,
1523                                                     QualType elementType,
1524                                                     Destroyer *destroyer) {
1525  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1526                                                  arrayBegin, arrayEnd,
1527                                                  elementType, destroyer);
1528}
1529
1530/// Lazily declare the @llvm.lifetime.start intrinsic.
1531llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1532  if (LifetimeStartFn) return LifetimeStartFn;
1533  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1534                                            llvm::Intrinsic::lifetime_start);
1535  return LifetimeStartFn;
1536}
1537
1538/// Lazily declare the @llvm.lifetime.end intrinsic.
1539llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1540  if (LifetimeEndFn) return LifetimeEndFn;
1541  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1542                                              llvm::Intrinsic::lifetime_end);
1543  return LifetimeEndFn;
1544}
1545
1546namespace {
1547  /// A cleanup to perform a release of an object at the end of a
1548  /// function.  This is used to balance out the incoming +1 of a
1549  /// ns_consumed argument when we can't reasonably do that just by
1550  /// not doing the initial retain for a __block argument.
1551  struct ConsumeARCParameter : EHScopeStack::Cleanup {
1552    ConsumeARCParameter(llvm::Value *param,
1553                        ARCPreciseLifetime_t precise)
1554      : Param(param), Precise(precise) {}
1555
1556    llvm::Value *Param;
1557    ARCPreciseLifetime_t Precise;
1558
1559    void Emit(CodeGenFunction &CGF, Flags flags) {
1560      CGF.EmitARCRelease(Param, Precise);
1561    }
1562  };
1563}
1564
1565/// Emit an alloca (or GlobalValue depending on target)
1566/// for the specified parameter and set up LocalDeclMap.
1567void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1568                                   unsigned ArgNo) {
1569  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1570  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1571         "Invalid argument to EmitParmDecl");
1572
1573  Arg->setName(D.getName());
1574
1575  QualType Ty = D.getType();
1576
1577  // Use better IR generation for certain implicit parameters.
1578  if (isa<ImplicitParamDecl>(D)) {
1579    // The only implicit argument a block has is its literal.
1580    if (BlockInfo) {
1581      LocalDeclMap[&D] = Arg;
1582      llvm::Value *LocalAddr = 0;
1583      if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1584        // Allocate a stack slot to let the debug info survive the RA.
1585        llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1586                                                   D.getName() + ".addr");
1587        Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1588        LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1589        EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1590        LocalAddr = Builder.CreateLoad(Alloc);
1591      }
1592
1593      if (CGDebugInfo *DI = getDebugInfo()) {
1594        if (CGM.getCodeGenOpts().getDebugInfo()
1595              >= CodeGenOptions::LimitedDebugInfo) {
1596          DI->setLocation(D.getLocation());
1597          DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1598        }
1599      }
1600
1601      return;
1602    }
1603  }
1604
1605  llvm::Value *DeclPtr;
1606  // If this is an aggregate or variable sized value, reuse the input pointer.
1607  if (!Ty->isConstantSizeType() ||
1608      !CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1609    DeclPtr = Arg;
1610  } else {
1611    // Otherwise, create a temporary to hold the value.
1612    llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1613                                               D.getName() + ".addr");
1614    CharUnits Align = getContext().getDeclAlign(&D);
1615    Alloc->setAlignment(Align.getQuantity());
1616    DeclPtr = Alloc;
1617
1618    bool doStore = true;
1619
1620    Qualifiers qs = Ty.getQualifiers();
1621    LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1622    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1623      // We honor __attribute__((ns_consumed)) for types with lifetime.
1624      // For __strong, it's handled by just skipping the initial retain;
1625      // otherwise we have to balance out the initial +1 with an extra
1626      // cleanup to do the release at the end of the function.
1627      bool isConsumed = D.hasAttr<NSConsumedAttr>();
1628
1629      // 'self' is always formally __strong, but if this is not an
1630      // init method then we don't want to retain it.
1631      if (D.isARCPseudoStrong()) {
1632        const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1633        assert(&D == method->getSelfDecl());
1634        assert(lt == Qualifiers::OCL_Strong);
1635        assert(qs.hasConst());
1636        assert(method->getMethodFamily() != OMF_init);
1637        (void) method;
1638        lt = Qualifiers::OCL_ExplicitNone;
1639      }
1640
1641      if (lt == Qualifiers::OCL_Strong) {
1642        if (!isConsumed) {
1643          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1644            // use objc_storeStrong(&dest, value) for retaining the
1645            // object. But first, store a null into 'dest' because
1646            // objc_storeStrong attempts to release its old value.
1647            llvm::Value * Null = CGM.EmitNullConstant(D.getType());
1648            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1649            EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1650            doStore = false;
1651          }
1652          else
1653          // Don't use objc_retainBlock for block pointers, because we
1654          // don't want to Block_copy something just because we got it
1655          // as a parameter.
1656            Arg = EmitARCRetainNonBlock(Arg);
1657        }
1658      } else {
1659        // Push the cleanup for a consumed parameter.
1660        if (isConsumed) {
1661          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1662                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
1663          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1664                                                   precise);
1665        }
1666
1667        if (lt == Qualifiers::OCL_Weak) {
1668          EmitARCInitWeak(DeclPtr, Arg);
1669          doStore = false; // The weak init is a store, no need to do two.
1670        }
1671      }
1672
1673      // Enter the cleanup scope.
1674      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1675    }
1676
1677    // Store the initial value into the alloca.
1678    if (doStore)
1679      EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1680  }
1681
1682  llvm::Value *&DMEntry = LocalDeclMap[&D];
1683  assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1684  DMEntry = DeclPtr;
1685
1686  // Emit debug info for param declaration.
1687  if (CGDebugInfo *DI = getDebugInfo()) {
1688    if (CGM.getCodeGenOpts().getDebugInfo()
1689          >= CodeGenOptions::LimitedDebugInfo) {
1690      DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1691    }
1692  }
1693
1694  if (D.hasAttr<AnnotateAttr>())
1695      EmitVarAnnotations(&D, DeclPtr);
1696}
1697